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PREFACE

This Textbook is intended for upper division undergraduate and
graduate courses. As a prerequisite, it requires mathematics through
differential equations, and modern physics where students are introduced
to quantum mechanics. The different Chapters contain different levels of
difficulty. The concepts introduced to the Reader are first presented in a
simple way, often using comparisons to everyday-life experiences such as
simple fluid mechanics. Then the concepts are explained in depth,
without leaving mathematical developments to the Reader's
responsibility. It is up to the Instructor to decide to which depth he or she
wishes to teach the physics of semiconductor devices.

In the Annex, the Reader is reminded of crystallography and quantum
mechanics which they have seen in lower division materials and physics
courses. These notions are used in Chapter 1 to develop the Energy Band
Theory for crystal structures.

An introduction to basic Matlab programming is also included in the
Annex, which prepares the students for solving problems throughout the
text. Matlab was chosen because of its ease of use, its powerful graphics
capabilities and its ability to manipulate vectors and matrices. The
problems can be used in class by the Instructor to graphically illustrate
theoretical concepts and to show the effects of changing the value of
parameters upon the result. We believe it is important for students to
understand and experience a "hands-on" feeling of the consequences of
changing variable values in a problem (for instance, what happens to the
C-V characteristics of a MOS capacitor if the substrate doping
concentration is increased? - What happens to the band structure of a
semiconductor if the lattice parameter is increased? - What happens to
the gain of a bipolar transistor if temperature increases?). Furthermore,
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some Matlab problems make use of a basic numerical, finite-difference
technique in which the "exact" numerical solution to an equation is
compared to a more approximate, analytical solution such as the solution
of the Poisson equation using the depletion approximation.

Chapters 1 to 3 introduce the notion of energy bands, carrier transport
and generation-recombination phenomena in a semiconductor. End-of-
chapter problems are used here to illustrate and visualize quantum
mechanical effects, energy band structure, electron and hole behavior, and
the response of carriers to an electric field.

Chapters 4 and 5 derive the electrical characteristics of PN and metal-
semiconductor contacts. The notion of a space-charge region is
introduced and carrier transport in these structures is analyzed. Special
applications such as solar cells are discussed. Matlab problems are used to
visualize charge and potential distributions as well as current components
in junctions.

Chapter 6 analyzes the JFET and the MESFET, which are extensions
of the PN or metal-semiconductor junctions. The notions of source, gate,
drain and channel are introduced, together with two-dimensional field
effects such as pinch-off. These important concepts lead the Reader up to
the MOSFET chapter.

Chapter 7 is dedicated to the MOSFET. In this important chapter the
MOS capacitor is analyzed and emphasis is placed on the physical
mechanisms taking place. The current expressions are derived for the
MOS transistor, including second-order effects such as surface channel
mobility reduction, channel length modulation and threshold voltage roll-
off. Scaling rules are introduced, and hot-carrier degradation effects are
discussed. Special MOSFET structures such as non-volatile memory and
silicon-on-insulator devices are described as well. Matlab problems are used
to visualize the characteristics of the MOS capacitor, to compare
different MOSFET models and to construct simple circuits.

Chapter 8 introduces the bipolar junction transistor (BJT). The Ebers-
Moll, Gummel-Poon and charge-control models are developed and
second-order effects such as the Early and Kirk effects are described.
Matlab problems are used to visualize the currents in the BJT.

Heterojunctions are introduced in Chapter 9 and several
heterojunction devices, such as the high-electron mobility transistor
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(HEMT), the heterojunction bipolar transistor (HBT), and the laser
diode, are analyzed.

Chapter 10 is dedicated to the most recent semiconductor devices.
After introducing the tunnel effect and the tunnel diode, the physics of
low-dimensional devices (two-dimensional electron gas, quantum wire and
quantum dot) is analyzed. The characteristics of the single-electron
transistor are derived. Matlab problems are used to visualize tunneling
through a potential barrier and to plot the density of states in low-
dimensional devices.

Chapter 11 introduces silicon processing techniques such as oxidation,
ion implantation, lithography, etching and silicide formation. CMOS and
BJT fabrication processes are also described step by step. Matlab problems
analyze the influence of ion implantation and diffusion parameters on
MOS capacitors, MOSFETs, and BJTs.

The solutions to the end-of-chapter problems are available to
Instructors. To download a solution manual and the Matlab files
corresponding to the end-of-chapter problems, please go to the following
URL: http://www.wkap.nl/prod/b/1-4020-7018-7

This Book is dedicated to Gunner, David, Colin-Pierre, Peter, Eliott
and Michael. The late Professor F. Van de Wiele is acknowledged for his
help reviewing this book and his mentorship in Semiconductor Device
Physics.

Cynthia A. Colinge
California State University

Jean-Pierre Colinge
University of California



Chapter 1

ENERGY BAND THEORY

1.1. Electron in a crystal

This Section describes the behavior of an electron in a crystal. It will
be demonstrated that the electron can have only discrete values of
energy, and the concept of "energy bands" will be introduced. This
concept is a key element for the understanding of the electrical properties
of semiconductors.

1.1.1. Two examples of electron behavior

An electron behaves differently whether it is in a vacuum, in an atom,
or in a crystal. In order to comprehend the dynamics of the electron in a
semiconductor crystal, it is worthwhile to first understand how an electron
behaves in a simpler environment. We will, therefore, study the
"classical" cases of the electron in a vacuum (free electron) and the
electron confined in a box-like potential well (particle-in-a-box).

1.1.1.1. Free electron

The free electron model can be applied to an electron which does not
interact with its environment. In other words, the electron is not
submitted to the attraction of the atoms in a crystal; it travels in a
medium where the potential is constant. Such an electron is called a free
electron. For a one-dimensional crystal, which is the simplest possible
structure imaginable, the time-independent Schrödinger equation can be
written for a constant potential V using Relationship A3.12 from Annex
3. Since the reference for potential is arbitrary the potential can be set
equal to zero (V = 0) without losing The time-independent
Schrödinger equation can, therefore, be written as:
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where E is the electron energy, and m is its mass. The solution to
Equation 1.1.1 is :

where:

Equation 1.1.2 represents two waves traveling in opposite directions.
represents the motion of the electron in the +x direction, while

represents the motion of the electron in the -x direction.

What is the meaning of the variable k? At first it can be observed that the
unit in which k is expressed is or k is thus a vector belonging to
the reciprocal space. In a one-dimensional crystal, however, k can be
considered as a scalar number for all practical purposes. The momentum
operator,   of the electron, given by relationship A3.2, is:

Considering an electron moving along the +x direction in a one-
dimensional sample and applying the momentum operator to the wave
function we obtain:

The eigenvalues of the operator px are thus given by:

Hence, we can conclude that the number k, called the wave number, is
equal to the momentum of the electron, within a multiplication factor
In classical mechanics the speed of the electron is equal to v=p/m, which
yields We can thus relate the expression of the electron energy,
given by Expression 1.1.3, to that derived from classical mechanics:

The energy of the free electron is a parabolic function of its momentum
k, as shown in Figure 1.1.This result is identical to what is expected from
classical mechanics considerations: the "free" electron can take any value
of energy in a continuous manner. It is worthwhile noting that electrons
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with momentum k or -k have the same energy. These electrons have the
same momentum but travel in opposite directions.

Another interpretation can be given to k. If we now consider a three-
dimensional crystal, k is a vector of the reciprocal space. It is the called
the wave vector. Indeed, the expression exp(jkr), where r=(x,y,z) is the
position of the electron, and represents a plane spatial wave moving in
the direction of k. The spatial frequency of the wave is equal to k, and its

spatial wavelength is equal to

1.1.1.2. The particle-in-a-box approach

After studying the case of a free electron, it is worthwhile to consider
a situation where the electron is confined within a small region of space.
The confinement can be realized by placing the electron in an infinitely
deep potential well from which it cannot escape. In some way the
electron can be considered as contained within a box or a well surrounded
by infinitely high walls (Figure 1.2). To some limited extent, the particle-
in-a-box problem resembles that of electrons in an atom, where the
attraction from the positively charge nucleus creates a potential well that
"traps" the electrons.
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By definition the electron is confined inside the potential well and
therefore, the wave function vanishes at the well edges: thus the boundary
conditions to our problem are: Within the
potential well where V = 0, the time-independent Schrödinger
equation can be written as:

which can be rewritten in the following form:

The solution to this homogenous, second-order differential equation is:

Using the first boundary condition we obtain B = 0. Using
the second boundary condition we obtain A sin(ka) = 0 and
therefore:
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The wave function is thus given by:

and the energy of the electron is:

This result is quite similar to that obtained for a free electron, in both
cases the energy is a function of the squared momentum. The difference
resides in the fact that in the case of a free electron, the wave number k
and the energy E can take any value, while in the case of the particle-in-
a-box problem, k and E can only take discrete values (replacing k by
in Expression 1.1.3 yields Equation 1.1.11). These values are fixed by the
geometry of the potential well. Intuitively, it is interesting to note that if
the width of the potential well becomes very large the different
values of k become very close to one another, such that they are no
longer discrete values but rather form a continuum, as in the case for the
free electron.

Which values can k take in a finite crystal of macroscopic dimensions?
Let us consider the example of a one-dimensional linear crystal having a
length L (Figure 1.3). If we impose and as in the
case of the particle-in-the-box approach, Relationships 1.1.9 and 1.1.11
tell us that the permitted values for the momentum and for the energy of
the electron will depend on the length of the crystal. This is clearly
unacceptable for we know from experience that the electrical properties
of a macroscopic sample do not depend on its dimensions.

Much better results are obtained using the Born-von Karman boundary
conditions, referred to as cyclic boundary conditions. To obtain these
conditions, let us bend the crystal such that x = 0 and x = L become
coincident. From the newly obtained geometry it becomes evident that
for any value of x, we have the cyclical boundary conditions:

Using the free-electron wave function (Expression 1.1.2), and
taking into account the periodic nature of the problem, we can write:

which imposes:

where n is an integer number.

In the case of a three-dimensional crystal with dimensions the
Born-von Karman boundary conditions can be written as follows:

5

with n = 1,2,3,... (1.1.9)
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where are integer numbers.

In a single atom, electrons occupy discrete energy levels. What
happens when a large number of atoms are brought together to form a
crystal? Let us take the example of a relatively simple element with low
atomic number, such as lithium (Z=3). In a lithium atom, two electrons of
opposite spin occupy the lowest energy level (1s level), and the remaining
third electron occupies the second energy level (2s level). The electronic
configuration is thus All lithium atoms have exactly the same
electronic configuration with identical energy levels. If an hypothetical
molecule containing two lithium atoms is formed, we are now in the
presence of a system in which four electrons "wish" to have an energy
equal to that of the 1s level. But because of the Pauli exclusion principle,
which states that only two electrons of opposite spins can occupy the
same energy level, only two of the four 1s electrons can occupy the 1s
level. This clearly poses a problem for the molecule. The problem is
solved by splitting the 1s level into two levels having very close, but
nevertheless different energies (Figure 1.4).

1.1.2. Energy bands of a crystal (intuitive approach)
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If a crystal of lithium containing N number of atoms is now formed, the
system will contain N number of 1s energy levels. The same consideration
is valid for the 2s level. The number of atoms in a cubic centimeter of a
crystal is on the order of As a result, each energy level is split
into distinct energy levels which extend throughout the crystal.
Each of these levels can be occupied by two electrons by virtue of the
Pauli exclusion principle. In practice, the energy difference between the
highest and the lowest energy value resulting from this process of splitting
an energy level is on the order of a few electron-volts; therefore, the
energy difference between two neighboring energy levels is on the order
of eV. This value is so small that one can consider that the energy
levels are no longer discrete, but form a continuum of permitted energy
values for the electron. This introduces the concept of energy bands in a
crystal. Between the energy bands (between the 1s and the 2s energy
bands in Figure 1.4) there may be a range of energy values which are not
permitted. In that case, a forbidden energy gap is produced between
permitted energy bands. The energy levels and the energy bands extend
throughout the entire crystal. Because of the potential wells generated by
the atom nuclei, however, some electrons (those occupying the 1s levels)
are confined to the immediate neighborhood of the nucleus they are
bound to. The electrons of the 2s band, on the other hand, can overcome
nucleus attraction and move throughout the crystal.

1.1.3.  Krönig-Penney model

Semiconductors, like metals and some insulators, are crystalline
materials. This implies that atoms are placed in an orderly and periodic
manner in the material (see Annex A4). While most usual crystalline
materials are polycrystalline, semiconductor materials used in the



8 Chapter 1

electronics industry are single-crystal. These single crystals are almost
perfect and defect-free, and their size is much greater than any of the
microscopic physical dimensions which we are going to deal with in this
chapter.

In a crystal each atom of the crystal creates a local potential well which
attracts electrons, just like in the lithium crystal described in Figure 1.4.
The potential energy of the electron depends on its distance from the
atom nucleus. Electrostatics provides us with a relationship establishing
the potential energy resulting from the interaction between an electron
carrying a charge -q and a nucleus bearing a charge +qZ, where Z is the
atomic number of the atom and is equal to the number of protons in the
nucleus:

In this relationship x is the distance between the electron and the nucleus,
V(x) is the potential energy and is the permittivity of the material under
consideration. Equation 1.1.14 ignores the presence of other electrons,
such as core electrons "orbiting" around the nucleus. These electrons
actually induce a screening effect between the nucleus and outer shell
electrons, which reduces the attraction between the nucleus and higher-
energy electrons. The energy of the electron as a function of its distance
from the nucleus is sketched in Figure 1.5.

How will an electron behave in a crystal? In order to simplify the
problem, we will suppose that the crystal is merely an infinite, one-
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dimensional chain of atoms. This assumption may seem rather coarse, but
it preserves a key feature of the crystal: the periodic nature of the
position of the atoms in the crystal. In mathematical terms, the
expression of the periodic nature of the atom-generated potential wells
can be written as:

where a+b is the distance between two atoms in the x-direction (Figure
1.6).

The periodic nature of the potential has a profound influence on the wave
function of the electron. In particular, the electron wave function must
satisfy the time-independent Schrödinger equation whenever x+a+b is
substituted for x in the operators that act on This condition is
obtained if the wave function satisfies the Bloch theorem, which can be
formulated as follows:

Since the potential in the crystal, V(x), is a rather complicated function of
x, we will use the approximation made by Krönig and Penney in 1931, in
which V(x) is replaced by a periodic sequence of rectangular potential

the periodic nature of the potential variation in the crystal while allowing
a closed-form solution for The resulting potential is depicted in

If V(x) is periodic such that V(x+a+b) =V(x),
then (1.1.16)

A second formulation of the theorem is:
If V(x) is periodic such that V(x+a+b) =V(x),
then with u(x+a+b) = u(x).

These two formulations are equivalent since

wells.[4]  This  approximation  may  appear  rather  crude,  but  it  preserves
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Figure 1.7, and the following notations will be used: the inter-atomic
distance is a+b, the potential energy near an atom is and the potential
energy between atoms is Both and are negative with respect to
an arbitrary reference energy, V=0, taken outside the crystal. We will
study the behavior of an electron with an energy E lying between and

. This case is similar to a 1s electron previously shown
for lithium.

In region I  (0<x<a) ,  the potential energy is and the time-
independent Schrödinger equation can be written as:

In region II (-b<x<0), the potential energy is and the time-
independent Schrödinger equation becomes:

The solution to these homogenous second-order differential equations are:

and

Note that and are real numbers. The periodic nature of the crystal
lattice suggests that the wave function satisfies the Bloch theorem
(1.1.16) and can be written in the following form:
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where is a periodic function with period a + b, which imposes
One can thus write:

and

Boundary conditions must be used to calculate the four integration
constants A, B, C and D of Equations 1.1.19 and 1.1.20. This can be done
by imposing the condition that the wave function, and its first
derivative, are continuous at x=0 and x=a. By doing so one
obtains the following equations:

is continuous at x=0. Thus which yields:

is continuous at x=0. Therefore,

is continuous at x=a giving Using the Bloch
theorem (Equation 1.1.16) at x=a we have
which yields:

is continuous at x=a giving Using
Bloch's theorem: exp(jk(a+b)) we obtain:

Equations (1.1.23) to (1.1.26) form a system of four equations with four
unknowns: A, B, C and D. This system can be written in a matrix form:

In order to obtain a non-trivial solution for A, B, C and D, i.e. a solution
different from A=B=C=D=0, the determinant of the 4×4 matrix must be
equal to zero, which is equivalent to writing (see Problem 1.5):
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The right-hand term of this equation depends only on E, through and
(Expressions 1.1.19 and 1.1.20). Let us call this term P(E) and rewrite
Expression 1.1.28 in the following form:

The right-hand side of Equation 1.1.29 is sketched as a function of energy
in Figure 1.8. Because the argument in the exponential term of (1.1.16)
must be imaginary, k must be real. Therefore, simultaneous solution of
both left- and right-hand side of Equation 1.1.29 imposes that
1. This defines permitted values of energy forming the energy bands, and
forbidden values of energy constituting forbidden energy bands. This
important result is the same to that intuitively unveiled in Section 1.1.2:
in a crystal there are bands of permitted energy values separated by bands
of forbidden energy values.

Note: In the case when the electron energy is greater than has a positive
value and Equation 1.1.20 becomes:

In that case the Krönig-Penney model yields an equation different from Relationship
1.1.28; however, the same general conclusion can be drawn, i.e., the existence of
permitted and for bidden energy bands.
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Using Expression 1.1.28 the E(k) diagram can be plotted as well. Figure
1.9 presents the energy of the electron as a function of the wave number
k. The E(k) diagram for a free electron is also shown. It can be observed
that the energy of the electron in a crystal coarsely represents the same
dependence on k as that of a free electron. The main differences reside in
the existence of forbidden energy values and curvatures of each segment
of the E(k) curves.



14 Chapter 1

Because of the periodicity of the crystal lattice (period = a + b), the

periodicity of the reciprocal lattice (k-space) is The E(k) curve can

be extended from with a periodicity of which

yields the permitted energy values for the entire one-dimensional crystal
(Figure 1.10).

The E(k) curves shown in Figure 1.10 can be limited to k-values ranging

from to without any loss of information. This particular

region of the k-space is called the first Brillouin zone. The second

Brillouin zone extends from to and from to the

third zone extends from to and from to etc.

Applying the Born-von Karman boundary conditions (Expression 1.1.12)
to the one-dimensional crystal yields the values for k:

where N is the number of lattice cells in the crystal (or the number of
atoms in the case of a one-dimension crystal). The length of the crystal is
equal to N(a+b). Since we limit our study to the first Brillouin zone, the k-
values which have to be considered are given by the following

relationship: (the value is excluded because it is a

duplicate of the wave number). The corresponding values for n

range from -N/2 to (N/2-1). Therefore, the values of k to consider are:

There are thus N wave numbers in the first Brillouin zone, which
corresponds to the number of elementary lattice cells. For every wave
number there is a permitted energy value in each energy band. By virtue
of the Pauli exclusion principle, each energy band can thus contain a
maximum of 2N electrons.

The one-dimensional volume of the first Brillouin zone is equal to
Since it contains N k-values, the density of k-values in the first

Brillouin zone is given by:
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In the case of a three-dimensional crystal, energy band calculations are, of
course, much more complicated, but the essential results obtained from
the one-dimensional calculation still hold. In particular, there exist
permitted energy bands separated by forbidden energy gaps. The 3-D
volume of the first Brillouin zone is where V is the volume of the
crystal, the number of wave vectors is equal to the number of elementary
crystal lattice cells, N. The density of wave vectors is given by:

1.1.4. Valence band and conduction band

Chemical reactions originate from the exchange of electrons from the
outer electronic shell of atoms. Electrons from the most inner shells do
not participate in chemical reactions because of the high electrostatic
attraction to the nucleus. Likewise, the bonds between atoms in a crystal,
as well as electric transport phenomena, are due to electrons from the
outermost shell. In terms of energy bands, the electrons responsible for
forming bonds between atoms are found in the last occupied band, where
electrons have the highest energy levels for the ground-state atoms.
However, there is an infinite number of energy bands. The first (lowest)
bands contain core electrons such as the 1s electrons which are tightly
bound to the atoms. The highest bands contain no electrons. The last
ground-state band which contains electrons is called the valence band,
because it contains the electrons that form the -often covalent- bonds
between atoms.

The permitted energy band directly above the valence band is called the
conduction band. In a semiconductor this band is empty of electrons at
low temperature (T=0K) . At higher temperatures, some electrons have
enough thermal energy to quit their function of forming a bond between
atoms and circulate in the crystal. These electrons "jump" from the
valence band into the conduction band, where they are free to move. The
energy difference between the bottom of the conduction band and the top
of the valence band is called "forbidden gap" or "bandgap" and is noted

In a more general sense, the following situations can occur depending on
the location of the atom in the periodic table (Figure 1.11):

A: The last (valence) energy band is only partially filled with electrons,
even at T=0K.
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B: The last (valence) energy band is completely filled with electrons at
T=0K, but the next (empty) energy band overlaps with it (i.e.: an
empty energy band shares a range of common energy values;

C: The last (valence) energy band is completely filled with electrons and
no empty band overlaps with it

In cases A and B, electrons with the highest energies can easily acquire an
infinitesimal amount of energy and jump to a slightly higher permitted
energy level, and move through the crystal. In other words, electrons can
leave the atom and move in the crystal without receiving any energy. A
material with such a property is a metal. In case C, a significant amount
of energy (equal to or higher) has to be transferred to an electron in
order for it to "jump" from the valence band into a permitted energy
level of the conduction band. This means that an electron must receive a
significant amount of energy before leaving an atom and moving "freely"
in the crystal. A material with such properties is either an insulator or a
semiconductor.

The distinction between an insulator and a semiconductor is purely
quantitative and is based on the value of the energy gap. In a
semiconductor is typically smaller than 2 eV and room-temperature
thermal energy or excitation from visible-light photons can give
electrons enough energy for "jumping" from the valence into the
conduction band. The energy gap of the most common semiconductors
are: 1.12 eV (silicon), 0.67 eV (germanium), and 1.42 eV (gallium
arsenide). Insulators have significantly wider energy bandgaps: 9.0 eV

5.47 eV (diamond), and 5.0 eV In these materials room-
temperature thermal energy is not large enough to place electrons in the
conduction band.
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Beside elemental semiconductors such as silicon and germanium,
compound semiconductors can be synthesized by combining elements
from column IV of the periodic table (SiC and SiGe) or by combining
elements from columns III and V (GaAs, GaN, InP, AlGaAs, AlSb, GaP,
A1P and AlAs). Elements from other columns can sometimes be used as
well (HgCdTe, CdS,...). Diamond exhibits semiconducting properties at
high temperature, and tin (right below germanium in column IV of the
periodic table) becomes a semiconductor at low temperatures. About 98%
of all semiconductor devices are fabricated from single-crystal silicon,
such as integrated circuits, microprocessors and memory chips. The
remaining 2% make use of III-V compounds, such as light-emitting diodes,
laser diodes and some microwave-frequency components.

It is worthwhile mentioning that it is possible for non-crystalline
materials to exhibit semiconducting properties. Some materials, such as
amorphous silicon, where the distance between atoms varies in a random
fashion, can behave as semiconductors. The mechanisms for the transport
of electric charges in these materials are, however, quite different from
those in crystalline  semiconductors.[7].

It is convenient to represent energy bands in real space instead of k-space.
By doing so one obtains a diagram such as that of Figure 1.13, where the
x-axis defines a physical distance in the crystal. The maximum energy of
the valence band is noted the minimum energy of the conduction
band is noted and the width of the energy bandgap is

It is also appropriate to introduce the concept of a Fermi level. The
Fermi level, represents the maximum energy of an electron in the
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material at zero degree Kelvin (0 K). At that temperature, all the allowed
energy levels below the Fermi level are occupied, and all the energy levels
above it are empty. Alternatively, the Fermi level is defined as an energy
level that has a 50% probability of being filled with electrons, even
though it may reside in the bandgap. In an insulator or a semiconductor,
we know that the valence band is full of electrons, and the conduction
band is empty at 0 K. Therefore, the Fermi level lies somewhere in the
bandgap, between and In a metal, the Fermi level lies within an
energy band.

It is impossible to represent the energy bands as a function of k =
for a three-dimensional crystal in a drawing made on a two-

dimensional sheet of paper. One can, however, represent E(k) along main
crystal directions in k-space and place them on a single graph. For
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example, Figure 1.14 represents the maximum of the valence band and
the minimum of the conduction band as function of k in the [100] and the
[111] directions for two crystals. Crystal A is an insulator or a
semiconductor crystal B is a metal

The energy band diagrams, plotted along the main crystal directions,
allow us to analyze some properties of semiconductors. For instance, in
Figure 1.15.B the minimum energy in the conduction band and the
maximum energy in the valence band occur at the same k-values (k=0). A
semiconductor exhibiting this property is called a direct-band
semiconductor. Examples of direct-bandgap semiconductors include most
compound elements such as gallium arsenide (GaAs). In such a
semiconductor, an electron can "fall" from the conduction band into the
valence band without violating the conservation of momentum law, i.e.
an electron can fall from the conduction band to the valence band without
a change in momentum. This process has a high probability of occurrence
and the energy lost in that "jump" can be emitted in the form of a photon
with an energy In Figure 1.15.A, the minimum energy in the
conduction band and the maximum energy in the valence band occur at
different k-values. A semiconductor exhibiting this property is called an
indirect bandgap semiconductor. Silicon and germanium are indirect-
bandgap semiconductors. In such a semiconductor, an electron cannot
"fall" from the conduction band into the valence band without a change in
momentum. This tremendously reduces the probability of a direct "fall"
of an electron from the conduction band into the valence band, as will be
discussed in Chapter 3.

1.1.5. Parabolic band approximation

For electrical phenomena, only the electrons located near the
maximum of the valence band and the minimum of the conduction band
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are of interest. These are the energy levels where free moving electrons
and missing valence electrons are found. In that case, as can be seen in
Figure 1.15, the energy dependence on momentum can be approximated
by a square parabolic function. Near the minimum of the conduction band
one can thus write:

Near the maximum of the valence band one can write:

with A and B being constants. This approximation is called the "parabolic
band approximation" and resembles the E(k) relationship found for the
free electron model.

1.1.6. Concept of a hole

To facilitate the understanding of electrical conduction in a solid one
can make a comparison between the flow of electrical charge in the
energy bands and the movement of water drops in a pipe. Let us consider
(Figure 1.16.A) two pipes which are sealed at both ends. The bottom pipe
is completely filled with water and the top pipe contains no water (it is
filled with air). In our analogy between electricity and water, each drop of
water corresponds to an electron, and the bottom and top pipes
correspond to the valence and the conduction band,   respectively.[9]
Tilting the pipes corresponds to the application of an electric field to the
semiconductor. When the filled or empty pipes are tilted, no movement
or flow of water is observed, i.e.: there is no electric current flow in the
semiconductor. Thus the semiconductor behaves as an insulator (Figure
1.16.A).

Let us now remove a drop of water from the bottom pipe and place it in
the top pipe, which corresponds to "moving" an electron from the
valence to the conduction band. If the pipes are now tilted, a net flow of
liquid will be observed, which correspond to an electrical current flow in
the semiconductor (Figure 1.16.B).

The water flow in the top pipe (conduction band) is due to the
movement of the water drop (electron). In addition, there is also water
flow in the bottom pipe (valence band) since drops of water can occupy
the space left behind as the air bubble moves. It is, however, easier to
visualize the motion of the bubble itself instead of the movement of the
"valence" water.
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If, in this water analogy, an electron is represented by a drop of water, a
bubble or absence of water in the "valence" pipe represents what is called
a hole. Hence, a hole is equivalent to a missing electron in the crystal
valence band. A hole is not a particle and it does not exist by itself. It
draws its existence from the absence of an electron in the crystal, just like
a bubble in a pipe exists only because of a lack of water. Holes can move
in the crystal through successive "filling" of the empty space left by a
missing electron. The hole carries a positive charge +q, as the electron
carries a negative charge -q Coulomb).

1.1.7. Effective mass of the electron in a crystal

The mass m of an electron can be defined by the relationship F=ma
where a is the acceleration the electron undergoes under the influence of
an external applied force F. The fact that the electron is in a crystal will
influence its response to an applied force. As a result, the apparent,
"effective" mass of the electron in a crystal will be different from that of
an electron in a vacuum.

In the case of a free electron Relationship 1.1.3 can be used to find the
mass of the electron

where gram is the mass of the electron in a vacuum.
The mass is a constant since E is a square function of k.

Using the rightmost term of 1.1.35 as the definition of the electron mass
and using Equations 1.1.28 and 1.1.29 which defines the relationship
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between E and k in a one-dimensional crystal, the mass of an electron
within an energy band can be calculated:

where m* is called the "effective mass" of the electron in a crystal.
Unlike the case of a free electron the effective mass of the electron in a
crystal is not constant, but it varies as a function of k (Figure 1.17).

Additionally, the mass in the crystal will be different for differing energy
bands. The following general observations can be made:

if the electron is in the upper half of an energy band, its effective
mass is negative

if the electron is in the lower half of an energy band, its effective
mass is positive



1. Energy Band Theory 23

if the electron is near the middle of an energy band, its effective
mass tends to be infinite

The negative mass of electrons located in the top part of an energy band
may come as a surprise, but can easily be explained using the concept of a
hole. Let us consider the acceleration, a, given to an electron with charge
-q and negative mass, -m *, by an electric field, It is easy to realize that
this acceleration corresponds to a hole with positive mass, +m*, and
positive charge ,+q, since:

In the case of a three-dimensional crystal the expression of the effective
mass is more complicated because the acceleration of an electron can be
in a direction different from that of the applied force. In that case the
effective mass is expressed by a 3×3 tensor:

Usually physics of semiconductor devices deals only with electrons
situated near the minimum of the conduction band or holes located near
the maximum of the valence band. In the case of silicon the mass of
electrons near the minimum of the conduction band along the

direction is equal to and in the orthogonal directions it is

is called the longitudinal mass and the transversal

mass, while is the mass of a free electron in a vacuum. These masses
are related to the energy by the following relationship called "parabolic
energy band approximation":

where   is the lowest energy state in the conduction band along the
[100] or [-100] (Figure 1.18). In most practical cases, for
the sake of simplicity, the effective mass is considered to be constant. In
that case m * is approximated by a scalar value.
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In a one-dimensional case the square-law dependence of the energy on k ,

is illustrated by Figure 1.19.A There are

two vectors and which correspond to a same energy
value In a two-dimensional crystal (Figure 1.19.B) the locus
of values corresponding to the energy level                                                                               is an
ellipse in the plane.

The three-dimensional case cannot be drawn on a sheet of paper, but
extrapolating from the 1D and 2D cases it is easy to conceive that the k
values corresponding to the energy level form ellipsoids in
the space (Figure 1.19.C). In a three-dimensional crystal such
as silicon there are 6 equivalent crystal directions ([100], [-100], [010],
[0-10], [001] and [00-1]) which present an energy minimum (conduction
band minimum). The locus of k-values corresponding to a particular
energy value is 6 ellipsoids (Figure 1.19.C). The center of these ellipsoids
are the six k-values corresponding to the conduction band energy minima.
For simplification the ellipsoids can be approximated by spheres (Figure
1.19.D), which is equivalent to equating the transverse and the

longitudinal mass The energy in the vicinity of the maximum

of the valence band is given by:
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1.1.8. Density of states in energy bands

The density of permitted states in a three-dimensional crystal is given by
(1.1.33). Its value is:

per crystal unit volume. If we define f(k) as the probability that these
states are occupied, then the electron density, n, in an energy band
can be calculated by integrating the product of the density of states by the
occupation probability over the first Brillouin zone:

Similarly, the density of holes within an energy band is given by:

The function n(k) represents the density of permitted states in an energy
band. The function f(k) is a statistical distribution function which is a
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function of the energy, Under thermodynamic equilibrium
conditions, f(k) is the Fermi-Dirac distribution function defined as:[11]

where is an energy value called the "Fermi level", k is the Boltzmann
constant, and T is the temperature in Kelvin. The Fermi-Dirac function is
plotted in Figure 1.1.20 for T > 0K. It is worthwhile noting that f(E) = 0.5
if regardless of temperature. Therefore, a second definition of
the Fermi level is that it is the energy level which has a 50% probability
of being occupied.

In order to integrate Expressions 1.1.42 or 1.1.43 easily, the dependency
of n and f on k must be transformed into a dependency on the energy, E.
To do this, let us consider a unit cell of the reciprocal crystal lattice
where and are given by Relationship 1.1.13 with
the volume of this cell is equal to If the crystal has unit
volume, then and the volume of a unit cell of a unit-volume crystal
in k-space is equal to In this crystal the volume of a spherical shell
with a thickness dk in k-space is given by (volume of a shell of thickness
dk in Figure 1.19.D):

The number of unit cells in that volume is given by the volume of the
shell divided by the unit volume of the cell:

The number of k vectors (and thus the number of energy levels, since
there is an energy level for each k vector) is equal to the number of unit
cells. Using the Pauli exclusion principle (which states that there can be
only 2 electrons for each k vector), the number of electrons is given by:

Using the parabolic band approximation, and using a
constant effective mass, one obtains:
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This equation yields the density of states for a particle of mass m * having
an energy ranging between E and E+dE. In the case of electrons with a

mass located near the bottom of the conduction band, the energy is

referenced to the minimum of the conduction band which yields:

In the case of holes with a mass located near the top of the valence

band, the energy is referenced to the maximum of the valence band
and one obtains:

Integration of Equations 1.1.42 and 1.1.43 can now be performed. The
integration can be further simplified by approximating the Fermi-Dirac
(FD) distribution by the Maxwell-Boltzmann (MB) distribution. Both
distributions are almost identical provided that is large enough,

which is the case in typical semiconductors

when u >> 1 (see Problem 1.10):

To calculate the electron density, n, in the conduction band (CB) we
replace the integral over k-values in Relationship 1.1.42 by an integral
over energy:

In a typical semiconductor the vast majority of the electrons in the
conduction band have an energy close to Therefore, the lower and
upper bound of the integral can thus be replaced by and infinity,
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respectively. To integrate, a change of variables can be used where
which yields:

is called the "effective density of states in the conduction band". It
represents the number of states having an energy equal to which, when
multiplied by the occupation probability at yields the number of
electrons in the conduction band. Likewise the total number of holes in
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the valence band can be calculated using this technique, based on Equation
(1.1.43). The effective density of states for holes in the valence band is:

The density of holes and electrons in the conduction and valence bands is
shown in Figure 1.20.C for a Fermi level at midpoint of and

1.2. Intrinsic semiconductor

By virtue of Expressions 1.1.54 and 1.1.55 the product of the electron
concentration and hole concentration in a semiconductor under
thermodynamic equilibrium conditions is given by:

where is called the intrinsic carrier concentration.

and

or, if (simplifying approximation): where

A semiconductor is said to be "intrinsic" if the vast majority of its free
carriers (electrons and holes) originate from the semiconductor atoms
themselves. In that case if an electron receives enough thermal energy to
"jump" from the valence band to the conduction band, it leaves a hole
behind in the valence band. Thus, every hole in the valence band
corresponds to an electron in the conduction band, and the number of
conduction electrons is exactly equal to the number of valence holes:
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where is called the intrinsic energy level. It is the energy of the Fermi
level in an intrinsic semiconductor. One can generally consider that it lies
right in the middle of the energy bandgap (Expression 1.2.4).  is the
intrinsic carrier concentration (electrons or holes, and is a only a
function of temperature and of the material through In silicon is
equal to at T=300K. However, the variation of with
temperature is illustrated in Figure 1.21. The carrier concentration is
equal to zero at T=0K. When temperature is raised an increasing number
of electron gather sufficient thermal energy to leave the semiconductor
atoms and become free to move in the conduction band. These electrons
are called "free electrons". Since they can move in the crystal they can
contribute to an electrical current. An equal number of "free holes" can
move in the crystal and contribute to an electrical current as well.

The conductivity of a material directly depends on the number of free
carriers it contains (free electrons and free holes): the larger the number
of carriers, the higher the conductivity. Thus, the conductivity of an
intrinsic semiconductor increases with temperature (Figure 1.21).

Using equations 1.1.54 and 1.1.55 the intrinsic carrier concentration car
be calculated:
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1.3. Extrinsic semiconductor

The silicon used in the semiconductor industry has a purity level of
99.9999999%. One can, however, intentionally introduce in silicon trace
amounts of elements which are close to silicon in the periodic table, such
as those located in columns III (boron) or V (phosphorus, arsenic). If, for
instance, an atom of arsenic is substituted for a silicon atom, it will form
four bonds by sharing four electrons with the neighboring silicon atoms
(Figure 1.22). The thermal energy of the crystal at room temperature is
large enough to remove the loosely held fifth electron from the arsenic's
outer electronic shell, such that this electron will now reside in the
conduction band where it is free to move in the crystal. Arsenic atoms in
silicon are called donor atoms because each of these atoms "donates" an
electron to the crystal. The free electron can contribute to electrical
conduction.

Similarly, substituting a silicon atom with an atom from the third column
of the periodic table, such as boron, will result in a missing electron
(Figure 1.23). The boron atom can easily capture an electron to form a
fourth bond with silicon atoms, thereby creating an immobile negatively
charged boron atom. This releases a hole in the crystal, located in the
valence band. This hole can move about in the crystal, thereby
participating in electrical conduction. Because in silicon group III atoms
create a hole which can be "filled" with an electron, these atoms are called
acceptor atoms. Such atoms are usually introduced into the semiconductor
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in very small amounts (1 atom of boron per atoms of silicon, for
instance). We will see later that the introduction of even minute amounts
of these impurities dramatically modify the electrical properties of a
semiconductor. Atoms possessing the property of releasing or capturing
electrons in a semiconductor are indiscriminately called doping
impurities, doping atoms, or dopants.

The introduction of a donor atom such as phosphorus (P) or arsenic (As)
in silicon gives rise to a permitted energy level in the bandgap in
Figure 1.24) . This level is located a few meV below the bottom of the
conduction band, and at very low temperature contains the electrons
which can be given by the impurity atoms to the crystal. At room
temperature these electrons possess enough thermal energy (equal to kT/q
= 25.6 meV) to break free from the impurity atoms and move freely in
the crystal or, in other words, it can "jump" from the energy level
introduced by the impurity into the conduction band (Figure 1.24). When
an electron moves away from a donor atom, such as arsenic (As), the
atom becomes ionized and carries a positive charge, +q, as shown in
Figure 1.22.

Similarly, the introduction of an acceptor atom such as boron (B) in
silicon gives rise to a permitted energy level in the bandgap. This level is
located a few meV above the top of the valence band. At room
temperature electrons in the top of the valence band possess enough
thermal energy to "jump" into the energy levels created by the impurity
atoms (or: valence electrons are "captured" by acceptor atoms), which
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gives rise to holes in the valence band. These holes are free to move in
the crystal. When an electron is captured by an acceptor atom, a hole is
thus released in the crystal, and the acceptor atom (boron) becomes
ionized and carries a negative charge, -q, as shown in Figure 1.23.

Donor and acceptor impurities are commonly introduced into
semiconductors to increase electron or hole concentrations, which
modifies the electrical properties of the material. The energy levels
created in the bandgap by the presence of such impurities are situated
close to the top of the valence band or the bottom of the conduction
band. Other elements, such as gold, iron, copper and zinc introduce one or
several energy levels in the bandgap of silicon. These levels are located
closer to the center of the bandgap and are called "deep levels". The latter
usually have a detrimental effect on semiconductors, which is why the
semiconductor industry uses crystals having a very high degree of purity.
The influence of deep levels on the properties of semiconductors will be
discussed in Section 3.5, which is devoted to generation/recombination
phenomena.

A semiconductor containing donor impurities is called an N-type
semiconductor, since most of the carriers have a negative charge, and a
semiconductor containing acceptor impurities is called a P-type
semiconductor, since most of the carriers have a positive charge. The
concentration of donor and acceptor atoms in the semiconductor are
labeled and respectively, and are expressed in atoms per cubic
centimeters Thus, an N-type semiconductor has more free
electrons than holes, and vice-versa. However, the material itself is
charge neutral due to the ionized impurities which carry a charge equal and
opposite to that of the free carriers.
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1.3.1. Ionization of impurity atoms

Whenever a donor (acceptor) impurity atom releases an electron
(hole) it becomes ionized and carries a positive (negative) charge, +q (-q).
If a doping atom is not ionized, it does not release a free carrier in the
crystal, and therefore, does not contribute to electrical conduction.
Consider a donor impurity, such as arsenic in silicon. The ionization of
the arsenic atom is a reversible process which can be written as:

where represents a non-ionized arsenic atom, and an ionized
atom. Quite naturally the total impurity concentration is equal to the sum
of the ionized and non-ionized impurity concentrations:

The probability of occupancy of the donor level, can be obtained by
substituting  for E in the Fermi-Dirac distribution function. Previously
(Equation 1.1.51), the Pauli exclusion principle was taken into account
for determining the probability of filling energy states. In other words,
each energy level could be populated with two electrons. In this case,
however, an ionized arsenic atom can receive only one electron. A
correction factor, called "degeneracy factor" equal to 1/2 must, therefore,
be introduced in the Fermi-Dirac equation, which yields:

The concentration of ionized donor atoms can be obtained using 1.3.2
and 1.3.3:

The following example illustrate how one can determine how many donor
atoms are ionized at room temperature.

Example:
Consider the following numerical example in silicon:

- 50 meV
(assuming the doping concentration is very low)
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kT/q = 0.0259V at room temperature (T=300K)

What is the ratio of ionized donor impurities to total impurities,

One finds readily that and EF - Ed = -0.5 leV.

Therefore, using Thus we can conclude from

this example that at room temperature, virtually all donor atoms are ionized, or

in mathematical terms,

In the case of acceptor impurities (boron, for example), the reversible
ionization reaction is:

and we have:

Using a calculation similar to that developed for donor atoms one finds:

and therefore, the probability of ionizing an acceptor is:

At room temperature, virtually all acceptor atoms are ionized or, in

mathematical terms, Based on these derivations it is safe to
assume that at room temperature every donor/acceptor atom contributes
a free electron/hole to the semiconductor.

1.3.2. Electron-hole equilibrium

Consider a semiconductor crystal containing both N-type and P-type
impurities. Because the crystal is charge neutral one can write:
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As we have seen in the previous Section all doping impurities are ionized

at room temperature, therefore, and Relationship 1.3.9a

can thus be re-written in the following form:

Using elementary algebra one finds that

Relationship (1.3.9b) can be combined with (Equation 1.2.1) to

yield Since (p+n) is a positive number one

obtains:

Combining 1.3.10 with Equation 1.3.9b one can write:

and

Using Relationships 1.3.11.a and 1.2.1 for an N-type semiconductor,
where and we find that the electron and hole
concentrations are given by:

Using Relationships 1.3.11.b and 1.2.1 for an P-type semiconductor,
where and we find that the hole and electron
concentrations are given by:

There are exceptions to Equations 1.3.12 a and b: at low temperatures
not all impurities are ionized, and as a result, carrier freeze-out occurs: n =

and And at high temperature the intrinsic carrier

concentration can become much larger than the concentration of carriers
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released by doping impurities. In that case,
and the semiconductor is intrinsic even though it is doped. The influence
of high and low temperatures on carrier concentration is illustrated by
Problem 1.12.

1.3.3. Calculation of the Fermi Level

In the case of an N-type semiconductor, combining Relationships
1.1.54 and 1.3.12a yields:

from which we find:

Using Expression (1.2.5):

one finally obtains:

Hence the Fermi level, can be calculated from Equation 1.3.15a if the
doping concentration is known. In an N-type semiconductor the Fermi
level is located in the upper half of the bandgap, above the intrinsic
energy level, The Fermi level increases logarithmically with the donor
atom concentration, It is now possible to introduce a new variable,
the Fermi potential, (unit: volt). It is defined by the following
relationship:

Using Equation 1.3.15a the relationship between the electron
concentration and the Fermi potential can be obtained:
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For a P-type semiconductor equations 1.3.13a through 1.3.17a will use
the same numbering system where the "a" is replaced by "b" in the
equation. Combining Relationships 1.1.55 and 1.3.12b yields:

from which we find:

Using Expression 1.2.5

one finally obtains:

Equation 1.3.15b allows one to find the position of the Fermi level,
in the bandgap. In a P-type semiconductor the Fermi level is located in
the lower half of the bandgap, below the intrinsic energy level, The
Fermi level decreases with increasing acceptor atom concentration,
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Using Equation 1.1.16, the relationship between the Fermi potential,
and the hole concentration can be obtained:

Note that is positive in a P-type semiconductor and negative in an N-
type semiconductor. A graphical representation of electron and hole
concentrations for both N- and P-type semiconductors is shown in figure
1.25. Note the position of the Fermi level, and the asymmetry of
carrier densities for both types.

1.3.4. Degenerate semiconductor

We have hitherto assumed that the introduction of doping impurities
in a semiconductor does not affect certain intrinsic parameters of the
crystal, such as the width of the energy bandgap. As we have seen before
the presence of donor doping atoms such as phosphorus or arsenic
introduces a permitted energy level, in the bandgap. Typical doping
concentrations are in the to range, which is small
compared to the actual number of semiconductor atoms

in silicon).
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If a very large concentration of impurities is introduced
the permitted level spreads out and "degenerates" into a

permitted band which overlaps with the conduction band. As a result the
width of the bandgap is reduced (from to in Figure 1.26) and the
properties of the semiconductor are significantly modified. Such a
semiconductor is called a "degenerate" semiconductor or a "degenerately
doped" semiconductor. A degenerate semiconductor exhibits electrical
properties similar to those of a metal.

1.4. Alignment of Fermi levels

Often, the doping concentration in a semiconductor is not one
constant value throughout the material. Consider a piece of N-type
semiconductor in which the doping concentration varies along one
direction of space, x. The concentration of doping atoms is described by
the function shown in Figure 1.27.A.

Consider now that leftmost and rightmost parts of the sample are
separated. According to Relationship 1.3.15a, because

(Figure 1.27.B). Imagine a test energy level in the
bandgap having an energy, located between and In
the left part of the sample the test level has a low probability of being
populated with an electron, because In the right part of the
sample, on the other hand, the test level has a high probability of being
populated with an electron, because

Let us now consider the entire sample, and in particular, focus on the
middle region where the doping concentration changes abruptly. If the
energy bands near stay as they are in the leftmost and rightmost
parts of the sample, the test level will have both a high and a low
probability of being occupied by an electron, which is a contradiction in
itself. The test level must have a single occupation probability. This
condition can be satisfied only if at the immediate left of is equal to

 at the immediate right of And since this condition must be true for
any arbitrary position along the x-axis, the Fermi level must be unique
and constant throughout the sample. This is a very important property of
the Fermi level, which can be enunciated the following way: a t
thermodynamic equilibrium the Fermi level in a structure is unique and
constant. This property not only applies to non-homogeneously doped
semiconductors, but to metal-semiconductor structures and contacts
between different semiconductors. Because is constant the conduction,
valence, and intrinsic levels bend within a transition region around
(Figure 1.27.C).
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Under thermodynamic equilibrium conditions electrons are transferred
from the electron-rich right part of the sample (where the Fermi level is
highest) into the electron-poor left part of the sample (where the Fermi
level is lowest), through a diffusion process which will be discussed in
Chapter 2. To make a comparison with fluid mechanics the alignment of
the Fermi levels in the sample is similar to the alignment of the water
levels in glasses of water connected together (Figure 1.28), where the
transfer of electrons by a diffusion mechanism would find its equivalent in
the transfer of water molecules due to a pressure differential. The
diffusion process (electron transfer or water transfer) ceases when an
equilibrium state is reached.

Since Relationships 1.3.13 a and b to 1.3.15 a and b are valid at any
location along the x-axis, a constant Fermi level imposes a curvature of
all energy bands and energy levels, and However, all these levels
remain parallel to one other, due to the fact that the bandgap energy is a
constant of the material. The magnitude of this energy level bending
reflects the presence of an internal potential, noted which, once
multiplied by -q, is equal to the variation of the energy levels and

between the left and the right of the sample (Figure 1.27.C). The
internal potential is a real electrical potential variation due to the
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appearance of an electric field in the semiconductor caused by the charge
imbalance resulting from the diffusion of electrons from one part of the
semiconductor to the other when thermodynamic equilibrium is
established. Since the electron concentration is related to by
Relationship 1.3.15a, one can write:

or, using the notations of Figure 1.27:

or:

where is the electron concentration in the left region of the sample,
taken as reference. is the midgap energy in the left part of the
sample, also taken as reference. It is easy to show that an equivalent
relationship can be derived for holes:

Relationships 1.3.20a and 1.3.20b are called the "Boltzmann
relationships". They will play an important role in the theory of the PN
junction (Chapter 4).
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Important Equations
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Problems

Problem 1.1:

Find the value of the coefficient for a particle confined

to an infinite potential well (Expression 1.1.10).

The wave function of a particle in a box is given by:

The energy levels are given by:

We will use the following data:
m=9.11e-31; % Electron mass (kg)
h=6.63e-34; % Planck constant (J * sec)

Problem 1.2:
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% Reduced Planck constant (J * sec)
% Electron charge (C)
% Width of potential well (m)

hb=h/2/pi;
q=1.6e-19;
a=le-9;

Produce a graph similar to Figure 1.2c using Matlab . The unit for energy in the plot

must be electron-volts (eV). The unit for the wave function is Hint: it is
possible to plot different units (eV and wave function unit) on the same y-axis, but
if you do it as such, the wave functions and energy levels will have magnitudes with
such difference that the wave functions will be much larger compared to the energy
levels. Therefore, the amplitude of the wave functions must be divided by 100,000
in order to get a "nice-looking" graph.

Here is a description of the finite-difference technique to be used to solve this
problem:

The time-independent Schrödinger equation can be written in the form:

where A, V, and E are n×n matrices, where n is the number of mesh points. In its
discrete form, the second-derivative operator can be written:

where in the right-hand side of the latter expression is the constant distance
between two successive mesh points. If n=6, for instance, the Schrödinger equation
can be written as:

Using Matlab and a finite-difference numerical method, calculate the first wave
function of an electron in the four potential wells shown below. The first of those is
the classical particle-in-a-box problem. Let a = 40 nm and

Problem 1.3:



46 Chapter 1

where (vector FI in the Matlab file). The wave functions and the energy
levels are found by calculating the eigenvalues of the matrix "SCH" defined as:

using the Matlab function [PSI,V]=eig(SCH,'nobalance').Then the wave
functions must be sorted by ascending energy values, and the wave function
corresponding to the lowest energy value is finally plotted.

Using Matlab and a finite-difference numerical method, calculate the first wave
function of an electron in the third potential well of Problem 1.3 for
and 5 mV.

Problem 1.5: Derive Equation 1.1.28 from Expression 1.1.27.

Problem 1.6:
Consider Equation 1.1.28:

The equation can be simplified by taking the bottom of the potential wells of Figure
1.7 as reference, such that Assume that the potential wells are very narrow (a

0), and obey the following characteristics: a 0 and the product is
constant and equal to an arbitrary value,

The solution to Part 1 of Problem 1.6 where a=0 is:

2: Using this result show that the Krönig and Penney model reduces to the free-
electron model when when the potential wells vanish.

1: Simplify Equation 1.1.28 for the case where a 0.

Problem 1.4:

Problem 1.7:
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Since a=0 we have that a+b=b and, therefore, b is the lattice parameter. In Figures
1.8, 1.9, 1.10 and 1.18 the x-axis is k Here we will use the dimensionless
kb product as x-axis for 0<kb<l6. Using that result plot P(E) and E(k) for a one-
dimensional silicon crystal using the Krönig and Penney model, as well as the
effective mass of the electron (normalized to as a function of kb, in order to
obtain graphs similar to those in Figures 1.8, 1.9, 1.10 and 1.18.

Use the following data for silicon:
Silicon lattice parameter:

Free electron mass:

Note: To obtain similar results for diamond, use b = 3.56 Å and
for germanium, use b = 5.65 Å and for gray tin, use b = 6.49 Å
and

Problem 1.8:
In Section 1.1.7 it was shown that the concentration of electrons in the conduction
band per eV is equal to where n(E) and f(E) are defined as:

1) Plot the electron density N(E) as a function of energy for
(Figure 1.20C) using Matlab.

2) Using a simple numerical integration method and Matlab, calculate the electron

concentration in the conduction band:

% Electron mass (kg)

% Planck constant (J * sec)
% Reduced Planck constant (J * sec)
% electron charge (C)
% Boltzmann constant (J/K)
%    is defined as
%This is half the energy bandgap of silicon
% temperature (K)

= m0=9.11e-31;
h=6.63e-34;
hb=h/2/pi;
q=1.6e-19;
k=1.3805e-23
Ecf=0.55*q;

T=300;

Using the following data for intrinsic silicon at room temperature:
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Problem 1.9:
Using the program developed in Problem 1.8, where the intrinsic electron
concentration, in silicon was calculated at T=300 K, calculate and plot the
intrinsic carrier concentration, in silicon as a function of temperature, from
-100°C to +1000°C, such that you produce a curve similar to that of Figure 1.21.

Problem 1.10:
Plot the Fermi-Dirac (FD) and the Maxwell-Boltzmann (MB) distribution curves for
energies ranging between 0 and 0. 5 eV at T = 300K, given that
Interpret the curves and comment on the appropriateness of replacing the FD
distribution by the MB distribution in Relationship 1.1.52.

Problem 1.11:
As can be seen in Figure 1.25 the concentration of electrons in the conduction band
reaches a maximum at some energy value above That energy value is
independent of the position of the Fermi level. Find the value of that energy
assuming T = 300 K. The answer should have the form:

Problem 1.12:
This Problem introduces the concept of carrier freeze-out at low temperature, as well
as the effect of high temperature on total carrier concentrations. Arsenic atoms
introduce a donor energy level at 0.054 eV below in silicon. Using the results of
Problem 1.9 and Relationship 1.3.4, plot the concentration of electrons (both
intrinsic and dopant electrons) in the conduction band of arsenic-doped silicon as a
function of temperature (-250°C < T < 1000°C).
The arsenic doping concentration is



1. Energy Band Theory 49

References

1
2

3

4

5

6

7

8
9

10

11

12

13

14

J.L. Moll, Physics of semiconductors, McGraw-Hill, pp. 32-52, 1964
J.P. McKelvey, Solid-state and semiconductor physics, Harper International,
p. 209, 1966
J.M. Ziman, Principles of the theory of solids, 2nd Edition, Cambridge
University Press, p. 15, 1972
R. de L. Krönig and W. G. Penney, "Quantum Mechanics of Electrons in
Crystal Lattices", Proceedings of the Royal Society (London), Vol. A-130, p.
499, 1931
N.W. Ashcroft, N.D. Mermin, Solid-state physics, Holt, Rinehart and
Winston, p. 160, 1976
J.P. McKelvey, Solid-state and semiconductor physics, Harper International,
p. 246, 1966
L.L. Kazmerski, Polycrystalline and amorphous thin films and devices,
Academic Press, pp. 17-57, 1980
H.F. Wolf, Semiconductors, J. Wiley and Sons, p. 51, 1971
R.S. Muller and T.I. Kamins, Device electronics for integrated circuits, 2nd
edition, J. Wiley & Sons, p. 9, 1986
J.P. McKelvey, Solid-state and semiconductor physics, Harper International,
pp. 217-224, 1966
R.P. Pierret, Advanced semiconductor fundamentals, Modular Series on Solid-
State Devices, Vol. IV, Addison-Wesley, p. 100, 1989
J.P. McKelvey, Solid-state and semiconductor physics, Harper International,
p. 261, 1966
J.P. McKelvey, Solid-state and semiconductor physics, Harper International,
p. 263, 1966
H.F. Wolf, Semiconductors, J. Wiley and Sons, p. 50, 1971



Chapter 2

THEORY OF ELECTRICAL CONDUCTION

In this Chapter the equations describing the movement of electric
charges, as well as the relationships between charge, electric field and
potential, will be derived. Electrons and holes are no longer treated
separately, but are considered as macroscopic carrier populations or
carrier concentrations. As a result the use of quantum mechanics is no
longer required. Rather, Maxwell's equations and concepts such as the
conservation of charge and the diffusion resulting from concentration
gradients will be used.

2.1. Drift of electrons in an electric field

The electrons we have considered so far were found in ideal crystals
with perfectly periodic potential variations. Actual crystals contain
defects such as interstitials and vacancies due to displaced or missing
atoms, and trace impurities. Furthermore, the atoms vibrate around their
equilibrium position. The amplitude of these vibrations depends, among
others, on temperature. These vibrations can be studied formally using
quantum mechanics. From the study of these vibrations emerges the
concept of a phonon. The phonon is a quasi-particle representing the
propagation of vibration -or heat- through the crystal.[1] Both crystal
imperfections and phonons can interact with electrons through the
distortions they induce in the periodic potential of the crystal lattice.

The interaction between a free electron and phonons or crystal defects
can be viewed as a series of collisions obeying the principles of
conservation of energy and momentum.[2] As a consequence electrons
are never at rest and are submitted to a perpetual random motion that can
be compared to the Brownian motion of fine particles in a liquid. The
trajectory of electrons is thus a series of random velocity vectors. In the
absence of an applied external force all these small movements average
out and the net displacement of the electron is zero, as shown in Figure



52 Chapter 2

2.1.A. When an electric field is applied, on the other hand, a net drift of
the electron in the opposite direction of the electric field is observed
(Figure 2.1.B). It is worthwhile noting that the random thermal velocity
of electrons is much larger than the velocity produced by imposing an
electric field. To obtain the current flow resulting from this process one
must calculate the average drift velocity of the electrons caused by the
electric field.

The analogy with Brownian motion in a liquid allows us to write two
hypotheses concerning the motion of an electron:

Each electron in the conduction band moves freely in the
crystal between each collision. The average time between two
collisions is called "relaxation time", and is noted The
relaxation time for electrons in a semiconductor is on the
order of a tenth of a picosecond at room temperature, during
which the electron can travel on the order of 10 nanometers.

The direction of the electron motion after a collision is
random. Collision events, are therefore, isotropic.

Among all the electrons in the conduction band there are electrons
which, at the instant undergo a collision event. Let us follow the
evolution of this electron population. At some of these electrons
will already have undergone new collisions. Therefore, at there is a
smaller number of electrons, n(t), which have not yet undergone a
collision event. The population of these electrons, n(t), decreases between
t and t+dt by an amount dn according to the following equation:
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Integrating this equation between and t the evolution of the number of
electrons that have not undergone a collision since can be obtained:

Let us now describe the influence of a time-independent electric field,
on an electron. The equation for the movement of a quasi-free electron

with an effective mass is:

Using Expression 2.1.3 and assuming that the effective mass is isotropic,
the velocity of an electron which has not had a collision since is, at
time t:

Since the average velocity at is equal to zero (isotropic collision
events are one of our starting hypotheses) one can write:

where v(t) is the velocity vector at time t. This relationship is valid for
the -dn (dn<0) electrons from Relationship 2.1.1 that undergo a collision
between t and dt, but which traveled collision-free from to t. Integrating
Relationship 2.1.5 for t ranging from to (or for n(t) ranging from

to 0) one obtains the average drift velocity, of the
electron population, i.e. the drift velocity resulting from the application
of the electric field:

2.2. Mobility

Using Relationship 2.1.2, Equation 2.1.6 can be converted into an
integral over time, which yields:
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and since

we finally obtain:

where is called the mobility of the electrons in the conduction band.
The unit for the mobility (velocity divided by an electric field) is

Using Relationship 2.2.2 the mobility is defined by the
following relationship:

Mobility is proportional to the relaxation time of the electrons and
inversely proportional to their effective mass. Since mobility is
proportional to the relaxation time it decreases with temperature because
thermal lattice vibrations -or phonons- increase with increasing
temperature. Similarly, impurities and defects cause electron scattering
(collisions), and therefore, mobility decreases with increasing impurity or
defect concentration.

A similar derivation can made for holes in the valence band and yields:

where is the hole mobility which is defined by:

The actual effective mass of electrons and holes is anisotropic (see
Relationship 1.1.38) and the mobility is represented by a tensor rather
than by a scalar number. Because of the cubic symmetry in Si, Ge or GaAs
crystals, one can, however, use a scalar expression for the effective mass,
defined by:

where is called "conductivity effective mass". In silicon the

conductivity effective mass of electrons is equal to and
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that of holes is being the mass of a free electron in a

vacuum.

Mobility depends on the interactions between electrons and phonons and
impurities. A more thorough analysis of the scattering of electrons by
phonons yields the following dependence of mobility on temperature:

and the dependence of mobility on impurity concentration, N:

When the dependence on both temperature and impurities is taken into
account, the mobility, is given by:

Equation 2.2.8 implies that the mechanism which results in the lowest
mobility, will be the limiting factor for mobility. The mobility of
electrons and holes in different semiconductors is shown in Figure 2.2 as a
function of dopant concentration.
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2.3. Drift current

If the electron concentration in the conduction band is equal to n, the
electron drift current density is given by J = -q n v dn or, using
Relationship 2.2.2:

In a similar way, the hole drift current density is given by:

The conductivity, and the resistivity, of an
homogeneously doped semiconductor are, therefore, given by:

In Figure 2.3 one observes that the resistivity of a semiconductor can
vary by several orders of magnitude simply by modifying the doping
concentration. The resistivity can range from to By
comparison, the resistivity of metals is on the order of and
that of typical insulators is around



2. Theory of Electrical Conduction 57

2.3.1. Hall effect

According to Relationship 2.3.3 the conductivity of a semiconductor
sample is given by the product of the carrier concentration and their
mobility. The conductivity of the sample can readily be measured, using
an ohmmeter, for instance. The carrier concentration and the mobility
can be separated by performing an additional measurement based on the
Hall effect.

When a magnetic field, is applied perpendicular to the direction of the
carrier flow in a semiconductor sample a potential difference appears in
the direction perpendicular to both the current flow direction and the
direction of the magnetic field (Hall effect, 1897).

Let us examine the motion of electrons in a piece of N-type
semiconductor under the combined effect of a longitudinal electric field,

and of a magnetic field, perpendicular to it (Figure 2.4). The
current density in the y-direction, is given by Equation 2.3.1:

where n is the electron concentration.

Each electron in motion is submitted to a Lorentz force having a
magnitude equal to in a direction, x, perpendicular to both
the electron velocity, thus also to and to Since no current can
flow in the x-direction a transverse electric field which exactly
counteracts the Lorentz force, is created, such that :
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If the width of the sample is W, a potential difference which can be
measured, called "Hall voltage" will appear at the sides of the sample:

If the thickness of the sample is h the current flowing in the y-direction is
equal to:

One defines the "Hall coefficient", which characterizes the
combined effect of an electric field and a magnetic field on electrons by
the following relationship: [5]

Since the magnetic field is perpendicular to the direction of current flow
the latter Equation can be rewritten in the following form using 2.3.4 and
2.3.5:

The conductivity of the N-type semiconductor is equal to
Therefore, one obtains, using Equation 2.3.9:

The mobility of the carriers in a sample can thus be extracted using a
conductivity (or resistivity) measurement and a Hall effect measurement.
Once the mobility is known, Relationship gives access to the
electron concentration. In the case of a P-type semiconductor, one finds:

In conclusion the Hall effect allows the determination of the polarity of a
semiconductor (N- or P-type) through the sign of the Hall coefficient. In
addition, when combined with a conductivity measurement it allows for
the extraction of the majority carrier density and the majority carrier
mobility.
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2.4. Diffusion current

In semiconductors current can be produced due to a concentration
gradient of carriers. The current in this case is called diffusion current and
is derived below. Consider a piece of semiconductor in which, for
whatever reason, there is an electron concentration gradient. By analogy
with the laws of diffusion in gases or liquids one can easily conceive that
electrons will diffuse from the region where their concentration is highest
to the region where it is lowest. The flux of electrons, resulting from
the diffusion process is directly proportional to the electron
concentration gradient, dn/dx. This flux, when multiplied by -q, is equal
to the diffusion current density of the electrons:

In a similar way a hole concentration gradient gives rise to a hole
diffusion current. Since each hole bears a positive charge +q one can
write:

and are constants called "diffusion coefficients" for electrons and
holes, respectively. They represent the ease or the "fluidity" with which
the carriers can move and diffuse in the semiconductor material.
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2.5. Drift-diffusion equations

Based on the concepts derived in the previous sections we can now
establish the drift-diffusion equations. The total hole current density in a
semiconductor is composed of the sum of the drift and the diffusion
components of current. Similarly, the total electron current density in a
semiconductor is composed of the sum of the drift and the diffusion
components of current. Using 2.3.1, 2.3.2, 2.4.1 and 2.4.2 we obtain:

and

or, in a three-dimensional case:

and

The total density of the current flowing at any point in the
semiconductor is simply obtained by adding the hole and electron current
densities:

2.5.1. Einstein relationships

The mobility and diffusion coefficient in a semiconductor are related
to each other. This relationship is derived in the following section.
Consider a piece of semiconductor material with a non-uniform doping
concentration. Let the doping atoms be arsenic in silicon and for the sake
of simplicity we will consider a one-dimensional case. The doping
impurities are N-type and their concentration is as shown in Figure
2.6. Assuming all doping impurities are ionized, we have that

The presence of an electron concentration gradient gives rise to an
electron diffusion current. The electrons diffusing to the left "leave
behind" positively charged arsenic atoms. These atoms occupy
substitutional sites in the crystal lattice, and unlike electrons, cannot
move. Because of the increased number of electrons in the left-hand part
of the sample and the presence of positive charges in the right-hand part
an internal electric field develops locally. This electric field tends to
"recall" the electrons towards their place of origin. This electric field and
the associated potential drop are noted where the
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subscript zero implies an internal or "built-in" field under thermal
equilibrium.

With no external bias applied to the sample there is no current flow and
the force of the internal electric field exactly balances the diffusion force.
Using the drift-diffusion equation 2.5.1b we can write:

Recalling that (Expression 1.3.20a), and since by

definition one obtains:

Relationships 2.5.4 a and b are called "Einstein relationships". They show
that diffusion coefficients and mobilities represent the same thing, within
a multiplication constant, kT/q. The value kT/q has the dimension of a
voltage, and is called "thermal voltage". It is equal to 25.9 mV at room
temperature and is frequently noted or Thus if the mobility is
known the diffusion coefficient can be calculated.
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2.6. Transport equations

The transport equations are a set of five equations that govern the
behavior of semiconductor materials and devices. In the previous section
we have related the flow of current to drift and diffusion mechanisms.
The first two transport equations are the drift-diffusion equations given
by Relationships 2.5.2a and 2.5.2b and are repeated below:

Using the Maxwell equations and where is the
displacement field, and using the relationship between electric field and
potential one readily obtains the Poisson equation:

where is the permittivity of the semiconductor and is the local charge
density in the semiconductor. If all the doping atoms are ionized,
which is the case at room temperature, one obtains:

The permittivity of a material is given by the product of its relative
permittivity or dielectric constant,     multiplied by the permittivity of
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vacuum where the permittivity of vacuum is equal to
For example, silicon, which has a dielectric constant of 11.7, has a
permittivity of

In the previous derived Equations 2.6.1a and b, and 2.6.4, steady-state was
assumed, i.e., there was no time dependence of any of the variables.
Another set of equations which describe the evolution of carrier
concentration with time can be derived. However, the local carrier
concentration may vary for the following reasons:

External forces can be applied to a region of the semiconductor material such that
carriers are either added to or removed from that region (i.e. carrier injection in a
PN junction).

The width of the bandgap in a semiconductor is small enough to allow for
electrons to "jump" from the valence band into the conduction band and
reciprocally. In addition, electrons can also "jump" from the conduction or
valence band into permitted energy levels located inside the bandgap. These
levels arise from the presence of trace impurity elements or crystalline defects. If,
for instance, an electron jumps from the valence band into the conduction band,
it becomes free to move in the crystal. At the same time, a free hole is created in
the valence band, which is free to move as well. Such an event is called "carrier
pair generation" or, more simply, "generation". An electron can also "fall" from
the conduction band into the valence band. In this process called "recombination"
both a free electron and a free hole are lost. More complex
generation/recombination processes can occur as well, in which permitted energy
states within the bandgap are involved. The net, intrinsic,
generation/recombination rates for electrons and holes are noted and
respectively. Generation/recombination mechanisms will be analyzed in more
detail in Chapter 3. The generation/recombination rates, and are taken as
positive in the case of recombination, and negative in case of generation.

An external source energy can increase the hole and electron concentration. If
enough energy is transferred to an electron in the valence band, it can "jump"
into the conduction band, a process by which a free electron-hole pair is created.
The external generation rates for electrons and holes are noted and
respectively (unit: A typical example where external generation is
useful is the conversion of sun light into electrical energy in a solar cell.

A clear distinction should be made between the intrinsic
generation/recombination rates and and the extrinsic generation
rates and

The intrinsic generation/recombination rates express the rate at which free electrons
and holes are created or annihilated within a unit volume of the semiconductor
material in the absence of any outside influence. and are positive if
recombination dominates over generation, i.e. if more free electrons and holes
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disappear by spontaneous recombination than free electrons and holes are created
within the material by thermal energy. and are negative if there is more
intrinsic carrier generation than recombination. If the rates of spontaneous
generation and recombination are equal, both and are equal to zero. In
other words, = (free electron intrinsic recombination rate minus free electron
intrinsic generation rate) and = (free hole intrinsic recombination rate minus
free hole intrinsic generation rate).

The extrinsic generation rates express the rate at which free electrons and holes are
created by an outside source of energy, such as light illumination. Extrinsic
generation involves only generation (i.e. no recombination) events.

To derive the equations describing the variation of the number of carriers
due to generation/recombination events we will consider a differential
volume of semiconductor material (Figure 2.7). The cross-sectional area
of the volume under consideration is A with length dx. An electron
current density (unit: enters the volume and a current
density flows out of it.

For one-dimensional current flow in the x-direction the variation of the
number of free electrons in the volume Adx as a function of time is given
by the number of electrons entering the volume, minus the number of
electrons flowing out of the volume, plus the number of electrons
generated minus the number of electrons recombined:
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can be developed in series, which yields:

Using the latter result Equation 2.6.5 can then be rewritten to obtain the
continuity equation for electrons:

A similar calculation, made for holes would yield:

Extending Expressions 2.6.6a and 2.6.6b to three dimensions one obtains
the continuity equations:

2.7. Quasi-Fermi levels

At thermodynamic equilibrium, and in the absence of applied external
forces, the equilibrium carrier concentrations are a function of the
internal potential in the semiconductor. The carrier
concentrations are related to the internal potential by the Boltzmann
relationships 1.3.20a and 1.3.20b. These can be rewritten in the following
form:
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and the pn product is given by:

Under thermodynamic equilibrium conditions the Fermi level, is
unique for both electrons and holes.

Under non-equilibrium conditions, however, this is no longer the case. For
instance when excess carriers are continuously injected into the
semiconductor material or if light is continuously shone on it, the
relationship between the internal potential and the electron and
hole concentrations, n(x,y,z) and p(x,y,z) becomes more complicated. The
Boltzmann relationships, however, are still valid if one introduces the
notion of "quasi-Fermi levels". Quasi-Fermi levels are also called "imref",
which means "imaginary reference", and quite conveniently, corresponds
to the word "Fermi" spelled backwards. Instead of a single Fermi level
common to both types of carriers let us define an electron quasi-Fermi
level, and a hole quasi-Fermi level, The Boltzmann
relationships can be rewritten in the following form:

and the pn product is equal to:

From Equation 2.6.1b we know that the electron current density is given
by:

Taking the derivative of Expression 2.7.4 we can write:

Introducing the result of Equation 2.7.8 into Relationship 2.7.7 one
obtains:



2. Theory of Electrical Conduction 67

Using the Einstein Relationship we finally obtain:

A similar calculation, made for holes, would yield:

The two last relationships show that, in the most general case, the current
is not linked to the gradient of the internal potential, but to the
gradient of the quasi-Fermi levels. Under thermodynamic equilibrium
conditions and in the absence of external forces, however,

constant, and therefore, and

Important Equations
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Problems

Problem 2.1:
A sample of gallium arsenide (GaAs) is doped with silicon atoms per
Ninety-five percent of the silicon atoms replace arsenic atoms and the remaining five
percent replace gallium atoms. T=300K. The intrinsic carrier concentration, is
equal to

Calculate the electron and hole concentration as well as the position of the Fermi
level.

Problem 2.2:
A silicon sample has a length of The N-type doping concentration varies
linearly from to The electron
mobility is
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1: Assume that no external bias is applied to the sample. Calculate analytically the
internal electric field, (unit: V/cm) and calculate the numerical value of the
electric field at

2: Assume that an external bias is applied in order to cancel out the electric field at
What is the current density in the sample? (unit:

Problem 2.3:
Electromagnetism provides us with the following relationships:

Consider a piece of intrinsic silicon of infinite size.
At time an arbitrary distribution of charge is injected into the sample:

Show that excess charge will vanish exponentially as a function of time, and that the
time constant is: where is the conductivity of the silicon.
Calculate the time constant if

Farad/cm.

Problem 2.4:
A piece of P-type silicon is connected to ground on its right side. On its left side
there is a metal electrode which is separated from the silicon by a thin layer of air
(air is an insulator!). The potential of the left electrode is V > 0 V (Problem Figure
2.4a). Because of the positive potential on the left electrode, holes near x=0 will be
pushed away to the right, leaving ionized acceptor impurities. Hint: This is similar
to a parallel-plate capacitor.
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As a result, a charge density equal to appears in the left

portion of the silicon sample. Since it is very difficult to solve Poisson's equation
analytically for such a charge density, the so-called "depletion approximation" where
the charge density is assumed to be equal to over a given distance, w, can
be used. Beyond w, the silicon remains neutral. In other words, we have:
for 0 < x < w, and for x > w (Problem Figure 2.4b).
In the neutral part of the sample the potential and the electric field are equal to zero
(V = 0 and for

1) Using the depletion approximation find the analytical expression of the potential
and the electric field in the sample for 0<x<2w.

2) Express w as a function of
3) Find the analytical expression of the electron and hole concentration, n(x) and p(x)
0<x<2w.
4) Using the following data:
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a: Plot n(x) and p(x) for 0 < x < 2w, for the two separate values of
where (one set of curves) and (a second set of

curves).

From Relationship 1.3.17b we know that

b: Plot n(x) and p(x). For the y-axis choose either a linear or a logarithmic scale,
whichever is most appropriate. Explain your results.

5) The one-dimensional Poisson equation is given by Relationship (2.6.3a).
Assuming is equal to zero we have:

In its discrete form, the second-derivative operator can be written:

such that equation (1) can be written:

where A is a t × t matrix, t being the number of mesh points, and where:

is the constant distance between two successive mesh points. If t = 6, for
instance, the Poisson equation can be written as:

The boundary conditions are and
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For the problem use fifty mesh points (t=50). rather than six.

Since the left and right terms of the latter equation are both functions of the
potential, iterations must be used until acceptable accuracy is reached (see Annex 5).
Chose an appropriate criterion for convergence.
Plot n(x) and p(x) for 0 < x < 2w. Plot n(x) and p(x) as well. Plot
the curves obtained in part 4 of this problem with those obtained here (i.e. from
part 4 and part 5 on one graph, from part 4 and part 5 on one graph, etc.) and
discuss the accuracy / appropriateness of using the depletion approximation.

Problem 2.5:
We have a sine wave-like charge distribution in a semiconductor between points a
and b. The charge is equal to zero everywhere else. Calculate the electric field and
potential from x=0 to x>b. and are both equal to zero for x=0. Between a and b
the charge is given by the following expression:
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Chapter 3

GENERATION/RECOMBINATION PHENOMENA

3.1. Introduction

As mentioned earlier there are electrons in the conduction band and
holes in the valence band of a semiconductor, as long as the temperature
is above zero Kelvin. An electron in the conduction band is free to move
in the crystal. It can also "jump" into a "vacant seat" in the covalent
bond network (Figure 3.1). This "vacant seat" is, of course, nothing but a
hole. By doing this the electron releases energy. Such a phenomenon in
which a free electron and a free hole both disappear is called a
recombination event.

Conversely, an electron can free itself from a covalent bond if enough
energy is made available. By doing this it "jumps" from the valence band
into the conduction band and becomes free to move in the crystal. A free
hole is also created in that process, which is called "generation of an
electron-hole pair" (Figure 3.2).
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Under thermodynamic equilibrium, generation and recombination events
exactly balance one another, such that the electron and hole equilibrium
concentrations remain constant with respect to time. Using an external
source of energy such as illumination with light, one can, however,
increase the carrier concentration and reach a state of non-equilibrium.

3.2. Direct and indirect transitions

In a semiconductor such as gallium arsenide (GaAs) the conduction
band minimum (where free electrons are located) occurs at the same k-
value (k is the wave vector) as the valence band maximum. The wave
vector represents the momentum of the carriers. As shown in Figure 3.3
the value of that momentum is zero. Therefore, when an electron from
the conduction band recombines with a hole in the valence band the law
of conservation of momentum is obeyed. A semiconductor where the
minimum of the conduction band and the maximum of the valence band
occur at the same k-value is called a direct-bandgap semiconductor, and
the "jump" of an electron from the conduction band into the valence
band is called "band-to-band recombination".

Since momentum is conserved in this example of a recombination event,
recombination requires nothing more than an electron with k=0 and a
hole with k=0. Since most electrons occupy the conduction band at or
near k = 0, recombination is a very likely mechanism. When a
recombination event takes place the law of conservation of energy also
implies that a quantum of energy is released in the form of a photon. The
energy of that photon is such that where h is Planck's constant, v
is the frequency of the photon, and is the bandgap energy. In most
direct-bandgap semiconductors the photons emitted by recombination
events have an energy corresponding to visible or near-infrared light. A
recombination event where photons are emitted is called "radiative
recombination" and is exploited in devices such as light-emitting diodes.
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The relationship between the photon wavelength, and the bandgap
energy, is:

where v, h and c are the photon frequency, Planck's constant and the
speed of light, respectively.

In silicon and germanium the minimum of the conduction band and the
maximum of the valence band do not occur at a same k-value. A
semiconductor where this is the case is called an "indirect-bandgap
semiconductor". When recombination takes place in such a material an
electron with a momentum recombines with a hole having a
momentum k=0 (Figure 3.3). This can occur only if an appropriate
momentum is transferred to the electron (or the hole) such that
conservation of momentum is observed. This can happen through
collision with a phonon or with several phonons. Since a precise value of
momentum in Figure 3.3) must be transferred to the electron, band-
to-band recombination is an extremely unlikely process in indirect-
bandgap semiconductors. As a result there is no radiative recombination in
silicon and germanium, and these materials cannot emit light. Rather
recombination takes place via trap levels at various k-values within the
band gap.

Gallium arsenide emits photons with a wavelength of which
corresponds to near-infrared, almost visible light. To fabricate
semiconductor devices producing visible light more complex
semiconductor materials are used, usually based on a combination of the
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elements of columns III and V of the periodic table, such as Ga, Al, P, As,
and N. Such semiconductors are called "III-V semiconductors".

The main parameter that governs the electrical and optical properties of
semiconductors is the bandgap energy, shown in Figure 3.4 as a function
of the crystal lattice parameter. The use of ternary compound
semiconductors, such as or that of quaternary compounds,
such as allows one to tailor the bandgap energy in order
to produce a desired light wavelength. The fabrication of a semiconductor
material with an "engineered" bandgap energy is obtained, for example, by
adjusting the x and y coefficients during the growth of a
crystal.

Semiconductors are transparent to photons that carry an energy, hv,
smaller than the bandgap energy. Germanium, for instance, is used instead
of glass to make infrared (IR) lenses for wavelengths larger than
since its bandgap energy is larger then the energy of IR photons.
Photons with an energy equal or greater than the semiconductor bandgap
energy, on the other hand, can be absorbed to generate electron-hole
pairs. Figure 3.5 shows the absorption coefficients in some
semiconductors, as a function of wavelength. The absorption coefficient
is a measure of the distance a light wave travels into the material before it
is absorbed.

In addition to band-to-band recombination mechanisms, a free electron
can recombine with a free hole through "recombination centers" located
within the energy bandgap. These are permitted energy levels introduced
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by contaminants, impurity atoms or crystal defects. A recombination
center acts as a catalyst that enables an electron to recombine at k values
differing from the of the conduction band. This is especially true in
indirect-bandgap semiconductors such as silicon or germanium, where
band-to-band recombination events are very unlikely to occur.

3.3. Generation/recombination centers

Semiconductor crystals are of the highest purity and quality, but they
are not perfect. They contain some crystal defects such as interstitials
(excess semiconductor atoms in the crystal lattice), vacancies (missing
semiconductor atoms in the crystal lattice) and dislocations
(imperfections in the crystal structure), as well as traces of impurity
elements such as metallic atoms or oxygen. These defects and impurities
give rise to permitted levels within the energy bandgap. Let us consider
one of these levels, having an energy within the bandgap. This
permitted level can receive an electron from the conduction band (case A
in Figure 3.6), lose an electron to the valence band (case C), receive an
electron from the valence band (case D), or lose an electron to the
conduction band (case B). A level that is neutral if filled by an electron
and positive if empty is called a "donor level", and a level that is neutral
if empty and negative if filled by an electron is called an "acceptor level".
Permitted levels inside the bandgap are called generation-recombination
centers, or, in short, "recombination centers". In Figure 3.6 transitions A
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and C correspond to recombination events, and transitions B and D
correspond to generation events. Since these transitions involve energies
smaller than that of the bandgap they are much more likely to occur than
band-to-band transitions, especially in indirect-bandgap semiconductors
like silicon or germanium.

It is important to note that the terms and in the continuity
equations 2.6.7a and 2.6.7b represent electron-hole pair generation
events caused by an external source of energy, such as, for instance,
sunlight penetrating the semiconductor. Natural, intrinsic generation in a
semiconductor arising at any temperature above zero Kelvin, is
encompassed in the intrinsic recombination-generation rate terms of the
continuity equations, and Using the notations of Figure 3.6 it can
easily be established that and is
positive a net recombination of carriers is taking place. If it is negative, a
net generation of carriers is observed.

The energy released by a recombination event can give rise to different
phenomena:

In a band-to-band radiative recombination event, the energy is released in the
form of a photon.

In an Auger recombination event the energy released is transferred to another
electron (or hole), which becomes excited to a higher energy level.

In an indirect recombination event via an energy level within the bandgap,
energy is transferred to the crystal lattice in the form of heat (or phonons).

Recombination of carriers takes place not only within the bulk of a
semiconductor crystal, but at its surface as well. The surface is indeed a
place where the periodicity of the crystal lattice is interrupted, and where
contact with another substance (air, metal,...) is made.

Within the bulk of the crystal a recombination-generation rate, or, in short, a
recombination rate, is defined. The recombination rate for electrons is noted
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and that for holes, and are accounted for in the continuity
equations 2.6.7a and 2.6.7b and represent the number of holes and electrons
created or annihilated by intrinsic generation/recombination processes

and per second.

In a similar manner, at the surface of a semiconductor crystal a surface
recombination velocity is defined. The surface recombination rate for
electrons is noted and that for holes, and are the boundary
conditions for the continuity equations and represent the number of holes
and electrons created or annihilated by intrinsic generation/recombination
processes at the surface of a semiconductor crystal and per second.

When an electron is accelerated to high speeds (e.g. by an intense electric
field) it can obtain an amount of kinetic energy equal to or larger than the
bandgap energy, That energy can be released through a collision event
in such a manner that an additional electron-hole pair is created.
Therefore, instead of having a single, high-energy, free electron, we now
have two free electrons and a hole. This generation mechanism is called
"generation by impact ionization". If the "original" electron current is I,
and an additional electron current is created by the impact ionization
mechanism, then the total electron current is equal to The M
and (M+1) coefficients are both called "multiplication factors".

3.4. Excess carrier lifetime

We have seen that, at thermodynamic equilibrium, the generation rate
and the recombination rate are equal, such that and

If, for some reason, the carrier concentrations are different from
their equilibrium value, generation/recombination mechanisms will tend to
force them back to equilibrium. Actually, and are directly
proportional to how much the carrier concentrations depart from
equilibrium:

In Expressions 3.4.1 and 3.4.2, n (or p) represents the electron (or hole)
concentration and represents the electron (or hole) equilibrium
concentration. Thus, for example, if the electron concentration is higher
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than its equilibrium value, recombination events will reduce the number of
electrons. Conversely, if the electron concentration is below its
equilibrium value, generation events will take place. By definition and

are the lifetime of the excess (or missing) electrons or holes,
respectively, the equilibrium concentrations being taken as a reference.
The meaning of "lifetime" is the "average" time span that excess free
electrons (or holes) will "survive" before recombining, or the average
time that missing electrons will be "missing" before being "re-generated"
through a generation event. A similar reasoning applies to excess and
missing holes. In the case of silicon the carrier lifetime ranges between

in heavily contaminated material with many recombination
centers and in high-purity material. In gallium arsenide,
where fast band-to-band recombination takes place, the carrier lifetime is
on the order of

Surface recombination velocity and ranges from to
in silicon, depending on the cleanliness and passivation of the

crystal surface. When the semiconductor surface is in contact with a
metal the surface recombination velocity can be considered as infinite at
the contact, which in practice means that and at the surface.

Example:
Let us consider the following example which illustrates the physical meaning of
the excess carrier lifetime.

Consider a semiconductor with homogenous (constant) doping concentration
which is illuminated with light such that there is an homogenous (constant)
external generation rate, G, of electron-hole pairs throughout the sample. The
generation is a direct, band-to-band generation, such that As a
result of the external generation process the excess electron and hole
concentrations are equal, i.e., the generation of any electron corresponds to the
generation of a hole: Assume a direct, band-to-band recombination
mechanism where

Using Expression 3.4.1 and since one can write:

If no external bias is applied and there is no concentration gradient of carriers,
there is no current flow           and the continuity Equations 2.6.7a and b
become:

and



3. Generation/Recombination Phenomena 81

What is analytical expression for the electron and hole concentration as a function
of time in the semiconductor? Under steady-state (constant illumination)
conditions we have that and thus G = U, which yields:

Assume the external generation source is suddenly removed (turn the light off) at
The excess carriers will recombine to reach, after an infinite time span, their

equilibrium concentration and Using Expressions 3.4.3a and 3.4.3b
an analytical expression for the carrier concentrations as a function of can be
found:

which yields for electrons:

In a similar way one obtains the time-dependent hole concentration:

From this example we can see that the carrier lifetime, is a constant with
which the concentration of carriers, whether above or below its equilibrium value,
tends to return to equilibrium.
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3.5. SRH recombination

In the previous example the recombination of excess carriers was
assumed to be caused by a band-to-band recombination process. In many
instances, and in particular, in the case of silicon,
generation/recombination events take place through recombination
centers located in the energy bandgap. Such recombination events are
called SRH (Shockley-Read-Hall) recombination events.

An analytical expression for the recombination rate for electrons and
holes, and can be determined when there are recombination
centers at an energy within the bandgap. Consider the case of electron
generation/recombination with the assumption that the recombination
centers are of the acceptor type. The centers, are therefore, neutral or
negatively charged. Let be the density of the recombination centers
and (with the concentration of electrons occupying the
centers.

To simplify the problem the electron generation/recombination rate,
is split into two terms, and which represent recombination and
thermal generation, respectively. The recombination rate due to the
centers, is proportional to the concentration of electrons in the
conduction band, n, and to the concentration of empty (or neutral)
recombination centers, One can thus write:

where is the thermal velocity of electrons, defined by the relationship

and is called the "electron capture cross
section" The capture cross section is a measure of how close an
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electron must be to a center in order to be captured by it, while the
thermal velocity is the average speed of electrons due to "Brownian-like"

or random motion at a given temperature where kT is the

thermal energy).[5] Note that is the probability that a center with
energy is occupied by an electron. The function is the Fermi-
Dirac distribution evaluated at the energy of the center, at
thermodynamic equilibrium.[6]

The thermal generation rate, is the process by which electrons can
"jump" from the recombination centers into the conduction band. It is
proportional to the concentration of centers occupied by an electron,

where is a proportionality coefficient which represents the probability
of electron emission by the generation/recombination centers.

In a similar manner the recombination rate for holes between the
recombination center and the valence band is given by:

The thermal generation rate, is the process by which holes can
"jump" from neutral recombination centers into the valence band. It is
proportional to the concentration of centers not occupied by an electron,

where is a proportionality coefficient which represents the probability
of hole emission by the generation/recombination centers.

We are now going to calculate the proportionality coefficients and
When the semiconductor is in thermodynamic equilibrium the generation
and the recombination rates are equal to zero:

The number of negatively charged centers, i.e. filled centers, is given by
the relationship or:
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Again at thermodynamic equilibrium we must have that
Using the Boltzmann Relationship 2.7.1 in the absence of an internal

potential can be written in the following form:

Using the previous relationship becomes:

Similarly, the hole coefficient, can be written as:

Let us now use the continuity equation for electrons trapped in the
generation/recombination centers, under steady-state conditions to derive
an expression for the generation/recombination rate:

Since external generation creates the same amount of electrons and holes,
we have which, by virtue of 3.5.9, yields Using
Equations 3.5.1 to 3.5.4, one obtains:

Solving Equation 3.5.10 for yields:
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Based on the previous relationships we can now calculate the
generation/recombination rate:

with and defined as:

where and are called "lifetime" of electrons and holes in the steady-
state regime, respectively. Looking at Relationship 3.5.12 we find that

the recombination rate, U, is directly proportional to The

recombination rate represents a "force" which tends to bring the p n

product back to its equilibrium value, One observes that:

(equilibrium)

(recombination)

(generation)

It is worthwhile noting that the recombination rate is highest when the
recombination centers have an energy close to e.g. when they are
located close to midgap. The physical meaning of this observation is the
following: consider the recombination of an electron in the conduction
band with a hole in the valence band through a recombination center
having an energy The recombination process requires the capture of
the electron by a center followed by the emission of the electron
from the center into the valence band (or the jump of a hole from the
valence band into the center). If is significantly larger than the
probability of an electron in the conduction band being captured by the

if

if

if
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center is high, simply because that process involves a small energy
variation: The probability of the center capturing a hole from the
valence band, on the other hand, is low because the energy difference

is large. Thus, in this example, the term appears to be the
limiting factor to the overall recombination rate. In the case of a center
having an energy less than the capture of an electron by the center
will be the limiting factor. It is, of course, when the energy of the center
is close or equal to that the processes limiting the recombination rate
are minimized. Therefore, recombination centers near midgap yield the
highest recombination rates.

Assuming that the hole and the electron capture cross sections are equal,
Relationship 3.5.12 can be written in the following form:

3.5.1. Minority carrier lifetime

Certain semiconductor devices operate by the injection of minority
carriers. The lifetime of the minority carriers is important for the
efficiency of these devices. In most cases the minority carrier
concentrations are orders of magnitude lower than majority carrier
concentrations. Let us consider Equation 3.5.12 in a case where the
excess carrier concentrations, and are small
compared to the equilibrium concentrations: and This
condition is called "low-level injection". One can write:

Relationship 3.5.12 can be rewritten:

and for centers where the recombination rate is highest (i.e. for
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or, since and and since and

An important conclusion can be drawn from Expressions 3.5.20 and
3.5.21: the lifetime of excess carriers is equal to that of the minority
carriers (the electron lifetime in a P-type semiconductor and the hole
lifetime in an N-type semiconductor). This may not appear very
intuitive, but there is a sound physical reason for it. Consider a P-type
semiconductor, where the hole concentration is much higher than that of
electrons. In order for a recombination event to take place, both a free
electron and a free hole are needed. Free holes are plentiful, while
electrons are scarce and rare. Therefore, recombination events will be
limited by the number of available electrons, which are minority carriers
in this case, and the lifetime of excess carriers will be decided by the value
of the electron lifetime. A similar process takes place in an N-type
semiconductor, where the excess carrier lifetime is governed by the
recombination rate of holes.

3.6. Surface recombination

Recombination of excess carriers occurs not only within the bulk of a
semiconductor crystal, but at the surface of the crystal as well. The
periodicity of the atoms is interrupted at the surface of the crystal, and
the surface acts as an interface between the semiconductor and another
material. As a result the recombination rate at the surface is different (and
usually higher) than in the bulk of the semiconductor. We can define the
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surface recombination rate for electrons and holes, and as the
number of carriers disappearing per unit area and per second at the
semiconductor surface due to recombination mechanisms. Therefore,
and can be used as the boundary conditions for the continuity
Equations 2.6.8a and 2.6.8b.

A formal derivation of the surface recombination rate yields an
expression similar to Equation 3.5.12:

where and are the electron and hole concentrations at
the surface, respectively, is the concentration of surface
recombination centers and is their energy. As in the case of
bulk recombination the most efficient recombination centers are those
located at midgap energy, and if we assume that 3.6.1 yields:

The pn product at the surface can be written as:

Using a derivation similar to Equations 3.5.16 to 3.5.21 the surface
recombination can be expressed as a function of minority carrier
concentration at the surface (Expression 3.4.2). The recombination rate
at the surface of the crystal is larger than inside the crystal. The surface
recombination rate can be introduced in the continuity in the following
way:

for electrons, and:

for holes.

In some cases, such as at a metal-semiconductor contact, the surface
recombination rate can be infinite. This implies and in
equations 3.6.3 and 3.6.4; i.e. infinite surface recombination implies an
equilibrium concentration at the surface.
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Important Equations

Problems

Problem 3.1:
Consider an N-type silicon sample with The dimensions of the
sample can be found in Problem Figure 3.1. The carrier lifetime (electrons and holes)
is The mobilities are and

1) What is the resistance of the sample (in ohms).
2)The silicon sample is contaminated by metallic impurities which give rise to

recombination levels per cubic centimeter. As a result, the carrier lifetime is
reduced to 100 ns. These recombination centers are located at the center of the
bandgap What is the resistance of the sample (in ohms)?
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3) The sample is illuminated with light, which gives rise to a uniform external
generation uniformly throughout in the sample. What is
the resistance of the sample (in ohms)?
4) The concentration of metallic impurities is now doubled, while the sample
remains illuminated. What is the resistance of the sample (in ohms)?

Problem 3.2:
Let us consider a semi-infinite semiconductor sample on which light is shone at
room temperature (Problem Figure 3.2):

We have uniform external generation throughout the sample:
Electron and hole recombination rates are equal:
We will assume electrical neutrality everywhere such that where and

are the electron and hole equilibrium concentrations, respectively. Also assume
and that The electron and hole concentrations at equilibrium

(no light) are and At x=0, the surface recombination velocity is:
Surface recombination imposes the following boundary conditions:
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and

To simplify the expressions we will use the following notations whenever

applicable: and L is the "diffusion length" of minority carriers. P

is a dimensionless number used to make the equations easier to manipulate.

Since and and since an equal amount of electrons and holes are

photogenerated. Poisson's equation yields:

and thus, since

Also, since and we have that based on

and

Question:
Calculate the carrier concentrations (electrons and holes) as a function of x.
Sketch as a function of x for:
1: s=0

2: (or, in other words, and

3: (s is finite).

Problem 3.3:
An infinitely long piece of semiconductor is half covered by an opaque
layer (Problem Figure 3.3). One shines light on the sample, such that an
homogeneously uniform generation of carriers is produced for x < 0. The
semiconductor is N-type. The electric field in the photon excited region x<0 is equal
to zero because there are equal numbers of holes and electrons generated, and hence

We will note

Find an expression for the hole current at x=0. Sketch the current amplitude as a
function of x.
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Problem 3.4:
Consider a semi-infinite sample of silicon (Problem Figure 3.4). The cross-section
area of the sample is The sample is P-type with an impurity concentration

A current of electrons is continuously injected into the sample at x=0. We assume
steady state, such that and there is no external generation
The electric field, is equal to zero everywhere in the sample. Because of
recombination the electron concentration will decrease as x is increased. Far from
x=0 (i.e. at the electron concentration is equal to the equilibrium electron

concentration: The recombination rate is given by expression

3.4.1.

1) Find an analytical expression for the electron concentration n(x) as a function of

x. If somewhere in the calculation you encounter the product replace it by

(in other words, Now assume the electron current, I, at x=0, is equal
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to 5 nA. It is evenly distributed across the cross-section area of the sample, such that
since the area is

2) Using the following data and Matlab, plot n(x) for micrometers.

q=1.6e-19;
kTq=0.0259;
Na=lel6;
ni=1.45e10;
mu=800;
tau=le-9;
Ln=sqrt(Dn*tau);
n0=ni^2/Na;
I=5e-9;
Jn0=I;

%Electron charge (C)
%kT/q (V)
% P-type doping concentration (cm-3)
% Intrinsic carrier concentration (cm-3)
% Electron mobility (cm2/V/s)
% Electron lifetime (s)
% Diffusion length (cm)
% Electron equilibrium concentration
% Electron current at x=0
%Electron current density at x=0
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Chapter 4

THE PN JUNCTION DIODE

4.1. Introduction

A PN junction is formed when a P-type and an N-type semiconductor
are in contact. If the N-and P-type regions are made out of the same
semiconductor material (e.g. N-type silicon and P-type silicon), the
junction is a homojunction. If the semiconductor materials are different
(e.g. N-type silicon and P-type germanium), the junction is a
heterojunction. Heterojunctions are dealt with in Chapter 9.

A diode is a semiconductor device consisting of a single PN junction
(Figure 4.1). Unlike a resistor, it has a highly non-linear current-voltage
characteristic and is often used as a rectifying element. Some diodes can
emit light (light-emitting diodes), and others can emit laser light (laser
diodes). The proper combination of two PN junctions produces a bipolar
transistor, a device capable of amplifying electric signals.

The PN junction presents the following property: It allows current flow
in one bias direction, but not in the other bias direction. Hence it rectifies
the current. The sign convention used in this chapter is shown in Figure



96 Chapter 4

4.1. The applied voltage, is positive if the potential applied to the P-
side is higher than that on the N-side. As illustrated in Figure 4.2 current
flows through the diode if is positive, and does not if is negative. If

the junction is said to be forward biased, and if it is reverse
biased.

Experimental measurements show that the current in a PN junction, I,
obeys the following equation:

where is a constant and is the voltage applied to the diode.

An analogy of the diode is a valve which controls liquid flow (Figure 4.3).
When a pressure differential is applied in the forward direction, the valve
opens and allows the liquid flow. If the pressure differential is applied in
the reverse direction, the valve closes, and no liquid flows, except for a
few drops if the valve is imperfect and somewhat "leaky".
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4.2. Unbiased PN junction

We now consider a PN junction at thermodynamic equilibrium, i.e. in
the absence of an applied bias Let us first focus on the P-type and
the N-type region taken separately, as if there were two separate pieces
of semiconductor material. For simplicity, doping concentrations in both
pieces are constant, and equal to in the N-type region, and

in the P-type region. The energy band diagram of the two pieces
of semiconductor are shown in Figure 4.4.

Using Expressions 1.3.15a and 1.3.15b one can write:

in the N-type region, and

in the P-type region.

Let us now build the PN junction by connecting the P-type region to the
N-type region. The surface where the contact is made is called the
"metallurgical junction". A junction where the doping concentration
"abruptly" switches from P-type to N-type (at the metallurgical junction)
is called a step junction. We already know from Section 1.4 that the
Fermi level is unique and constant in a structure under equilibrium:
electrons instantly diffuse from the electron-rich N-type region into the
electron-poor P-type region, and holes from the P-type material diffuse
into the N-type region. As a result of the charge displacement an internal
built-in potential called junction potential, is formed at the junction,
as shown in Figure 4.5.
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Within a multiplication factor -q the junction potential is equal to the
curvature of the energy bands:

and thus:

When electrons diffuse from the N-type region into the P-type material,
they "leave behind" the ionized donor atoms they originated from. These
atoms occupy substitutional sites in the crystal lattice and cannot move
within the crystal. The region where these positively charged ions are
located constitutes a space-charge region called a "depletion region"
because it is depleted of electrons (Figure 4.6).

The positive charge in the depletion region attracts electrons such that at
equilibrium, the force of diffusion pushing electrons into the P-type
region is exactly balanced by the force of the built-in electric field that
"recalls" the electrons back into the N-type region. Similarly, the
diffusion of holes from the P-type into the N-type region gives rise to a
depletion region in the P-type material. This region is depleted of holes
and bears a negative charge because of the presence of negatively charged
acceptor ionized atoms. There are several names for the depletion region
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located around the metallurgical junction; it can be called the "depletion
region", the "space-charge region" or the "transition region".

The electric field and the potential variation in the space-charge region
can be calculated using the Poisson equation (Expression 2.6.2). For a
one-dimensional junction the problem simplifies to:

Using the Boltzmann Relationships 1.3.20a and 1.3.20b we obtain:

with

Equation 4.2.3b cannot be solved analytically and a close-form solution
for the potential cannot be found. It can, however, be simplified by using
the "depletion approximation". The depletion approximation assumes
that the space charge is composed only of ionized doping impurities, and
that the contribution of free carriers to the local charge is negligible.

and
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Furthermore, the carrier depletion in the space-charge regions is assumed
to be complete. In other words, there are no free electrons in the
depletion region on the N-type side, and no free holes in the depletion
region on the P-type side. As a result, the charge densities in the
depletion regions are equal to in the N-type material, and in the
P-type material. The depletion regions extent to a distance on the N-
type side, and a distance on the P-type side, where the metallurgical
junction is taken as the origin (Figure 4.7). Additionally, the electric field
and potential are shown in Figure 4.7, which can also be derived from
Poisson's equation with the appropriate boundary conditions.
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With the depletion approximation, a closed-form analytical expression
can be found for the electric field the potential as well as for

and by utilizing Poisson's equation and Gauss' law. The value of the
charge density can be expressed for four separate regions and are
given by:

(quasi-neutral region)
(space-charge region)
(space-charge region)
(quasi-neutral region)

We will assume that charge neutrality exists in the quasi-neutral regions.
Therefore, the electric field is zero in these regions. Using all the above
assumptions the Poisson equation can be integrated a first time to yield
the electric field:
for

for

for

and, for one obtains:

The electric field is continuous at x=0 by imposing Gauss' law, which
yields:

Relationship 4.2.6 reiterates charge neutrality in the device, since it states
that the total negative charge in the depletion region on the N-side of the
junction, is equal, in absolute value, to the total positive charge
on the The potential distribution is obtained by integrating
the Poisson equation a second time. In the P-type and N-type quasi-
neutral regions the potentials are and respectively. Using these
as boundary conditions yields:

for
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The potential is a continuous function at x=0. Combined with 4.2.2 this
condition gives an alternate expression for the junction potential,

The electric field has a single maximum value at x=0. Its expression can
be obtained using 4.2.4 or 4.2.5:

for

for

for

Using Expressions 4.2.6 and 4.2.9 the width of the depletion regions,
and can be expressed as a function of the junction potential:
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The sum of the depletion regions is called the "transition region" which
contains both ionized acceptor and donor impurities. The width of the
transition region is given by:

Actual PN junctions are strongly asymmetrical, which means that one
side is doped much more heavily than the other. Consider the example of
a junction, with and Since
one obtains:

and, therefore,

Comment: In a strongly asymmetrical junction, the width of the transition region is
virtually equal to the width of the depletion region with the lowest doping
concentration.

Example:
Calculate and in a silicon PN junction with and

at room temperature (T = 300 K)

at room temperature

It can easily be seen that

4.3. Biased PN junction

If no bias is applied to a PN junction the built-in junction potential
is equal to as we have seen in the previous Section. The drift current
generated by this potential variation is exactly equal and of opposite sign
to the diffusion current caused by the carrier concentration gradients, such
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that the net current flow (drift + diffusion) is equal to zero. The potential
variation actually acts as a barrier which prevents further diffusion
of electrons into the P-type region and holes into the N-type region,
once equilibrium has been established. That is why is sometimes
referred to as a "potential barrier" which the carriers must overcome in
order to diffuse.

Consider the case when an external bias, is applied to the junction.
is considered positive if the potential of the P-type region is higher (more
positive) than that of the N-type region. We will assume that the current
flowing through the device is small enough such that the potential drops
across the quasi-neutral regions are negligible. As a consequence, the
external applied potential, is supported entirely by the transition
region, and the internal potential, is equal to:

Noting that and are the edges of the transition region (Figure 4.8),
the distribution of charges in the structure are:

The Poisson equation can be solved just as it was in Equations 4.2.4 to
4.2.12, by replacing and by and respectively.
The result is:

and

The total width of the transition region is equal to:

It is worth noting that the width of the transition region increases when a
reverse bias is applied and that it decreases when a forward bias

is applied (Figure 4.8).

(quasi-neutral region)
(space-charge region)
(space-charge region)
(quasi-neutral region)
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4.4. Current-voltage characteristics

As we have seen in the previous Section the potential drop across the
transition region is equal to where is the applied voltage.
Therefore, if is positive, the potential barrier in the junction is lower
than its equilibrium value, As a result the diffusion and electric field
forces are no longer equal and of opposite sign. Diffusion acting on the
carriers is only partially compensated by the force resulting from the
junction potential variation, and therefore, holes can flow from the P-
type region into the N-type semiconductor and electrons can flow from
the N-type region into the P-type semiconductor. The resulting currents
are shown in Figure 4.9. The holes injected into the N-type region are
excess minority carriers (current "1" in Figure 4.9). These carriers diffuse
into the N-type quasi-neutral region an average distance called the
"diffusion length" before recombining with the majority carriers
(electrons). Since each recombination event consumes an electron, a
resulting electron current appears in the N-type region where electrons
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are continuously supplied by the external contact (current "2" in Figure
4.9). Similarly, the electrons injected into the P-type region (current "3"
in Figure 4.9) are excess minority carriers which recombine with holes in
the P-type region. Since each recombination event consumes a hole, a
resulting hole current appears in the P-type region (current "4" in Figure
4.9). It is worth noting that current "1" is equal to current "2" and that
current "3" is equal to current "4", in Figure 4.9.

If the junction is reverse-biased the amplitude of the potential
barrier is increased beyond its equilibrium value, Diffusion of holes in
the N-type region and diffusion of electrons in the P-type region are
reduced and net current, resulting from the drift of holes from the N-type
region into the P-type region and the drift of electrons from the P-type
region into the N-type region, is observed. The magnitude of this current,
however, is extremely small since it involves only minority carriers in the
vicinity of the edges of the transition region.

A derivation of the current-voltage characteristics of the PN junction
based on the currents of majority carriers would prove quite difficult.
These are the hole current in the P-type material and the electron current
in the N-type region, noted currents "4" and "2" in Figure 4.9,
respectively. We know, however, that current "2" is equal to current "1"
and current "4" is equal to current "3". Currents "1" and "3" are a result
of minority carrier injection (holes in the N-type material and electrons
in the P-type material) and the sum of these two components is equal to
the total current in the device. The derivation of the modeling equations
for the PN junction will, therefore, make use of currents "1" and "3".
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Ultimately we want to have an equation for the PN junction which
describes the current as a function of applied voltage.

4.4.1. Derivation of the ideal diode model

The notations used in this section are shown in Table 4.1:

To simplify the PN junction model we will use the following starting
assumptions:
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Starting assumption #1- Low-level injection assumption (or "weak

injection"). The concentration of minority carriers, and injected in
a quasi-neutral region is low compared to the majority carrier
concentration:

in the N-type quasi-neutral region (4.4.1)
in the P-type quasi-neutral region (4.4.2)

As a result of the low-level injection condition the concentration of
majority carriers is not modified by the injection of minority carriers:

in the N-type quasi-neutral region (4.4.3)
in the P-type quasi-neutral region (4.4.4)

Starting assumption #2- The Boltzmann relationships 2.7.1 and 2.7.2
are valid in the quasi-neutral regions as well as in the transition region.

Considering the depletion region on the N-type side one can
write:

From Relationship 4.4.3 we know that
Since the potential in the N-type quasi-neutral region is equal to , we
can write:

Expression 4.4.6 can be substituted into 4.4.5 to give:

Under the assumption that the Boltzmann relationships are valid in the
transition region, the latter equation can be evaluated at where

Since we can write:
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From this we now have an expression for the minority carrier
concentration at the edge of the transition region which is a function of
the applied voltage. The equilibrium junction potential is defined by:

Combining the two latter equations yields:

Since, by definition,

A similar calculation, carried out for holes at the N-side edge of the
transition region, would yield:

we finally obtain:

As a result of Expressions 4.4.7 the concentration of excess electrons at
the P-side edge of the transition region is equal to:

Similarly the concentration of excess holes at the N-side edge of the
transition region is given by:

Starting assumption #3- Current flow in the quasi-neutral regions is due
to a diffusion mechanism (no potential drop, and therefore, no electric
field is assumed in those regions).

in the N-type quasi-neutral region (4.4.11)

and

in the P-type quasi-neutral region (4.4.12)

Let us now write the Continuity Equation 2.6.6b for holes in the N-type
quasi-neutral region, with the assumption that there is no generation from
an external source:
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and, replacing by its value in Equation 4.4.11:

Assuming steady-state conditions the following differential
equation is obtained:

which admits the solution:

where A and B are integration constants, and is called the diffusion
length of holes, defined by:

A similar calculation, made for electrons in the P-type quasi-neutral
region, would yield:

where C and D are integration constants, and is called the diffusion
length of electrons, defined by:

Starting assumption #4- Consider a "long-base diode", i.e. a diode
where the length of the quasi-neutral regions is much larger than the
diffusion length of the minority carriers, and From a mathematical
point of view this condition is equivalent to assuming that the length of
the quasi-neutral regions is infinite.

Using Expression 4.4.8 and (thermodynamic equilibrium far
from the junction) as boundary conditions for Equation 4.4.16 one
obtains:

which yields:
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Once the integration constants A and B are known the concentration of
holes in the quasi-neutral N-type region can be derived from Equation
4.4.16:

The hole diffusion current in the quasi-neutral N-type region is, therefore,
equal to:

Similarly, the electron diffusion current in the quasi-neutral P-type
region is given by:

Since the diode considered here is a one-dimensional device with two
access terminals the current flowing through it is constant and
independent of the position x. One can, however, observe that the hole
current density given by Expression 4.4.23 decreases when the value of x
is increased (with This occurs because the holes, which are
minority carriers in the N-type region, recombine with electrons, which
are majority carriers. Since an electron must be supplied for every
recombination event in which a hole disappears the current steadily
transforms from a hole current into an electron current as x is increased.
Similarly the electron current in the P-type region disappears to the
benefit of a hole current as x (with is decreased. The net
current density in the device is given by:

The minority carrier concentrations in the quasi-neutral regions and the
hole and electron current densities are shown as a function of position, x,
for in Figure 4.10.

Since we have assumed no generation/recombination in the transition
zone (Starting assumption #5) we can write:

The current at the boundaries of the space-charge region is entirely due to
the minority carriers which have been injected. As a result, the total
current in the device will be the sum of these two components, i.e. the
sum of expressions 4.4.23 and 4.4.24 evaluated at and respectively.
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Using the two latter Relationships we can write:
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where is called the "saturation current density" and is equal to:

It is worthwhile noting that the magnitude of the current flowing in a
reverse-biased PN junction is equal to is independent of the
applied bias and of the magnitude of the electric field in the structure. It
is, however, quite dependent on temperature.

The current in the device can readily be obtained by multiplying the
current density, J, of expression 4.4.27 by the cross-sectional area of the
junction, A such that I = AJ (amperes). The current expression obtained
in Relationship 4.4.27 is in good agreement with experimental current-
voltage characteristics, since Expression 4.4.27 is equivalent to
Expression 4.1.1, where Note that the reverse-bias current of
the diode, is sometimes called a "leakage current".

4.4.2. Generation/recombination current

We have so far calculated the current-voltage characteristics of an
"ideal diode" and neglected generation/recombination mechanisms in the
transition region. Actual diodes are, unfortunately, non-ideal and the
effects of generation/recombination have to be taken into account to
accurately model experimental device characteristics.

When an external bias, is applied, the pn product in the transition

region is different from its equilibrium value, since excess carriers are

injected into or extracted from the transition region. As a
result the Fermi level splits into two quasi Fermi levels for electrons
and for holes). The difference between the two quasi Fermi levels is
the applied voltage, According to Expression 2.7.6 the pn product in
the transition region is equal to:
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Therefore, the SRH generation/recombination rate is equal to (Expression
3.5.14):

or, considering that the recombination centers are located at midgap
where recombination is the most effective (see Expression 3.5.14):

Using the continuity equations 2.6.7a and 2.6.7b in steady state, which
assumes we can write:

and, integrating over the transition region one obtains:

The net current density is given by:

which can be rewritten:

For a given forward bias, the generation/recombination rate will have
a maximum value at that location in the transition region where the sum
of the electron and hole concentration, p+n, is at a minimum value, based
on Expression 4.4.31.[4] Since the product of the electron and hole
concentrations, pn, is a constant, the conditions d(p+n)=0 and d(pn)=0
lead to:

and

This condition exists at a location within the transition region where the
intrinsic Fermi level, is half-way between the quasi-Fermi level for
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electrons, and for holes, There, the carrier concentrations are
given by 4.4.29:

and, the recombination rate, U, can be found using Expression 4.4.31:

Assuming the latter expression is valid (i.e. generation/recombination is
maximum) over the entire transition region Equation 4.4.33 can be
solved analytically. The assumption of maximum generation/
recombination over the entire transition region will slightly overestimate
the current Jrg, but it accurately reproduces its exponential dependence
on Using Relationship 4.3.4 for calculating the width of the
transition region we find:

For a silicon diode the generation/recombination current is larger than the
diffusion current for small forward bias and adds to the reverse current
when At small forward biases, therefore, the current dependence on

the applied voltage follows an law, which is characteristic of a

recombination-dominated current. At higher bias values, however, the

variation due to the diffusion current takes over (Figure 4.11)

and completely overshadows the recombination current.

Generation current can be observed in the reverse-bias current-voltage
characteristics. The physical origin of that current is the following: when
the junction is reverse biased the pn product, given by Equation

4.4.29, is smaller than Therefore, the SRH generation mechanism

forces an increase in the pn product towards its equilibrium value. The
generated carriers are separated by the electric field in the transition
region. The generated holes are swept into the P-type quasi-neutral
region, and the generated electrons into the N-type region. The motion
of these carriers constitutes the generation current.
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Often diffusion and generation/recombination currents are regrouped into
a single current expression:

where n is called the "ideality factor". The ideality factor ranges between
1 and 2. It is equal to 1 in a diode where the current is completely
dominated by diffusion mechanisms (ideal diode), and it is equal to 2 when
the current is completely dominated by generation/recombination
mechanisms.

Another divergence from ideality exists. At high forward-bias current
levels the resistance in the quasi-neutral regions can no longer be
neglected. If R is the sum of the resistances in the P and N neutral
regions, then the potential difference at the edges of the transition region
is not but rather This causes a reduction of the current with
applied voltage at high current levels (Figure 4.11).

4.4.3. Junction breakdown

When a PN junction is strongly reversed biased the electric field near
the metallurgical junction can reach high values. The value of that field is
given by Expression 4.2.10, where and are replaced by and
respectively. Carriers accelerated in that field can accumulate enough
kinetic energy that they can, through a collision process, generate
electron-hole pairs through impact ionization (see end of Section 3.3).
The generated carriers can in turn be accelerated, and again through
impact ionization, generate additional carriers. This carrier multiplication
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effect is a positive-feedback mechanism called avalanche multiplication
and is characterized by a multiplication factor, M, which is defined as:

where is the current that would flow in the absence of the impact
ionization mechanism, and is the current measured when impact
ionization is present. The multiplication factor can be related to the
applied voltage using the following relationship:

where BV is the junction breakdown voltage and is the applied voltage.
The multiplication factor tends to infinity as The value of n
ranges between 4 and 6, depending on the impurity concentration profile.

When breakdown occurs in a reverse-biased junction a sudden increase of
current is observed (Figure 4.12). The term "breakdown" does not
necessarily imply that the device is "broken"; it is simply the term used
for a device operating in the breakdown regime. If no current-limiting
circuitry is provided, however, the junction can by destroyed by thermal
effects.

There exists another breakdown mechanism in reverse-biased PN
junctions, called "Zener breakdown". This effect takes place in diodes
where both the N-type and P-type regions are heavily doped. As a result
the width of the transition region is small and electrons can directly
tunnel from the P-type valence band into the N-type conduction band.
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This is a quantum-mechanical effect described in Section 14.1.1. In such
diodes, called "Zener diodes" the breakdown voltage can be accurately
controlled by means of adjusting doping concentrations. Zener diodes, are
therefore, often used as voltage references.

4.4.4.  Short-base diode

In Section 4.4.1 we assumed the PN junction was a "long-base
diode", which implied that the length of the quasi-neutral regions was
much larger than the diffusion length of minority carriers in those
regions. In this section we will calculate the current in a diode where one
of the quasi-neutral regions is shorter than the diffusion length of the
minority carriers. The short-base diode is an essential element for the
operation of the bipolar transistor, and in fact, it is used for the base of
that device, hence its name.

Consider Figure 4.13. The P-type region is a "long base" having a length
This region is identical to the P-type neutral region treated in

Section 4.4.1 and shall be considered accordingly.

In Section 4.4.1 the N-type region was also considered long such that
Here, we will reduce the length of the N-type region to a value .

to see the implication of this base length reduction.

The continuity equation for holes in the N-type quasi-neutral region is, in
steady-state:

If the width of the base, is small enough, minority carriers in transit
do not have time to recombine. To simplify the problem, we will assume
that their lifetime, relative to the dimension of the base, is infinite:
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Assuming no generation from an external source and using
Expressions 4.4.39 and 4.4.40, we find, in the N-type region:

Using the drift-diffusion equation for holes:

and assuming, as in the case of the long-base diode, that in the
neutral N-type region, we have:

where B is an integration constant. Using the Boltzmann relationships as
a boundary condition at the edge of the transition region:

we find, from Relationship 4.4.43:

We will assume that the n-type region is connected to a metal at
Such a contact usually brings about an infinite surface recombination
velocity which implies that p is equal to at (see Section 3.6).
Using this as a boundary condition we have:
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Solving the latter equation for we find:

From Equation 4.4.43 we know that the hole distribution is a linear
function of x. The hole concentrations at and have been
calculated using the boundary conditions, and are equal to
and respectively. Therefore, the hole concentration profile can
easily be plotted in Figure 4.13. Note that the slope of the straight line is
higher than the slope of the profile for the long-base case at Since
the magnitude of the current is directly proportional to the slope of the
minority carrier concentration, the short base will have a higher diffusion
current flow  than a long-base diode.

4.5. PN junction capacitance

So far we have only considered the steady-state characteristics of the
PN junction. Transient effects resulting from varying the applied voltage
will now be considered. As we have seen earlier the application of a bias

gives rise to distribution of charges in the transition region and in
the quasi-neutral regions which is different from the case Some of
these charges are located in the transition region, and their variation with
the applied bias gives rise to a "transition capacitance", also called
"depletion capacitance". In addition, under forward bias conditions, other
charges are present, due to the injection of excess minority carriers in the
quasi-neutral regions. These give rise to a capacitive component called
"diffusion capacitance".

4.5.1. Transition capacitance

The width of the space-charge regions at the junction is given by
Expressions 4.3.2 and 4.3.3:
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The charge of the fixed, ionized doping impurities in each depletion zone
is, in absolute value:

where A is the cross-sectional area of the junction.

The variation of that charge with applied bias (Figure 4.14) is due to the
movement of majority carriers in and out of the depletion zones, and is
therefore, a very fast process that takes on the order of a picosecond.
Time constants associated with this charge variations, can therefore, be
neglected, and the associated capacitances can be considered frequency-
independent.

The capacitance associated with the variation of the depletion charge is
given by:

or, using Relationship 4.3.4:

This expression corresponds to the capacitance of a classical parallel-
plate capacitor, where the plates, separated by a distance have an
area A, and where the dielectric material between them has a permittivity

4.5.2. Diffusion capacitance

The diffusion capacitance is due to the variation of the charge of
minority carriers into the quasi-neutral regions, with applied bias
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variation. The hole concentration in the N-type quasi-neutral region is
given by Expression 4.4.22:

The excess hole concentration, is therefore, equal to (Figure 4.15):

The charge per unit area carried by these excess minority carriers is given
by:

Under forward bias conditions for which the diffusion

capacitance created by the presence of holes injected in the N-type quasi-
neutral region, is equal to:
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Using Relationship 4.4.23 which gives:

Expression 4.5.6 can be rewritten as:

A similar expression can be derived for electrons injected into the P-type
region and yields the diffusion capacitance created by the presence of
electrons injected in the P-type quasi-neutral region, The total
diffusion capacitance is obtained by adding and

4.5.3. Charge storage and switching time

Let us apply a constant forward step current to a junction, such
that I = 0 for t < 0 and for Initially the excess hole
concentration increases from zero to (Equation 4.5.5).

The build-up of a minority carrier charge in the N-type quasi-neutral
region is called the charge storage. Some of the current initially injected
in the junction is "used" to build up the charge described by Equation
4.5.6 followed by the forward bias the of the device. As a result, a

negative exponential rise of the junction bias, from zero volt to

is observed (Figure 4.16). Similarly, the excess minority
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carriers in a forward-biased PN junction must be removed when the device
is turned off. Let the applied bias be switched from a positive value to
a negative value at t = 0 (Figure 4.18A). Figure 4.17 shows the
evolution of the excess minority carrier profile at different times after
the switch at t=0.

When the applied bias is switched from to the current caused by
the excess minority carriers instantly changes direction, but its value,
is much larger than that of the saturation current, (Figure 4.18B). The
magnitude of the initial reverse current, is a function of the stored
charge. Current remains constant until the excess minority carrier
concentration at the edge of the transition region drops to zero.
During that time interval `the voltage drop across the transition region
remains equal to The time elapsed for the removal of the excess
minority carrier concentration at the edge of the transition region will be
noted (Figure 4.17).

For the stored charge is no longer sufficient to support the constant
current and the current decays exponentially to its equilibrium value,

The time necessary for the reverse current to reach a value equal to
10% of is called the "reverse recovery time" and noted as
shown in Figure 4.18B, where is called the fall time. Between and
the voltage drop across the transition region gradually evolves from to

(Figure 4.18C). It is worthwhile noting that the time required to turn
off the diode is typically larger than the time needed to turn it on. To
improve the switching speed, metallic impurities are sometimes
introduced in the semiconductor (e.g. gold in silicon). These impurities
increase the SRH recombination rate. Thus they aid in the decrease of
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minority carrier lifetime, and hence, reduce minority carrier charge
storage effects.

4.6. Models for the PN junction

As we have seen earlier, the static current-voltage characteristics of
the PN diode is described by a simple exponential equation:

The fact that this equation is non-linear can pose serious numerical
problems regarding its use in a circuit simulator. As a result several linear
models have been developed which can be used for the diode.
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4.6.1. Quasi-static, large-signal model

The quasi-static, large-signal model for the diode stems from a linear
approximation of Equation 4.6.1. This model is valid for a wide range of
applied biases and does not account for transient or capacitive effects of
any kind.

As illustrated in Figure 4.19, the characteristics of an actual diode (case A)
can be approximated by:

B:

C:

D:

an idealized diode having the following characteristics: I=0 when
V<0 and V=0 when I>0

an idealized diode in series with a voltage source having the following
properties: I=0 when and when I>0. is approximately
equal to 0.7 V in a silicon diode and 0.35 V in a germanium diode.

an idealized diode in series with a voltage source and a resistor
having a conductance equal to G = 1/R. The current-voltage
characteristics of this model are: I=0 when and
when I>0.

4.6.2. Small-signal, low-frequency model

The quasi-static, small-signal model for the diode stems from a linear
approximation of Equation 4.6.1. This model is valid for small signal
variations and does not account for transient or capacitive effects.
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Consider the case where the applied bias, v(t), is composed of the
superposition of a large continuous dc bias, and a small, low-frequency
ac signal, :

The corresponding current, i(t), will encompass both a dc current
component, and a small-signal ac component, (Figure 4.20):

The dynamic conductance, is defined by and is equal to:

When the diode is forward biased the saturation current, is much
smaller than and the dynamic conductance can be approximated as:

The corresponding dynamic resistance is simply equal to:
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As shown in Figure 4.21, the response of a diode to a small-signal, low-
frequency signal can be modeled by a simple resistor, the value of which is
inversely proportional to the dc bias current flowing through the diode.

4.6.3. Small-signal, high-frequency model

The small-signal, high-frequency, equivalent circuit of a PN junction is
shown in Figure 4.22. It consists of the parallel association of the
dynamic resistance 4.6.6, the transition capacitance 4.5.3b and the
diffusion capacitance 4.5.8 (Figure 4.22).

4.7. Solar cell

A solar cell is a PN junction in which the generation of carriers by
an external source of energy, usually sunlight, is utilized to generate
electrical power. In other words a solar cell directly converts solar energy
into electrical power. The design of most solar cells is quite elaborate,
such that the efficiency of energy conversion is maximized. In this
Section, however, we will exemplify the operation of a solar cell using a
simple PN junction structure. Solar cell operation is based on the
generation of electron-hole pairs in the transition region, and the
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separation of both types of carriers by the junction electric field. Let's
take the example of the junction shown in Figure 4.23. We will
assume that illumination by sunlight uniformly generates G electron-hole
pairs per cubic centimeter and per second, at any location in the
semiconductor material. Using the same notations as before, the
transition region extends from to The bias applied to the device is

In the N-type material, far from the junction, we know from Expression
3.4.4 that:

Assuming, as was the case for the simple PN junction, there is no electric
field in the N-type quasi-neutral region, the current density for holes is:

Using the continuity equation for holes in the N-type quasi-neutral region
one obtains, in the steady-state regime:

Combining the two latter equations we obtain:

The solution of Equation 4.7.4 is in the form:

where A and B are integration constants and where
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Using Expression 4.7.1 as a boundary condition for we find that
A=0 in Relationship 4.7.5. Assuming low-level injection conditions the
excess hole concentration at the edge of the transition region, on the N-
type side, is given by Expression 4.4.10:

Using Equation 4.7.6 as the second boundary condition for Expression
4.7.5 we find the integration constant B:

Introducing A and B into 4.7.5 yields the minority carrier (hole)
concentration as a function of x in the N-type quasi-neutral region:

A similar calculation made for electrons in the P-type quasi-neutral region
would yield (note that in this case x<0):

The total current density is given by:

where the hole current density at is equal to:

and the electron current at is given by:

The net current in the diode is finally obtained by adding Expressions
4.7.9 and 4.7.10, and by multiplying the result by the area of the diode, A:
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Comparing the latter Expression with the diode current "in the dark"
(Relationship 4.4.27), we conclude that the current-voltage
characteristics of the solar cell under illumination are the ideal
characteristics in the dark shifted by a current amount - due
to generation:

Figure 4.24 shows the current-voltage characteristics of a solar cell in the
dark and under illumination. The insert shows a simple circuit where the
solar cell under illumination delivers electrical power to a load resistor,

The operation point of the circuit is given by the intersection of the
I- V characteristics of the illuminated cell with the load line The
area of the gray rectangle represents the power supplied by the solar cell
to the load. Optimization of solar cell performance involves the use of
anti-reflection coatings, which increases light absorption, and therefore,
the generation rate, G. The use of high-quality semiconductor material
with a high minority carrier lifetime, and the choice of a load resistance
value, maximizes the power transferred to the load (i.e.: which
maximizes the area of the gray rectangle in Figure 4.24).
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The short-circuit current and the open-circuit voltage of an illuminated
solar cell are noted and respectively. Assume the gray-colored
rectangle in Figure 4.23 is the largest possible rectangle that can be
inscribed between the axes and the I-V characteristics of the device, i.e. a
rectangle that represents the maximum power that the solar cell can
deliver for a given level of illumination. Let its area be noted S. One can
then define a "fill factor", FF, by the following relationship:

The fill factor depends on the design and the fabrication parameters of a
solar cell and is optimized to increase the energy conversion efficiency of
the device.

4.8. PiN diode

The structure of a PiN diode is shown in Figure 4.25. It consists of a
PN junction with a wide intrinsic region sandwiched between the N and
the P region. In practice, the intrinsic region is very lightly doped, either
P-type (called or N-type (called

The lightly doped (intrinsic) region is basically completely depleted in
every mode of operation. In the forward mode, holes injected from the P-
type diffusion into the intrinsic region recombine with electrons injected
from the N-type diffusion, such that the current density in the device is
given by:

If the electron and hole lifetimes are assumed to be equal in the intrinsic
region, Expression 4.8.1 can be rewritten:
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where is the average injected excess electron concentration, and W is
the width of the intrinsic region. [11]

Because of their large depletion zone, reverse-biased PiN diodes have a
large photon collection volume and are commonly used as
photodetectors, including X-ray detectors.

Important Equations

Problems

Problem 4.1
Consider a silicon PN junction in which the doping profile varies linearly as shown
in Problem Figure 4.1. Such a junction is called a "gradual junction". The
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metallurgical junction is located at x=0, where the dopant type changes polarity. We
have where a is a constant.

1: The transition region is given and extends from We will assume
Find an analytical expression for the built-in junction potential

using the depletion approximation.

2: Noting that the doping concentrations at and are and
respectively, the junction potential can be calculated using Relationship

4.2.1: Find the value of and using an iteration

technique with Matlab (i.e. solve iteratively) using the following data:
T=300K, and

3: Plot and for using the depletion approximation.
Also plot n(x) and p(x). For the y-axis of each curve, choose either a linear or a
logarithmic scale, whenever most appropriate. is constant for and

Problem 4.2
Consider comparable PN junctions made in Si, Ge and GaAs. The junction area is

and the minority carrier lifetime is

To simplify the problem we will assume that the presence of doping impurities does
not degrade carrier mobility and that the mobility does not vary with temperature.

Question: For each semiconductor calculate the current flowing through the junction
when the applied bias is at the following temperatures: 20°C and 200°C.
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The following data are given:

Problem 4.3
Consider a silicon PN junction. Its area, A, is equal to The impurity
concentrations are: and The diode is reverse biased
with an applied voltage, The following data are given :

and
and

1) Calculate the current flowing through the diode, neglecting recombination in the
transition region (U=0 in the transition region).
2) Calculate the current flowing through the diode for the same applied bias, when
the diode is illuminated with light in such a way that electron-hole pairs are
created per and per second in the transition region. Neglect recombination
phenomena in the transition region (U=0 in the transition region).



136 Chapter 4

Problem 4.4:
Consider a silicon junction with and Plot the
transition capacitance as a function of temperature from 0 to 400°C with

Problem 4.5:
A silicon PN junction has the following parameters:

Area=0.01; %junction area (cm2)
q=1.6e-19; %Electron charge (C)
es=11.7*8.854e-14; % Permittivity of silicon (F/cm)
kTq=0.0256; %kT/q (V)
Na=1e16; % Doping concentration, P-type region (cm-3)
Nd=1e19; % Doping concentration, N-type region (cm-3)
ni=1.45e10; % Intrinsic carrier concentration (cm-3)
mun=800;mup=400; % Electron and hole mobility (cm2 V-1 s-1)
taun=5e-9;% Lifetime of electrons in the P-type neutral region (s
taup=5e-10; % Lifetime of holes in the N-type neutral region (s)
tau0=1e-6; % Lifetime of carriers in the transition region (s)

Plot the following two current components as a function of the applied voltage for

1) The diffusion current vs. and
2) The total current (diffusion + generation/recombination current) vs.

The two curves must be on the same graph. The y-axis minimum and maximum is
1 pA and 1 A.

q=1.6e-19; %Electron charge (C)
esi=11.7*8.854e-14; % Permittivity of silicon (F/cm)
kTq=0.0256; %kT/q (V)
Na=lel6; % Doping concentration, P-type region (cm-3)
Nd=2el6; % Doping concentration, N-type region (cm-3)
ni=1.45elO; % Intrinsic carrier concentration (cm-3)
mun=600;mup=300; % Electron and hole mobility (cm2 V-l s-1)
taun=5e-ll; % Electron lifetime in the P-type neutral region (s)
taup=5e-ll; % Hole lifetime in the N-type neutral region (s)
V = 0.3; % Applied voltage (V)

Problem 4.6:
Plot the electron and hole current density as a function of x (Figure 4.10) in a silicon
PN junction using the following parameters:

Plot n(x) and p(x) for in a silicon PN gradual
junction (see problem 4.1) using the depletion approximation and the numerical

Problem 4.7:
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technique described in Problem 2.4. Plot n(x) and p(x) on the same graph. For the
y-axis of each curve, choose either a linear or a logarithmic scale, when most
appropriate. and T=300K and Use
120 mesh points.

Problem 4.8
Solve Problem 4.1 using a numerical technique.

Plot n(x) and p(x) for using the depletion
approximation and the numerical technique described in Problems 2.4 and 4.7. Plot
n(x) and p(x) on the same graph. For the y-axis of each curve, choose either a linear
or a logarithmic scale, when most appropriate. and

T=300K, and Use
120 mesh points. Plot n(x) and p(x) derived analytically from
Problem 4.1 on the same graphs. Comment on the results.
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Chapter 5

METAL-SEMICONDUCTOR CONTACTS

This chapter analyzes the electrical characteristics of a metal-
semiconductor contact. Two different types of contacts can be produced:
a contact with non-linear, rectifying current voltage characteristics called
a Schottky contact, and a linear, non-rectifying contact called an ohmic
contact.

5.1. Schottky diode

A Schottky contact or Schottky diode is formed when a rectifying
contact is formed between a metal and a semiconductor. The rectifying
properties of the contact are similar to those of a PN junction diode. The
first semiconductor devices, dating back to the end of the nineteenth
century were rectifying, metal-semiconductor, "point-contact" diodes.
The rectifying effect in metal-semiconductor contact diodes was
discovered in 1874 by F. Braun and was explained by Schottky and Mott
in 1938. A typical semiconductor material used at that time was galena, a
naturally occurring lead sulfide crystalline mineral.

5.1.1. Energy band diagram

Consider an N-type semiconductor crystal and a metal. The energy
band diagrams of these two materials are shown in Figure 5.1. We know
because of the photoelectric effect (A. Einstein Nobel Prize, 1921), that
electrons can be extracted from a metal in a vacuum, when light with a
proper wavelength is shone onto the metal. In order to observe this effect
the wavelength of the incident light must have a higher energy than a
given critical value. In other words, the photons must carry enough
energy to extract electrons from the metal and eject them into the
vacuum. This energy E = hv must be at least equal to the "work function"
of the metal, noted The work function is, therefore, defined as the
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energy that must be supplied to an electron with an energy (the
metal Fermi level) in order for the electron to be ejected from the metal.
Similarly, the work function of the semiconductor is the energy required
to extract an electron located at its Fermi level,

We know that in a semiconductor some electrons have an energy higher
than These can be found in the conduction band, and their energy is
approximately equal to The energy needed to extract an electron
from the conduction band into a vacuum is called the "electron affinity",
and noted In this Section we will consider an N-type semiconductor
and a metal such that

When the metal is contacted with the semiconductor the Fermi levels
align and thermodynamic equilibrium is established through the transfer of
electrons from the semiconductor conduction band into the metal, since

These electrons "leave behind" positively charged donor
impurity atoms in the semiconductor. A space-charge region
corresponding to the zone depleted of electrons, is, therefore, formed in
the semiconductor near the interface with the metal. The width of this
depletion region is noted The metal is considered as a perfect
conductor. An electron charge, equal in magnitude to the depletion
charge, appears in the metal at the metal-semiconductor interface. For all
practical purposes this charge can be considered infinitely thin. Such a
charge distribution is often called a "charge sheet". Because of the
alignment of the Fermi levels and the presence of a depletion region the
band curvature in the semiconductor is equal to:
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This curvature corresponds to a potential barrier, which prevents
further electrons from migrating into the metal. Electrons in the metal,
on the other hand, see a potential barrier, having an amplitude equal
to (Figure 5.2):

At room temperature these potential barriers are significantly larger than
kT/q and only a few electrons possess sufficient energy to overcome
them. The current resulting from electrons from the semiconductor
overcoming the barrier and migrating into the metal is noted This
notation is due to the fact that electrons carry a negative charge.
Therefore, electrons migrating from the semiconductor into the metal
corresponds to a "positive" current flow from the metal into the
semiconductor.

At thermodynamic equilibrium and in the absence of any external bias the
current is exactly balanced by a current of electrons flowing from
the metal into the semiconductor, noted Thus, at equilibrium, we
have:

If a forward bias is applied to the structure (+ on the metal side,
and - on the semiconductor side) the potential barrier on the
semiconductor side is decreased from to (Figure 5.3A). A greater
number of electrons can, therefore, flow from the semiconductor into the
metal. On the other hand, the flow of electrons from the metal into the
semiconductor, remains constant because the potential barrier seen
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from the metal side, is unchanged. As a result, a net electron current
flow from the semiconductor into the metal is observed.

If a reverse bias, is applied to the structure (+ on the semiconductor
side, and - on the metal side) the potential barrier in the semiconductor is
increased from to (Figure 5.3B). As a result the electron flow
from the semiconductor into the metal, is reduced while
remains unchanged. As a result a small reverse current of electrons
flowing from the metal into the semiconductor, is
measured. The asymmetry between the forward and reverse current flow
mechanisms create non-linear current-voltage characteristics similar to
the PN junction.

5.1.2. Extension of the depletion region

The width of the depletion zone in a Schottky diode can be calculated
using the Poisson equation and the depletion approximation:

where W is the depth of the depletion region under an applied voltage
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Note that the boundary conditions at x=W are and

since the potential, and the electric field , are equal to zero in the
quasi-neutral part of the semiconductor. Integrating Expression 5.1.4 and
applying the aforementioned boundary conditions we obtain:

The potential at x = 0 is equal to the potential barrier on the
semiconductor side, i.e. where is the applied voltage taken as
positive when the diode is forward biased. Substituting for in
5.1.5 gives the width of the depletion region:

The electric field at x = 0 is or, using Expression
5.1.4a:

5.1.3. Schottky effect

The height of the potential barrier on the metal side, is not
exactly constant and is slightly affected by the applied voltage. An actual
lowering of is observed. It is due to a mirror charge produced in the
metal by electrons in the semiconductor. Electrostatics tells us that when
a charge is near a "perfect" conductor (metal) a mirror charge of same
magnitude but opposite sign is created inside the conductor, at a depth
equal to the distance between the initial charge and the conductor surface
(Figure 5.4). As a consequence, the charge is attracted by the metal, and
in the case of the metal-semiconductor contact, the potential barrier is
lowered.

The attraction exerted by the metal on an electron can be calculated as
follows. Assuming the distance between the electron and the metal surface
is x, the mirror charge bearing a charge +q is located at a distance -x inside
the metal. Therefore, the Coulomb attraction force between the two

charges is equal to

The force is equivalent to that exerted on an electron by an electric field
obeying the relationship:
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The resulting potential energy of the electron is equal to:

the reference potential being

To find the total energy of the electron this potential energy must be
added to the potential energy of the electron inside the semiconductor. In

the depletion region the electric field is equal to This field

gives the electron in the conduction band a potential energy which is

equal to To simplify the problem we will assume that

the electric field in the depletion region is constant . That field is noted
and gives the electron a potential energy The sum of the two
potential energies (from the mirror charge and from the depletion region)
yields the total potential energy PE(x) of the electron:
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The maximum potential energy can be found by writing

which yields the maximum at The potential

energy at is equal to which

corresponds to an effective lowering of the potential barrier equal to:

Using the value of the electric field at the semiconductor surface, given by
equation 5.1.6b:

we find the magnitude of the potential barrier lowering, which constitutes
the Schottky effect:

The resulting potential barrier height is equal to:

5.1.4. Current-voltage characteristics

Electrons overcome the potential barrier between the metal and the
semiconductor through a quantum-mechanical process called "thermionic
emission". This process is activated by the thermal energy of the
electrons. Although the potential barrier is clearly larger than kT/q at
room temperature there exists a non-zero probability that some electrons
gather enough energy to overcome the barrier. When a forward bias is
applied to the device the potential barrier that the electrons have to
overcome to transit from the semiconductor into the metal is equal to

The resulting thermionic emission current is given by:



146 Chapter 5

where R * is called the "Richardson constant" and is equal to

and A is the diode area.

Using the fact that when and that is constant
and independent of the applied voltage one can write:

Since the net current in the diode is equal the expression of
the current as a function of the applied voltage is:

This equation describes a current-voltage characteristics similar to that of
a PN junction. In addition the current depends on both the temperature
and the height of the potential barrier between the metal and the
semiconductor.

5.1.5. Influence of interface states

The equations derived previously describe the properties of a Schottky
diode having an "ideal" metal-semiconductor interface, which means that
the properties of the semiconductor are not affected by the presence of a
metal. In an actual device the periodic nature of the semiconductor
crystal is disturbed at the interface, which gives rise to a large number of
permitted states in the bandgap of the semiconductor near the interface.
These states are called "interface states" or "interface traps". They have
energy values ranging from to and are occupied by electrons if they
are below the Fermi level.

Consider the semiconductor before contact is made with the metal.
Electrons trapped in the interface states originate from the
semiconductor crystal. They form a negative surface charge, which
creates a depletion zone in the semiconductor (Figure 5.5.A). Note the
presence of an energy band curvature at the
semiconductor surface.

Let us now bring the metal in contact with the semiconductor crystal. We
recall from the previous sections that in absence of interface states, the
alignment of the Fermi levels was achieved by a transfer of electrons
from the semiconductor to the metal, resulting in the formation of a
depletion zone and an upward curvature of the semiconductor energy
bands. If we consider a very large interface state density an infinitesimal
upwards increase of the band curvature, will move a large number of
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interface states (all those with an energy between and ) above
the Fermi level. These states will lose trapped electrons, and as a
consequence the alignment of the Fermi levels will be accomplished by
the transfer of electrons from the traps into the metal, instead of from
the semiconductor into the metal. The band curvature variation resulting
from the alignment of the Fermi levels will, therefore, be negligible, and
the height of the potential barrier will be:
In actual devices the interface state density is moderate, such that the
height of the potential barrier is somewhere between and

A more detailed analysis of the Schottky diode would show the existence
of generation/recombination currents originating in the volume of the
depletion zone. Because of the dependence of the potential barrier height
on the applied bias and because of generation/recombination in the
depletion zone the forward current takes the following form:

where is called the "ideality factor" of the diode (the diode is
"ideal" when n=1).

5.1.6. Comparison with the PN junction

The current-voltage equations for the PN and Schottky diodes are the
following:
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Introducing adequate numerical values into these equations one observes
that the reverse saturation current of a Schottky diode is 100 to 1000
times larger than that of a PN junction which accounts for a larger
leakage current. In the forward mode, the I-V characteristics of a silicon
Schottky diode shows strong conduction at 0.2-0.3 V, compared to 0.7 V
in a silicon PN junction diode (Figure 5.6).

Schottky diodes are capable of very fast switching because their operation
is based on majority carriers (unlike PN junction diodes where device
operation is slowed down by storage and recombination of excess
minority carriers). Majority carriers have a relaxation time on the order
of ten picoseconds, which allows for operation at frequencies up to tens
of gigahertz. The frequency performance of a Schottky diode can be

appreciated by its cutoff frequency, which is given by where

is the diode dynamic resistance, and where the depletion
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capacitance is equal to In a junction diode the

cutoff frequency is given by where is the

diffusion capacitance (Expression 4.5.9) and is the transition
capacitance (Expression 4.5.3b). The diffusion capacitance is
proportional to the lifetime of minority carriers, ranging from 100 psec
to several which limits the frequency response of PN junction diodes.

5.2. Ohmic contact

An ohmic contact is a non-rectifying contact. The current-voltage
characteristics of the contact should obey Ohm's law V=IR and the
resistance of the contact should be as low as possible. Consider the
contact between the metal and the semiconductor shown in Figure 5.7. In
this particular example such that the energy bands of the N-
type semiconductor are bent downwards near the contact. The magnitude
of the band bending and its extension into the semiconductor are very
small. As a result there is virtually no potential barrier between the metal
and the semiconductor and electrons can flow freely through the contact.
Such a contact is ohmic.

It is also possible to obtain an ohmic contact between a metal and a
semiconductor that would a priori form a Schottky diode, such as a metal
where in Figure 5.8. In practice a Schottky contact behaves as
an ohmic contact if the impurity concentration in the semiconductor is
high enough (e.g. The width of the depletion region in
the semiconductor is given by Expression 5.1.6a:
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where is the built-in potential barrier height and is the applied bias.
If, for instance, and the thickness of the
depletion zone is only 2.5 nm. Electrons can easily tunnel through such a
thin potential barrier, which yields a low-resistance ohmic contact
between the metal and the semiconductor. In metal-to-silicon contacts,
current flow by tunnel effect becomes larger than current flow by
thermionic emission when the doping concentration is larger than

In practice, ohmic contacts between a metal and the terminals of
semiconductor devices are always made on heavily doped areas.

Important Equations
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Problems

Problem 5.1:
A Schottky diode is fabricated by depositing a layer of platinum on N-type silicon.

1) Plot the current in the diode as a function of applied voltage for
neglecting the potential barrier lowering effect (Schottky effect).
2) On the same graph, plot the current in the diode as a function of applied voltage
for taking the potential barrier lowering effect (Schottky effect) into
account.
Use the following data:

epsil=8.854e-14;
esi=epsil*11.7;
ni=1.45e10;

Eg=1.12;
kTq=0.0259;
Area=0.01;
T=300;
FiB=0.8;
Nd=1e16;
R=120;

%
%
%
%
%
%
%
%
%
%
%

Permittivity of vacuum (F/cm)
Permittivity of silicon (F/cm)
Intrinsic carrier concentration
in silicon at room temperature (cm-3)
Bandgap of silicon (eV)
Thermal voltage (V)
Diode area (cm-2)
Temperature (K)
Potential barrier (V)
Doping concentration (cm-3)
Richardson constant (A cm-2 K-2)
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JFET AND MESFET

6.1. The JFET

The Junction Field-Effect Transistor, or in short, JFET, is composed of
a piece of semiconductor of one type (N-type, for example) and two
diffusions with opposite doping polarity in this case). Figure 6.1
represents such a device.

Two contacts are made to the N-type semiconductor and are labeled
"source" and "drain". If the source voltage is taken as a reference
the drain is biased with a positive voltage The two regions
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are connected together and biased with a negative voltage and thus are
reverse-biased with respect to the n-type region. These junctions form what
is called the "gate" of the device. The N-type region connecting the source
to the drain between the regions is called the "channel". Because the
source, drain and channel are all N-type an electron current can flow
between source and drain. Conveniently the different parts of the device
have been named after equivalent notions in fluid mechanics, such that the
electron current originates at the source, flows in the channel, and ends up in
the drain. A JFET in which current flow is due to the motion of electrons is
called an N-channel JFET. In a P-channel JFET the semiconductor is P-type
and the gate consists of two diffusions.

If the drain is biased at a small positive value while the gate voltage,
is equal to zero, the current of electrons flowing from source to drain is

simply given by the expression of the current in a resistive bar of
semiconductor having a length L and cross-section The
distance is the extension of the junction depletion zone in the N-
channel. The current of electrons flowing from source to drain, called the
drain current, is due to a drift mechanism and is equal to:

where is the electron mobility, is the doping concentration in the N-
type material, q is the electron charge, and is the cross-sectional
area of the device.

The width of the depletion zone in the N-type semiconductor at equilibrium
is given by the PN junction theory and is equal to Relationship 4.2.13 for a

junction:

where is the doping concentration in the regions.

If we now apply a negative bias to the gate the width of the depletion
regions in the N-type semiconductor will increase according to Relationship
4.3.3:



6. JFET and MESFET 155

When a negative gate voltage is applied the cross-sectional area of the
channel through which electrons flow shrinks, which increases the resistance
of the channel and decreases the drain current (Figure 6.2). The resistance of
the channel can thus be modulated by the application of a gate bias. There
exists a gate voltage for which the depletion zones from the two junctions
come in contact, in which case we have When the two depletion
regions meet no current can flow between source and drain, since the
depletion zones are emptied of carriers. The gate voltage for which the
depletion zones meet is called the "threshold voltage" because it defines a
threshold between conduction and non-conduction in the channel. Using the
condition and Expression 6.1.3 we find the threshold voltage:

Let us now apply a larger drain voltage, the gate voltage being more positive
than the threshold voltage such that current can flow between source and
drain. Since the channel basically behaves as a resistor the current flow from
source to drain gives rise to a progressive potential drop along the channel.
The potential in the channel, noted V(y), varies from at the
source to at the drain. Along the y-axis (source to drain) the
reverse bias across the PN junctions is equal to

As a consequence the width of the depletion zone varies as a function of y in
such a way that:
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The resistance of a small channel element having a length dy and located at
a position y is given by:

A modeling equation for the JFET can be derived by applying Ohm's law
and integrating from source to drain:

which yields:
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It is important to notice that since
and Furthermore, when the drain voltage is

increased to a given value, called the "saturation drain voltage", and noted
the two depletion regions will touch one another near the drain. This

phenomenon is known as the channel "pinch-off". It takes place when
and, therefore, when:

Note that is a function of gate voltage.

One might think that the channel pinch-off keeps electrons in the channel
from reaching the drain, but this is not the case. There is an intense electric
field in the y-direction within the pinch-off region. The electrons arriving at
the "tip" of the channel are accelerated by this field through the narrow
pinch-off space-charge region, and injected into the drain. The voltage drop
between the source and the channel "tip" is equal to no matter the
value of the drain voltage, and that across the pinchoff space-charge region
it is equal to As a consequence the current does not increase when
the drain voltage is increased above but rather remains constant, and
is called the "drain saturation current", The value of is simply
given by Expression 6.1.8 with replaced by which yields:
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It is worthwhile noting that the gate current of a JFET is equal to zero, with
the exception of the small leakage current of the reverse-biased PN
junctions. Therefore, JFETs have a very high input impedance which makes
them useful in the fabrication of the input stage of high-sensitivity
amplifiers and electrometers.

Among the important parameters of a JFET are its output conductance and
transconductance. The output conductance is defined by:

According to the simple model developed above the output conductance is
equal to zero when the device is operating in saturation, which is not the
case in practice when second-order effects are taken into consideration.
Among these is the influence of the source and drain resistance (Figure 6.6).
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One can easily make a correction to the model such that the influence of
these resistances are taken into account. This can be done by replacing the
output conductance, by an effective output conductance, which is
given by:

The transconductance, is defined as:

When the transistor is saturated, its transconductance is equal to:

Transconductance and output conductance are the most important
parameters affecting the amplification gain that can be obtained from a
JFET.

6.2. The MESFET

The acronym MESFET stands for "MEtal-Semiconductor Field-Effect
Transistor". It is widely used in gallium arsenide technology since it does not
require the growth of a quality oxide nor the tailoring of complex diffusion
patterns which are fabrication techniques that are much harder to achieve in
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GaAs than in silicon. MESFETs can be operated at very high frequencies (>
100 GHz) because they are based on high-mobility semiconductor materials
and on fast-recovery Schottky diodes.

The MESFET is basically a JFET in which the width of the depletion region
that pinches the channel is due to the presence of a Schottky diode instead
of PN junction. A typical MESFET is realized in a thin semiconductor
having a thickness a (Figure 6.7) and a doping concentration This layer
is sitting on top of a lightly doped, high-resistivity semiconductor substrate.
The substrate resistivity is so high that it is often referred to as a "semi-
insulating" material. The substrate plays no active role in the device and
simply acts as a mechanical substrate.

As in the case of the n-channel JFET the gate is biased with a negative
voltage with respect to the source, which we will consider grounded. The gate
voltage is used to modulate the width of the depletion zone, and therefore,
the conductivity of the channel (Figure 6.7). The drain voltage is positive
and higher than that of the source. The metal gate forms a reverse-biased
Schottky diode with the N-type semiconductor, such that there is no gate
current, except for a small leakage current.

If the drain voltage is small the width of the depletion zone can be obtained
from the Schottky diode theory (Expression 5.1.6a):
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where is the Schottky diode potential barrier on the semiconductor side

and is the permittivity of the semiconductor. The threshold voltage is
the gate voltage for which Using 6.2.1 we find:

The threshold voltage can be either positive or negative, depending on the
thickness of the N-type layer, the doping concentration and the metal
used to form the Schottky gate. If the threshold voltage is negative the
MESFET is a depletion-mode device; if it is positive, it is an enhancement-
mode MESFET.

The current in the MESFET can be calculated as a function of gate and drain
voltage using a technique similar to that which was used for the JFET. Since
the channel basically behaves as a resistor the current flow from source to
drain gives rise to a progressive potential drop along the channel. The
potential in the channel, noted  varies from at the
source to at the drain. In each vertical section located at a
position y the reverse bias across the Schottky junction is, therefore, equal
to As a consequence the width of the depletion zone varies as a
function of y in such a way that:

The expression for the current is obtained by integrating Ohm's law from
source to drain:

where W is the device width.

Replacing by its value from 6.2.3 we obtain:

which can be re-written as:



162 Chapter 6

Performing the integration we obtain:

These equations are valid if the channel is not pinched-off, i. e. if the device
is not in saturation. Pinch-off occurs when at which point

The transconductance in saturation is given by:

The drain saturation current is obtained by replacing by the saturation
drain voltage, in Expression 6.2.7, which yields:
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Chapter 7

THE  MOS TRANSISTOR

7.1. Introduction and basic principles

The MOS transistor, also called MOSFET (Me ta l -Oxide-
Semiconductor Field-Effect Transistor) or IGFET (Insulated-Gate Field-
Effect Transistor) is the most widely used semiconductor device and is at
the heart of every digital circuit. Without the MOSFET there would be no
computer industry, no digital telecommunication systems, no video
games, no pocket calculators and no digital wristwatches. MOS transistors
are also increasingly used in analog applications such as switched-
capacitor circuits, analog-to-digital converters, and filters.

The exponential progress of MOS technology is best illustrated by the
evolution of the number of MOS transistors integrated in a single memory
chip or single microprocessor, as a function of calendar year. Each
memory cell of a dynamic random-access memory (DRAM) contains a
MOS transistor and a capacitor. It can be observed from Figure 7.1 that
there is a four-fold increase in the number of transistors in a DRAM every
three years. This exponential growth of integration density with time is
known as Moore's law.[1]

The integration density of memory circuits is about 5 to 10 times higher
than that of logic circuits such as microprocessors because of the more
repetitive layout of transistors in memory chips. The increase in
integration density is essentially due to the reduction of transistor size.
The first experimental 1-gigabit DRAMs were reported in 1995 [2] where
1-gigabit DRAM contains over a billion MOSFETs. About 400 of these
chips can be fabricated on a single silicon wafer, 40 centimeters in
diameter. Such a wafer, therefore, contains over 400,000,000,000
transistors. This number is equal to the number of stars in our galaxy...
More MOSFETs have been fabricated during the last ten years than grains
of rice have been harvested by humans since the dawn of mankind.
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The first description of a device called IGFET dates back to the 1930's in
patents by Lilienfeld and Heil.[3,4] Because of technological limitations
the IGFET could not be successfully fabricated at that time. The first
working MOS transistor was realized in 1960 by Kahng and Attala.[5] A
few years later, the integrated circuit industry took off to reach incredible
proportions and has become one of the leading industries worldwide.

There are two types of MOS transistors: the n-channel MOSFET, in
which current flow is due to electron transport, and the p-channel
MOSFET in which holes are responsible for current flow. A circuit
containing only n-channel devices is produced by an nMOS process.
Similarly, a pMOS process fabricates circuits that contain only p-channel
transistors. Today the most commonly used technology is CMOS
(Complementary MOS) in which both n-channel and p-channel
transistors are fabricated. Here we will limit our analysis to n-channel
devices. The current-voltage expressions describing a p-channel device
can readily be derived from the n-channel equations, provided the
appropriate changes of sign are made.

An n-channel MOS transistor is fabricated in a P-type semiconductor
substrate, usually silicon. Two N-type diffusions are made in the substrate
and the current flow will take place between these two diffusions. The
diffusion with the lowest applied potential is called the "source" and the
diffusion with the highest applied potential is called the "drain". Above
the substrate, and between the source and the drain lies a thin insulating
layer, usually silicon dioxide, and a metal electrode called "gate" (Figure
7.2). An electron-rich layer referred to as the "channel" can be created
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between the source and the drain underneath the gate insulator when a
positive bias is applied to the gate. With appropriate voltages applied at
the source and drain electrons can then flow from the source into the
drain, through the channel. In a p-channel transistor an N-type substrate
is used. The P-type drain is at a lower potential than the P-type source
and the application of a negative bias to the gate enables the formation of
a hole-enriched channel between source and drain. The metal-insulator-
semiconductor structure is often referred to as a "MIS" structure, where
the "I" stands for the insulator. When the insulator is an oxide, it is called
a "MOS" structure.

The basic operation of the n-channel MOSFET is the following. We will
first consider the case where the gate voltage is equal to zero while the P-
type substrate and the source are grounded The drain is
connected to a positive voltage source for instance). Since
the source and the substrate are at the same potential there is no current
flow in the source-substrate junction. The drain-substrate junction is
reverse biased and except for a small negligible reverse leakage current no
current flows in that junction either. Under these conditions there is no
channel formation, and therefore, no current flow from source to drain.

In the second case a constant positive bias is applied to the gate. There is
no gate current since the metal electrode is dielectrically insulated from
the silicon. Because it is positively biased the gate electrode does,
however, attract electrons from the semiconductor, and a thin, electron-
rich layer forms under the gate insulator. These electrons are supplied by
the source and the drain which, being N-type, are large reservoirs of
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electrons. The electron-rich layer underneath the gate is called "channel".
The N-type source and the N-type drain are connected by the electron-
rich channel, and current is now free to flow between source and drain.
The effect of the gate voltage controlling the concentration of electrons
in the semiconductor through the gate oxide is called "field effect". The
bias on the gate creates an electric field which can either induce or inhibit
the formation of an electron-rich region at the surface of the
semiconductor. The terms "source", "drain", "channel" and "gate" come
to mind quite naturally since the electrons originate at the source, flow
through the channel and are finally collected by the drain, the whole
process being controlled by the bias on the gate.

The current in the channel, from source to drain can, to aa first
approximation, be estimated using Ohm's law. Using V=IR in a small
channel element having a length dy and a width W we obtain:

The channel resistance as a function of y is obtained from Equation 2.3.3
where the electron concentration in the channel per unit area
results from integrating the electron concentration per unit volume

over the thickness of the device:

where x is the depth in the silicon (x = 0 at the interface).
Note that the electron charge per unit area in the channel element can be
written as:

The formation of a channel occurs when the gate voltage is positive and
sufficiently high. In practice, the channel forms if the gate voltage is
larger than a given value called the "threshold voltage", noted
Considering that the Metal-Oxide-Semiconductor structure forms a
parallel-plate capacitor, we can write:

where is the capacitance of the gate oxide per unit area and V(y) is the
local potential in the channel element, which varies from
near the source to near the drain.

Introducing Equations 7.1.2 and 7.1.4 into Expression 7.1.1 we obtain:
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Since and since the current / is constant from source to drain, the
integration of Equation 7.1.5 yields:

If the local potential between source and drain, V(y), becomes equal to or
larger than the formation of a channel can locally no longer be
supported near the drain and the channel exists only between y=0 and a
location y where In practice, that location is very close to
L, and the current is obtained by replacing by in Expression
7.1.7. The current is then called the "saturation current" and noted
Saturation takes place when and replacing by
in Equation 7.1.7 we obtain:

Note that the current in saturation is no longer a function of the drain
voltage and that the potential drop in the y-direction in the channel is
fixed at a value equal to in saturation.

In a p-channel MOSFET the source is at the highest potential and
supplies holes to the channel. The holes are finally collected by the drain,
which is at a lower potential than the source. In this case a negative bias
relative to the substrate must be applied to the gate to create a hole-rich
p-type channel.

A study of the metal-insulator-semiconductor structure, called the "MOS
capacitor", will aid in the understanding of the detailed operation of the
MOS transistor.
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7.2. The MOS capacitor

The MOS capacitor is comprised of a metal gate, an insulating oxide
layer, and a semiconductor. The thickness of the oxide typically varies
between 5 to 50 nanometers. The semiconductor chosen for the example
of Figure 7.3 is P-type silicon, which corresponds to the substrate of an n-
channel device (nMOS).

We will first consider the case of an hypothetical metal that has the same
Fermi level as the silicon. When the structure is fabricated the Fermi level
of the system is unique, and since the metal has the same Fermi level as
the silicon, the band structure is that shown in Figure 7.3A. This
condition is referred to as flat band for obvious reasons.

7.2.1. Accumulation:

If a negative bias is applied to the metal gate while the silicon substrate
is grounded the structure behaves like a parallel-plate capacitor where the
two electrodes are the silicon and the metal, and the oxide is the insulator
between them. The application of the bias gives rise to a negative charge
on the gate. This is a surface charge in the metal, located at the metal-
oxide interface. An equal charge of opposite sign appears at the surface of
the silicon, at the silicon-oxide interface (Figure 7.3B). The charge in the
silicon can also be considered a surface charge, as we will demonstrate
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next. Its thickness is approximately 10 nanometers. This thin, hole-rich
layer is called an accumulation layer. The capacitance of the MOS
structure in accumulation is that of a parallel-plate capacitor between the
metal gate and the accumulation layer. Its value (in Farads per unit area)
is equal to:

where is the permittivity of silicon dioxide and is the thickness of
the gate oxide. is called the gate oxide capacitance. The permittivity

equal to and is the dielectric constant of
equal to 3.9.

Thickness of the accumulation layer
A derivation of the accumulation layer thickness as a function of
substrate doping concentration will show that the layer is very small and
hence can be considered as a surface charge.[7] The distribution of the
charge as a function of depth, x, can be found using Poisson's equation:

with:

and:

where is the equilibrium hole concentration in the P-type material,
is the equilibrium electron concentration in the same material, and

is the potential in the silicon as a function of depth. Far from the

surface of the silicon the potential is equal to zero: which will
be used as a boundary condition for Equation 7.2.2.

In the hole accumulation layer formed in P-type material one can assume
that n<<p and that thus Equation 7.2.2 can be rewritten as:

where the permittivity of silicon is equal to where is the

dielectric constant of silicon In the accumulation layer the
hole concentration is greater than the hole concentration due to doping

of is equal to where is the permittivity of vacuum,
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concentration, and therefore, in the accumulation layer. The
following approximation can thus be used:

To integrate this equation we must first multiply both terms of the

equation by which yields:

or:

which can be rewritten:

Integrating from x to where is the thickness of the accumulation
layer, and noting that since the silicon
underneath the accumulation layer is neutral, one obtains:

with:

is called the "Debye length". For example, has a value of 40, 18
and 13 nanometers for doping impurity concentrations of
and respectively. Noting that Equation 7.2.9
can be rewritten as follows:

The latter expression can be integrated using the following boundary
conditions: and where is the potential at
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the semiconductor surface and is called the "surface potential". Equation
7.2.11 can be rewritten as:

Numerator and denominator of the left-hand term are then multiplied by

exp

Changing variables and writing one obtains:

where C is an integration constant. We can conclude that:

and, therefore:

The integration constant, C, can be related to the surface potential,
by the following relationship:

Finally we find that the thickness of the accumulation layer, can be
found using the condition that
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The thickness of the accumulation layer, can thus vary between 0

and depending on the accumulation charge (Figure 7.4).

The hole concentration is an exponential function of the potential.
Therefore, the charge density increases very rapidly close to the surface
and most of the accumulation charge is concentrated within a depth much
smaller than (Figure 7.5). Therefore, the charge in the accumulation
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layer can be considered as a surface charge. One can also consider that the
surface potential, is very small. It actually is slightly negative and in
practice reaches only a few -kT/q (kT/q is equal to 25.9 mV at room
temperature).

The application of a negative bias on the gate gives rise to a negative
surface charge in the metal at the metal-oxide interface. The
accumulation charge in the semiconductor, is equal to with
opposite sign Integrating Poisson's equation (Expression
7.2.2) from we obtain:

Within the accumulation layer we assumed that n<<p,
and while the silicon underneath the accumulation layer is

neutral The charge in the semiconductor is,
therefore, equal to the accumulation charge Using Equation 7.2.9
evaluated for the expression for the accumulation charge is:

The exact value of the surface potential is related to the
applied gate voltage in the following way. is equal to the potential
drop across the oxide, added to the potential drop within the
semiconductor:

or

The magnitude of the surface potential, is very small (only a few

even for large applied negative gate voltage values. Since the

accumulation charge has a negligible thickness it can be considered as
a surface charge and the approximation previously given for the
capacitance of the MOS structure:

holds for the MOS structure in accumulation.
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7.2.2. Depletion:

If a small positive bias is applied to the gate (Figure 7.3C) holes near
the silicon surface are repelled by the gate. Because the acceptor doping
atoms cannot move in the silicon lattice a negative charge appears
underneath the gate oxide. Similarly a positive charge of equal magnitude
can be found in the gate electrode, at the metal-oxide interface. The gate
charge is a surface charge, but the charge in the silicon is not. It is a
depletion charge which extends to a non-negligible depth into the silicon.
The potential in the depletion region can be found integrating by
Poisson's equation. Using n<<p and one can write:

The potential in the depletion region near the oxide/silicon interface is
positive. Therefore, the exponent term of Equation 7.2.20 is small and
can be neglected, which implies

Using this approximation Equation 7.2.20 becomes:

This result is the depletion approximation which assumes that the charge
density is constant and equal to in the depletion region. The depth
up to which holes are repelled is called the depletion depth (or width) and
noted Outside the depletion region the silicon is assumed to be neutral,
such that and are equal to zero for The potential in
the silicon can be found by integrating the Poisson equation 7.2.22 with
the following boundary conditions:

which yields:

The surface potential at the oxide/silicon interface where x=0 is equal to:

Equation 7.2.25 can be used to evaluate the depletion depth expressed as a
function of the surface potential:
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The charge per surface area in the region from x = 0 to called
"depletion charge" is equal to:

The gate voltage, is equal to the potential drop across the oxide added
to the potential variation in the semiconductor:

The capacitance of the structure can be calculated as follows:

where

The overall capacitance is thus the series association of the gate oxide
capacitance and the depletion region capacitance, The capacitance
can also be expressed as a function of the gate voltage by rewriting
expression 7.2.28 in the following way:

can be expressed as a function of the gate voltage:

Substituting into Equation 7.2.29 we obtain the capacitance as a
function of the gate voltage:
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7.2.3. Inversion:

If a larger positive voltage is applied to the gate the surface potential
will continue to increase. The hole concentration near the surface
decreases while the electron concentration increases, according to the
following relationships:

and:

Since and the electron

surface concentration is equal to the hole surface concentration
when coincides with at x=0. This happens when

(Figure 7.6).

If the gate voltage is increased further the electron surface
concentration increases up to a point where n(x=0) becomes equal to

which is the original hole concentration in the substrate. This
happens when the band curvature at the surface (x=0) places at an
energy below In other words the band curvature is equal to

or:

When this condition is met, the semiconductor surface is said to be in
"strong inversion". For the electron concentration is
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larger than the hole concentration, and the surface is in weak inversion,
while for it is in strong inversion (Figure 7.7).

Example
Calculate the electron concentration at the oxide/semiconductor interface when
the surface potential is equal to 1) and 2) The P-type doping
concentration is

The inversion layer is rich in electrons, and therefore, a good
conductor. The MOS capacitor consists of two conducting electrodes (the
metal gate and the inversion layer at the silicon surface). As in the case of
accumulation, the capacitance of the MOS structure is once again equal to

When an inversion layer is formed electrons are locally majority
carriers at the surface. Any subsequent increase in gate voltage increases
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the electron concentration in the inversion layer, and a larger inversion
charge, is produced. However, the thickness of the inversion layer
remains very small. Its actual thickness is similar to that of an
accumulation layer (derived in Section 7.2.1). The electron charge in an
inversion layer can, therefore, be considered as a surface charge. As in the
case of an accumulation layer the inversion charge depends exponentially

on the surface potential When the gate voltage is

increased beyond inversion formation the surface potential, increases
only very slightly above and for all practical purposes one can
assume that when an inversion layer is present, regardless of
the gate voltage. Therefore, the depth of the depletion region is given by
Equation 7.2.26 where

Since the semiconductor is P-type one may wonder where the electrons in
the inversion layer come from. They are produced by thermal generation,
which is a rather slow process at room temperature. They can also be
produced by external generation (if a light source is present, for example).
If the semiconductor is in the dark and at cryogenic temperature the
inversion layer may never form.

Figure 7.8 shows the capacitance of an MOS capacitor as a function of
the applied gate bias. Such a curve is often called a capacitance curve, or
C-V curve. Different types of measurements can be made, each of these
probing a different aspect of the device properties.

In a first measurement the gate voltage is slowly ramped from negative to
positive values, and a small ac signal is superimposed to this quasi-dc bias.
The small signal is used to measure the value of the capacitance at the
various dc gate biases. Different curves can be obtained for a given device
depending on the frequency of the ac signal.

Let us first consider the case of a low-frequency ac signal (quasi-static curve
in Figure 7.8). When the gate voltage is negative an accumulation layer is
present. As the gate voltage varies a corresponding variation of the accumulation
charge occurs, and the capacitance of the structure is equal to (Expression
7.2.1). When the gate voltage is increased the silicon surface becomes depleted,
and the variations of gate voltage induce variations of the depletion charge. The
value of the capacitance is then given by the series combination of the gate and
depletion region capacitances (Equation 7.2.33). As the gate voltage is further
increased an inversion layer is formed and variations of gate voltage give rise to
variations of inversion charge and thus the measure capacitance is again equal to
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If we repeat the same measurement using a higher frequency for the small ac
signal (1 MHz, typically), thermal generation cannot create minority carriers fast
enough to support a variation of charge in the inversion layer. Therefore, while
the portions of the curve in accumulation and depletion are identical to the
previous experiment, the inversion part of the curve is not. The variation of
charge due to the variation of the gate voltage is no longer supported by the
inversion charge, but by a variation of the depletion charge (Figure 7.8). The
depth of the depletion region is equal to where is a small
modulation of the depletion depth due to the application of the small ac gate
bias. In this case the capacitance of the structure is given by the series association

of the gate capacitance, and the depletion capacitance,

If a fast gate voltage ramp is used there is no time for generation of
minority carriers (electrons). Majority carriers are readily available to form an
accumulation layer, so that the accumulation part of the curve remains
unchanged. When the gate voltage is ramped up, a depletion layer is formed, but
no inversion layer can be formed. Therefore, only a depletion charge can respond
the gate voltage variation, and the depletion depth can be larger than Such
operation is called the deep-depletion regime, and the value of the capacitance is
given by Equation 7.2.33 where the surface potential is not clamped at

If a very high-frequency ac signal is used, even majority carriers may not
have time to react to the gate voltage variation. Frequencies of 1 GHz or higher
must be used for this effect to appear. The higher the doping concentration, the
higher the frequency. In this case the whole semiconductor sample behaves as a
dielectric (dielectric mode of operation in Figure 7.8), such that the capacitance

of the structure is given by the series association of and where is
the thickness of the silicon wafer.[8]

In summary the following rules will be used to describe the relationships
between the charge on the metal gate and the charge in the accumulation,
depletion and inversion layers (Figure 7.9):
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The total charge in the semiconductor can be plotted as a function of the
surface potential (Figure 7.10). Accumulation and inversion charges are
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exponential functions of the surface potential, while the depletion charge
varies as a square root.

7.3. Threshold voltage

The threshold voltage of a MOS transistor is the voltage that must be
applied on the gate to form an inversion layer. It depends on several
device parameters which will be described next.

7.3.1 Ideal threshold voltage

In a MOS transistor the gate voltage is equal to sum of the potential
drops in the semiconductor and the oxide. If one assumes that the back of
the semiconductor is grounded, one can write:

where is equal to the positive charge on the gate electrode. An equal
amount of negative charge exists in the semiconductor, comprised of
ionized impurities in the depletion zone, and free electrons at the
oxide/silicon interface a inversion. If we assume that the charge due to the
free electrons is much smaller than the charge due to ionized impurities
when the inversion layer starts being formed then Equation 7.3.1 can be
written as:

is called the "ideal threshold voltage" and it is measured with
respect to the source. In this definition of the threshold voltage both the
source and the substrate are grounded.

Example
Calculate the depletion and inversion charges for

and

The free electron charge density at the oxide/silicon interface is equal to
Assuming the thickness of the inversion layer is equal to a

tenth of the Debye length (Equation 7.2.10) and
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assuming the electron concentration is constant as a function of depth in the
inversion layer, the inversion charge can be approximated by

The inversion charge at threshold is much smaller than the
depletion charge.

7.3.2. Flat-band voltage

Equalization of the Fermi levels
We have so far assumed that the Fermi level of the metal gate was equal
to that of the silicon. In practice this is not the case. In modern devices
the gate material is not an actual metal, but heavily doped polycrystalline
silicon, also called polysilicon. The doping concentration used for that
material is so high that it can be considered as a metal, for
all practical purposes. Let us first consider the metal and the
semiconductor separately. The energy which is necessary to extract an
electron with an energy from the metal is called the "work
function", Similarly, the work function in the semiconductor is
noted

When the two materials are put together to form the MOS structure, the
Fermi levels align, and the charge transfer resulting from this process
curves the energy bands in the semiconductor, near the semiconductor-
oxide interface (Figure 7.11). To recover to a flat-band condition a
voltage must be applied to the gate. This voltage is equal to the difference
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of the work functions between the two materials, called the "work
function difference", and is noted

Example

material is made N-type polysilicon with

Charges in the oxide
Oxides grown on silicon contain positive charges due to the presence of
contaminating metallic ions or imperfect Si-O bonds. These charges can
either be fixed or mobile in the oxide. Mobile ions such as sodium and
potassium can move in the presence of an electric field if the temperature
is high enough. Here, we shall consider only the case of fixed charges.

Let us consider an elementary areal positive charge at a depth
x in the oxide, where x=0 is now defined at the metal/oxide interface.
(Figure 7.12A). To insure charge neutrality negative charges will appear
in the metal and the silicon. The sum of these three charges is equal to
zero. The charge in the silicon can be removed if an appropriate negative
voltage is applied to the gate. This voltage can be found by integrating
Poisson's equation in the oxide between 0 and x. It is given by:

If the charge is closer to the semiconductor a larger compensation bias on
the gate is required to remove the charge in the semiconductor. In an

Calculate for and The gate
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actual device charges are distributed throughout the oxide according to an
arbitrary concentration profile, The compensation voltage,

is obtained by integrating the contribution of every single charge
throughout the oxide. The compensating voltage is thus equal to:

Example
Calculate for the following oxide charge distributions: 1) delta distribution
at the metal/oxide interface 2) delta distribution at the
oxide/semiconductor interface 3) a constant charge
density throughout the oxide is measured in Note

that the total charge in the oxide, is the same for the three

distributions.

Using Equation 7.3.5 we find 1)

Interface traps
The presence of the interface at the silicon surface
introduces an obvious perturbation to the periodic crystal structure of the
semiconductor and causes some Si-Si bonds to be unfulfilled or "dangling".
As a result there are energy states in the bandgap at the silicon surface.
These states are called "interface states" or "interface traps". They can be
charged positively or negatively, depending on their nature and their
energy with respect to the Fermi level, and thus, will affect the surface
potential.

If the interface density trap is noted a charge
is present at the semiconductor surface. The charge is usually

negative in n-channel transistors and is due to electrons trapped in the
interface states. If the surface potential increases from to
the trapped charge increases by a amount equal to When an
inversion layer is present the surface potential is equal to To
compensate for these charges, a bias must be applied to the gate. Its value
is:

Flat-band voltage
The "flat-band voltage" is the voltage that must be applied to the gate to
bring the semiconductor energy bands to a flat level. Platband is achieved
by applying a gate voltage which compensates for 1) differences in work
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functions of the semiconductor and the gate electrode, 2) the presence of
charges in the oxide, and 3) interface traps. The sum of all these effects is
found by adding Expressions 7.3.3, 7.3.5, and 7.3.6:

7.3.3. Threshold voltage

The flat-band voltage must be added to the expression for the
threshold voltage calculated previously (Expression (7.3.2)), in order to
accurately describe the actual, "non-ideal" threshold voltage:

The threshold voltage can be either positive or negative, depending on
the doping concentration the material used to form the gate
electrode, etc. If the threshold voltage is negative the n-channel
MOSFET is a depletion-mode device; if is positive, the device is an
enhancement-mode MOSFET. Depletion-mode devices will have an
inversion layer when the gate voltage is equal to zero. These devices are
sometimes referred to as "normally on". Enhancement-mode devices
require an applied positive gate voltage to create the inversion layer.
They are sometimes called "normally off". The value of the threshold
voltage can be adjusted by introducing a controlled amount of doping
impurities in the channel region during device fabrication (see Sections
11.3.1 and 11.9 and Problem 11.5).

7.4. Current in the MOS transistor

The current in the channel is due to the drift of electrons from source
to drain. We can define a local potential at the surface of the silicon
between source and drain. The value of this local potential, noted V(y),
ranges between at x =0 and at y = L. To illustrate this notion of
local surface potential, consider a case where the channel runs from
source to drain. The channel can be viewed as a simple resistor through
which current can flow between source and drain. In this representation
the local potential, V(y), can be viewed as the potential at any point y
along the resistive channel. Both the source terminal and the substrate are
grounded. The electric field in the channel is equal to

and the drift current is equal to:



188 Chapter 7

or

or

The total inversion charge in the channel is given by:

Using 7.4.3 the current in the channel, which .is also called the drain
current, can be derived:

where W is the width of the channel (see Figure 7.1). The latter
expression is simply Ohm's law applied to a small element of channel
having a length dy and a resistance dR(y):

where

Since the source is grounded and the drain is at a positive bias, the
potential in the channel will vary from near the source to



7. The MOS Transistor 189

near the drain. The surface of the silicon is in strong
inversion when the surface electron concentration is equal to the hole
concentration in the quasi-neutral substrate This condition
imposes the band curvature in the x-direction to be equal to near the
source and near the drain. Generalizing to the entire channel we
can write:

What is the value of the inversion charge, ? If we recall
Expression 7.2.38c:

and notice that the potential drop in the gate oxide above any location in
the channel is given by:

we can write:

As mentioned earlier the channel can be considered as a simple N-type
material resistor connecting source to drain. The potential at any point y

the surface near the source, is equal to Similarly, the band
curvature in the x-direction near the drain is equal to In
other words, the electron-rich channel can be viewed as an actual N-type
slab of semiconductor which forms a reverse-biased PN junction with the
P-type substrate. Since the potential V(y) along that N-type slab varies

is given by:

Integrating 7.4.6 from source to drain one obtains:

Using 7.4.12 and 7.4.13, and since is constant at any location along
the channel :

along this resistor is equal to V(y), which varies from at y = 0 to at
y = L. In the x-direction the energy band curvature, from the substrate to

from to the depth of the depletion region in the x-direction will
vary and grow larger near the drain. The local width of the depletion layer
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If we define:

and the integration of 7.4.15 becomes (See Problem 7.21):

Expression 7.4.17 yields the drain current as a function of source, gate
and drain voltage, with the substrate grounded. If this equation as a
function of drain voltage is plotted a bell-shaped curve is obtained, as
shown in Figure 7.14. The left half of the curve correctly depicts the
behavior of the actual device, but the right half does not. Expression
7.4.17 reaches a maximum when is equal to a value called "drain

saturation voltage", Setting the drain saturation voltage is

obtained:

Saturation appears when the gate voltage is no longer large enough (with
respect to the local surface potential) to sustain the presence of an
inversion layer near the drain junction. The current evaluated at is
called the "drain saturation current", It is obtained by replacing
by in Equation 7.4.17. Both and are functions of the
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gate voltage. It can easily be verified that the condition for

is equivalent to writing When this happens the
channel is said to be "pinched off" near the drain, and the transistor is said
to be in saturation (Figure 7.15). For an ideal "long channel" device the
lateral dimension of the pinch-off region is very small, even if the drain
voltage is high. When the transistor is not in saturation, it is said to
operate in the non-saturated or "triode" regime (Figure 7.14).

Although the inversion channel is pinched at the drain, the device will
still conduct current. The local potential at the channel pinch-off point is

and the potential drop across the pinch-off region is equal to
Since the pinch-off lateral extension is very small, there is an

intense electric field between the pinch-off point and the drain junction,
which causes electrons to drift from the channel into the drain. The
magnitude of this electron current is fixed by the potential drop across
the channel, which is constant and equal to As a result, when

the current remains constant and is independent of the drain
voltage, as shown in Figure 7.14.

point where the triode and saturation regions meet is given by

A complete set of curves, called "output characteristics" of a
MOSFET is shown in Figure 7.16. At the left of the dashed parabolic line
the transistor operates in the non-saturated regime, also called the "triode
regime"; past that line it is in saturation. The value of the voltage at the
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7.4.1. Influence of substrate bias on threshold voltage

In the derivation of the threshold voltage we previously assumed that
both the source and the substrate were grounded (Expression 7.3.8).
However in many applications the source and substrate may be at a
different potentials. Therefore we will now investigate the influence of a
variation of source to substrate bias on the threshold voltage. Using
relationships 7.3.8 and 7.4.16 the threshold voltage can be written as:

with being the substrate voltage.

Let us now apply a negative bias to the substrate with the source
grounded and All PN junctions in the device remain
reverse biased. However, the reverse bias applied to all these junctions is
larger than it was when the substrate was grounded. The bias across the
source junction is and the bias across the drain junction is

Hence, the energy band curvature between the inversion channel
and the substrate is no longer equal to but to

the grounded source being taken as a reference. The depletion
charge under the channel is obtained by introducing in 7.4.13:

When the gate voltage is equal to threshold voltage, we have:
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or, using 7.4.20:

which yields the threshold voltage with the substrate effect included:

Equation 7.4.23 is the general definition of threshold voltage which can
be used for any source and substrate bias. It is, however, convenient to
rewrite 7.4.23 for the particular cases where either the source or the
substrate are grounded:

Expression 7.4.23 becomes:

where the threshold voltage is measured with respect to the substrate. is
equal to when (Expression 7.3.8).

2) If the source is grounded and the substrate bias is negative and
Expression 7.4.23 becomes:

where the threshold voltage is measured with respect to the source. is equal
to when (Expression 7.3.8).

The threshold voltage increases as a function of the potential difference
between source and substrate (Figure 7.17).

1) If the substrate is grounded and the source potential is positive and
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7.4.2. Simplified model

The model developed in equations 7.4.17 and 7.4.18 is often
considered too cumbersome for practical use. It can be simplified by
linearizing the maximum depth of the depletion region as a function of
the local surface potential, V(y). If the substrate is used as reference

the depletion charge can be linearized as follows:

where is defined in Equation 7.4.16 and is a constant that represents
the linearized dependence of the depletion charge on V(y). The threshold
voltage is given by 7.4.23:

When the source is grounded the threshold voltage is given by
7.3.8:

Comparing these two equations we can write:

and the inversion charge (7.4.12) is given by:

or, using 7.4.25:

If we define the "body factor" (or "body effect coefficient"): we
can write:

Integrating from source to drain one obtains:

and, since is constant at any position, y, in the channel:
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Writing the linearized dependence of the threshold voltage on source bias
we finally obtain:

The latter equation describes a parabolic dependence of the drain current
on drain voltage similar to the curve shown in Figure 7.14. The curve
reaches a maximum when the drain voltage is equal to the drain saturation
voltage, is obtained by setting which yields:

Replacing by in Equation 7.4.31 yields the drain saturation
current:

The transconductance of the transistor, defined as the variation of drain
current with gate voltage is given by:

In many instances an even more simplified model is used. Simplification
is obtained by assuming that the maximum depth of the depletion region
does not vary from source to drain. In mathematical terms this is
equivalent to writing in Expression 7.4.25. As a result the body
factor, n, is equal to 1, and Equations 7.4.31, 7.4.32, and 7.4.33 become:
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or, if both source and substrate are grounded:

Note that Equations 7.4.38 and 7.4.40 are identical to Equations 7.1.7
and 7.1.8.

It is worthwhile noting that the body factor, n, is equal to where

is the depletion capacitance. Indeed, using Relationships 7.2.30 and
7.4.25 one can write:

7.5. Surface mobility

The mobility, used in the MOSFET model is not the mobility of
electrons in the silicon crystal, called "bulk mobility". Rather, it is a
"surface mobility". The surface mobility is lower than the bulk mobility
because of increased scattering of the electrons at the silicon-oxide
interface. The surface mobility depends on how much the electrons
interact with the interface, and therefore, on the vertical electric field
which "pushes" the electrons against the interface. We will note as
the surface mobility in absence of such an electric field. The higher the
electric field, the lower the surface mobility.

The current in the transistor is given by 7.4.14:

In this expression the mobility is inside the integral because it is not
constant (it depends on the vertical electric field in the channel, which
varies from source to drain). Calculating this integral is a complex task.
However, an "average" constant mobility value can be used instead of the
electric-field dependent mobility. It will be called "effective mobility",
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There exists an empirical relationship that describes the dependence
of surface mobility on vertical electric field in the channel,

where is called the "mobility reduction factor". The average electric
field in the channel is:[15]

where is the electric field at the silicon-oxide interface and is the
vertical field at the boundary between the inversion layer and the
depletion region. According to Gauss' law at the silicon-oxide interface,
we can write:

can also be obtained using Gauss' law:

Therefore from 7.5.2 we have:

In order to calculate a simplified average effective mobility the drain
current must satisfy the following condition:

calculated with depending on calculated with a constant

where:

Let us consider a small element of length along the channel, dy. We can
write the right-side of the condition as:

and the left-side as:

or upon rearranging:
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Substituting 7.5.9 into 7.5.7 and integrating from source to drain we
obtain:

Noting that and that (linear

approximation), we can write:

Introducing this result in 7.5.10 we obtain:

The latter expression yields as a function of and the bias applied
to the different terminals of the device. Equation 7.5.12 can be simplified
if is small, in which case:

Therefore, we obtain:

or
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Neglecting the influence of the depletion charge near the source, a series
development of 7.5.14 yields a simpler relationship between and
which is widely used in practice:[16]

Commonly is used and the previous expression can be written

as:

The reduction of surface mobility increases as the gate voltage is
increased, as illustrated by Figure 7.18.

If the simplified model represented by Equations 7.4.31, 7.4.32 and
7.4.32 is used, then in Expression 7.5.16 can be replaced by

which yields:[18]

7.6. Carrier velocity saturation

All the expressions derived hitherto are based on the assumption of a
linear dependence of the drift current on the lateral electric field:
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where v is the carrier velocity in the inversion layer. In reality this linear
dependence is observed for low electric field values only. At higher fields
above a critical value, the velocity of the carriers saturates. For
electrons in silicon, the maximum velocity, is (Figure
7.19). We will now assess the impact of this velocity saturation effect on
the expression of the drain current of a MOSFET.

It is easy to show that the lateral electric field near the drain junction
reaches high values when the drain voltage is equal or larger than the drain
saturation voltage, Consider the channel as a resistor connecting
source to drain. The drain current is given by Expression 7.4.6:

Since the current is constant along the channel, it is easy to observe that
when which is the case when is equal to or

greater than Actually the lateral electric field does not become
infinite, but reaches high values especially if the gate length is small.

The carrier velocity can be expressed as follows:

where is the critical field defined by: is taken positive
while since and V(y) increases with y, which yields:
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The expression of the current corrected for the velocity saturation
becomes:

which is equivalent to replacing by to take velocity

saturation effects into account. Integrating from source to drain we obtain
(see 7.4.29 - 7.4.31):

or:

which finally yields:

By imposing the drain saturation voltage can be found. It is
equal to:

Therefore, when velocity saturation is taken into account it is equivalent

to making the channel longer (L is multiplied by and therefore,

to reducing the drain saturation voltage and drain saturation current.

7.7. Subthreshold current - Subthreshold slope

We have so far assumed that the drain current is equal to zero when
the gate voltage is smaller than the threshold voltage. There can actually
be a significant amount of electrons near the semiconductor surface when
the device operates below strong inversion. A brief look at Figure 7.6
reminds us that the electron surface concentration is larger than the hole
surface concentration when The actual dependence of
the electron concentration at the surface is an exponential function of
the surface potential.
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It is experimentally observed that the drain current below threshold,
called "subthreshold current", is independent of the drain voltage as long
as is larger than a few kT/q. This suggests that the subthreshold
current is caused by diffusion rather than by a drift mechanism. Based on
this observation the electron current density from source to drain can be
written:

where A is the cross-sectional area of a vertical section of the channel
region through which the electrons flow, is the diffusion coefficient
for electrons, and n(0) and n(L) are the electron concentrations at the
edge of the source and drain junction, respectively. The latter can be
expressed as follows:

where the source is considered at ground and

What is "the area of the vertical section of the channel region through
which the electrons flow"? We know that the electron concentration
varies as To simplify calculations we will approximate the
exponential electron profile by a constant electron density extending to a
depth d below the surface (gray area in Figure 7.20). The depth d is
defined as the depth at which the potential has decreased by kT/q below
the surface potential value. Therefore, one can write:
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The area of the section through which the electrons flow is thus equal to
A = W×d, where W is the transistor width. Using Equations 7.7.1-3 and

Einstein's relationship we obtain:

where the electric field at the surface can be found using 7.2.24, 7.2.26
and 7.2.30:

Relationship 7.7.4 shows that the subthreshold current is independent of
the drain voltage, as long as is larger than a few kT/q. It also shows
that the drain current is proportional to the electron concentration at the
surface. Therefore, the subthreshold current increases exponentially with
surface potential (Figure 7.21).

On a log plot such as Figure 7.21 the subthreshold current appears as a
straight line. The inverse of the slope of that line is called "inverse
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subthreshold slope", "subthreshold swing", or more simply, "subthreshold
slope". It is expressed in millivolts per decade, which means: "How many
millivolts should the gate voltage be increased to increase the drain
current by a factor 10". The lower the value of the subthreshold slope, S,
the more efficient and rapid the switching of the device from the off state
to the on state.

By definition the subthreshold slope is given by:

or, if we change the logarithm base to the natural logarithm base:

Since

The log of the subthreshold current can be differentiated:

Using Equation 7.7.5 we can write:

Note that:

where is the depletion capacitance, defined by

We also have:

Since in weak inversion is small compared to

and can be neglected in Equation 7.7.10. We thus obtain:



7. The MOS Transistor 205

An expression for between gate voltage and surface potential is

obtained by adding the flatband voltage to Equation 7.3.1 :

from which we derive:

Finally an expression for the subthreshold slope can be written as:

where n is the body factor (Equation 7.4.41). The closer n is to unity, the
sharper the transition between the transistor's off and on states.

Since the subthreshold current varies

exponentially as a function of gate voltage:

Influence of interface states
As mentioned in Expression 7.3.6 there are interface states, or interface
traps in the silicon energy bandgap at the silicon-oxide interface. The
density of these states is noted The charge trapped in
those states depends on the value of the surface potential according to the
relationship A capacitance can be associated with these
traps, which is simply given by: When the
influence of the interface states is taken into account in the relationship
between gate voltage and surface potential the following equations are
obtained (see Equation 7.3.8):

and

which yields the following expression for the subthreshold slope :
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7.8. Continuous model

The models developed in Sections 7.4 (for and 7.7 (for
are based on the actual physics of semiconductors. Unfortunately,

they do not connect well around and a discontinuity in the
equations appears when the gate voltage is close to the threshold voltage,
as shown on Figure 7.22. This constitutes a problem for the design of
analog MOS circuits, where gates are often biased with a voltage close to

and computing convergence problems arise when the previously
mentioned models are used.

A model which is valid both below and above threshold can, however, be
derived. Such a model can be conveniently used in circuit simulators.
Using Equation 7.4.29 we can write:

which can be rewritten:
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where and are called "forward" and "reverse" currents. is defined

as:

Note that is equal to the drain saturation voltage when the source and
substrate are grounded and (see Equation 7.4.32).

It is possible to find a mathematical function which describes the
evolution of the current as a function of gate and drain voltage for all
regimes of operation (depletion, weak and strong inversion). Following
the work of Enz, Krummenacher and Vittoz (the so-called "EKV model"),
one can rewrite Equation 7.8.2 as follows: [22,23]

This expression is continuous for any bias applied to the transistor
terminals, and so are its derivatives. Using this model and introducing the
dependence of mobility on gate voltage given in Expression 7.5.16, a
complete set of curves for the MOSFET can readily be obtained. Figure
7.23 shows such a set of curves.

Equation 7.8.3 looks very different from the current equations derived
earlier. This is because it includes all the possible operation modes of the
transistor. Depending on the applied bias, some terms in 7.8.3 become
negligible with respect to others and the equation is reduced to expressions
we have derived earlier. To illustrate this, let us consider the current for

and (i.e. the transistor is operating in the non-
saturated regime). In that case the exponential terms are much larger than
unity, and one can write:
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which is identical to Equation 7.4.31 when

7.9. Channel length modulation

We have previously assumed that when the drain current
of a MOSFET is constant and equal to (Figure 7.16). This is because
the magnitude of the current is fixed by the potential drop across the
channel, which is equal to Actually, when the drain voltage is
increased beyond the depletion region and the local threshold
voltage near the drain are increased. As a result the effective length of the
channel shrinks and becomes equal to (Figure 7.24). This
reduction in effective gate length increases the drain current, as will be
demonstrated next.
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To simplify calculations we will linearize the current variation as a
function of drain voltage. If we define the
saturation current for which we will call can be written
as follows:

where is a positive voltage value that can be obtained through direct
measurement of the device output characteristics, as shown in Figure
7.25. is often called the "Early voltage".

Expressing in terms of channel length modulation one finds:
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which yields:

The saturation output conductance, which was hitherto considered equal
to zero, is now given by:

For all lines tangent to the output characteristics in saturation
intercept the at as shown in Figure 7.25.

7.10. Numerical modeling of the MOS transistor

The electrical characteristics of electron devices can be numerically
simulated on a computer using finite-element techniques. These
simulations are based on the discretization of the device into a series of
nodes connected together by mesh elements. Figure 7.26 shows the cross
section of a MOS transistor, and Figure 7.27 represents the mesh
generated by a computer code which will be used for simulating the device.

Figure 7.26 was generated by a process simulator software code which
emulated the device fabrication steps. The output file contains the
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topology of the device, the different materials used for fabrication, the
doping type and concentration at every simulation node, as well as the
distribution of charges in the oxide, etc. The doping concentration profile
along a vertical cut passing through the drain junction is shown in Figure
7.28 as an example of the information contained in the file.

Once the device structure has been defined, another simulation code is
used to solve the transport equations (Poisson, continuity and drift-
diffusion) at each node in the semiconductor and the adjacent materials.
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The drift-diffusion equations for holes and electrons are given by
Expressions 2.6.la and 2.6.1b:

The Poisson equation is given by Relationship 2.6.2:

The continuity equations are given by Expressions 2.6.7a and 2.6.7b:

where the SRH recombination obeys Relationship 3.5.12:

In addition to these basic semiconductor equations a whole series of
effects can be introduced at will in the simulation. This allows one to
refine the simulation and to better reproduce the behavior of the actual
device. This is exemplified in Figures 7.29 and 7.30 where the current in a
MOSFET has been simulated as a function of gate voltage, for
mV. In one curve the electron surface mobility is constant, and in the
other curve a field-dependent model similar to that described by Equation
7.5.16 is used. The dramatic difference between the two curves can be
seen immediately.
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7.11. Short-channel effect

The evolution of semiconductor processing technology calls for
constant reduction of device dimensions, especially gate length. The gate
length of MOSFETs used in 256k DRAMs in 1984 was approximately 1.2

Ten years later 64M DRAMs were routinely produced using
gates. Gate length is predicted to be reduced down to 100, 50 and 35 nm
in years 2003, 2009 and 2012, respectively. Such an aggressive scaling
trend results in the appearance of several undesirable effects. One of these
is the so-called "short-channel effect" and will described next.

The threshold voltage of a MOSFET is given by Expression 7.3.8:

The depletion charge, used in the latter expression, can be
represented by the trapezoid area shown in Figure 7.31, where the drain
voltage is equal to zero. The trapezoid shape is due to the encroachment
of the depletion regions from the source and drain reversed-bias junctions
into the depletion zone created by the gate electrode.
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Referring to Figure 7.31 the area of the trapezoid is equal to
If the channel is long, then and the area of the

trapezoid is virtually equal to which represents the area of a
rectangle of width L and height In that case the device is referred
to as a "long-channel transistor" and its threshold voltage is accurately
described by the equations derived in Section 7.3. When the gate is short,
on the other hand, then the depletion charge due under the
gate electrode is reduced.

Consider a MOSFET at threshold The drain voltage is small
Based on geometrical considerations (Pythagorean theorem)

and noting that the built-in potential of the source and drain junctions
relative to the substrate, is approximately equal to the surface
potential in the channel, such that the width of the depletion region
around the source and drain is equal to the following relationship is
obtained:

where is the junction radius of curvature, which is equal to the source
and drain junction depth. The latter expression can be simplified, which
yields:

From which the value of x can be extracted:
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Since x must have a positive value one obtains:

Using this result can be calculated:

The depletion charge controlled by the gate voltage is then equal to:

where is the depletion charge that would be found underneath the gate
if the depletion region was rectangular instead of trapezoidal, as in a long-
channel device. Using Equation 7.3.8 the threshold voltage can now be
expressed as a function of gate length:

The short-channel effect is illustrated in Figure 7.32. The problem
associated with the short-channel effect is not that devices with different
channel lengths have different threshold voltages, since circuit designers
typically use only one channel length (the minimum length allowed by
processing parameters). Rather, the problem is that in short devices small
statistical variations in gate length give rise to large statistical variations
of threshold voltage, which poses a clear reproducibility problem in
integrated circuit manufacturing. The short-channel effect, however, can
be reduced by using shallower junctions and higher substrate doping
concentrations, which reduces the extension of the source and drain
depletion regions in the channel.

This model is valid as long as If the gate length is small and the
drain voltage is high enough, the source and drain depletion regions can
touch one another. In such a case the potential in the channel region is
no longer controlled by the gate and a large, undesirable current flows
between source and drain. This phenomenon is called "punchthrough".
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7.12. Hot-carrier degradation

7.12.1. Scaling rules

The constant reduction of transistor dimensions has given rise to
reliability issues not seen in long-channel devices. Although smaller
dimensions were achieved in every new generation of devices a constant
supply voltage (5V) was used for many years. This has led to increasingly
intense electric fields inside the MOSFETs, causing device degradation
problems.

Let us define a dimensionless scaling factor, which is characteristic of
the reduction of device dimensions from generation to generation. Taking

and dividing the device dimensions by results in scaling, as
illustrated by Figure 7.33. Thus if the gate length is divided by the gate
width, W, the gate oxide thickness, the junction depth, and the
width of the depletion layer, must all be divided by
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In order to keep the electric field inside the device from increasing
greatly, the supply voltage, should be reduced by the same factor
This, unfortunately, poses a compatibility problem which would prevent
one from using different generations of integrated circuits in the same
system. For practical reasons, a supply voltage, of 5 volts was
maintained for many years until the problems caused by high electric
fields became unacceptable. Power supply voltage was then reduced to 3.3
V and lower. Ultimately the supply voltage of portable systems will be
reduced to 0.9 volts or even 0.5 volts.

Table 7.1 shows the scaling factor by which different device parameters
have to be multiplied when the MOSFET dimensions are divided by

The factor used for physical dimensions speaks for itself. The same
factor is used for the supply voltage, as a constant electric field must be
maintained. The factor for the current is obtained from the

voltage should be scaled the same way as the supply voltage. The factor
for the doping concentration is not mathematically rigorous, but it shows
that the depletion width must scale down with the device dimensions,
while maintaining the threshold voltage constant. The capacitance of the
gate electrode is equal to The dissipated power is given by the

product and the power density is obtained by dividing by
the area of the device. The gate delay is obtained by dividing the
capacitance of a gate by and taking into account the reduction of
signal dynamics The delay is then proportional to

relationship where The threshold
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7.12.2. Hot electrons

When scaling rules are not applied to the supply voltage intense electric
fields can develop inside the MOS transistor, especially between the
channel pinch-off point and the drain. In an n-channel MOSFET this
electric field can accelerate electrons to high speeds such that the
temperature which is equivalent to the electron energy, called electron
temperature, can reach several thousand degrees centigrade, hence the
name "hot electrons". Such electrons can be stopped by collision events,
where the energy released can create electron-hole pairs. The created
holes give rise to a substrate current. The electrons resulting from this
generation mechanism can have enough energy to overcome the gate
oxide potential barrier and thus be injected into the gate material, giving
rise to a gate current. The evolution of substrate current and gate current
with applied voltages is described next.

7.12.3. Substrate current

When the transistor is in saturation the large electric field near the drain
substantially accelerates electrons. These electrons can undergo collision
events in which energy is released and an electron-hole pairs are created.
This generation mechanism is called "impact ionization". The created
electrons are attracted by the positive bias at the drain. The generated
holes diffuse towards the grounded substrate, giving rise to a substrate
current. The magnitude of the substrate current is given by the
relationship where is the electron current in the
channel, and M is called the "multiplication coefficient" The
multiplication coefficient is strongly dependent on the electric field and is
highest near the drain, where the electric field is highest. The amplitude
of the lateral electric field in a saturated MOSFET from source to drain is
shown in Figure 34.
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The variation of the substrate current vs. gate voltage is shown in Figure
7.35 for a drain voltage is 5V. Below threshold the
channel the substrate current increases with increasing channel current
according to the relationship If the gate voltage is
increased beyond threshold voltage an inversion
channel is formed and the device operates in the saturation regime. The
channel is thus pinched off and impact ionization produces a relatively
large substrate current. The drain saturation voltage, is equal to

Thus when the gate voltage is increased beyond 2 volts
increases and the electric field near the drain, which is proportional to

decreases. As a result, the multiplication factor, M, is reduced
and the substrate current decreases. Therefore, the substrate current
reaches a maximum when gate voltage is slightly larger than the threshold
voltage, i.e. when the current in the channel is sufficiently large to trigger
impact ionization, and when the electric field near the drain is the largest.

7.12.4. Gate current

Gate current is due to electrons which, as a result of acceleration by
the electric field by collision or impact ionization generation, have
acquired enough energy to overcome the potential barrier at the silicon-

interface. In principle the energy required to overcome this barrier is
3.1 V. However, if the gate is positively biased it attracts electrons and
there appears a barrier reduction effect similar to the Schottky effect.
The value of the potential barrier is then equal to:
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where is the electric field in the oxide, C is equal to
and D is equal to If the gate is negatively biased

with respect to the channel, the potential barrier is increased and its
magnitude is given by:

Electrons gain energy from being accelerated by the electric field near the
drain. Some electrons, often called "lucky electrons" can gather enough
energy after a collision near the drain and be injected into the gate oxide,
thereby giving rise to gate current.

The gate current, when plotted as a function of gate voltage, reaches a
maximum around as shown in Figure 7.35. At the left of that
maximum, for an electron near the drain locally sees a negatively
biased gate, which increases the oxide potential barrier according to
Equation 7.12.2 and thus lowers The current increases exponentially

with as decreases with any increase of When the

electric field in the oxide near the drain changes sign, which reduces
according to Relationship 7.12.1. However, the transistor is no longer
saturated and the lateral electric field which accelerates the electrons
decreases as is increased. Thus any increase of above reduces
impact ionization and the gate current decreases with increases of

7.12.5. Degradation mechanism

The flow of gate current through the gate oxide generates interface
states at the interface. Electrons can be injected in oxide
spacers at the gate sidewalls as well. These interface traps reduce the
electron surface mobility and increase the local threshold voltage near the
drain (Equation 7.3.6). Over a period of time, these two effects can
become significant enough to cause a distinct reduction of the device
current drive. With transistors unable to deliver the required current, the
circuit may experience timing errors, and ultimately circuit failure may
occur.

The degradation of the oxide is caused by the gate current, which is
usually much smaller than a picoampere, and is therefore, difficult to
measure. Since both gate current and substrate current are caused by
similar mechanisms, i.e. high electric field near the drain and electron-
hole pair generation by impact ionization, it is common practice to
measure the substrate current and to assume that if the substrate current is
low, the gate current must also be low. Therefore, transistor designs aimed
at limiting the gate current to increase the lifetime of the device usually
involve efforts to minimize the substrate current. One such design, called
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the "lightly doped drain" (LDD) structure, features lighter doping
concentrations at the drain junction near the edges of the channel. This
helps reduce the lateral drain electric field, and thus reduces impact
ionization and increases device lifetime. The lightly-doped portions of
the source and drain are commonly called "source and drain extensions"
(SDE).

7.13. Terminal capacitances

In many circuit simulations it is important to know the capacitances
between the different terminals of a MOSFET (source, gate, drain and
substrate). The different capacitances include:

and are simple PN-junction transition capacitances and
their behavior has been described in the Chapter on the PN junction.

If the gate voltage is positive but lower than the threshold voltage
is equal to W × L × C where C is the capacitance of a MOS

capacitor in depletion and is given by Equation 7.2.33. If
the inversion layer acts as an electric shield between the gate and the
substrate because the channel is connected to source and drain. As a
result,
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If the gate voltage is positive but lower than the threshold voltage
and are both equal to the overlap capacitance, This

capacitance arises from the fact that some of the source (or drain)
junction extends somewhat under the gate due to device fabrication
(Figure 36). If and the device is not in saturation

the inversion layer runs from source to drain, and the
capacitance between the gate and the inversion channel can be equally
divided into two parts: half of that capacitance connects the gate and
the source, while the other half connects the gate to the drain.
Keeping in mind that the overlap capacitances exist, one obtains:

When the device is in saturation the

situation becomes more complicated. Since the channel is no longer
connected to the drain, there is no influence of the gate to channel
capacitance on the gate to drain capacitance, and
Estimating the gate to source capacitance requires some calculation, as
we will see next.

The electron charge in the channel is given by Equation 7.4.12. If
the depletion charge can be neglected and we can write:

The electron total charge in the channel is obtained by integrating
Expression 7.13.1:

Using Equation 7.4.6 can write:

And thus, using Equation 7.13.1 we have:

Therefore:

Inserting Expression 7.13.5 into Equation 7.13.2 we obtain:
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Using Equation 7.4.15 and neglecting the depletion charge once again, we
have:

Replacing in Equation (7.13.6) yields:

Performing the integration we obtain:

In saturation, and thus Equation 7.13.9 simplifies
to:

Since, by definition,  is the electron charge in the

channel), we obtain:

Adding  to the latter equation we finally obtain:

A summary of the values of the gate capacitance for the different modes
of operation is presented in Table 7.2.
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7.14. Particular MOSFET structures

There exist many variations of the standard MOSFET device. These
include lateral and vertical MOS power devices and devices combining
MOS and bipolar operation. Here we will focus on two MOSFET
structures which are of practical interest for MOS integrated circuits:
information-storing MOSFETs and silicon-on-insulator (SOI) MOSFETs.

7.14.1. Non-Volatile Memory MOSFETs

Information storage MOSFETs are primarily used in read-only
memories. As suggested by the name "Read-Only Memory" (ROM), these
devices were originally designed to contain information that could be read,
but could neither be erased nor overwritten. Later on special MOSFETs
were invented, which made it possible to fabricate Erasable Programmable
Read-Only Memory chips (EPROM), Electrically Erasable Programmable
Read-Only Memory circuits (EEPROM), and flash EEPROMs, also called
flash memories.[31]

One of the most popular EPROM cells is based on the use of a Floating-
gate Avalanche-injection MOS (FAMOS) device. This particular
MOSFET comprises two gates stacked on one another, as shown in Figure
7.37. The top polysilicon gate electrode (poly 2) is a regular gate, called
"control gate", which is connected to the outside world. The bottom
electrode (poly 1), on the other hand, is completely surrounded by silicon
dioxide and is electrically floating. It is called a "floating gate".

If there is no charge stored in the floating gate its potential is equal to:
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where is the capacitance between the floating gate and the control
gate, is the capacitance between the floating gate and the source,
is the capacitance between the floating gate and the drain, is the
capacitance between the floating gate and the substrate and

The latter equation can be rewritten:

or:

where is the control gate voltage.

The equations for the floating-gate FAMOS transistor can thus be
obtained from classic MOS theory provided that the gate voltage is
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the device gate) is multiplied by a factor when a floating gate is

present between the control gate and the substrate.

Programming of a FAMOS transistor is achieved by applying a high
voltage to both the drain and the control gate, such that the device is
saturated and drives a high current. The high electric field near the drain
provokes hot electron generation and impact ionization. In a mechanism
similar to that describe in Section 7.12.4, some electrons acquire enough
energy to overcome the gate oxide potential barrier and are injected
through the gate oxide into the floating gate. This gives rise to a
threshold voltage shift described by the relationship
where is the (negative) charge injected in the floating gate. The
insulating quality of the gate oxide is so perfect that a charge stored in a
floating gate can stay there for a period of 10 years without any
detectable charge loss.

To "erase" the charge stored in the floating gate ultraviolet light is shone
onto the device for approximately 30 minutes. The UV light gives the
electrons stored in the floating gate enough energy to overcome the 3.1 V
potential barrier between the polysilicon and the such that they can
escape from the floating gate into either the silicon or the control gate.

The FAMOS transistor has two distinct modes of operation: one where
the threshold voltage is low (no charge is stored on the floating gate), and
one where the threshold voltage is high (electrons are stored on the
floating gate). These two states can be distinguished by the sense amplifier
of the chip, such that they can be interpreted as either a logic "0" or a
logic "1".

EPROMs using FAMOS devices have an obvious disadvantage: during the
erase operation, all memory cells are reset. Furthermore, this operation
takes a long time and requires the memory circuit to be removed from the
system in which it operates. Therefore, other information storage
MOSFETs have been devised. One of them is the FLoating gate Tunneling
OXide (FLOTOX) device in which each individual device can be
electrically programmed or erased. Memory circuits using such devices are
called Electrically Erasable Programmable Read-Only Memory

replaced by which in turn, can be expressed as a function of
using Equation 7.14.2. In particular, when the threshold voltage
of the FAMOS device is given by:

or, in other words, the threshold voltage (the control gate being used as
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(EEPROM, or circuits. The FLOTOX structure is shown in
Figure 7.38. It contains a thin (5 nm) tunnel oxide above the drain. A
polysilicon layer is used as floating gate. Programming is achieved by
grounding the drain and applying a sufficiently large positive voltage to
the control gate. This operation increases the potential of the floating
gate such that electrons can tunnel from the drain into the floating gate.
As in the case of the FAMOS transistor, the injected charge increases the
threshold voltage of the device.

To erase the FLOTOX cell, a sufficiently large positive bias is applied to
the drain, while the control gate is grounded. This bias condition enables
electrons to tunnel from the floating gate into the drain and to erase the
information stored in the device. Equations 7.14.1 and 7.14.2 are
applicable to the FLOTOX device. Because of the thin tunnel oxide
between the floating gate and the drain, the value of is quite large,
and the variation of floating gate bias with drain voltage is non negligible.
As a result, the output resistance of FLOTOX devices is fairly low (they
have a small Early voltage). Their saturation current is given by:

An obvious dependence on drain voltage can be seen.

If the gate oxide of a FAMOS device is thin enough that tunneling of
electrons can occur, programming and erase operations can be performed.
This time tunneling takes place between the channel or source and the
floating gate. Memory chips based on such devices are called flash
memories.
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7.14.2. SOI MOSFETs

In silicon-on-insulator (SOI) technology MOSFETs are realized in a
thin layer of silicon sitting on top of an insulator, usually called
"buried oxide". The thickness of the silicon film typically ranges between
50 and 200 nm, while the buried oxide thickness usually ranges between
80 and 400 nm. If the silicon film is thin enough the depletion zone
below the gate extends all the way through the buried oxide, and the
device is said to be "fully depleted" (Figure 7.39A). If this is not the case,
the transistor is "partially depleted" (Figure 7.39B).

A partially depleted SOI MOSFET basically operates the same way as a
regular "bulk" transistor does, especially if the neutral part of the silicon
film is connected to ground. In a fully depleted device the vertical electric
field extends through the entire silicon film. As a result, the surface
potential at the top of the silicon film is coupled to the surface potential
at the bottom of the device. If the doping concentration in the silicon
film is uniform the potential is a parabolic function of depth, as shown in
Figure 7.40. Because of the presence of both a gate oxide and a buried
oxide, the SOI transistor has two gates, referred to as the front gate and
the back gate.

The equations for a fully depleted SOI MOSFET are virtually identical to
those for a bulk MOSFET. In particular, equations 7.4.31, 7.4.33 and
7.7.17 are applicable, such that the drain current and the subthreshold
slope are given by:
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and

The remarkable feature of the fully depleted SOI MOSFET is that its body
factor, n, is much smaller than that of a bulk MOSFET. Typical values
for n are 1.5 and 1.05 in bulk and SOI devices, respectively. As a result,
the current drive of SOI MOSFETs is higher than that of bulk devices, and
their subthreshold slope is sharper (better) than that of bulk MOSFETs.

Using SOI technology, fully depleted double-gate MOSFETs can be made
(Figure 7.41). In such a device the body factor is equal to 1. It has two
channels (at the top and the bottom of the device) and is relatively free
of short-channel effects.
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7.15. Advanced MOSFET concepts

As the features of MOS transistors are scaled to increasingly smaller
dimensions some parasitic effects that were considered negligible in longer
devices must be taken into account. This Section covers the most
important of these effects.

7.15.1. Polysilicon depletion

Heavily doped polysilicon is the most widely used gate material in
silicon MOSFETs. Typical doping concentrations are on the order of
several times Consider an N-type polysilicon gate used
for an n-channel MOSFET. When a positive bias is applied to the gate
the polysilicon in the gate “sees” the silicon underneath the gate oxide as
a negatively biased electrode. This tends to deplete the bottom of the gate
of electrons.[33] As a result, the capacitance between the quasi-neutral
gate material and the silicon surface is no longer equal to but to

where is the thickness of the depleted polysilicon
layer at the bottom of the gate. Consider an n-channel MOSFET with a 3
nm-thick gate oxide and an polysilicon gate with a doping
concentration The maximum depletion depth in the
polysilicon can be calculated using 7.2.37 and is equal to 3.8 nm at room
temperature. Under these conditions, the measured gate oxide capacitance
is 30% smaller than The effect of polysilicon depletion on the C(V)
curves of an MOS capacitor is illustrated in Figure 7.42. The reduction of
gate oxide capacitance reduces the current drive of the MOSFET,
according to Equations 7.4.38 and 7.4.40.
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7.15.2. High-k dielectrics

To achieve a large current drive in a MOSFET a large is
desirable. As the thickness of the gate oxide is reduced below a few
nanometers, however, tunnel current can flow between the gate and the
substrate. One method used to increase without generating excess gate
current is to use materials other than as gate the dielectric. These
materials have a high dielectric constant value, compared to

and are called “high-k dielectrics”. Table 7.3 lists some materials
being studied for use as a MOS gate dielectric.

7.15.3. Drain-induced barrier lowering (DIBL)

The source and drain of a MOSFET form PN junctions within the
substrate. The width of the depletion regions associated with the junctions
increase with applied reverse bias. Consider an n-channel MOSFET with
grounded source and substrate. If the channel is long enough (Figure
7.43A) the application of a drain bias does not modify the potential
barrier of the source junction. In a short-channel device (Figure 7.43B),
on the other hand the potential barrier at the source can be reduced by a
value depending on the drain bias. This reduction of the potential
barrier reduces the threshold voltage. The magnitude of the drain-induced
barrier lowering effect is usually defined by the following relationships:

or

where is usually equal to 50 or 100 mV and to 1 or 1.5 V.

In extreme cases the potential barrier at the source can become so
small that the current between source and drain is no longer controlled by
the gate. This phenomenon is called “punch-through”.
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7.15.4. Gate-induced drain leakage (GIDL)

When a negative gate bias is applied to an n-channel MOSFET a
depletion region can be created in the drain region overlapped by the gate
(Figure 7.44A). This effect is also seen when the drain voltage is positive
while the gate is grounded. Since the doping concentration in the drain is
typically high the depletion region is very thin and therefore, an intense
vertical electric field occurs at the drain. Under these conditions electron-
hole pairs are generated through band-to-band tunneling of electrons from
the valence band into the conduction band, as shown in Figure 7.44B. The
generated holes create a substrate current and the electrons a drain current
that increases with increased negative gate voltage (Figure 7.45).
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7.15.5. Reverse short-channel effect

To reduce the DIBL effect in a short-channel MOSFET the substrate
doping concentration can be increased at the edges of the source and drain
junctions. These regions with increased doping concentration are
commonly called “halos” (Figure 7.46). When the channel length is
reduced in halo devices the average channel doping concentration (per
gate unit length) increases. This causes the threshold voltage to increase
when gate length is reduced. This phenomenon is called the “reverse
short-channel effect”. [37] At shorter gate lengths, however, the regular
short-channel effect described in Section 7.11 becomes dominant and the
threshold voltage drops.
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7.15.6. Quantization effects in the inversion channel

When derived using Poisson's equation, the electron profile in the
channel is an exponential function of depth with a maximum at x=0.
When the derivation of the electron profile is carried out taking quantum
mechanical effects into consideration, i.e. using both the Poisson and
Schrödinger equations, it is observed that the electron wave function is
close to zero at the oxide/silicon interface and that the electron
concentration peaks at a depth approximately equal to one nanometer
from the interface (Figure 7.47). As a result the distance between
the inversion charge centroid and the gate electrode is larger than the
physical gate oxide thickness The equivalent, "effective" gate oxide
thickness is given by:

where is the depth of the peak electron concentration. The increase of
effective oxide thickness reduces and therefore, reduces the current
drive of the MOSFET, according to Equations 7.4.38 and 7.4.40.
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Important Equations
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Problems

Problem 7.1:
If you have not already done so, now is a good time to solve Problem 2.4. In this
problem the potential, electric field and charge distribution in a MOS capacitor are
analyzed.

Problem 7.2:
1) Plot (maximum depletion depth) in silicon, at room temperature, as a
function of the substrate doping concentration  Plot the x-
axis on a log scale and the y-axis on a linear scale.

2) We have an MOS capacitor. The silicon substrate is P-type. The area of the MOS
capacitor is We measure the low-frequency (quasistatic) C-V curve shown in
Problem Figure 7.2 with and What is the
gate oxide thickness, and what is the P-type doping concentration (assume the
doping concentration is uniform in the silicon)?
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Problem 7.3:
Consider a MOSFET fabricated 15 years ago. The parameters are:

Gate oxide thickness:
Substrate doping concentration (P-type):

Gate material: (poly)silicon
Charge in the oxide:

Interface trap density:

1) Calculate the threshold voltage.
2) What happens to the threshold voltage if the device gets contaminated during
fabrication, and the oxide charge is increased by a factor 5 such that

Consider a MOSFET fabricated today. The parameters are:
Gate oxide thickness:

Substrate doping concentration (P-type):
Gate material:         (poly)silicon

Charge in the oxide:
Interface trap density:

3- Calculate the threshold voltage.
4- What happens to the threshold voltage if the device gets contaminated during
fabrication, and the oxide charge is increased by a factor 5 such that

5- Compare results from 2 and 4 (the variation of threshold voltage due to
contamination), and explain the differences between the "old" device and the "new"
one.

Problem 7.4:
Consider a MOSFET having the following parameters:

Gate oxide thickness:
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Substrate doping concentration (P-type):

Using the following equations:

Problem 7.5:
Consider the following circuit (One resistor plus one n-channel MOSFET). Consider
that the current in the transistor is equal to zero if

Plot as a function of  for and ranges
from 0 to 3 volts per steps of 10 mV. Use both a linear and a logarithmic scale for
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The transistor parameters are:

Plot as a function of for ranging from 0 to 5 V per steps of 0.01 V,
and for and Plot the 5 curves on a single
graph. Use the simplified current model with n=l (Equations 7.4.38-40).

Problem 7.6:
Consider a MOSFET having the following parameters:

Gate oxide thickness:
Substrate doping concentration (P-type):

Gate material: (poly)silicon
Charge in the oxide:

Interface trap density:

On a single graph plot as a function of where ranges from 0 to 5V. Let
and 5 V for each vs. plot. Use the following equations:

the complete model; Equations 7.4.17 - 7.4.18
the simplified model; Equations 7.4.31 - 7.4.33
the simplified model with n=l (Equations 7.4.38 - 7.4.40)

Problem 7.7:
Using Matlab, plot the threshold voltage as a function of gate length (short channel
effect, Equation 7.11.7) in an n-channel MOSFET with the following parameters:

and Let the gate length
range from to

Problem 7.8:
Using Matlab, calculate the evolution of threshold voltage in an n-channel MOSFET
with temperature, from 0 to 300°C. The p-type substrate doping concentration is
equal to The gate oxide thickness is 25 nm. The gate material is
degenerately doped N-type polycrystalline silicon. Under that doping condition,

in the polycrystalline material. The flatband voltage is given by the difference
in Fermi levels between the gate material and the silicon substrate,
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Assume there are no charges in the oxide and no interface states

Problem 7.9:
The Figure below shows a CMOS inverter. It contains an n-channel and a p-channel
transistor. Using Matlab, plot the transfer characteristics of this inverter (i.e.: plot

as a function of Use the simplified current model with n=l (Equations
7.4.38-40). The transistors have the following parameters:

The supply voltage, is equal to 5 V.
The threshold voltage of the N and P-channel devices are V and

respectively.

Note that

Comment on the differences between the inverter in problem 7.5 and the inverter of this
problem.

Problem 7.10:
Using Matlab and the EKV model (see Section 7.8), plot the following curves for an
n-channel MOSFET:

and 5V
for
for
for

and
and

and 5V
and (on both linear and log scale for
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Use the following parameters:
W=10 L=l and n=1.4. The leakage current of
the drain junction is 0.1 pA (add 0.1 pA to the drain current obtained from Equation
7.8.3). Include mobility degradation effects and

Problem 7.11:
The threshold voltage of an n-channel MOSFET having a degenerately doped
polysilicon gate is 0.7 V. What would the threshold voltage be if the gate material
was degenerately doped polysilicon, all other fabrication parameters being
unchanged?

Problem 7.12:
An n-channel MOSFET has the following parameters:

There are no charges in the oxide and no interface traps and the gate is made out of
degenerately doped polysilicon.
Calculate the threshold voltage when the source voltage is 0 V and 5 V. The
substrate is grounded and taken as voltage reference.

Problem 7.13:
These characteristics were measured on an n-channel MOSFET (Problem
Figure 7.13). Source and substrate are grounded. The gate oxide thickness is 25 nm.
W=10 and L=2 Calculate the mobility of the electrons in the channel,
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Problem 7.14:
A silicon n-channel MOSFET has the following parameters:

W = L= 1
Gate material is polysilicon

1: Calculate the current in the transistor.

vary by Each of these parameters is independent of the others. The increase of
some of these parameters will increase the current and the increase of other
parameters will decrease the current. Calculate the maximum "worst case" increase
and decrease of current that can result from the variation of and
Use the simplified model (Equations 7.4.31-33)

Problem 7.15:
An n-channel MOSFET is used in an integrated circuit operating in a satellite. This
MOSFET is continuously exposed to ionizing radiations, at a dose rate of 0.1

per second. The is the unit of energy deposition in and is
equivalent to the deposition of 1 erg of energy in that material. The dose of radiation
absorbed in D, is equal to the dose rate times the duration of the exposure to
radiation. Upon irradiation positive charges are created in the oxide. Passed a given
absorbed dose, however, the creation of charge saturates according to the following
expression:

where D is the absorbed dose (in and is a critical dose equal to 2 ×
In parallel to that process interface traps are created. The density of

these traps, increases linearly with the radiation dose according to the following
law:

The threshold voltage of the device is given by an equation similar to 7.3.8:

where Both and
are equal to zero before irradiation. We assume T = 300K.

1) Plot the threshold voltage as a function of the irradiation time for times ranging
from 1 second to seconds using a log scale for time.

2: Because of unavoidable fabrication parameter fluctuations,        and  can
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2) Plot the saturation current, for a supply voltage of 5 V, as a function of time
The mobility of the electrons in the channel is 650

and Use the simplified current model with n=l
(Equations 7.4.38-40).
3) The saturation current of the transistor before irradiation is 7.4 mA. The circuit
will fail operating properly if the drain saturation current falls below 6 mA. How
long will the circuit be able to operate properly (in years)?

Problem 7.16:
Using a numerical solution for Poisson's equation (see Problem 2.4):

1) Plot the charge in the silicon of an MOS capacitor as a function of surface
potential and gate voltage in order to obtain curves similar to that of Figure 7.10.
The gate insulator material is (thickness = 15 nm), and the flat-band voltage is
0V.

Plot the curves for The silicon is P-type and the doping

concentration, is equal to T=300K.
The gate voltage, is equal to: where the total charge in
silicon, is equal to the accumulation charge + the depletion charge + the
inversion charge.

2) Plot the MOS capacitance as a function of to obtain a quasi-

static capacitance-voltage characteristics similar to that of Figure 7.8.
Use the following data:

q=1.6e-19;
epsil=8.854e-14;
esi=epsil*11.7;
k=l. 3805e-23;
ni=1. 45el0;

Na=5el6;
T=300;
eox=epsil*3.9;
tox=150e-8;

% electron charge (C)
% Permittivity of vacuum (F/cm)
% Permittivity of silicon (F/cm)
% Boltzmann constant (J K-l)
% Intrinsic carrier concentration in
% silicon at room temperature
% substrate doping
% temperature (K)
% Permittivity of SiO2 (F/cm)
% Gate oxide thickness (cm)

Tip: In this problem we recommend using a sample thickness different than
since there is no depletion zone when the device is in accumulation or in flat-band
situation. The recommended sample thickness is where is the Debye

length (Expression 7.2.10) and where

7.2.26). To avoid convergence problems when we suggest linearizing the
right-hand term of the Poisson equation. This can be done the following way: the
result of the n-th iteration is used as an initial solution for the n+1 iteration, such
that where is small. Since is small the
exponential terms in Poisson's equation
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can be developed in a series. In a discrete form this linearization step yields:

and

and the discrete Poisson equation, which was originally

now becomes:

Once a is found the corresponding is obtained by adding to

Problem 7.17:
Using a numerical solution for Poisson's equation (see Problem 2.4), plot the

subthreshold current of an n-channel MOS transistor. Plot the curve for

Calculate the subthreshold slope (in millivolts per decade) using

= 50 mV. Note that Equation 7.7.1 can be rewritten:

For any value of the surface potential the electron concentration at x=L
corresponds to a surface potential The gate insulator
material is (thickness = 20 nm), and the flat-band voltage is -0.8V.The silicon
is P-type and the doping concentration, is equal to Assume
T=300K and The gate voltage, is equal to:

with the total charge in the silicon, equal to the
accumulation charge + the depletion charge + the inversion charge. Use the
following data:

% electron charge (C)
% Permittivity of vacuum (F/cm)
% Permittivity of silicon (F/cm)

q=1.6e-19;
epsil=8.854e-14;
esi=epsil*11.7;
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Problem 7.18:
Consider the MOS capacitor shown in Problem Figure 7.18a. The doping
concentration in the P-type silicon is The width of the silicon sample
is 1 and its thickness is The oxide thickness is The gate is

wide and surrounded by a grounded electrode called a "guard ring". The back of
the sample is grounded.
To solve the two-dimensional Poisson equation the structure is represented by t × t
mesh points (t=11 is the maximum mesh points allowed by the Student Edition of
MATLAB, but a larger number of mesh points can be used with the Professional
Version of MATLAB). The distance between mesh points is
(Problem Figure 7.18b).

%
%
%
%
%
%
%
%
%
%

k=1. 3805e-23;
ni=1.45e10;

Na=5e16;
T=300;
eox=epsil*3.9;
tox=200e–8;
mu=600;
W=1e-4; L=1e-4;
VFB= -0.8;

Boltzmann constant (J/K)
Intrinsic carrier concentration (cm-3)
in silicon at room temperature (cm-3)
substrate doping (cm-3)
temperature (K)
Permittivity of SiO2 (F/cm)
Gate oxide thickness (cm)
Electron mobility (cm2/Vs)
Gate width and length (cm)
Flat-band voltage (V)
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The two-dimensional Poisson equation is:

In a discrete form, second derivatives at node (i,j) are given by:

and

R is a vector containing both the boundary conditions and the values

where A is a matrix representing the Laplace operator, is a vector
containing the potential at each mesh point, and R is the right term of the equation.

Since we have:

The latter expression must be solved at every mesh point, except at nodes (l,j) and
(t,j) where the potential is known (boundary conditions) and at nodes (i,l) and (i,t)
where one has to solve the ID Poisson equation given by Equation (3) (see Problem
2.4).

The discrete Poisson equation has the following matrix form:
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If we were using a 4 x 4 mesh instead of a 11 × 11 mesh the discrete Poisson
equation would be:

where and are the boundary conditions and

Note that matrix A is composed of 4 types of t × t blocs:

Use the MATLAB function "repmat" to assemble these different blocks and build
matrix A.

Question: Using the following data:

produce the following 3D plots:

Potential in the silicon and silicon dioxide vs. x and y
Log of hole concentration in the silicon vs. x and y
Log of electron concentration in the silicon vs. x and y
Arrow plot of the electric field in the silicon vs. x and y (using the "quiver"
plot function).
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Problem 7.19:
Using Relationship 7.2.18 plot the surface potential and the potential drop in the
gate oxide in an MOS capacitor in accumulation using the following
parameters:

ranges from 0 to -5 volts

Problem 7.20:
Consider the CMOS inverter shown in Problem Figure 7.20. Using the EKV mode
plot the output characteristics for                                On a separate graph
plot the current going through the transistors as a function of input voltage
Consider the output terminal an open connection. Therefore, the current in the n
channel transistor is always equal to the current in the p-channel transistor.

The n-channel transistor parameters are:

The p-channel transistor parameters are:

Problem 7.21:
Derive 7.4.17 from 7.4.15

Problem 7.22:
Derive 7.4.31 from 7.4.30
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Chapter 8

THE BIPOLAR TRANSISTOR

8.1. Introduction and basic principles

The first bipolar transistor was realized in 1947 by Brattain, Bardeen
and Shockley.[1] The three of them received the Nobel prize in 1956 for
their invention. In a bipolar transistor current is due to transport of both
electrons and holes, unlike unipolar devices such as the JFET and the
MOSFET where current is due to transport of one type of carrier only.
The bipolar transistor is composed of two PN junctions and hence is also
called the "Bipolar Junction Transistor" (BJT).

There are two types of bipolar transistors: the NPN transistor, in which a
P-type region is sandwiched between two N-type regions, and the PNP
transistor, where N-type silicon is confined between two P-type regions.
Here, we will consider only the case of an NPN device shown in Figure
8.1. The equations for a PNP transistors can easily be obtained from the



252 Chapter 8

expressions derived for the NPN transistors, provided that the
appropriate sign changes are made. In an NPN device the two N-type
regions are called "emitter" and "collector", and the P region is called
"base". The distance between the two metallurgical junctions is noted W,
and the length of the neutral base, defined as the distance between the two
space-charge regions generated by the junctions, is noted (Figure 8.1).

8.1.1. Long-base device

If no bias is applied to the device terminals both
junctions are at thermal equilibrium and there is no current flow (Figure
8.2).

If the emitter-base junction is forward biased for a
silicon device) current flows through the emitter-base junction. Holes are
injected from the base into the emitter where they recombine with
majority carriers (electrons). Similarly, electrons are injected from the
emitter into the base where they recombine with the local majority
carriers (holes). If the collector-base junction is reverse-biased, only a
small reverse current (the collector-base junction saturation current) flows
between base and collector.

If the width of the neutral base, is large enough, all the electrons
injected by the emitter into the base recombine in the P-type material,
because the base width is larger than the electron diffusion length in the
base There is no interaction between both junctions and
therefore no current flowing between emitter and collector. Neglecting
the small reverse current in the collector-base junction, the only current
flowing through the device is between the base and the emitter:
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8.1.2. Short-base device

Consider now a device with a short base. The term "short base" implies
that the neutral base width is smaller than the electron diffusion length:

Let the emitter-base junction be forward biased
and the collector-base junction be reverse biased

Because the length of the neutral base is smaller than the diffusion length
for electrons in the base, a number of electrons injected from the emitter
into the base can diffuse to the collector-base junction depletion region,
at Once there, they are accelerated by the electric field of the
depletion region and transported into the collector (Figure 8.3).

In modern bipolar transistors a large portion (99% or more) of the
electrons injected by the emitter into the base reach the collector. It is
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worth noting that the magnitude of current flowing in the collector does
not depend on magnitude of the collector voltage; the collector-base
junction simply needs to be reverse biased. Rather, the collector current is
fixed by the bias applied to the emitter-base diode. This effect, in which
the current in a junction is controlled by the bias applied to another
junction, is called "transistor effect". An NPN bipolar transistor with a
forward-biased emitter-base junction and a reverse-biased collector-base
junction is said to operate in the forward active mode. The symbolic
representation of an NPN bipolar transistor in Figure 8.4 shows the
conventions for current direction and applied voltages in the device.

It is possible to bias the device differently than in the forward active
mode:

If both junctions are forward biased the transistor is said to be in saturation. In
that case electrons are injected from the emitter through the base into the
collector and from the collector through the base into the emitter.

If both junctions are reverse biased there is no current flow at all and the device is
in the cut-off mode.

If the emitter junction is reverse biased and the collector junction is forward
biased the transistor operates in the reverse active mode. Although this mode
of operation appears to be very similar to the forward active mode, poor
performances are obtained from transistors operating in the reverse biased
mode. As we will see later, this is due to the use of different doping
concentrations in the emitter and the collector.

Let us consider a bipolar transistor biased in the forward active mode. The
current flowing through the emitter junction is given by the sum of the
hole current injected from the base into the emitter and the electron
current injected from the emitter into the base (Figure 8.5). The ratio
between these two current components can be obtained using Equation
(4.4.23) at and Equation (4.4.24) at

where and are the doping concentrations in the base and the
emitter, respectively.

The collector current, is due to the diffusion through the base of
electrons injected by the emitter into the base. A very small portion of
the electrons injected in the base are lost due to inevitable recombination
in the base. is equal to where is the current due to the
recombination of electrons in the base (Figure 8.5). The collector current
is directly proportional to the electron current injected by the emitter in
the base, and the base current is proportional to the hole current injected
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by the base into the emitter. As we will see later the gain of a bipolar
transistor is defined as the collector current divided by the base current.
Since high gain values are desirable, a higher doping concentration is used
in the emitter than in the base, which yields a high electron to hole
current ratio in the emitter-base junction, according to Equation 8.1.1.

When the transistor is operating in the forward active mode the collector
junction is reverse biased. Any current flowing through the collector can,
therefore, not originate from that junction. Figure 8.5 shows the electron
and hole currents in the device. A hole current, IpE is injected by the base
into the emitter. Once inside the emitter these holes recombine with
majority carriers (electrons). A larger electron current, is injected
from the emitter into the base. Some of these electrons recombine with
holes in the base, giving rise to another hole current, IrB. The majority of
the electrons, however, go through the base without recombining and give
rise to a collector current, The base current is equal to
Using the convention for current direction of Figure 8.4 and Kirchoff's
current law we can write:

Since the transistor is designed in such a way that the emitter
and the collector current are almost equal in magnitude. One can define a
parameter called the "common-base gain", noted

or:

and thus:
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The common-base current gain, describes the relationship between
emitter and collector currents when the base is grounded. It represents the
ratio of the number of electrons reaching the collector to the number of
electrons leaving the emitter. Parameter is the "common-emitter
gain" which describes the relationship between collector and base currents
when the emitter is grounded. Most of the time, is simply called
"current gain". Common-base and common-emitter configurations are
shown in Figure 8.6.

The value of in typical bipolar transistors is approximately 0.99. As
a result, the value of the current gain, usually ranges between 50 and
300. There are, however, transistors called transistors" which
have current gains higher than 1,000 or even 10,000.

The common-emitter configuration illustrates the amplification effect
created by the bipolar transistor: any current supplied to the base
corresponds to a collector current which is times larger than
From the PN junction theory we know that the potential drop in a
forward-biased junction can be considered as a constant, which is
approximately equal to 0.7 V in silicon (see Section 4.6.1). Therefore,
the base-emitter voltage, in a silicon bipolar transistor biased in the
forward active mode is assumed equal to 0.7 V (0.35 V in germanium).

8.1.3. Fabrication process

Before investigating the physics of the bipolar transistor it is
interesting to understand how it is fabricated. To fabricate an NPN device
the starting material is a P-type silicon substrate. A heavily doped N-type
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region is locally formed at the surface of the silicon. This region is called
a "buried collector" and its function is to create a low-resistance path
between the lightly doped collector underneath the active region and the
collector contact at the surface of the device (Figure 8.7). Making use of
a P-type substrate insures that transistors on a same chip are electrically
insulated from one another by reverse-biased PN junctions (the buried
collector-substrate junctions). A layer of single-crystal, N-type silicon is
then grown in an operation called "epitaxy". Silicon dioxide is then
used to isolate the BJTs from one another laterally. An N-type region is
diffused to connect the buried collector to the surface. The active region
(where the transistor effect takes place) of the device is formed next
using the diffusion of P-type impurities to form the base and N-type
doping atoms to form the emitter.

Figure 8.8 shows the doping impurity profile in the bipolar transistor as a
function of depth in the silicon along a cut through the center of the
active region. In this example impurities in the emitter and the base are
diffused from the silicon surface. The impurity concentration in the
epitaxial collector remains constant. The base is located where the P-type
impurity concentration is larger than the N-type impurity concentration.
The emitter-base metallurgical junction is located at the depth where the
emitter arsenic profile and the base boron profile intersect. The collector
junction is located at the point where the base P-type concentration is
equal to the doping concentration in the N-type collector. It is worth
noting that which insures that the electron current injected by
the emitter into the base is much larger than the hole current injected by
the base into the emitter (Equation 8.1.1).
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8.2. Amplification using a bipolar transistor

Consider the simple amplifier composed of an NPN bipolar transistor
and two resistors shown in Figure 8.9. The power supply is held at a
constant positive voltage, The input signal is delivered by the voltage
source The output signal, is measured between collector and
emitter. The transistor is biased in the forward active mode due to its
configuration with the supply voltage.

The relationship between the output voltage and the input voltage can
be obtained using basic circuit theory. Using Ohm's and Kirchoff's laws
one finds:
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Since the transistor operates in the forward active mode we have:

Combining these relationships we obtain:

Thus any variation of the input voltage corresponds to a variation
of the output voltage. That variation is proportional to since:

Therefore the output signal is equal to the input signal multiplied by a

voltage amplification factor Note that there is a 180° phase

difference between the output and input signals indicated by the minus
sign between and If we multiply the equation

by we obtain:

In this expression is the power supplied by the power supply,

is the power dissipated in the load resistor and is the power

dissipated in the transistor. The later term is the price one has to pay to
obtain amplification by the transistor.

Example
Calculate the small-signal voltage gain and dc power dissipation of the circuit in
Figure 8.9 for where is considered small
compared to and Verify that the
collector-base junction is reverse biased.

C-B junction is
reverse biased.

8.3. Ebers-Moll model

In 1954 J.J. Ebers and J.L. Moll developed a model for the bipolar
transistor which is still used in modern circuit simulators. [6]
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Consider the NPN bipolar transistor in Figure 8.10. The width of the
quasi-neutral regions in the emitter, base, and collector are noted
and respectively. The boundaries of the space-charge (depletion)
regions are noted and for the emitter-base junction and and

for the collector-base junction. To simplify the study of the device
we will assume that the impurity concentrations in the emitter, base and
collector are constant.

To calculate current in the transistor one must use the continuity
equation in the base:

where U is the SRH (Shockley-Read-Hall) generation/recombination term
for minority carriers (Equation 3.5.20). The equilibrium concentration of
electrons in the P-type base is given by:

In the absence of an electric field, current in the base is strictly due to
diffusion. Electrons injected by the emitter at x=0 diffuse until they
reach The electron current density in the base is equal to:

If we assume steady-state Equations 8.3.1 and 8.3.3 can be

combined and yield the following relationship:
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where is the diffusion length of the electrons in the base,
which represents the average distance along which electrons can diffuse
in the base before recombining.

The solution to Equation 8.3.4 has the following form:

where A and B are integration constants which will be calculated using the
Boltzmann relationships 2.7.1. and 2.7.2 as boundary conditions. The
Boltzmann relationships give us the electron concentration in the base at
the edge of the space-charge regions of the emitter and collector
junctions, i.e. at x=0 and

from which A and B can be extracted:

Using the boundary condition

and

we find:

and since

we find:

Knowing integration constants A and B we can now write the electron
concentration as a function of x in the base:
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which can be rewritten:

Expressing and n(0) as a function of the applied voltages using
8.3.6 we finally obtain:

The diffusion current at the emitter-side edge of the neutral base (x=0) is
equal to:

The electron concentration profile, n(x), is shown in Figure 8.1.1.
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At the collector-side edge of the neutral base the diffusion
current is equal to:

The hole concentration profile in the emitter and the collector can be
found using the PN junction theory, assuming that the width of the quasi-
neutral N-type regions are much larger than the hole diffusion length.
The hole current injected by the base into the emitter can be found using
Relationship 4.4.23 for

where is the equilibrium hole concentration in the emitter. Similarly,
the hole current flowing from the base into the collector at is equal
to:

where is the equilibrium hole concentration in the collector. The
emitter current encompasses both the current of electrons injected by the
emitter into the base and the current of holes injected by the base into
the emitter.

If the area of the cross section of transistor is noted A, we can write:

which, using 8.3.8 and 8.3.10, yields the emitter current for the Ebers-
Moll model:
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Similarly the collector current is given by:

which, using 8.3.9 and 8.3.11, yields:

These expressions can be simplified by defining the emitter junction
reverse saturation current, as the current that flows in the emitter
when the emitter-base junction is reverse biased and the
collector is short-circuited to the base

In a similar way one can define the collector junction reverse saturation
current, as the current that flows in the collector when the
collector-base junction is reverse biased and the emitter is short-
circuited to the base

The forward common-base gain, is defined as the ratio of collector
to emitter current when the collector is shorted to the base
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which can be rewritten:

In a similar way the reverse common-base gain, is defined as the
ratio of emitter to collector current when the emitter is shorted to the
base

which can be rewritten:

Finally, the Ebers-Moll Equations 8.3.13a and 8.3.13b can be written in a
compact form using the parameters defined in Expressions 8.3.14 to
8.3.17, as a function of applied biases and

and

or, in a matrix form:
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In the case of a PNP transistor the Ebers-Moll equations are:

These equations accurately describe the current of a bipolar transistor for
any mode of operation, i.e. they predict the current for all permutations
of biasing of and By adding Kirchoff's current law,
the base current can be derived as well. The four parameters used in the
Ebers-Moll equations and are not independent from
one another, and any of these parameters can be calculated if three are
known using the so-called reciprocity relationship:

In the forward active region the transistor encompasses two diodes, the
first of which is the forward-biased emitter-base junction in which flows a
current given by:

The second diode (the collector-base junction) is reverse biased and the
current flowing through it is:

Combining the two latter Relationships with Expression 8.3.19 we can
write:

and an equivalent circuit of the transistor can be drawn (Figure 8.12).
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Note: is called the "reverse active, common-base gain". It is defined in a
similar way to represents the common-base gain of a device biased in
the reverse active mode, where and The reverse active gain,
is much smaller than the forward active gain, because the collector doping
concentration is smaller then the doping concentration in the emitter

(see Section 8.2). The bipolar transistor is not a
symmetrical device, unlike the MOS transistor where the source and drain are
interchangeable without modifying device operation. It can be noted, however,
that if the doping impurity concentration in the collector, is equal to that
in the emitter, and if the base concentration, is constant as a function
of x, then the device becomes symmetrical

The model presented in Figure 8.12 is not often used in practice because
it calls for two parameters, and that cannot be easily measured.
To circumvent that problem the Ebers-Moll equations can be written in a
different form.

Let us note the saturation current flowing in the collector when the
collector junction is reverse biased and the emitter is left open In
that case the Ebers-Moll equations become:

from which we conclude:

Similarly we can define as the saturation current flowing in the
emitter when the emitter junction is reverse biased and the collector is
left open in which case we have:

from which we conclude:

It is worth noting that there exists a reciprocity relationship between
and that is similar to that defined in Expression 8.3.20 since we

have:
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The Ebers-Moll equations can, therefore, be re-written in the following
form::

Eliminating

one obtains:

between the equations for and

and the elimination of

and yields:

between the expression of

Equations 8.3.27 and 8.3.28 show that emitter and collector currents are
each made up of two components: a diode-like junction current (a reverse
current for the collector junction and a forward current for the emitter
junction when the device is biased in the forward active mode) and a
current imposed by a current source It is important to
note that each of these currents can be obtained by a direct measurement
of the device. This new formulation of the Ebers-Moll equations can be
represented by the equivalent circuit of Figure 8.13.

8.3.1. Emitter efficiency

In an "ideal" bipolar transistor the base current should be much smaller
than the emitter and collector currents. Similarly, the hole current
injected by the base into the emitter should be much smaller than the
electron current injected from the emitter into the base, and from there,
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into the collector. One defines the emitter efficiency, as the ratio of
the electron current injected from the emitter into the base to the total
current in the emitter-base junction. The latter current is the sum of the
electron current injected from the emitter into the base and the hole
current injected by the base into the emitter with the collector shorted to
the base:

Using 8.3.8 and 8.3.10 one can write:

In modern bipolar transistors the width of the neutral base is much
smaller than the diffusion length of the electrons in the base, such that

In that case the term tanh can be approximated by
and one obtains:

The latter relationship explains why a higher doping concentration is
used in the emitter than in the base: the emitter efficiency is large (close
to 1) if the following inequalities are met:

A similar conclusion has already been drawn from analyzing the different
parameters in Relationship 8.1.1.

8.3.2. Transport factor in the base

The success rate at which the electrons injected into the base reach
the collector is measured by a parameter called "transport factor in the
base" and noted It represents the percentage of electrons which have
"escaped" recombination with holes (majority carriers) during their
journey through the base and is defined as the current of electrons
reaching the collector after crossing the base divided by the current of
electrons injected by the emitter into the base:
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Using 8.3.8 and 8.3.9 one can write:

From this Relationship it is clear that is large if is small, i.e. if
the base width is small or if the diffusion length of the electrons in the
base is large. In modern bipolar transistors the following relationship is
verified: One can, therefore approximate                          by

and one obtains:

It is easy to verify that when the collector is shorted to the base the
common-base gain, is given by the product of the emitter efficiency
by the transport factor in the base:

The common-emitter gain, is given by 8.1.5: Because

most analog amplifiers use the common-emitter configuration we might
ask what can be done to achieve a high common-emitter gain. Large gain
transistors can be achieved by varying some processing parameters during
device fabrication, such as:

A reduction of base width which yields devices with higher transport factor
in the base, and hence higher gain. The base width of bipolar transistors has
been reduced from tens of micrometers in 1954 to 0.1 or less today.

A higher doping concentration in the emitter than in the base
to increase the emitter efficiency.
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Polysilicon can be used as the emitter material. In that case the interface
between the silicon base and the polysilicon decreases the hole current
injected by the base into the emitter, which increases the emitter
efficiency.[9]

Alternative base materials, such as silicon-germanium alloys, can be used to
decrease the hole current injected by the base into the emitter, which
increases the emitter efficiency (see Section 9.2).

If the base width is small the hyperbolic functions in
Relationship 8.3.7 can be linearized and the electron concentration in the
base becomes a linear (straight line) function of the position, x. Equation
8.3.7 therefore becomes:

In such a case the electron current density is constant and independent of
the position in the base (i.e., the slope of the concentration gradient
dn/dx is constant):

It is worth noting that assuming that the minority carrier distribution in
the base is linear is equivalent to neglecting recombination in the base.
This can easily be verified by using the drift-diffusion and steady-state
continuity equation for electrons in the base:

Figure 8.14 show the distribution of carriers in a thin-base transistor
biased in the forward active mode.
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It is also worthwhile noting that the transport factor in the base, is
equal to 1 when there is no recombination of electrons in the base.

8.4. Regimes of operation

The Ebers-Moll Model can be used to describe the different possible
regimes of operation of the bipolar transistor, which depend on the bias
applied to the different device terminals. Figure 8.15 shows these
different regimes of operation as a function of the two junction biases.

If both emitter-base and collector-base junctions are reverse biased, the transistor is
in cut-off and no carriers are injected into the base.

If both emitter-base and collector-base junctions are forward biased, the transistor
is said to be in saturation and minority carriers are injected into the base by both
the emitter and the collector.

If the emitter-base junction is forward biased and the collector-base junction is
reverse biased the device is operating in forward active mode. Electrons are
injected by the emitter into the base and most of them are collected by the
collector. If the transistor is a silicon device the potential drop across the emitter
junction is equal to 0.7 V.

If the emitter-base junction is reverse biased and the collector-base junction is
forward biased the device is operating in reverse active mode. Electrons are
injected by the collector into the base and are collected by the emitter. Since the
doping concentration in the collector is lower than that in the base the gain of the
transistor is very low (it is usually less than unity).
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Figure 8.16 shows the electron concentration profile in the base for each
operation regime, neglecting recombination in the base. Note that the
profile in saturation corresponds to the superposition of the forward
active and reverse active profiles where both emitter-base and collector-
base junctions are forward biased.

The distribution of minority carriers in the base can be calculated for all
regions of operation by using Relationship 8.3.36:

8.5. Transport model

The Ebers-Moll equations for an NPN transistor are given by
Relationship 8.3.19:

Using the reciprocity relationship 8.3.20 a saturation current, can be
defined:
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Using this saturation current the Ebers-Moll equations can be rewritten in
the following form:

The model can be optimized for use in the common-emitter configuration
by expressing the common-base gains, and as functions of the
common-emitter gains, and which gives:

and

Using the above equations one can write:

If we now define:

we obtain the following relationships:

Equation 8.5.6 highlights the fact that the emitter and the base share a
common current component, corresponding to the electrons
injected by the emitter and collected by the collector. The equivalent
circuit for the transport model is shown in Figure 8.17. This circuit
represents the "transport model" of the transistor since it illustrates the
transport of electrons from the emitter to the collector, apparently
without passing through the base. This is, of course, incorrect from a
device physics point of view, but perfectly valid from an equivalent
circuit point of view.
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When the device is operated in the forward active mode the equivalent
circuit corresponding to the transport model can be simplified, as shown
in Figure 8.18. In that case the coupling between the input of the device
(the base) and its output (the emitter) disappears.

8.6. Gummel-Poon model

The doping concentration in the base and the emitter of a real bipolar
transistor is not constant, as shown in Figure 8.8. The so-called Gummel-
Poon model accounts for inhomogenous distributions of doping
concentrations in the device. [12] We will use the same notations for the
device as previously, as shown in Figure 8.19. The different electron and
hole fluxes as well as the current components in the transistor are shown
in Figure 8.20.
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Giving positive values to and in Figure 8.20 one obtains the
following general relationships:

The current flowing into the emitter terminal is equal to the sum
of the magnitude of the electron current injected by the emitter into
the base and the hole current injected by the base into the emitter:

(Note that and have negative values referred to the direction of (See
Equations 8.3.8 and 8.3.10)). Therefore in the forward active mode the current flows
out of the emitter.

In Figure 8.20 the different current components have the following signs:

(electron flux in the +x direction)
(electron flux in the +x direction and/or hole flux in the -x direction)
(electron flux in the +x direction and/or hole flux in the -x direction)
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The base current is equal to the hole current injected by the base into
the emitter plus the current due to recombination into the base:

(In the forward active mode the base current flows in the base).

The collector current is given by:

(In the forward active mode the base current flows into the collector).

One can readily verify that

Calculations for and (or and will enable us to
determine the terminal currents, and using Relationships 8.6.1.a,
b and c. will be calculated in the following section using Expression
8.6.12.a. will be calculated in Section 8.6.1.1 and in Section
8.6.1.2.

Calculation of
In a non uniformly doped semiconductor, such as the emitter and the base
of a bipolar transistor, the presence of an impurity concentration
variation gives rise to an electric field in the semiconductor. When no
external bias is applied the equilibrium electric field,
can be calculated using the drift-diffusion equation for the majority
carriers (holes):

where is the electric field in the base in the absence of external bias.
Note that p and are functions of x, where x=0 at the boundary
between the emitter-base transition region and the quasi-neutral base, and
continues in the positive direction toward the collector (Figure 8.19)

Let us now analyze what happens when an external bias is applied to the
junctions. Assuming that the majority carrier concentration is not
perturbed by the injection of minority carriers in the base (low injection
condition) one can write in the neutral base:

Noting the electric field resulting from the applied bias the majority
carrier (hole) current density injected by the base into the emitter is given
by:
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The minority carrier (electron) current density in the base is equal to the
electron current density injected by the emitter into the base, and is given
by:

Eliminating between Equations 8.6.3 and 8.6.4 (see Problem 8.8) one
obtains:

Since n(x)<<p(x) in the base, and since Relationship 8.6.5
can be simplified into:

Eliminating from 8.6.4 and 8.6.6, we obtain:

Comparing the latter equation with 8.6.2.b we conclude that

Relationship 8.6.7 shows that the electric field in the base, is not
modified by the flow of electrons through the base. Similarly, substituting

for   in Equation 8.6.2a one finds that  It is, however,
worthwhile noting that such a conclusion can be drawn only in the low-
level injection regime.

If recombination in the base can be neglected, which is the case if the base
is thin, is constant and the latter equation can be integrated
between arbitrary positions in the neutral base, x and x':

Owing to Relationship 8.6.2b, the electric field in the base,

can be replaced by in Expression 8.6.4, which

yields:
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The pn product at the edges of the neutral base region is given by the pn
junction theory (Equation 4.4.29):

Integrating Relationship 8.6.9 over the neutral base (x=0 and one
obtains:

We will consider is constant and independent of the position, x. If
we define the total charge of majority carriers per unit area in the base,

as:

we finally obtain:

with:

Note that when and are negative, i.e. when both
junctions are reverse biased, and that is independent of the position,
x, in the base. This is due to the fact that electron recombination in the
base is neglected. As a result, and The injection
of electrons by the emitter into the base gives rise to an electron
concentration at that increases exponentially with and the
electron concentration at is virtually equal to zero since the
collector junction is reverse biased.
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The total charge of majority carriers in the base is given by the following

expression: where is called the "Gummel

number" in the base.[13] Using the Gummel number, Relationship 8.6.12b
can be rewritten in the following form:

Note: The current obtained using Expressions 8.6.12a and 8.6.13 is equal to the
current given by Expression 8.3.37 if the doping concentration in the base is
uniform. In that case the base Gummel number is simply equal to:
The Ebers-Moll model can, therefore, be considered as a subset of the Gummel-Poon
model.

8.6.1. Current gain

To calculate the current gain of a transistor one needs to know the
value of the current in the base. The base current can be divided into three
current components: the hole current injected by the base into the
emitter, the base current due to the recombination with electrons in the
base, and a base current component due to recombination of holes in the
emitter junction transition region. In a device biased in the forward active
mode, the latter component is much smaller than the two others and is
typically neglected in a first-order analysis. It will be dealt with, however,
when we study the variation of gain with current, in Section 8.8.1.

8.6.1.1. Recombination in the base

The recombination of electrons in the neutral base was neglected in
the calculation of in the previous Section. Recombination can be
accounted for using the SRH recombination theory developed in Section
3.5. We will maintain the assumption of low-level injection
in the base). The recombination rate is therefore simplified by Expression
(3.5.20):

where is the electron excess concentration in the base and is
their lifetime. Using the continuity equation 2.6.6a in absence of external
generation we have:
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The equilibrium electron concentration is In steady-state

one can thus write:

Noting that both n and NaB are functions of x, we can calculate the
current due to recombination by integrating the electron current density
variation over the base:

Since the concentration of the electrons injected by the emitter into the
base is much larger than the equilibrium electron concentration in the base

the latter equation can be simplified:

If the minority carrier concentration in the base is linearized, which is a
valid practice if the base is thin, one obtains, in the forward active mode

Once the value of n(x) is known, Equation 8.6.17, can be used to calculate
the recombination current in the base:

As previously calculated the loss of minority carriers in the base can be
represented by the transport factor in the base, which is defined as the
electron current reaching the collector divided by the electron current
injected into the base by the emitter,
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Using Relationship 8.6.12a we obtain:

and, therefore,

Using the latter Relationship in conjunction with Equations 8.6.19 and
8.6.20, one finally obtains:

where is the diffusion length of the electrons in the base.

Note: If the base doping concentration is homogeneous the base transport factor
derived in Equation 8.6.21 is identical to that of Expression 8.3.34 since, in that
case, and, therefore, the transport factorequals:

The Ebers-Moll model can, therefore, be considered as a subset of the Gummel-Poon
model.

8.6.1.2. Emitter efficiency and current gain

It is possible to calculate the hole current in the emitter using the same
technique as that used to derive the electron current in the base
(Equations 8.6.2a to 8.6.12b). If the doping impurity concentration in
the emitter is not homogeneous there exists an electric field,    within
the quasi-neutral emitter at equilibrium. Using the drift-diffusion equation
for the electrons in the emitter, and noting that the electron
concentration is a function of x, one obtains:

which yields, using Einstein's relationship

In the quasi-neutral emitter region we can write:
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If the non-equilibrium electric field is noted the majority carrier
current density in the emitter, when an external bias is applied, is given
by:

and the minority carrier current density is:

Eliminating between Equations 8.6.25 and 8.6.26 one obtains:

Using the low-level injection condition in the emitter p(x)<<n(x) and
writing Equation 8.6.27 can be written as:

Eliminating  from 8.6.26 and 8.6.28 we obtain:

Comparing the latter equation with 8.6.23 we conclude that

According to Equation 8.6.29 the electric field in the emitter remains
equal to its equilibrium value, even when an external bias is applied. It
is, however, worthwhile noting that such a conclusion can be drawn only
in the low-level injection regime.

Using Relationship 8.6.23, can be replaced by

in Equation 8.6.29, which yields:

or:

This equation is similar to that obtained previously for the electron
current in the base (Expression 8.6.8). To render the integration easier we
will consider the case where the length of the quasi-neutral emitter is
small In that case the recombination of holes in the emitter
can be neglected. Let us also assume that there is a metallic, ohmic
contact at the surface of the emitter which induces an infinite surface
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recombination. This condition imposes that the hole concentration at
is equal to its equilibrium value (Figure 8.21). In other words,

Under such conditions the hole distribution in the emitter is a

linear function of depth, and the hole current is constant throughout the
emitter.

The integration of between the edge of

the emitter depletion region, where

and at the ohmic contact, where yields the following

relationships:

from which we obtain:
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We can now define the "Gummel number" in the emitter as the total

concentration of doping impurities in the emitter:

where is expressed in

The emitter efficiency was defined in Expression 8.3.29:

Relationship 8.6.12a gives us the electron current injected into the base:

When the collector is shorted to the base we have:

Using these relationships can be calculated for non uniformly doped
devices utilizing the Gummel numbers:

It is worth noting that, as in the uniform doping case, the common-base
current gain, is equal to the product, which can easily be shown
using Equations (8.6.1.a) and (8.6.1.c):
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Note:

1.

2.

The higher the doping concentration in the emitter, the higher the Gummel
number in the emitter, and, therefore, the higher the emitter efficiency.

The emitter efficiency described by Relationship 8.6.34 is equivalent to that

obtained in Equation 8.3.31. Replacing by WE and substituting for

and for in Equation 8.3.31 one obtains:

3. In addition if the doping concentrations are homogeneous,

which is equivalent to Relationship 8.6.34. The

Ebers-Moll model can, therefore, be considered as a subset of the Gummel-Poon
model.

8.7. Early effect

We have so far considered that the collector current is independent of
the collector-base voltage when the device operates in the forward active
mode. This is not completely true, and the collector current actually
increases with the collector-base bias. This effect was explained by J.
Early in 1952 and is due to the modulation of the neutral base width,
by the applied collector-base reverse bias.[14]

Let us consider a bipolar transistor operating in the common-emitter
configuration. According to the models developed hitherto the
relationship between the collector current and the base current is:

which shows no dependence of the collector current on the
collector-base voltage, as long as Under such conditions the
bipolar transistor behaves as a perfect current source with infinite output
impedance, as can be seen on the output characteristics sketched in Figure
8.22. In an actual device the output impedance is finite because of the
Early effect caused by the modulation of the neutral base width. The



8. The Bipolar Transistor 287

mechanism giving rise to the Early effect is the following: any variation
of induces a variation of the width of the depletion region in the
base, at the collector-base junction (Equation 4.3.2). That variation
induces a variation of the neutral base width, and therefore, a variation of
the current gain. Since an increase of increases the width of the
depletion width, and therefore, a decrease of the neutral base width, the
collector current increases with accordingly.

The Early effect can be derived from the expression of the current
derived previously (Equation 8.6.10):

in the forward active regime. The variation of collector current resulting
from the base width modulation induced by can be expressed as
follows:
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or, if we define the Early voltage,

we obtain the output conductance:

Note that

and

In practice the base Gummel number, shows little variation with
As a result, the Early voltage can be considered constant in a given

device. In practice the output conductance, is measured when

i.e. for Note that  and that
in the forward active mode in a silicon device. We also have

The equation for the output characteristics, are,

therefore, given by :

All these characteristics intersect the x-axis at the same voltage,
It is, therefore, very easy to extract the Early voltage of a bipolar

transistor from its output characteristics, as shown in Figure
8.23.

It is easy to understand that the reduction of base width caused by an
increase of gives rise to an increase of collector current. We know
that the electron current, flowing from emitter to collector is
proportional to the gradient, or the slope, of the minority carrier
concentration in the base. Since the electron concentration at the
emitter-side of the base is fixed by and since the electron
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concentration gradient, dn/dx, must increase when the width of the
neutral base is reduced from to (Figure 8.24).

If the base width modulation is pushed to the limit, such that the
transistor is in punchthrough and the emitter and collector junction
space-charge regions touch one another. In such a case a large current can
flow from emitter to collector. This current is, however, no longer
controlled by the base current.
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8.8. Dependence of current gain on collector current

We have so far considered that the current gain in the transistor was
constant. In reality, it depends on the current level, although it remains
constant over a wide range of current values. The common emitter

current gain defined by the relationship is actually quite small

when the collector current is small. It then increases up to its nominal
value where it remains until the current in the device becomes quite large.
At that point, the current gain decreases again. The reduction of gain at
low current levels is due to recombination in the emitter-base transition
region. The reduction of gain at high current levels is due to high-level
injection and to the Kirk effect. For high-level injection all previous
assumptions may be invalid.

8.8.1. Recombination at the emitter-base junction

So far we have considered that there was no recombination in the
emitter-base junction space-charge region. Since the lifetime of the
carriers is not infinite the number of carriers exiting the space-charge
region is lower than the number that were injected into it. One can
associate a current to this loss of carriers. This recombination current,

is negligible under usual operation conditions, but it cannot be
neglected if the current level in the transistor is low, as shown in the PN
junction chapter.

The total electron current injected at the emitter-base junction is equal to
the sum of the electrons injected into the base, and the
recombination current in the junction depletion zone, (Figure 8.25).
When is sufficiently high the diffusion current, which varies as

is sufficiently large to completely overshadow the
recombination current, which varies as However, at low
current levels, i.e. when is small, the diffusion current becomes
smaller than the recombination current. The base current is given by

the emitter current is equal to and the
collector current is given by If one
defines and as the common-base and common-

emitter gain taking into account the recombination current one obtains:

and
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As a result the current gain, rolls off when the recombination current
in the emitter-base junction space-charge region becomes comparable to
the diffusion current.
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Figures 8.26 shows the base, emitter, and collector currents on a
logarithmic scale, as a function of the emitter-base voltage. Such a plot is
called a "Gummel plot". The current gain, is constant over
the part of the plot where the base current is proportional to

At low current levels, the collector current varies as
but the base current is proportional to

which reduces the gain, The effects observed at high current levels will
be described in the next Section.

8.8.2. Kirk effect

The Kirk effect is a result of the widening of the base under high-level
injection conditions. A reduction of the current gain occurs from the base
widening. [16]

Consider a transistor operating in the forward active mode and under
high-level injection. The base-collector junction is reverse biased. The
density of charges in the depletion region of the collector-base junction is
normally equal to on the collector side, and to on the base
side. If a high electron current density flows through the junction the
charges in those depletion regions will be modified. If we note

and recall that the charge density
in the depletion regions become:

where v(x) is the velocity of the electrons passing through the depletion
regions and A is the area of the junctions. Since the junction is reverse
biased one can assume that the electric field is large enough for the
electron velocity to be equal to the electron saturation velocity,
which is equal to in silicon.

Integrating Poisson's equation in the base-collector space-charge region
yields the electric field:

A second integration yields the voltage drop across the base-collector
space-charge region. Noting the junction potential and and the
position of the left and right edges of the collector-base transition region
(Figure 8.27) one obtains:
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One can define a critical current, above which the
charge in the space charge region on the collector side changes sign.

We will not make a complete analysis of this phenomenon, but rather
qualitatively describe what happens when the collector current increases
(Figure 8.27).

When the level of is low, the injection of electrons does not affect
the space-charge region. The transistor operates in a standard manner
and the width of the neutral base has its "normal" value.

When is increased, while remaining smaller than the charge in
the space-charge region on the base side increases from to

At the same time the space-charge region on the

collector side sees its charge decrease from

As a result shifts to the right, which increases the width of

the quasi-neutral base. Therefore, the transport factor in the base,
and thus the current gain, decrease.

When the collector current becomes larger than the critical current,
the space charge on the collector side becomes negative. Poisson's
equation imposes that the whole space charge region shifts to the right
until it reaches the heavily doped buried collector, where the doping
concentration is very high (the result of the double integration of the
Poisson equation 8.8.4 and 8.8.5 must be equal to In the
buried collector a positive space charge is formed

while the lightly doped collector region carries the opposite

negative charge. As a result is shifted far to the right, which leads to
an increase of the quasi-neutral base width, and therefore, a decrease of
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the transport factor in the base, and a decrease of the current gain.
The point is now positioned in the buried collector (Figure 8.28).

As a consequence of both the recombination in the emitter-base space-
charge region and the Kirk effect a decrease of the current gain of the
transistor is observed at low and high current levels, as shown in Figure
8.29. The gain, however, is constant over a wide range of current values
where transistors typically operate.
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8.9. Base resistance

One might think that since the base current in a bipolar transistor is
much smaller than the emitter and collector currents, the presence of a
finite base resistance has little impact on the device characteristics. This
is not true, since any potential drop in the base has an exponential
influence on the collector current. The emitter is usually heavily doped,
such that the potential drop across the quasi-neutral emitter is negligible.
The base, on the other hand, is more lightly doped, and therefore has a
non-negligible resistance which gives rise to a potential drop between the
base contact and the active region of the base. Taking base resistance into
account one can write:

and, therefore:

The potential drop in the base causes the curves of the Gummel plot in
Figure 8.26 to deviate from the ideal exponential dependence of currents
on the base-emitter voltage for high current levels.

8.10. Numerical simulation of the bipolar transistor

It is possible to simulate the characteristics of a bipolar transistor on a
computer. These simulations are based on the solution of the transport
equations (Poisson, drift-diffusion and continuity) at the nodes of a mesh
representing the device. These simulations are based on the discretization
of the device into a series of nodes connected together by mesh elements.

Figure 8.30 shows the cross section of a bipolar transistor, and Figure
8.31 represents the mesh generated by a computer code which will be used
for simulating the device. Figure 8.31 was generated by a process
simulator software code which emulated the device fabrication steps and
produced an output file containing the topology of the device, the
different materials used for fabrication, and the doping type and
concentration at every simulation node. In this example the collector
contact is placed at the bottom to simplify the transistor structure.

Figures 8.32 and 8.33 show 1) the hole current, flowing from the base
contact into the base-emitter junction and 2) the electron current
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density, Each arrow represents the magnitude and direction of the
current at each node of the mesh.

The simulation results allow one to visualize the currents at the transistor
terminals. Figure 8.34 shows the base current and the collector current as
a function of (Gummel plot). The distance between the two curves
represents the common-emitter gain, The gain increases with
collector current up to nA, is constant for At

decreases. The common-emitter current gain is shown in
Figure 8.35.
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8.11. Collector junction breakdown

8.11.1. Common-base configuration

When is large the collector junction can undergo avalanche
breakdown similar to what was observed in a simple PN junction. As in
Relationship 8.3.24 the current flowing in the reverse collector junction,
in the common-base configuration, will be noted when the emitter
terminal is open Since the emitter is left floating the collector
current is equal to in the absence of avalanche multiplication. When
multiplication takes place the collector current is equal to
where M is the multiplication factor which can be related to the applied
voltage using Equation 4.4.38:

where BV is the junction breakdown voltage, where when
and where n ranges between 4 and 6, depending on the impurity

concentration profile.

In the common-base configuration we have:

where is the common-base collector breakdown voltage when the
emitter terminal is open.
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8.11.2. Common-emitter configuration

The avalanche phenomenon is due to the creation of electron-hole pairs
due to impact ionization caused by a large electric field, such as in a
reverse-biased junction. The pairs are separated by the electric field in the
junction; the electrons are swept into the collector, and the holes into the
base. In the common-base configuration the holes injected into the base
exit the device through the grounded base contact. In the common-
emitter configuration with open base the holes injected into the base by
impact ionization constitute a base current which gives rise to injection of
electrons from the emitter through the base, and into the collector. This
increases the flow of carriers through the collector depletion region, and
therefore, the rate of avalanche. Avalanche and amplification by
transistor effect produce a positive feedback loop. Because of the
amplification effect due to the transistor, the collector breakdown voltage
will be reduced compared to the common-base case.

The base voltage is different from zero when the base is left floating. Its
value can be obtained from the Ebers-Moll equation where
Using:

one readily finds

Solving the latter equation for yields the base voltage.

When avalanche multiplication is activated the emitter current is equal to
the sum of the hole current originating from the reverse-biased collector-
base junction, which flows through the base and reaches the emitter
junction, and the electron current injected from the emitter through the
base into the collector, both currents being multiplied by M. In addition,

since the base contact is open. We can thus write:

At avalanche is the collector current becomes very large which
yields:
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Since is small compared to we can assume that such
that Relationship 8.11.2 becomes:

Noting that the common-emitter breakdown voltage is equal to

when we can write:

Relationship 8.11.6 shows that the collector breakdown voltage in the
common-emitter configuration is lower than that in the common-base
configuration by a factor 2 to 3, typically. When the transistor is used in
the common-emitter and when the base is not actually open but
connected to external circuitry, some of the base current generated by
impact ionization can escape from the base. As a result the collector
breakdown voltage will be higher than if the base was strictly open. In
that case the breakdown voltage will have a value situated between
and Looking at the example of a resistor, R, connecting the base
to ground (Figure 8.36), one easily concludes that when

and that when

8.12. Charge-control model

The equations derived hitherto are time-independent, and while
being satisfactory for solving many problems, they lack adequacy for
analyzing the frequency response of a transistor or its switching behavior.
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In the charge-control model the independent variables are no longer
voltages or currents, but charges. The derivation of the charge-control
model will be made assuming that the base doping is constant, i.e. that

is independent of x.

8.12.1. Forward active mode

The excess minority carrier charge in the transistor base is given by:

As we have seen before, the currents in an NPN bipolar transistor are
controlled by the base-emitter voltage, This voltage influences not
only the minority carrier charge in the base, but also other charges
present in the transistor. These charges are described in Figure 8.37:

a charge due to the holes injected from the base into the emitter,
represented by the area under the excess hole concentration

profile in the emitter,

a depletion charge  due to the variation of the emitter space-
charge region caused by the application of a base-emitter bias,

a depletion charge  due to the variation of the collector space-
charge region caused by the application of a base-collector bias,
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In the case of a thin-base transistor operated in the forward-active mode
the excess minority carrier concentration at the edges of the neutral base
are:

Assuming a linear distribution of the electron concentration in the base
the total charge of excess minority carriers in the base, taken as a
positive quantity, is therefore, equal to:

If we define

we can write

Assuming no recombination in the base, the collector current can be
found using Relationship 8.12.3:

Using Equations 8.12.5, 8.12.6 and 8.12.7 the collector current can be
rewritten in the following form:

which can be rewritten:

is called the "transit time" of the minority carriers in the base. It
represents the time it takes for the electrons injected from the emitter to
reach the collector. It is proportional to the square of the width of the
neutral base. Shrinking the base width is, therefore, an important design
parameter for the improvement of bipolar transistor high-frequency
performance.

The quasi-static base current has two components: the hole current
injected by the base into the emitter, and the hole current
recombining with excess electrons in the base, While can be
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neglected from the total collector current it is, however, a
substantial component of the base current,

The first component, can be obtained from Relationship 8.3.10,
which is valid if the doping concentration in the base is constant:

or, using Equations 8.12.5 and 8.12.6:

The second component, can be found in Expression 8.6.16 and is
equal to:

Adding those two components we find the base current:

or:

Note that the common-emitter current gain is given by the following
relationship:

The equations derived so far for and are quasi-static. To include
time-dependent current components, the displacement currents due to the
variation of charges in the device with emitter-base voltage have to be
included in the model, which yields, for the base current:

Adding the quasi-static collector current to the displacement current
flowing through the base-collector transition capacitance we obtain:
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The emitter current can readily be deduced from the base current and
collector current expressions:

We know that the quasi-static emitter current is given by

Therefore, comparing the latter relationship

with Expressions 8.12.6 and 8.12.17 we find the saturation current of the
emitter-base junction:

It is worthwhile noting that the capacitance is a diffusion

capacitance due to the variation of minority carriers stored in the neutral

base, while and are the transition capacitances of the

emitter-base and collector-base junctions, respectively.

Expressions 8.12.15 to 8.12.18 corresponds the equivalent circuit shown
in Figure 8.38.

Example
Consider the circuit shown in Figure 8.39, which represents an NPN bipolar
transistor biased in the forward active mode. A t=0 the base current changes from
a value to another value, derive an expression for the change in collector
current as a function of time.
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Since the transistor is in the forward active mode the base-emitter voltage,
varies very little with base current since the base current is an exponential
function of As a result the variation of the charge stored in the emitter-base
junction, is very small. In addition, we can assume is a constant,
and, therefore, Using these simplifications one can write from
Expression 8.12.15:

This is a first-order differential equation which can be solved for using the
following boundary conditions:

The solution to the differential equation with the applied boundary conditions is
thus:

from which we can derive the collector current:

The evolution of the collector current with time is plotted in Figure 8.40.
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8.12.2. Large-signal model

The charge-control model is particularly useful when it comes to
solving transient problems, i.e. when the transistor is switched from one
mode of operation to another (forward active regime, saturation, cut-off,
etc.)

As mentioned earlier (Figure 8.16) the distribution of minority carriers in
a transistor in saturation is equal to the sum of the distributions in the
forward active mode and in the reverse active mode. Superimposing those
two distributions, and defining as the charge injected by the collector
into the base in the reverse active mode one obtains a set of three
expressions that are applicable to any regime of operation of the
transistor:

By analogy to the forward active mode one can define, in the reverse
active mode:
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From Equation 8.12.18 which is repeated here as Equation 8.12.23 we
know that:

and, therefore,

8.12.3. Small-signal model

In many instances the bipolar transistor is biased in the forward active
mode by dc voltage supplies. A small ac signal applied to the circuit can
then be amplified. If the amplitude of the small ac signal (a music signal,
for example) is small compared to kT/q, it is possible to linearize the
transistor equations around the dc operating point. This greatly simplifies
the equations. The model obtained from this simplification is called a
"small signal" model.

As we have seen previously the electron current in the base is given by
(Relationships 8.6.12a and 8.6.12b):

In the forward active mode we obtain:

If a small ac voltage variation is added to the dc bias the variation of
collector current can be obtained:

The parameter is called the transconductance of the
transistor. Note that the transconductance is proportional to the
collector current.

Using Equation 8.12.26 in conjunction with one finds the base
current:

The variation of the electron charge in the base,  with the emitter-
base voltage is given by the following relationship:

Figure 8.41 shows the equivalent circuit corresponding to equations
8.12.19 to 8.12.24.
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where represents the diffusion capacitance associated with the small-
signal variation of the charge of the minority carriers injected by the
emitter into the base and by the base into the emitter.

As far as small signals are concerned the Early effect influences the
output conductance, which can be related to the transconductance as
follows:

If the Early effect is neglected one can draw the small-signal
equivalent circuit for the bipolar transistor shown in Figure 8.42. This
equivalent circuit represents the model for the transistor. The
word "hybrid" arises from the fact that the current source is controlled by
a voltage, and the letter comes from the fact that the circuit is shaped
like the Greek letter upside down.

The model can directly be derived from the Ebers-Moll
equations at low frequencies. Using Relationship 8.3.18 in the forward
active mode, and neglecting one obtains:

from which we can derive:

and

Using these equations one can draw the equivalent circuit of Figure 8.43,
directly from the Ebers-Moll equations.
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Important Equations

Problems

Problem 8.1:
Calculate the common-emitter current gain of an NPN bipolar transistor in the
forward active mode. The doping concentrations in the base, emitter and collector are
different constant (homogenous) values. The following data are given:
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Problem 8.2
Using the Ebers-Moll model, plot the base current and the collector current of a
silicon NPN bipolar transistor a s a function o f , . Plot theat the contacts
common-emitter current gain as a function of the collector current. Use log scales for
all plots of currents. The following data are given:

T=300 K

Dopant concentration in the emitter, base and and
respectively

Electron and hole mobility = 1000 and respectively
Neutral base width = 800 nm

Lifetime of minority carriers in the base, emitter and 100
ps and 300 ns, respectively

The voltage across the emitter-base transition region ranges from 0.01 to 0.85V
Use

Problem 8.3:
This problem illustrates the Early effect. We have an NPN bipolar transistor with the
following parameters:

The width of the base region, defined as the distance between the two metallurgical
junctions, is Assume the emitter junction width is much larger than
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Question: Calculate the common-emitter current gain when the transistor is in the
forward active mode with and is equal to 0 V and -5 V.

Problem 8.4:
A company manufactures NPN bipolar transistors. The of these transistors is 100.
One day the furnaces in the clean room of that company get contaminated by
metallic impurities. As a result the lifetime of the minority carriers in the base of the
devices drops by 50%. We will assume that the emitter efficiency of the devices is
equal to unity. What value will the contaminated have?

Problem 8.5:
Problem Figure illustrates a circuit fabricated using two NPN transistors connected
at their bases, called a "current mirror".
1) Show that the current in resistor R is equal to the current in the resistor if

and are identical. What is the value of that current, assuming and are
silicon devices operating at room temperature?

Problem 8.6
Using the Ebers-Moll model, plot the common-emitter current gain of a silicon NPN
bipolar transistor as a function of neutral base width The
following data are given:

T=300 K

Dopant concentration in the emitter, base and and
respectively

Electron and hole mobility = 1000 and respectively
Lifetime of minority carriers in the base, emitter and 50
ps and 300 ns, respectively

2) What is the current in the resistors if  and  are germanium transistors?
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Problem 8.7
This problem illustrates the Early effect. We have an NPN bipolar transistor in the
common-emitter configuration with the following parameters:

W=0.5e-4; Metallurgical basewidth (cm)
NdE=5e19;NaB=1e17;NdC=1e16; Doping concentrations (cm-3)
mun=800;mup=300; Mobilities (cm2/Vs)
LpE=1e-5;LnB=1e-3; Diffusion lengths (cm)
VBE=0.7; Base voltage (V)
A=0.0001; Area (cm2)

The width of the neutral base is equal to the width of the metallurgical base minus
the extension of the depletion regions from the emitter and collector junctions into
the base.

Plot the collector current versus the collector-emitter voltage, for
and for . Then draw a tangent to each

curve until it intercepts the x-axis This intercept gives us the Early
voltage of the transistor (see Figure 8.23).

Problem 8.8
Derive equation 8.6.5 from equations 8.6.3 and 8.6.4.
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Chapter 9

HETEROJUNCTION DEVICES

9.1. Concept of a heterojunction

Silicon is not the only semiconductor used in the electronics industry.
Beside elements from the fourth column of the periodic table and
compounds thereof (Si, Ge, C, SiC and SiGe), a whole range of
semiconductors can be synthesized using elements from columns III and
V, such as GaAs, InP, etc. In addition, it is also possible to
fabricate semiconductors using elements from other columns of the
periodic table, such as CdS and HgCdTe.
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The main parameter characterizing the electrical properties of these
materials is the width of the bandgap. Figure 9.1 shows the bandgap
energy for silicon, germanium, and different III-V compounds. Arbitrary
values of the bandgap energy can be obtained using ternary or quaternary
compounds, such as and The desired
bandgap energy can be reached by adjusting the x and y coefficients during
the fabrication of the material.

A PN junction that encompasses two different semiconductors is called a
heterojunction. The most distinctive feature of such junctions is that the
P and the N region have different energy band gaps. A junction
containing only one semiconductor, such as a classical silicon PN
junction, is called a homojunction.

9.1.1. Energy band diagram

The presence of two materials with different bandgap energies
introduces an additional level of difficulty in the energy band diagram of
heterojunctions, when compared to homojunctions. Combining different
semiconductor materials within a single device and the art of tailoring the
shape of energy bands to achieve properties which could otherwise not be
attained is often referred to as "bandgap engineering".
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Consider the example of Figure 9.2 which illustrates how the energy band
diagram of a heterojunction can be drawn. Two different semiconductor
materials are combined. Let Semiconductor #1 be P-type and have an
energy band gap, a work function, and an electron affinity equal to

and respectively. The work function is the energy difference
between the vacuum level and the Fermi level; it represents the energy
required to remove an electron of energy from the semiconductor.
The electron affinity is the energy needed to remove an electron in the
conduction band to the vacuum level, as previously explained in Section
5.1.1. Similarly, we will suppose Semiconductor #2 is N-type, and its
energy band gap, work function, and electron affinity are and

respectively.

The procedure for drawing the energy band diagram is the following:

1- Under equilibrium conditions the Fermi level in the two
semiconductors is equal and constant. Far from the junction the
semiconductor materials will be neutral and their energy band diagram
will be the same as when the two materials are taken separately.

2- The work functions and remain unchanged in the neutral
zones. This enables us to draw the vacuum levels, far from the
junction.

3- The vacuum levels of the two semiconductors are connected by a
smooth, continuous curve. The exact shape of the curve is at present
unknown and will be calculated later. It is, however, a good idea to
assume that it will have a shape similar to the band bending in the
transition region of a homojunction. The vacuum level bends only
within the transition region, thus between and

4- During the junction formation electrons will diffuse from the N-
type semiconductor into the P-type material since and
holes will diffuse in the opposite direction from the N-type into the P-
type semiconductor. The resulting charge distribution gives rise to a
depletion region, an internal junction potential, and therefore, to a
curvature of the energy bands. This curvature is parallel to that of the
vacuum level. Knowing that the electron affinities, and
remain constant in the transition region enables us to draw

and in the transition region.

5- Finally the valence and and conduction and
levels are connected using vertical line segments, at the metallurgical
junction (x = 0). This feature constitutes what is called a "band
discontinuity".
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The junction potential, is given by:

where and is the band curvature in semiconductors 1 and 2,
respectively.

Since both and are parallel to the vacuum level there will be a
discontinuity of the energy bands at the metallurgical junction. The
discontinuity is equal to:

and

The sum of the two band discontinuities is equal to the bandgap difference
between the two semiconductors:

The exact curvature of the energy bands within the transition region can
be obtained by solving Poisson's equation in both semiconductor materials
and using the depletion approximation.

Poisson's equation is integrated to calculate the electric field:

Using Gauss' theorem at the metallurgical junction (x=0) yields:

which expresses charge neutrality in the transition region

A second integration of Poisson's equation yields the potential:

and the band curvature:

The sum of the two latter equations is equal to the junction potential,
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Eliminating between 9.1.5 and 9.1.6, we obtain the built-in potential
in semiconductor:

from which the depletion width in semiconductor #1 can be extracted:

Using 9.1.5 and 9.1.8a we find the depletion width in semiconductor #2:

Knowing and the energy band curvature can now be drawn
with accuracy.

When an external bias, is applied to the diode, the electron and hole
diffusion current densities injected respectively at in the P-type
and at in the N-type material are given by Equations 4.4.23 (where

and 4.4.24 (where which, in the case of a heterojunction,
becomes:

where and are the intrinsic carrier concentrations in

semiconductor #1 and #2, respectively. The influence of the
heterojunction on the diffusion currents is best illustrated by taking the

ratio at the edges of the depletion region:

where are the effective density of

states in the valence and conduction band, and the effective electron and
hole masses in semiconductor #1 and #2, respectively. An important
conclusion can be drawn from Equation 9.1.9: the ratio of electron to
hole current in the PN heterojunction is exponentially proportional to
the difference of energy bandgaps between the two semiconductors.
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9.2. Heterojunction bipolar transistor (HBT)

The Heterojunction Bipolar Transistor (HBT) was developed to
overcome the limitations of conventional bipolar transistors. In a
classical homojunction bipolar transistor the base width must be reduced
to achieve high speed (the transit time of the minority carriers through
the base is proportional to the square of the base width - Equation
8.12.9). However, if the width of the base is reduced, the base resistance is
increased, which slows the device response time. The base resistance can
be reduced by increasing the base doping concentration, but then the
Gummel number in the base is increased, which decreases the current gain.
It is, therefore, impossible to optimize the base thickness (width) and
doping concentration for high-speed, high gain and low base resistance.
The use of heterojunctions, however, permits improved transit time,
current gain and base resistance simultaneously.

In a PN homojunction the ratio between the electron and hole current
essentially depends on the ratio of impurity doping concentration
between the N and the P regions (Relationship 8.1.1):

This is why a much larger doping concentration is used in the emitter of a
bipolar transistor than in its base. This ensures that the emitter current is
much larger than the base current, and as a consequence, that the emitter
efficiency, and the current gain, are large.

The use of a heterojunction for the emitter-base junction completely
changes the ratio between electron and hole currents. Let us consider the
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example of Figure 9.3 where a wider bandgap material is used for the N-
type emitter and a smaller bandgap semiconductor for the P-type base. It
is easy to observe that when a forward bias, is applied to the junction,
holes must overcome a much larger potential barrier than electrons. As a
result the hole current injected into the emitter is much smaller than the
electron current injected into the base, even if the doping concentration
in the base is higher than that of the emitter.

One can take advantage of this strong asymmetry of carrier injection to
achieve high gain. The emitter efficiency of a bipolar device is given by
Relationship 8.6.33:

NPN HBTs provide values for which are very close to unity because
in the emitter-base junction, as demonstrated by Relationship

9.1.9. The use of silicon and silicon-germanium (SiGe) for such devices is
quite popular. In that case the following structure is commonly used:

Emitter: N-type silicon (energy bandgap = 1.12V)
Base: P-type Si (80%); Ge (20%) alloy (energy bandgap = 0.87 V)

Collector: N-type silicon (energy bandgap = 1.12V)

The current gain of the transistor is directly proportional to the emitter
efficiency. Using Equation 9.1.9 for the emitter junction, we find:

Using heterojunctions a high current gain can be achieved even if the
doping concentration in the base is high. A thin, highly-doped base can be
used, which satisfies the requirements for a low transit time for electrons
and a low base resistance. This allows for the design of thin-base HBTs
which have excellent high-frequency performances.[4]

9.2. High electron mobility transistor (HEMT)

The acronym HEMT stands for "High Electron Mobility Transistor".
Sometimes this device is also called "modulation-doped field-effect
transistor" (MODFET). HEMTs are usually realized on III-V
semiconductor substrates, such as GaAs and InP.

The mobility of electrons in lightly-doped GaAs is very high, reaching
values of 8,000, 200,000, and at temperatures of 300,
77, and 4.2 K, respectively. Compared to the surface mobility of
electrons in the channel of a silicon MOSFET, which is on the order of
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these numbers are quite impressive. However, if the impurity
doping concentration is increased in GaAs, the electron mobility becomes
significantly degraded because of impurity scattering.

The electron drift current in a semiconductor is given by
Thus, for a given electric field, the current is proportional to both the
electron concentration and the electron mobility. The operation of the
HEMT is quite similar to that of a JFET. In both devices the current
flows through a channel between source and drain, and the number of
carriers in the channel is modulated by the gate voltage. The current in a
JFET can be increased by increasing the doping concentration in the
channel. Unfortunately, any increase of the doping concentration results
in a decrease of mobility, which becomes a tradeoff: high mobility and
high carrier concentration cannot be achieved at the same time. The use
of a heterojunction structure allows one to circumvent that problem
obtaining high electron concentrations in a lightly doped material which
ensures high mobility. The energy band diagram of such a structure is
presented in Figure 9.4.

When an heterojunction is used a particular band
diagram is obtained, in which there is a region in the where the
conduction band is located below the Fermi level. That region contains a
very high concentration of electrons and additionally is located in lightly
doped material where mobility is high. The region is very thin ( 5 - 1 0
nm) such that it has two-dimensional features, like the inversion layer in
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a MOSFET. Because of its small thickness, the electron layer is called a
"Two-Dimensional Electron Gas (2DEG)".

The electron concentration in the 2DEG can be modulated by applying a
bias to the heterojunction, as shown in Figure 9.5.

If a positive bias, is applied to the AlGaAs material the junction is
reverse biased and is further lowered below in the 2DEG region,
which increases the electron concentration. Conversely, if a negative bias
is applied to the AlGaAs material the junction is forward biased and
is raised in the 2DEG region, resulting in an electron concentration
decrease. If the bias is sufficiently negative, the 2DEG eventually
disappears as shown in Figure 9.5.

The cross section of a HEMT is shown in Figure 9.6. The 2DEG forms a
channel between the source and drain. A metallic Schottky contact to
the AlGaAs forms the gate electrode. The application of a gate
voltage changes the bias of the heterojunction, which, in turn, modulates
the carrier concentration in the 2DEG channel. Note that there is also a
parasitic MESFET structure in the AlGaAs layer, the conductivity of
which is modulated by the variation of the Schottky gate potential as
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well. The output characteristics of the complete device are thus the
parallel association of the HEMT and that of the parasitic MESFET.
HEMTs are amongst the fastest solid-state transistors, owing to the high

product in the channel.

9.3. Photonic Devices

When a recombination event takes place in a direct-bandgap
semiconductor a photon can be emitted. This phenomenon is called
"radiative recombination". The wavelength of this photon depends on the
bandgap energy of the semiconductor according to the relationship:

Radiative recombination is observed in many semiconductor
materials such as SiC, GaN, GaAsP, AlInGaP and AlGaAs. Furthermore,
the bandgap energy in semiconductor compounds can be tailored to
produce devices capable of emitting photons with a specific desired color.
There is a whole variety of solid-state devices that can emit and collect
photons, but we will only focus here on the laser diode. However, it is
necessary to understand the operation of the light-emitting diode before
beginning the study of the laser diode.

9.3.1. Light-emitting diode (LED)

The Light-Emitting Diode, or LED, is a simple PN junction made in a
semiconductor material which exhibits radiative recombination
properties. This PN junction can either be a heterojunction or a
homojunction. The energy bandgap of the semiconductor material
determines the frequency of the emitted light, according to the
relationship Some examples of semiconductor materials used for
the fabrication of LEDs, and the color of the emitted light are: GaN
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(blue), SiC (blue), GaP (green), (yellow),
(orange), (red), and GaAs (infrared). In this section we will
focus on the operation of a homojunction (single material) LED.

Figure 9.7 illustrates a homojunction (single bandgap) junction in the
forward bias mode. Light emission is produced by the radiative
recombination of electrons injected into the P-type material. Because

the electron current is much larger than the hole current.
Electrons are injected when the PN junction is forward biased by The
injection efficiency relates the current of "useful" carriers (the
electrons injected in the P-type region) to the total current in the
junction:

where is the electron current injected into the P-type region, is the
hole current injected in the N-type region, and is the current of
carriers recombining in a non-radiative way. Usually, reaches values of
30 to 60%. As mentioned in Section 3.2 radiative recombination must
satisfy conservation of momentum. This criterion is automatically met in
direct-bandgap semiconductors since the momentum of electrons at the
conduction band minimum is equal to that of holes at the valence band
maximum. Light emission is, however, observed in indirect-bandgap
semiconductors such as GaP and SiC. The only way radiative
recombination can take place in these semiconductors is for the
interaction to produce a particle, or something capable of acting like a
particle, that can dissipate the initial electron momentum. Fortunately,
an appropriate "particle" exists which is a quantum of vibrational energy
in the crystal lattice, called a phonon. Phonons produce heat transfer to
(or from) the lattice, which acts to reduce electron momentum and
thereby enables radiative recombination. The interaction of concern is
one in which an electron in the conduction band recombines with a hole
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in the valence band, and produces both a photon and a phonon. The
combined energy of the photon and the phonon is equal to and the
sum of the initial electron momentum and the momentum of the phonon
equals zero. This process is much more complex, and therefore, more
unlikely to happen than radiative recombination as in direct bandgap
semiconductors. As a result, the performance (in terms of brightness) of
indirect bandgap LEDs is much lower than that of direct bandgap
materials. The luminous intensity of indirect bandgap devices has,
however, been substantially increased using the following "trick". The
approach is to add an isoelectronic impurity, i.e. an impurity from the
same column of the periodic table as the element it replaces. An example
is nitrogen in GaP, designated GaP:N. Each nitrogen atom creates a
localized strain in the crystal that can trap an electron. The electrons are
bound so tightly to those traps that there is little uncertainty as to their
position. But there is, according to the Heisenberg uncertainty principle, a
large statistical uncertainty in their momentum. The uncertainty is large
enough for each electron to have a significant probability of having zero
momentum and undergoing radiative recombination. This quantum-
mechanical "trick" raises the radiative recombination rate, but to date,
not enough to rival the rate in direct bandgap semiconductors. [8]

9.3.2. Laser diode

The laser diode is a PN junction which can emit a laser beam. Laser
light is coherent (i.e. the emitted photons are in all phase) and
monochromatic (i.e. the emitted photons all have the same wavelength).
Describing in detail how a laser works is beyond the scope of this book. It
is, however, necessary to briefly describe the conditions required for a
lasing effect to take place. The word "laser" means "Light Amplification
by Stimulated Emission of Radiation". The key word in this definition is
"stimulated emission". Stimulated emission is a phenomenon falling into
the same category as generation and recombination, but in which an
incident photon with an energy triggers the recombination of an
excited electron (an electron in the conduction band, in the case of a
semiconductor laser). During the recombination event a new photon is
emitted. This photon has the same wavelength as the incident photon and
is in phase with it. This is why laser light is monochromatic (all photons
have the same wavelength, fixed by the energy bandgap) and coherent (all
photons have the same phase). This photon generation can of course be
repeated, and the original photon can be amplified by 2, 4, 8, etc. as
shown in Figure 9.8, resulting in a light amplification effect. If two
parallel mirrors (which can reflect light) are placed at both sides of the
semiconductor crystal light can travel back and forth inside the crystal
and undergo significant amplification. Such a structure constitutes a
Fabry-Pérot cavity. In practice, one of the mirrors is semitransparent,
such that some of the laser light can escape from the crystal. Emitted
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photons which do not travel perpendicular to the mirrors exit the
semiconductor and are lost (Figure 9.8).

A photon with energy can not only stimulate the emission of
another photon, but it can be absorbed by the semiconductor material and
generate an electron-hole pair. This effect is highly undesirable in a laser
diode since we do not want to see photons absorbed. Unfortunately,
photon absorption is unavoidable. It is, however, possible to favor
stimulated emission with respect to absorption. This can be achieved if
the number of electrons in the excited state (i.e., in the conduction band)
is larger than the number of electrons in the ground state (i.e., in the
valence band). This condition is called "population inversion". It can be
realized if an external source of energy "pumps" a large quantity of
electrons from the fundamental state into the excited state. In a laser
diode population inversion is obtained by injecting a large amount of
electrons into a PN junction.

Figure 9.9 shows a laser PN homojunction. The and -type regions
are degenerately doped and the Fermi level in the and -type
material is above the conduction band minimum and below the valence
band maximum, respectively. When a forward bias is applied to the
junction a thin region is formed which, instead of being depleted, is in
population inversion. In that region there is a strong electron population
in the conduction band and a high density of empty states (or holes) in
the valence band. Under these conditions laser light is emitted through
stimulated emission within the transition region.

A complete laser diode is presented in Figure 9.10. Two semi-transparent,
parallel mirrors are obtained by cleaving the semiconductor along a
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natural crystal direction (e.g. (100)). Since the refractive index of the
semiconductor material is larger than that of the surrounding air, the
cleaved surfaces act as mirrors which reflect the light back into the
crystal. These mirrors do not have a 100% reflectivity, however, which
allows some of the laser light to be emitted from the device.

The output light power of a laser diode is presented in Figure 9.11 as a
function of the current injected into the diode. Below a given threshold,
population inversion is not reached, however light is emitted because of
radiative recombination. This light is incoherent and is similar to the light
emitted by a LED. Above this threshold, population inversion takes
place, and laser light is emitted. The light intensity then increases sharply
as a function of the current in the diode. Because of the Fabry-Pérot
cavity the spectrum of emitted light is compressed into one single
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spectral line. The emitted laser light is, therefore, monochromatic. Beside
the "useful recombination" of electrons by stimulated emission in the
population inversion region, a large quantity of electrons are injected into
the P-type semiconductor where they can also recombine and emit either
photons which do not take part in the lasing process, or phonons (heat).
This renders homojunction laser diodes quite inefficient, and only a
fraction of the electrical power supplied to the device is converted into
laser light.

This problem can be solved by the use of a heterojunction structure. Let
us take the example of the AlGaAs/GaAs/AlGaAs heterojunction laser
diode shown in Figure 9.12: the electrons in the conduction band which
are injected from a forward bias from the N-type AlGaAs into the P-type
GaAs cannot spill over the potential barrier created by the P-type
GaAs / P-type AlGaAs junction. These electrons are thus confined in the
GaAs layer where the inversion population, and thus laser light emission,
is produced. In addition, the refractive index of AlGaAs is lower than that
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of GaAs, which causes the junctions to act as mirrors. This helps confine
the photons in the GaAs layer and limits the leakage of light into the
AlGaAs layers. As a result the laser light emission efficiency is greatly
enhanced and the current threshold for laser light emission is reduced.

Problems

Problem 9.1:
Using Matlab, plot the energy band diagram of a germanium-silicon heterojunction.
The germanium is P-type with and the silicon is N-type with

Use the following data:
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Chapter 10

QUANTUM-EFFECT DEVICES

10.1. Tunnel Diode

10.1.1. Tunnel effect

The tunnel diode was discovered by L. Esaki in 1958 for which he
received the Nobel Prize for explaining the operation of the device.[1] In
this section we will first briefly describe the physics underlying the tunnel
effect and then explain how a tunnel diode works.

Tunneling of electrons through a potential barrier is an effect predicted
by quantum mechanics that gives the electrons a finite probability of
passing through the barrier, as opposed to the electrons needing an energy
greater than the barrier potential energy to overcome it.

To illustrate this effect, let us take an infinite potential well and introduce
a finite potential barrier in it (Figure 10.1A). The wave function of an
electron in this potential well can be calculated using numerical
simulations (see Problems 1.3 and 1.4). Let us focus on the lowest or
ground-state energy level. In the absence of a potential barrier the lowest

energy of an electron can be found using Equation 1.1.11: For

a well width of 50 nm the corresponding lowest energy value is
approximately 0.15 meV. Let us introduce a potential barrier 40 mV in
height and 2 nm in width inside the potential well. According to classical
mechanics an electron confined in the left-hand side of the potential well
does not possess enough energy to overcome the 40-mV potential barrier
and venture into the right part of the well. If the calculation is made using
quantum mechanics, on the other hand, one finds that there is a non-zero
probability of finding the electron at the right of the potential barrier, as
shown in Figure 10.1B.
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In a more general sense, tunneling through a potential barrier can be
characterized by a transmission coefficient which represents the
probability of an electron passing through the barrier. The value of this
transmission coefficient depends on the shape of the barrier (rectangular,
triangular, etc.), on its width and its height. The thinner and the lower the
barrier, the higher the transmission coefficient. In the particular case of a
rectangular barrier, the transmission coefficient, T, is given by:

where a and V are the width and the height of the potential barrier,
respectively, and E is the energy of the electron (E<V).[2]
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10.1.2. Tunnel diode

A tunnel diode is a PN junction where both P- and N-type regions are
degenerately doped. As a result, the Fermi level in the N-type material is
above the minimum of the conduction band and the Fermi level in the P-
type material is below the maximum of the valence band. The doping
concentrations are so high that the width of the space-charge region at
the junction is extremely thin (Equation 4.2.12), and usually measures less
than 10 nm.

As in any PN junction the existence of a space-charge region gives rise to
a potential barrier. This barrier height is noted which is a function of
the doping concentrations according to Equation 4.2.9. The barrier
prevents electrons from diffusing from the N-type region into the P-type
material and vice-versa. is relatively large because of the doping levels,
but the width of the barrier is very small 10 nm).

In order for electrons to tunnel through the potential barrier certain
conditions must be met:

1- The energy of the electron must be conserved. In terms of an energy band
diagram representation, this condition means that an electron tunneling from
the N-type region into the P-type region must do so in a horizontal trajectory
(Figure 10.2B).

2- There must be occupied states on the side of the junction that emits electrons.

3- There must be empty permitted states on the side of the junction which
receives the electrons. Because of condition (1), these states must have the
same energy as the states defined in (2).

4- The potential barrier height must be low enough and its width must be small
enough for tunneling to take place.

The electron current from the N-type conduction band into the P-type
valence band is given by:

where A is the area of the diode, and are the Fermi-Dirac
distribution functions in the N-type conduction band and the P-type
valence band, respectively, and are the density of states in the
conduction and valence band, and is the tunneling probability of an
electron. This probability depends essentially on the width of the
potential barrier, and it is independent of the direction of the electron
(left to right or right to left). The positive sign of the current is due to
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the fact that electrons carry a negative charge and flow in the negative x-
direction (Figure 10.2). The current due to the electron flow from the N-
type conduction band into the P-type valence band is equal to:

The total current is obtained by adding 10.1.1 and 10.1.2:

Calculating the tunnel current is relatively complex. We will only describe
qualitatively what happens using the energy band diagrams of Figure 10.2.

A: Let us start with a zero applied bias. In that case and are equal
because the Fermi level, is unique, and the tunneling current is equal to
zero, according to Equation 10.1.3 - Figure 10.3.A.

B: If a forward bias, is applied the quasi-Fermi level and the energy bands in
the N-type region move up with respect to the P-type region. As a result there
are empty states in the P-side valence band which have the same energy as
occupied states in the N-side conduction band. This condition allows for a
tunneling current to take place. This current increases with increased
applied bias, until a maximum is reached. The maximum current occurs
when the number of states in the N-conduction band having the same energy as
empty states in the P-valence band is maximum (Figure 10.3.B).
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C: If the applied bias, is further increased the number of empty valence states
having the same energy as occupied conduction states decreases until the
tunneling current eventually vanishes. A "valley" point of the I-V characteristics
is reached when tunneling ceases (Figure 10.3.C).

D: In addition to the band-to-band tunneling current a "regular" PN junction current
flows through the diode. As the forward bias is increased the current will
increase again, as in a regular PN junction diode (Figure 10.3.D). In the part of
the curve between the peak and the valley the tunnel diode has a negative
resistance characteristics (R = dV/dI < 0).
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10.2. Low-dimensional devices

In a low-dimensional device carriers are no longer moving in a three-
dimensional crystal, but they are confined within a two-, one- or zero-
dimensional space. This is realized by fabricating devices where carriers
are confined within a thin crystal, such as a quantum wire, or in a low-
dimensional potential well, such as a quantum-well device.

In the case of a three-dimensional (3D) crystal the density of allowed
states in an energy band is a square root function of the energy, as
demonstrated in Section 1.1.8 and shown in Figure 10.4.

In the case of low-dimensional structures the energy bands, and in
particular the distribution of permitted states, is quite different from that
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of a 3D crystal (Figure 10.5). In a zero-dimensional (0D) crystal (also
called "quantum dot") the permitted energy levels are discrete. In a one-
dimensional (1D) crystal (also called "quantum wire") they are basically
also discrete, but tend to spread out between the "quantized" levels. In a
two-dimensional (2D) crystal the density of states is a staircase function
of the energy. Figure 10.6 shows the different geometries (3, 2, 1 and 0-D
samples) which correspond to the densities of stated in Figure 10.5.

10.2.1. Energy bands

The energy band calculations are based on the time-independent
Schrödinger equation:

which can be re-written, if r = (x,y,z):

We have solved this equation in Section 1.1.3 using the Krönig-Penney
model. In the case of a three-dimensional crystal we have seen that near
the bottom of the conduction band the energy of the electron as a
function of the k-vector is parabolic, and behaves approximately as a free
electron. In that case the periodic potential variation in the crystal can be
neglected and one obtains:
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The solution to the latter equation is from which the
energy can be found:

The k-vectors for a 3D sample can be found by imposing the Born-von
Karman boundary conditions (Expression 1.1.13):

and where L
is the size (length) of the crystal unit cell, and N is the number of such
cells in each direction of space. If the crystal has a cubic lattice and has a
cubic shape, each dimension of the crystal is equal to NL and one obtains:

The unit volume in k-space corresponding to each permitted k value is:

where V is the crystal volume.

Using equation (1.1.31) we obtain the values of the permitted wave
number:

where N is the number of crystal cells (about per cubic centimeter).
The number of permitted k values is, therefore, very large, and one can
consider that k does not vary in a discrete manner, but in a continuous
way. Finally the permitted energy levels in a three-dimensional crystal are
given by:

If we now reduce the size of crystal in the in the z-direction to a very
small value, c, we obtain a two-dimensional crystal (Figure 10.6). The
wave functions in the z-direction are confined within an infinite potential
well having a width, c, which is equal to the sample thickness. In the z-
direction the wave function is finite inside the crystal and it is equal to
zero outside it. Using the technique of separation of variables the wave
function can be written as the product of two wave functions:
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with r = (x,y). In the z-direction the electron behaves like a "particle in a
box" in an infinite potential well of width c. From Section 1.1.1.2 we
know that the equation to be solved is:

and that its solution is:

Using the boundary conditions of vanishing wave function at the sides of
the crystal and we obtain:

The energy values in the z-direction can then be extracted:

with

The permitted energy levels (eigenvalues) for the electrons in the crystal
can be obtained by summing the energy levels in the z-direction and the
energy levels for r = (x,y):

which can also be written:

where The volume of the crystal is The 2D

unit volume in k-space corresponding to each permitted k value in the
sample is:

The permitted energy values are obtained by adding the energy levels
which are a function of and and a series of discrete energy levels
produced by the wave function confinement in the z-direction. For each
discrete energy level resulting from the confinement, there exists
a 2D energy band corresponding to the possible and values. Such an
energy band is called an energy subband (Figure 10.7). It is worth noting
that the minimum energy of the electron, which was equal to zero in the
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three-dimensional case (when in (10.2.6)) is now equal to:

In the case of a one-dimensional crystal the dimensions in both the y and
z directions of the sample are very small as shown in Figure 10.7. The
width of the crystal is noted "b" and its height is noted "c". The wave
functions are now confined in both the y and z directions. Using the
technique of separation of variables the wave function can be written as
the product of two wave functions:

The wave function in the directions of confinement,
corresponds to that of a particle in two-dimensional infinite potential of
width "b" and height "c". The wave function can be found using the
Schrödinger equation adapted to this particular geometry:

which has the solution:

Using the boundary conditions and
one obtains:
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The permitted energy levels can then be found:

The permitted energy levels for the electrons in the crystal can therefore
be obtained by summing the energy levels in the x, y and z directions:

or:

where The 1D unit volume in k-space

corresponding to each permitted k value is:

The permitted energy values are thus obtained by adding the energy levels
which are a function of (which vary in a continuous manner) and a
series of discrete energy levels produced by the wave function
confinement in the y and z directions. The discrete energy levels resulting
from the confinement, are the minima of energy subbands.
The other energy values in each subband are obtained by adding

to the energies corresponding to values (Figure 10.7.B). It is
worth noting that the minimum energy of the electron, which was equal
to zero in the three-dimensional case (when in Equation

10.2.6) is now equal to
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In the case of a zero-dimensional crystal the dimensions in all x, y and z
directions are very small. The length, width and height of the crystal are
noted "a", "b" and "c". The wave function is now confined in the x, y and
z direction. Using the technique of separation of variables the wave
function can be written as the product of separate wave functions:

The wave function can be found by solving the Schrödinger
equation in a three-dimensional potential well:

which has the solution:

Applying the following boundary conditions
and one obtains:

The energy eigenvalues in the different directions are:

where the constants G, H and I have been determined by applying the
boundary conditions. The electron energy values are obtained by summing
the three latter equations, which yields:

where and can take on values 1, 2, 3,...
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The permitted energy levels are thus a succession of discrete levels
produced by the confinement in the three-dimensional potential well. The
minimum energy value (when is equal to

10.2.2. Density of states

In a three-dimensional crystal the volume of a lattice unit cell is equal to
and the volume V of the crystal is equal to The unit volume

corresponding to each permitted state (i.e. to each k value) is equal to

Using a similar approach to that of Section 1.1.8 we will now consider a
sphere in k-space which contains all the wave vectors corresponding to
the electrons having an energy below a given maximum value. To each
wave vector, correspond two electrons by virtue of the Pauli
exclusion principle. The number of electrons is thus given by:

and, in a unit volume (V=1):

The latter relationship enables us to link to the electron
concentration:

The density of states is defined by We will use the symbol
for the density of states instead of n(E), which was used in Equation
1.1.48 to avoid confusion between the number of electrons, n, and the
density of states.

Using the following relationships we can relate the density of states, to
energy values:

(Relationship 10.2.5).



344 Chapter 10

Finally we obtain the density of states as a function of E:

Thus, the density of states near a band extremum, such as the minimum
of the conduction band, varies as the square root of the energy.

In a two-dimensional crystal confined in the z-direction the 2D volume of
a lattice unit cell is equal to and the volume of the crystal is equal to

The unit volume corresponding to each permitted state (i.e. to

each k value) is equal to (Relationship 10.2.13). Using a

similar approach to that of Section 1.1.7 we now have to consider a circle
in k-space which contains all the wave vectors corresponding to the
electrons having an energy below a given maximum value. To each wave
vector, correspond two electrons by virtue of the Pauli exclusion
principle. The number of electrons is thus given by:

and, in a unit volume (V=1):

The latter relationship enables us to link to the electron
concentration: The density of states in a subband is
defined by: Thus we find:

Thus, the density of states near a subband extremum, such as the
minimum of the conduction band, is constant and independent of the
energy. However, one has to take into account that there are several
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subbands. The total number of electrons is obtained by adding the number
of electrons in the different subbands:

where the function is defined as:

In a one-dimensional crystal the 1D volume of a lattice unit cell is equal
to L and the volume of the crystal is equal to V = b c NL. The unit volume

corresponding to each permitted state (i.e. to each k value) is equal to

(Relationship 10.2.20). Using a similar approach to that of

Section 1.1.8 we now have to consider a line segment in k-space which
contains all the wave vectors corresponding to the electrons having an
energy below a given maximum value. The length of this segment is

To each wave vector, correspond two electrons by virtue
of the Pauli exclusion principle. The number of electrons is thus given by:

and, in a unit volume (V=1):

The latter relationship enables us to link to the electron

concentration:

The density of states in a subband is defined by: Thus we find:

Using

we find

and thus:

where is a continuous function of k in the x direction and a discrete
function in the y and z directions.
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Thus, the density of states near a subband extremum, such as the
minimum of the conduction band, now varies as an inverse square root
function of the energy as a function of k. Again, one has to take into
account that there are several subbands corresponding to the
discretization in the y and z directions. The total number of electrons is
obtained by adding the number of electrons in the different subbands:

where the function is defined as:

The density of states for a 1D and 2D and 3D semiconductor sample with
specified dimensions is shown in Figures 10.8 to 10.11.
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10.2.3. Conductance of a 1D semiconductor sample

Consider a one-dimensional semiconductor sample. We will assume that
the electrons move without interacting with the crystal lattice. Such
electrons are called ballistic electrons and can be found in very short MOS
devices.

When a potential difference, is applied to the ends of a 1D
semiconductor sample, a difference in the Fermi levels,
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appears between the right and the left of the sample (Figure 10.12). The
current density in the sample is given by:

where v is the electron group velocity, and n is the electron
concentration. If the applied bias is such that the electrons
with an energy lower than will not contribute to any current. The
density of electrons contributing to a current flow is given by:

where is the density of states in the n-th subband. The factor 1/2
accounts for only one direction of electron motion (from left to
right).[8,9] The total current density is obtained by adding the current in
the various subbands where there are n subbands:

and is the group velocity in the n-th subband. The units for and
are and respectively.

The electron group velocity, is given by (see Table A.1 in the Annex):

Using (10.2.35) we find:

and thus:

Introducing the latter result into 10.2.38 the current can be obtained:

from which the conductance of the quantum wire can be extracted:

The latter expression is known as the Landauer formula.[10] It describes
the conductance of a one-dimensional sample, which varies in a staircase
manner as a function of the Fermi level. The height of each step is equal
to per electron spin.
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10.2.4. 2D and 1D MOS transistors

2D MOS transistor
If a MOS transistor is made in a thin silicon film electron transport can
become two-dimensional. A positive gate voltage is applied such that band
bending occurs. We assume that the temperature is equal to 0 K and that
the drain voltage is small, for simplicity. When the gate voltage is such
that free electrons occur. The electron current is given by
Expression 10.2.37:

with

and

where the density of states in the conduction band, is given by
Equation 10.2.32. The current is, therefore, proportional to the shaded
areas of Figure 10.13. The relative position between the Fermi level and
the minimum of the conduction band depends on the applied gate voltage.

Figure 10.14 shows the transconductance, of a thin, double-gate
SOI MOSFET (see Figure 7.41) measured at a temperature of 0.3 K with a
silicon film thickness of 40 nm. For gate voltages below -0.18V there are
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no electrons in the conduction subbands and the current is equal to zero.
When is increased to -0.18V the lowest energy subband becomes
populated with electrons (for  for this particular
device). At higher gate voltages electrons populate the
second subband as well. The drop in transconductance around
is due to mobility reduction by scattering between electrons in the first
and the second subband, called "inter-subband scattering". The
transconductance decrease for is attributed to classical surface
mobility reduction (see Section 7.5).

1D MOS transistor
If a MOS transistor is made in a thin silicon and narrow silicon wire,
electron transport can become one-dimensional. A positive gate voltage
is applied such that band bending occurs. We assume that the temperature
is equal to 0 K and that the drain voltage is small, for simplicity. When
the gate voltage is such that free electrons occur. The electron
current is given by Expression 10.2.37:

with

and
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where the density of states in the conduction band, is given by
Equation 10.2.35. The current is, therefore, proportional to the gray
areas of Figure 10.15. The relative position between the Fermi level and
the minimum of the conduction band depends on the applied gate voltage.

Figure 10.16 shows the current of a 1D MOSFET sample measured at low
temperature. The silicon wire width and thickness is 80 nm (b=c=80 nm).
Let us focus on the curve measured at T= 4.2 K (liquid helium). For gate
voltages below 0.3 V there are no electrons in the conduction subbands
and the current is equal to zero. When the gate voltage is increased energy
subbands become populated with electrons and current oscillations are
observed. These are due to the "spiky" nature of the density of states, and
to some extent, to inter-subband scattering. Note that the oscillations
disappear at higher temperatures. The separation between the subband
energy levels must be larger than the thermal voltage kT/q for the
quantum oscillations to be observable; in this sample the energy difference
between the different subbands is relatively small such that a temperature
above approximately 35K is sufficient to cause the measurement to look
continuous.
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10.3. Single-electron transistor

10.3.1. Tunnel junction

The single-electron transistor makes use of tunnel junctions. Such a
junction is made of a thin insulator sandwiched between two pieces of
semiconductor or metal, as shown in Figure 10.17A. If a voltage is applied
at the terminals the structure behaves like a capacitor. If the applied
voltage is large enough it may be energetically favorable for an electron
to tunnel through the insulator, giving rise to a brief current spike. If a
constant voltage is applied to the structure, periodic current oscillations,
called "Coulomb oscillations", are produced (Figure 10.17B). If the
average current through the structure is I, the frequency of the Coulomb
oscillations is equal to f=I/q, and are each caused by the tunneling of a
single electron through the insulator.[13,14]

Consider the circuit shown in Figure 10.18. Electrons are injected through
a tunnel junction into a small piece of semiconductor or metal, called a
"dot", where the dot is capacitively coupled to ground. As the external
applied voltage, is ramped up in absolute value, the potential of the
dot, will increase in a staircase manner if the displacement current is
neglected.
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Each increase of corresponds to the injection of an electron into the
dot. If the capacitance between the dot and ground is small the injection
of a single electron into the dot will give rise to a measurable increase of
the dot potential since For instance, if the dot capacitance is
equal to 1.6 aF each electron injected into the dot
increases its potential by 100 mV. If we consider the dot to be an isolated
sphere embedded in silicon dioxide, electrostatics tells us that its
capacitance is given by where R is the radius of the sphere.
For example, a dot with a radius of 3.7 nm has a capacitance of 1.6 aF.

Electrons can be transferred into the dot by ramping up To transfer
an electron into the dot, a coulombic energy is required. No
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electron is injected into the dot as long as the applied voltage is smaller
than since there is not enough coulombic energy available for
electron tunneling into the dot. This behavior is called the "Coulomb
blockade" and is repeated for applied voltages smaller than

etc. (Figure 10.18B). The Coulomb blockade effect can only
be observed if the thermal energy, kT/q, is lower than the electrostatic
energy in the dot. This condition imposes C to be lower than 12 and 3 aF
to observe Coulomb blockade effects at temperatures of 77 and 300K,
respectively.

In order to understand how a single-electron transistor works, it is
necessary to analyze the energies stored in different parts of the device.
The energy supplied over a period of time by all the voltage sources in a
circuit, may be written as the time integral of the power delivered to
the system by each source:

Following any tunneling event, charges flow to and from the contacts
until equilibrium is reached. It is assumed that the duration of this charge
relaxation caused by tunneling or changing voltage sources, which
typically take place in 10 femtoseconds, is much shorter than the time
between two tunneling events. Voltage sources are considered to be ideal,
that is their internal resistance is zero, and for constant voltage sources,
the change in energy due to storing or removing an electron from the dot
may be written as:

where first the term is the work variation due to storing or removing an
electron from the dot, and the second term is the work accomplished to
possible voltage variations at each node of the circuit.

The Helmholtz free energy of the device, F, is defined as the difference
between the total energy stored in the device, and the work done by
the power sources:

10.3.2. Double tunnel junction

Consider the circuit of Figure 10.19A, which contains two tunnel
junctions, one dot, and a single ideal voltage source, The voltage drops
across junction 1 and junction 2 are noted and and the charges on
the tunnel junctions and their capacitances are         C1 and C2,



356 Chapter 10

respectively; and are the number of electrons that tunnel through
junctions 1 and 2, respectively. One can write: [9]

where is an initial charge that might have been present on the dot
before biasing the circuit, and

Since one finds, using 10.3.3:

The electrostatic energies stored in the junctions are:

We can now calculate the energy supplied by the voltage source. If one
electron tunnels through junction 1 the voltage drop variation across
junction 1 is equal to To this variation corresponds,
according to the capacitive divider of Figure 10.19B, a charge equal to -q

supplied by the voltage source Thus, for electrons
tunneling through junction 1 the energy supplied by the voltage source
according to 10.3.2, is equal to:

A similar calculation yields the energy supplied by the voltage source for
electrons tunneling through junction 2:
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The Helmholtz free energy of the complete system is given by:

If one electron is added to, or removed from, the dot through junctions 1
or 2, the variation of free energy is given by:

and

Tunneling will be possible if the Helmholtz free energy is reduced in that
process. Remembering that if we assume equal values for the two
junction capacitances and if we start with an uncharged dot
(n=0 and the condition for tunneling becomes:

The inhibition of tunneling for low bias voltage is a manifestation of the
Coulomb blockade effect. The current-voltage characteristics of the
double tunnel junction is shown in Figure 10.20. The voltage span over
which no current flows through the device is called the "Coulomb gap"
and its width is equal to q/C.
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If an electron enters the dot via junction 1, it can flow to ground through
tunnel through junction 2. After a small period of time a new electron can
then tunnel through junction 1, etc. and current flows through the device.

10.3.3. Single-electron transistor

If we add to the double tunnel junction a gate electrode that is
capacitively coupled with the dot we obtain a single-electron transistor
(SET), which is schematically represented in Figure 10.21. The dot
potential, and thus the current flow, can now be controlled by the gate
voltage. The charge on the dot (Equation 10.3.3) now becomes:

The expressions derived for the double junctions can, therefore, be used
for the SET, provided that is replaced by and is
introduced in the capacitive network of the device. [9]

In particular, the voltage drops across the tunnel junctions are now given
by:

and

The change in free energy after a tunneling event in junctions 1 and 2
becomes:
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and

At low temperature, only transitions producing a negative change in free
energy are permitted: This condition can be used
along with Equations 10.3.15 and 10.3.16 to plot the conditions for
current flow in the plane (Figure 10.22). In such a plot, domains
where Coulomb blockade prevents current from flowing through the
device can be identified. These have a characteristic rhombus shape and
appear periodically along the axis as the number of electrons, n,
injected into the dot increases or decreases. Figure 10.23 shows lines of
equal current in the plane, measured on an actual SET. One can
easily identify the rhombus-shaped domains where no current flows
because of the Coulomb blockade effect.

or
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Figure 10.24 presents two practical implementations of single-electron
transistors. In Figure 10.24A a metal (titanium) SET is presented, where
insulating forms the tunneling junctions and where the silicon
substrate is used as a the gate electrode. [16] In Figure 10.24B a silicon-
on-insulator SET is shown. Here, there is no actual tunnel insulators on
both sides of the dot.[17] Instead, constrictions of the silicon island
introduce potential barriers for the electrons and act as tunnel barriers.
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Problems

Problem 10.1:
Using Matlab, calculate and plot the density of states above the minimum of the
conduction band in a 3D silicon sample, in a 2D silicon sample with a height of 40
nm, and in a 1D silicon sample having a 40nm x 40 nm cross section (Figure 10.9).
Assume that the electron mass in silicon is 0.98 times the mass of a free electron.

Problem 10.2:
Tunnel effect: Using Matlab and the finite-difference numerical method described in
Problem 1.3, calculate the first (ground-state) wave function of an electron in the
potential well shown in Problem Figure 10.1, for +3.8 mV, +3.95
mV and +5 mV.
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Chapter 11

SEMICONDUCTOR PROCESSING

11.1. Semiconductor materials

There exist many different semiconductor materials. The most
important parameter distinguishing these materials is the width of the
energy bandgap. The energy bandgap of the most common
semiconductors is: 1.12 eV (silicon), 0.67 eV (germanium), and 1.42 eV
(gallium arsenide). The main elements used in the semiconductor industry
are shown in Figure 11.1.

Beside elemental semiconductors such as silicon and germanium,
compound semiconductors can be synthesized by combining elements
from column IV of the periodic table (SiC and SiGe), by combining
elements from columns III and V (GaAs, GaN, InP, AlGaAs, AlSb, GaP,
A1P and AlAs). Elements from other columns can sometimes be used as
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well (HgCdTe, CdS,...). Diamond exhibits semiconducting properties at
high temperature, and tin (right below germanium in column IV of the
periodic table) becomes a semiconductor at low temperatures. About 98%
of all semiconductor devices are silicon based (integrated circuits,
microprocessors, memory chips,...). The two remaining percents make
use of III-V compounds (light-emitting diodes, laser diodes, RF
components,...).

11.2. Silicon crystal growth and refining

Silicon is obtained by the chemical reduction of commonly
produced from sand. The is reduced by carbon in an arc furnace
equipped with graphite electrodes, according to the following reaction:

The silicon produced by this method has a low
purity and is called "metallurgical-quality silicon". The silicon then reacts
with hydrochloric acid to produce trichlorosilane, according to the
reaction The obtained trichlorosilane is then
filtered and purified by distillation. Finally, trichlorosilane is decomposed
at high temperature into HC1 and silicon. Once pure silicon has been
obtained it must be converted into a single crystal.

This is achieved using a technique called Czochralski growth, (CZ growth)
which allows one to grow single-crystal rods up to 40 cm in diameter and
over a meter long. During CZ growth the silicon is melted in a quartz



11. Semiconductor Processing 365

crucible, and a small seed silicon crystal is dipped into the molten bath.
The seed crystal is spun and slowly pulled out of the molten silicon. As
the crystal is pulled upwards the temperature differential between the
molten silicon bath and the gas ambient above it causes the silicon to
crystallize. A rod-like silicon ingot is thus produced, as illustrated in Figure
11.2. Impurities such as boron or phosphorus can be added to the molten
silicon to dope the silicon P- or N-type and give it the desired resistivity.
The pulling of a silicon crystal by the Czochralski technique typically
takes 24 hours. Once cooled, the ingot is cut like a salami into 0.5 to 2
mm-thick slices called silicon wafers. The wafers are then mirror polished
using a combination of mechanical and chemical polishing agents.

The silicon ingot can be further refined using the float-zone technique, in
which a section of the ingot is melted by induction using an RF coil. The
molten zone is then swept from one side of the ingot to the other side
(Figure 11.3). Several passes can be applied to further improve crystal
purity.

The principle behind float-zone (FZ) refining is the following. The
segregation coefficient for an impurity at the solid-liquid interface of the
molten zone, k, is defined as the ratio of the concentrations of the

impurity in the solid and the liquid: As an illustration, here are

some segregation coefficients of some impurities in silicon: P: 0.32, As:
0.27, Sb: 0.02, B: 0.72, Ga: 0.0072, Au: 0.0000225. Since k is smaller
than unity impurities are extracted from the solid and trapped in the
molten zone during the float-zone refining process. To analyze the
physics of the float-zone refining process let us define the following
parameters: L is the length of the ingot, x is the position along the ingot,
s is the amount of impurities dissolved in the molten zone, A is the cross-
sectional area of the ingot, is the original impurity concentration (per
gram of silicon), and is the silicon volumic mass. When the molten
zone moves a distance dx the quantity of impurities introduced in the
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molten zone is equal to and the quantity of impurities left

behind the trailing edge of the molten zone is equal to The

variation of the quantity of impurities in the molten zone is, therefore,

equal to Using the initial condition at

x=0 we can calculate the variation of the quantity of impurities in the
molten zone as a function of position:

Since the impurity concentration left behind the molten zone, is equal

to we obtain:

Relationship 11.2.1 shows that the smaller the value of x, the more
purified the crystal. The drawback of this refining method is, of course,
that the impurity concentration is not constant along the ingot length.
However, the use of several float-zone passes can produce higher material
purity (Figure 11.4). Although Equation 11.2.1 is valid for the first pass
only, the concentration versus position in the crystal can be calculated
using a numerical calculation technique. The result is sketched in Figure
11.4.
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11.3. Doping techniques

The goal of doping a semiconductor is to introduce impurity atoms of a
desired species into substitutional sites in the semiconductor crystal.
Impurity atoms in interstitial (i.e., non-substitutional) sites are
electrically inactive and degrade the semiconductor properties such as
carrier mobility. If an arsenic atom (column V of the periodic table) is
substituted for a silicon atom the covalent bonds with neighboring atoms
will be satisfied, and an extra electron will be released into the conduction
band. Similarly, if a boron atom (column III of the periodic table) is
substituted for a silicon atom all but one covalent bond with neighboring
silicon atoms will be satisfied, and a hole will be released into the valence
band.

The introduction of doping impurities can be carried out by different
techniques: doping of molten silicon before Czochralski growth, diffusion
from a gaseous doping substance into the silicon, ion implantation,
growth of a doped silicon layer on an existing substrate (epitaxy), and
neutron doping. In the latter technique silicon is submitted to a neutron
(v) flux in a nuclear reactor. Some of the silicon atoms are transmuted
into phosphorus atoms according to the following nuclear reaction:

Neutron doping is only used in the fabrication of devices such as power
thyristors where a low doping concentration and a high uniformity of
doping concentration are needed.

11.3.1. Ion implantation

The ion implantation technique allows for the introduction of doping
impurities in silicon with a high level of accuracy. An ion implanter is
basically a particle accelerator composed of an ionization chamber called
the source, an acceleration stage, a mass separation stage, an electrostatic
deflection system, and a target chamber where the silicon wafers are
placed for implant. A substance containing the doping element (e.g.
gaseous for boron implantation, or solid arsenic for arsenic
implantation) is introduced in the source, where filament heating and
microwave energy produce a plasma containing ions of the desired
implant species. The ions are accelerated by an electric field to energies
usually ranging from 5 keV to 200 keV, although some implanters are
capable of producing ions with MeV energy. The ions are then deflected
by an electromagnet depending on their mass. The current in the
electromagnet is chosen so that only the desired ions continue their flight
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toward the silicon target. Other ions such as in the case of boron

implantation from a source, are sent into a dead-end region of the
implanter called a "beam trap". Further down the line an x-y electrostatic
deflection system is used to uniformly distribute the ions across the silicon
wafer in the target chamber by a raster scan method.

Ions accelerated by the implanter penetrate into the silicon and stop at a
given depth in the crystal depending on the chosen implant energy. The
higher the ion energy, the deeper the ions are implanted. The
deceleration of the ions is due to interactions and collisions with the
crystal atoms and electrons. These interactions are analyzed in the LSS
(Lindhard, Scharff and Schiøtt) theory which predicts the stopping depth
and the statistical distribution of the implanted atoms.[3]

The profile of the implanted atoms can be described within reasonable
accuracy by a Gaussian distribution. The peak of the Gaussian distribution
is located at a depth beneath the silicon surface called the "projected
range", noted The width of the distribution is characterized by a

standard deviation called the "straggle" and noted Both the
projected range and the straggle are expressed in centimeters. The
concentration of implanted impurities, is therefore, described by the
following relationship:

where is the concentration at the peak of the Gaussian distribution. By
integrating the doping concentration over the entire Gaussian distribution
one obtains the total implanted dose, which yields a relationship between
the peak concentration, and the implanted dose
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In a strict sense the above equations can be applied only to the
implantation of atoms into an amorphous material. When implantation is
performed in a single-crystal material such as silicon the impurities can
penetrate deeper than predicted by theory. This phenomenon is called
"ion channeling" and is due to the regularity of the position of the silicon
atoms in the crystal. If the ion penetrates the material in the direction of
preferential crystallographic directions, it will "see" rows of atoms
separated by tunnels -or channels- along which it can penetrate much
deeper into the crystal than predicted by the LSS theory. This effect is
undesirable, and in practice, silicon wafers are tilted by an angle of 7
degrees with respect to the ion beam such that they present no
preferential crystalline directions to the ion beam, and channeling is
avoided.

The projected range and the standard deviation can be expressed
empirically as a function of the implantation energy, E. These
expressions are found in Table 11.1 and graphically illustrated by Figures
11.6 and 11.7.
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The energy lost by the implanted atoms during collisions with silicon
atoms causes the formation of defects (vacancies, interstitials, etc.) in the
silicon substrate, such that a certain degree of amorphization is created in
the crystal. The distribution profile of these defects is Gaussian with a
peak concentration located at a depth of 50%-80% of After an ion
implantation step it is, therefore, necessary to restore the silicon crystal
integrity. This is achieved by a thermal annealing step. A second function
of the annealing step is to allow the impurities to diffuse into
substitutional sites in the silicon lattice, since doping atoms occupying
interstitial (non-substitutional) positions are electrically inactive.

Ion implantation can also be used to synthesize materials. By implanting
a high dose of oxygen ions a buried layer can be created below the
silicon surface. This process, called SIMOX (separation by implantation
of oxygen) is used to fabricate silicon-on-insulator (SOI) substrates.
SIMOX material consists of a thin (20 nm, typically) top layer of single-
crystal silicon sitting on a buried oxide layer which is mechanically
supported by the thick silicon wafer substrate.[5]

11.3.2.  Doping impurity diffusion

Impurity diffusion is generally carried out at high temperature (800°-
1100°C) in a furnace. At those temperatures the impurity atoms can
diffuse throughout the crystal lattice through interactions with point
defects (interstitials and vacancies). The equations governing the diffusion
of impurities can be derived using Fick's first law of diffusion. Accordingly
the variation of impurity concentration in an elementary volume in the
crystal is given by:
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where C is the average impurity concentration in the volume under
consideration and F is the flux of impurity atoms (Figure 11.8). Letting

dx approach 0 we obtain

The flux is proportional to the impurity concentration gradient: F = -D

where D is the diffusion constant of the impurity in silicon.

Combining the previous equations we obtain the following relationship,
known as Fick's second law of diffusion:

Strictly speaking the diffusion constant is not a real constant since it
depends on both the temperature and the concentration of impurities in
the silicon (the diffusing impurity or other impurities). The solution of
Equation 11.3.3 yields a value called the "characteristic diffusion length",
L, which is a function of temperature and time of diffusion:

If the impurity concentration distribution before diffusion is
Gaussian, it remains Gaussian after diffusion. The depth of the peak
concentration, remains unchanged, but the peak concentration,
decreases, and the distribution spreads out, such that its standard deviation
increases. The new standard deviation, noted L' is a function of the pre-
diffusion standard deviation, and the diffusion length, It is
equal to:

and the impurity concentration profile after diffusion is given by:
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It is worthwhile noting that the concentration profiles of implanted
impurities before and after diffusion are described by the same equation,

The following computer code and Figure 11.9 illustrate the implantation
followed by a diffusion of boron and phosphorus into an N-type substrate
to form an NPN bipolar transistor.

TITLE BIPOLAR TRANSISTOR SUPREM SIMULATION
INIT SILICON <100> PHOS=5E15 THICK=1 DX=.005 SPACES=100
IMPLANT BORON ENERGY=20 DOSE=2E13
DIFFUSION TEMP=850 TIME=30 INERT
IMPLANT ARSENIC ENERGY=30 DOSE=5E15
DIFFUSION TEMP=900 TIME=30 INERT
COMMENT FIRST GRAPH
PLOT CHEMICAL ARSENIC TOP=1E21 BOTTOM=1E15 Y.LOGAR RIGHT=0.5
PLOT CHEMICAL BORON ADD
PLOT CHEMICAL PHOSPHOR ADD PAUSE
COMMENT SECOND GRAPH
PLOT NET ACTIVE TOP=1E21 BOTTOM=1E15 Y.LOGAR RIGHT=0.5 PAUSE
STOP
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11.3.3. Gas-phase diffusion

Silicon can be doped in a high-temperature furnace in which an
ambient gas containing atoms of doping impurities, such as (for
boron doping) or (for phosphorus doping) is introduced.

Mass transport limited case
If the impurity atoms from the gas phase are present at the surface of the
silicon in a relatively short time, such that no diffusion into the crystal
takes place, the doping concentration profile can be approximated by a
delta function. The impurity concentration is, therefore, given by

and C(x>0) = 0. If the sample is then submitted to a thermal
annealing step called "drive-in" the impurity profile can be found by
solving the diffusion equation (Relationship 11.3.3). The impurity
concentration follows a Gaussian distribution and the peak concentration
is located at the silicon surface (x=0):

The standard deviation of the Gaussian profile is equal to and
depends on temperature (through the diffusion coefficient D) and the
annealing time. If several annealing steps are carried out (the number of
annealing steps being n) the final standard deviation is equal to:

Diffusion limited case
If the doping impurity gas is fed into the furnace continually the impurity
concentration at the silicon surface, is maintained constant. In such a
case the impurity concentration profile is no longer Gaussian, and is
rather given by a complementary error function, erfc(x):

The complementary error function is defined by:

One of the properties of Relationship 11.3.8 is:



374 Chapter 11

The total concentrations of impurities in the silicon is equal to:

The maximum impurity concentration that can be introduced in silicon is
fixed by the solid solubility of each doping species in silicon. Solid
solubility is a function of temperature and is equal to
and for P, As and B in silicon at 1000°C, respectively. Any
attempt to introduce more doping atoms would result in the formation of
impurity precipitates in the silicon crystal.

Modern silicon technology requires the formation of very shallow
junctions. For that reason annealing techniques have been developed to
activate implanted impurities with negligible diffusion. The rapid thermal
annealing (RTA) technique achieves this goal: the silicon wafer is rapidly
heated up to a high temperature (e.g.: 1100°C) for a few seconds, and
then is quickly cooled down. Such an annealing step allows for the
restoring of the silicon crystal and the placement of doping atoms into
substitutional sites without causing diffusion over an appreciable distance.

11.4. Oxidation

Silicon is oxidized by oxygen or steam at high temperature according to
the following chemical reactions:

or

Two mechanisms influence the growth rate of the oxide. The first one is
the actual chemical reaction rate between silicon and oxygen. The second
one is the diffusion rate of the oxidizing species through an already grown
oxide layer. When there is no or little oxide on the silicon the oxidizing
agent easily reaches the silicon surface and the factor determining the
growth rate is the kinetics of the silicon-oxide chemical reaction. In that
case the oxidation process is reaction limited and the oxide thickness
increases linearly as a function of time. If, on the other hand, the silicon
is already covered by a sufficiently thick layer of oxide the oxidation
process is mass-transport limited and the factor limiting the growth rate is
the diffusion rate of or through the oxide, in which case oxide
growth increases as a square root function of time. A steam ambient is
usually preferred to a dry oxygen ambient for the growth of thick oxides:

molecules are smaller than molecules, and as a result, they can
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diffuse more readily through which gives rise to higher oxidation
rates.

To derive the equation describing silicon oxidation we will consider the
mass transport of oxygen molecules from the gas ambient towards the
silicon through a layer of already grown oxide (Figure 11.10). The flux of
oxygen molecules is proportional to the differential in oxygen
concentration between the ambient, C*, and the oxide surface, The
oxygen flux towards the oxide, is thus given by the following
equation: where h is the mass transport coefficient for
oxygen in the gas phase.

The diffusion of oxygen through the oxide is proportional to the
difference of oxygen concentration between the oxide surface and the

interface. The flux of oxygen through the oxide, is given

by: where is the oxygen concentration at the

interface, D is the diffusion coefficient of either or in
oxide, and  is the oxide thickness. Finally, the kinetics of the chemical
reaction between silicon and oxygen is characterized by a reaction
constant k, such that we have:

In steady state all flux terms are Eliminating
from the flux equations we obtain:
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If is a constant representing the number of oxidizing gas molecules
necessary to grow a unit thickness of oxide one can write:

The solution to this differential equation is:

If when t=0, the integration yields:

or:

Defining new constants A and B in terms of D, and

we obtain:

from which we find

Parameter is introduced to account for the possible presence of an oxide
layer on the silicon before thermal oxide growth is performed. This pre-
existing oxide layer can either be a native oxide layer due to the oxidation
of bare silicon by ambient air or a thermally grown oxide produced during
a prior oxidation step. if the thickness of the initial oxide is equal to
zero. Equation 11.4.3 is referred to as the Deal-Grove model of oxidation.
[8]

When thin oxides are formed the growth rate is limited by the kinetics of
the chemical reaction between silicon and oxygen. In that case Equation

11.4.3 can be approximated by: which is linear with time.

The ratio is called the "linear growth coefficient" and is dependent on

the crystal orientation of silicon.[9] When thick oxides are formed the
growth rate is limited by the diffusion rate of the oxygen through the
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oxide. In that case Relationship 11.4.3 can be approximated by:

The coefficient B is called the "parabolic growth
coefficient" and is independent of the crystal orientation of silicon. The
parabolic growth coefficient can be increased by increasing the pressure of
the ambient oxygen up to 10 to 20 atmospheres (high-pressure oxidation,
HIPOX).[10] The linear growth coefficient can be increased if the silicon
contains a high concentration of impurities such as phosphorus. These
impurities increase the concentration of point defects in the crystal which
increase the oxidation reaction rate at the silicon/silicon dioxide
interface. Similarly, the oxidation process generates point defects in
silicon, which accelerates the diffusion of doping impurities (oxidation-
enhanced diffusion, OED).[11] Therefore, some doping impurities diffuse
faster when annealing is performed in an oxidizing ambient than when it
is carried out in a neutral gas such as nitrogen.

Oxide growth consumes silicon. As a rule of thumb one can consider that
the thickness of silicon consumed is 44% of that of the grown oxide.
When an oxide is grown the doping atoms in the silicon redistribute
between the silicon and the oxide and there exists a constant ratio
between the impurity concentrations on both sides of the

interface called the "segregation coefficient" defined by: The

segregation coefficient of arsenic and phosphorus in silicon is larger than
unity, while that of boron is smaller than unity. In other words, the
concentration of arsenic and phosphorus in the oxide is less than in
silicon, and the concentration of boron is larger.[12] This effect results in
a "pile-up" of arsenic or phosphorus in the silicon at a interface or
a depletion of boron in the silicon at a interface. Impurity
segregation and OED are illustrated in Figures 11.11 and 11.12 where
annealing in both neutral (nitrogen) and oxidizing (dry oxygen) ambient
have been simulated.
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Sometime oxide must be grown over selected areas of a silicon wafer. The
LOCOS (local oxidation of silicon) technique has been widely used in MOS
and bipolar integrated circuit manufacturing processes to laterally isolate
devices from one another.[15] This oxide between devices is also called
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"field oxide". The LOCOS process is illustrated in Figure 11.13. It is based
on the fact that oxygen does not diffuse through silicon nitride. A layer
of silicon nitride is deposited and patterned using photolithography and
etching. Usually a thin thermal oxide layer called the "pad oxide" is grown
prior to nitride deposition. This layer acts as a buffer between the nitride
and the silicon to avoid build-up of mechanical stress between those two
materials during thermal cycles. Such a stress would generate crystal
defects in the silicon. Both silicon and silicon nitride are hard materials,
while is rather soft at high temperature.

If the substrate is P-type, boron is then implanted after the nitride has
been patterned to create a region under the LOCOS oxide and prevent
the formation of an inversion layer under the field oxide. Field inversion
can be caused by the presence of positive charges commonly found in
oxide or by the presence of a positively biased metal line running over the
oxide. If field inversion occurs, the N-type diffusions of the circuit can be
short-circuited under the field oxide. Field inversion can occur in P-type
silicon only and no field implantation is needed in N-type silicon.

The thick field oxide is then grown, usually in a wet oxygen ambient. The
nitride and the pad oxide are chemically removed in hot phosphoric acid

and hydrofluoric acid (HF), respectively. Because of its shape
the side of the field oxide, which grew underneath the nitride, has been
nicknamed "bird's beak".

The lateral extension of the bird's beak is on the order of 0.1 to
which is too large for modern, deep-sumicron devices. Therefore, a new
type of field isolation called "shallow trench isolation" (STI) has been
developed. In this process a shallow trench is etched in the silicon and a
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nitride cap layer (Figure 11.14A). Then a thin thermal oxide is grown and
CVD oxide is deposited to fill the trench (Figure 11.14B). Chemical-
mechanical polishing (CMP) is then used to remove the excess oxide at
the surface of the wafer. The nitride mask conveniently acts as an etch
stop for the CMP step. The nitride is then removed by selective chemical
etching.

11.5. Chemical vapor deposition (CVD)

In chemical vapor deposition (CVD) a chemical reaction between gas-
phase reactants is used to deposit layers of solid material. Such a technique
can be employed to deposit silicon, insulating materials such as and

or metals (e.g. tungsten). Variations on the CVD technique include
LPCVD (low-pressure chemical vapor deposition) where the deposition is
carried out under reduced gas pressure for better uniformity and step
coverage and PECVD (plasma-enhanced chemical vapor deposition)
where plasma excitation of the gas phase is used to deposit materials at
low temperature.

11.5.1. Silicon deposition and epitaxy

Epitaxy is a processing technique in which a single-crystal layer of
silicon is grown on silicon. Epitaxial growth is carried out at high
temperature in a reactor where pyrolysis of gases such as silane or
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dichlorosilane is used to deposit the silicon layer. The chemical
reactions involved in silicon epitaxial growth are either

or

If the deposition temperature is high enough (900°-1250°C) the silicon
atoms generated by the pyrolysis reaction are not deposited in a random
order. Rather they position themselves in alignment with the silicon
atoms at the substrate surface such that a single-crystal silicon layer,
having the same crystal orientation as the substrate, is grown. The
epitaxial layer can be doped in situ by introducing small amounts of gases
such as phosphine or diborane in the reaction chamber.
Silicon can be epitaxially grown selectively in certain areas of the silicon
wafer. This can be achieved by etching openings in an oxide layer grown
on silicon. By carefully tuning the epitaxial growth parameters, silicon
can be grown in those areas where the silicon is exposed, and not on the
oxide.

If the deposition is carried out at low temperature (<600°C) the silicon
layer is amorphous. Amorphous silicon is usually not employed in the
fabrication of integrated circuits, but it is widely used in the fabrication of
thin-film transistors (TFTs) for flat-panel displays and the fabrication of
amorphous solar cells used to power some "solar" pocket calculators and
wristwatches. In those applications the amorphous silicon is usually
deposited on a glass substrate.

LPCVD is also used to deposit polycrystalline silicon -or polysilicon-
layers. Polysilicon is commonly used as the gate electrode material of
MOS transistors. Polysilicon deposition is obtained by pyrolysis of silane
under low pressure and at a temperature of 620°C. The deposited film is
composed of silicon crystallites separated by grain boundaries. The
crystallites have a diameter of approximately 100 nm and a height equal
to the film thickness.[17] Lightly doped polysilicon can be used to form
high-value resistors in integrated circuits, while heavily doped polysilicon
is used to form MOSFET gate electrodes and local interconnections.

11.5.2. Dielectric layer deposition

The CVD, LPCVD and PECVD techniques are widely used for the
deposition of insulating dielectric layers. For example, the following
reactions are used to produce silicon dioxide and silicon nitride layers:
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The reactant gases are usually mixed right before their introduction in the
reaction chamber and flow continuously over the silicon wafer. The flow
is laminar but slows down at the surface of the wafers, such that the
velocity of the gas mixture varies from its nominal value far from the
sample to zero at the sample surface. The region where the gas velocity
varies near the wafer is called the "boundary layer". Before reaching the
silicon surface the gas reactants must diffuse through the boundary layer,

deposition can take place.

The gas flux through the boundary layer, is obtained using the

following relationship: where   is the thickness of the

boundary layer, D is the diffusivity of the gases in the boundary layer, and
and are the concentrations of the gas reactants in the ambient and

at the silicon surface, respectively. The diffusivity of the gases in the
boundary layer is virtually temperature independent.

At the silicon surface the gas flux,  is given by where is
the rate of the chemical reaction, which depends exponentially on
temperature: where is the activation energy of
the reaction (Figure 11.15).

In steady state such that the deposition rate can be

calculated: where N is the number of molecules per

unit volume in the layer being deposited. The term represents the
diffusion rate of the gaseous reactants through the boundary layer and
represents the chemical reaction rate at the silicon surface.
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As can be seen on Figure 11.15 the deposition rate is limited at lower
temperatures by the reaction rate at the silicon surface, and at higher
temperatures, by the gas diffusion through the boundary layer. To obtain
good control of the deposition rate it is, therefore, suitable to operate at
high temperatures, where the deposition rate is less sensitive to
temperature fluctuations.

11.6. Photolithography

Photolithography is used in device fabrication process every time a
pattern must be transferred to the silicon surface. It also allows one to
perform ion implantation or etch a material in selected areas on the
wafer. Photoresist is a photosensitive organic substance which is a sticky
liquid with a high viscosity. After having been spun onto a wafer it is
thermally hardened in an oven. There are two types of photoresists:
positive and negative. In a positive resist exposure to light breaks down
long-chain organic molecules into shorter chain molecules which can be
dissolved by an appropriate chemical solution called a developer. In a
negative resist exposure to light induces the cross-linking of organic
molecules such that a higher atomic mass is achieved, i.e., longer-chain
molecules are produced. An appropriate developer solution is then used to
remove the resist that has not been exposed to light.

The transfer of the desired patterns onto the resist is made using
ultraviolet light exposure through a mask. The mask is a quartz plate
which contains the patterns corresponding to a given processing
operation, such as gate material etching or metal interconnection etching.
The mask basically plays the role of the negative in conventional
photography. In the simplest photolithography tools the mask and the
wafer are either placed in contact or at close proximity to one another
(Figure 11.16). In the case of contact exposure the mask actually touches
the photoresist, which allows for an excellent printing resolution,
however defects in the quartz mask or the wafer can occur such as
scratches. In a proximity aligner the mask is held at a small, but finite
distance from the wafer surface (Figure 11.16). As a result the light and
dark patterns projected onto the photoresist are less sharp than in
contact mode. The minimum feature size that can be printed using a

proximity aligner is on the order of where g is the distance (gap)
between the mask and the resist on the wafer, and is the wavelength of
the light used for exposure. For example, if and then
the minimum printable feature size is
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The poor resolution of proximity systems can be overcome by using a
complicated optics system between the mask and the wafer. This is used
in projection systems called wafer steppers in which UV light is shone
through a mask called a "reticle" in which the patterns are usually 5 or 10
times larger than the features to be printed onto the photoresist. The
system optics reduces the size of the features and projects them on the
wafer. In such a system the minimum printable feature size is equal to:

where is the wavelength of the light and NA is the numerical aperture of
the optics. The operation of such an optical system is illustrated in Figure
11.17. The numerical aperture NA is defined as the sine of the angle
formed by the light beam reaching a point in the focal plane. Simple
geometric analysis shows that in order to print a minimum feature size
equal to the distance between the wafer surface and the focal plane
must be smaller than the depth of focus



386 Chapter 11

The resolution of a projection system can be improved by using shorter
light wavelengths, such as the deep-UV light produced by excimer lasers.
It can also be improved by planarizing the surface of the wafer and
placing it close to the focal plane with the highest possible accuracy.

High-resolution lithography can also be obtained by writing the patterns
into a resist-covered wafer using a focused electron beam or a focused ion
beam. The drawback of such systems is the lengthy exposure time
necessary to expose an entire silicon wafer. Fine-line lithography is also
possible when X-rays are used instead of UV light. Since X-rays cannot be
bent or focused by optical systems the X-ray source must emit a non-
divergent beam that will go through the mask onto the wafer. This
requirement imposes the use of sophisticated X-ray sources such as
synchrotrons.

To illustrate how photolithography is used, let us take the example of
Figures 11.18a to 11.18f, where a metal layer must be etched to form a
contact to the silicon surface. The metal is first deposited over the entire
silicon wafer. Etched holes in the oxide allow for the metal to contact the
desired diffusions (Figure 11.18a). Positive photoresist is the spun
(deposited) onto the metal (Figure 11.18b). A mask is used to expose the
photoresist in the areas the metal will be removed (Figure 11.18c). The
exposed photoresist is then removed in a developer solution (Figure
11.18d). The metal is then etched, for example, by a chemical that does
not react with either the photoresist or silicon dioxide (Figure 11.18e).
Those parts of the metal film which are covered by the resist are not
etched. Finally the resist is stripped off the metal in an appropriate
chemical bath (Figure 11.18f).
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11.7. Etching

Photolithography steps are usually followed by either an ion
implantation or an etching step. Etching can take place by placing the
wafer in a chemical bath (wet etch) or in a plasma (dry etch). The most
commonly used chemicals used in wet etching are listed in Table 11.2.
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Chemical etchants are usually very selective: for instance, an hydrofluoric
acid solution (buffered HF) etches while it virtually does not react
with Si, or photoresist. The selectivity of an etching agent is
defined as the ratio of the etching rates produced in different materials.
For example, if a buffered HF solution etches 60 nm of per minute
and 0.1 nm of silicon per minute, the selectivity is 600:1 (read "six
hundred to one"). Chemical etching is usually isotropic, meaning it has
the same etch rate in every direction (x or y). As a result etch profiles in
the shape of an arc of a circle are obtained (Figure 11.19) and the etched
region extends underneath the masking material (the photoresist in Figure
11.9), thereby giving rise to overetching in the y direction.

Wet etching is very selective and easy to use. However, it becomes
obsolete when feature size becomes smaller than 1 or 2 micrometers
because of overetching problems. For etching small patterns, dry etching
in a plasma is generally used instead.

The degree of anisotropy of an etch is defined as where    and

are the lateral (y direction) and vertical (x direction) etch rates,
respectively. If the etching is completely anisotropic (vertical),
while it is perfectly isotropic if  (Figure 11.20).
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Plasmas used for dry etching are produced using low-pressure
Torr) gas mixtures. A plasma is formed by applying either a high dc
voltage or a radio-frequency (RF) bias to the low-pressure gas. Fresh
gaseous reactants are continuously fed into the reactor while the reaction
byproducts are pumped out to maintain a controlled pressure value in the
reactor chamber (Figure 11.21).

The process by which a plasma etches a material has two components: a
chemical component due to the presence of chemically active species
such as - or and a physical erosion component due to the
bombardment of the sample surface by ions. This erosion mechanism is,
in a way, similar to sand blasting. The chemical component gives rise to
isotropic, selective etching characteristics, while the physical erosion
mechanism is anisotropic and non-selective. The art of plasma etching
consists of fine-tuning the gas mixture composition, chamber pressure,
and the RF power delivered to the plasma to maximize both the
anisotropy and the selectivity of the etch. Plasma etching machines that
combine physical erosion and chemical reaction are called "reactive ion
etching" (RIE) reactors. The gas mixtures most frequently used in silicon
dry processing are listed in Table 11.3.
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11.8. Metallization

Metal layers separated by layers of dielectric material such as are
used to interconnect devices, supply electrical power, and clock signals,
etc. Each metal layer consists of a series of metal lines running to
selected destinations. In early integrated circuits the use of a single metal
layer would provide enough connectivity to an entire chip. In today's
complex very large scale integrated circuits (VLSI circuits), however, up
to 10 metallization levels can be used.

11.8.2. Metal deposition

The deposition of a metal layer is usually carried out in a vacuum.
The metal is evaporated from a solid source, and re-deposited onto the
silicon wafers. Metal evaporation can be achieved by hitting the metal
source with an electron beam or by an argon plasma that sputters fine
metal particles into the vacuum of the deposition chamber. Sometimes
chemical vapor deposition is also used. For instance, tungsten can be
deposited by CVD according to the following chemical reaction:

Aluminum and copper are the most widely used metal for the fabrication
of integrated circuits. Another metal, tungsten, is frequently used to form
"plugs" through vias etched in dielectric layers. The plugs allow for the
passage of electric signals between different interconnection levels, i.e.,
different metal layers. As devices are scaled down their speed is increased,
such that the clock speed of microprocessors has increased from a few
megahertz in the early eighties to over a gigahertz in year 2000. To cope
with these high frequencies the RC delay of interconnection lines must be
reduced as much as possible. This means using low-resistivity metals and
low-permittivity dielectric materials between the metal lines. With the
exception of silver, copper is the metal that has the lowest resistivity,
and therefore, is a good candidate for making interconnections in
integrated circuits. Unfortunately, it is virtually impossible to etch copper
using conventional dry etching techniques. Instead, a patterning process
called the "damascene process" is used (Figure 11.22). A dielectric layer,
such as silicon dioxide is first etched in order to form trenches. Copper is
deposited and finally chemical-mechanical polishing (CMP) is used to
remove the excess copper and the interconnections are formed.

Another way of reducing the RC delay of metal lines is to use dielectric
materials with a low electrical permittivity between the metal lines. The
permittivity of a material is given by: where

is the permittivity of vacuum. The values of for air and are 1.001
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and 3.9, respectively. Dielectric materials with low values, called "low-
K dielectrics" are increasingly used as a replacement for Such
materials include polymers and polymers with air bubbles, and even air
itself. In the latter case, a "dummy" or "sacrificial" organic layer is
deposited, upon which metal is deposited and patterned. Exposure to a
solvent or an oxygen plasma strips the polymer and leaves "free-
standing" metal lines at the surface of the integrated circuit.

11.8.3.  Metal silicides

As devices shrink in size, the source and drain diffusions also become
shallower. This, in turn, increases the parasitic resistance of the
source/drain and reduces the device speed. Refractory metal silicides are
used to decrease the source, drain and gate resistance of MOSFETs. The
most widely used silicides are titanium, cobalt and tungsten silicides

Silicide layers can be deposited by co-sputtering of metal
and silicon or can be formed by chemical reaction between a metal and
silicon at relatively high temperature (600-850°C). Silicides have a higher
resistivity than metals, but they can withstand relatively high thermal
budgets which makes them attractive as local interconnection materials.

In the SALICIDE process (self-aligned silicide) the silicide is formed by
chemical reaction between the silicon of the source, drain and gate
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electrodes and a deposited metal such as titanium. The process sequence
used is described in Figure 11.23. Oxide spacers are formed at the edges of
the polysilicon gate using CVD oxide deposition. Next isotropic RIE
etching is used to remove the oxide from the source, the drain and the top
of the drain electrode, thereby creating "spacers" on the gate electrode
sidewalls. Titanium is then deposited. Upon annealing is formed on
the source, drain and gate of the MOSFET. The unreacted titanium over
the oxide regions is then stripped in a mixture of sulfuric acid and
hydrogen peroxide.

11.9. CMOS process

CMOS technology is by far the dominant fabrication technology in the
semiconductor industry. The word CMOS means "complementary MOS"
and arises from the fact that both n-channel and p-channel transistors can
be formed side by side on a same chip. Historically the first MOS
integrated circuits were fabricated using a pMOS process, where only p-
channel transistors could be fabricated. pMOS was then replaced by nMOS
technology where only n-channel devices were used due to their superior
mobility over pMOS devices. Finally, CMOS was introduced and quickly
replaced all other MOS fabrication processes because CMOS circuits
consume virtually no power when on standby, unlike nMOS or pMOS
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circuits. In addition, circuit design is more efficient in CMOS than in the
other MOS families. The CMOS fabrication process can be fully described
by the sequence of operations used to fabricate the simplest CMOS logic
gate: the CMOS inverter (Figure 11.24).

N-channel transistors must be made on a P-type substrate, while p-
channel MOSFETs require the use of an N-type substrate. To integrate
both types of devices on a single silicon wafer the need arises to form
both N-type and P-types regions in the substrate. If an N-type wafer is
used P-type regions called "P-wells" must be created to host n-channel
transistors. If a P-type wafer is the starting substrate, N-wells will be
formed for the P-channel devices. An N-well CMOS process is described
below in Figures 11.25a to 11.25p. The fabrication sequence yields a
CMOS inverter.
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A plane view of the CMOS inverter is shown in Figure 11.26. The well
contact is connected to such that the N-well/substrate junction is
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always reverse biased. The dotted line represents the region where the
cross-section of Figure 11.25p is taken.

11.10. NPN bipolar process

One characteristic feature of bipolar transistor processing is the use of
epitaxy, although epitaxial growth can also be used in the fabrication of
CMOS integrated circuits. To reduce the collector resistance a highly
doped buried collector diffusion is made below the active area of the
device. Epitaxy is then used to grow a lightly n-doped silicon film on top
of the buried collector. A fabrication process that yields both NPN bipolar
transistors and CMOS devices is called a BiCMOS process. If, in addition,
it allows for the formation of PNP bipolar transistors, it is called a
CBiCMOS process. A typical processing sequence used in the fabrication
of NPN bipolar integrated circuits is shown in Figures 11.27a to 11.27o.
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Problems

Problem 11.1:

Problem 11.2:

A dose of boron of  is implanted into N-type silicon
with an energy of 80 keV.
After implantation the sample is annealed for 30 minutes at 1000°C. The diffusion
constant for boron at 1000°C is

a) Plot C(x) for 0 < x < 1 before and after annealing. C(x) should be plotted
on a log scale.
- What is the maximum (peak) concentration of boron right after implantation?

- Determine the junction depth after implantation from the plot. (unit:
micrometer)
- What is the maximum (peak) concentration of boron after annealing?

- Determine the junction depth after annealing from the plot, (unit:
micrometer)

b) How much longer should the sample be annealed at 1000°C to obtain a
junction depth of

An NPN bipolar transistor is fabricated using the following process steps:
The starting material is phosphorus-doped silicon; the phosphorus atom
concentration is The collector contact is at the back of the silicon
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wafer. Boron is implanted to form the base. The implantation energy and dose are 20
keV and respectively. To form the emitter arsenic is implanted at an
energy of 30 keV and a dose of The wafer is then annealed for 2 hours at
a temperature of 900°C. The diffusion coefficient of boron and arsenic at T=900°C
are and respectively.
What is the width of the transistor base?

Problem 11.3:
A wet oxide is grown at 900°C. The target thickness for the oxide is 500 nm. Not
knowing the oxidation rate it is decided to proceed by trial and error and grow the
oxide for 1 hour. The oxide thickness is then measured. It is equal to 135.7 nm. The
wafer is put back in the furnace and the oxidation is continued for an extra 2 hours.
The oxide thickness is then measured again and equals 348.7 nm. How much longer
do we have to continue the oxidation to reach the target thickness (500 nm)?

Problem 11.4:
The doping concentration in the channel region of an actual MOSFET is not
constant as a function of depth. If we take the example of an n-channel MOSFET,
the P-type substrate doping concentration is in the order of and boron is
implanted underneath the gate oxide to minimize short-channel effects and to adjust
the value of the threshold voltage (this implantation step is called a "threshold
implant"). In Problem 7.2 we have developed a technique to measure a uniform
doping concentration using a MOS capacitor. Here we will use a similar technique to
measure a non-uniform doping profile.

1) If the doping concentration in a MOS capacitor is show that can be
obtained from a capacitance-voltage measurement according to the following
equation (valid when the capacitor is in depletion):

2) Using Matlab, simulate the fabrication of the capacitor and its C-V characteristics:

at 1000°C. The diffusion constant for boron at 1000°C is
A 100-nm gate oxide is then deposited (assume no thermal step for the

oxide deposition). Metal is evaporated on the structure and etched to produce a
capacitor with an area of We will assume that the flat-band voltage, is
equal to 0 volt and the measurement is taken at room temperature (T=300K). Plot
the capacitance of the MOS capacitor versus gate voltage for depletion depths
ranging from 0 to

3) Using the equation obtained in Part 1 of this problem and the C-V data from Part
2, plot the doping concentration as a function of depth
Compare the profiles.

A dose of boron of is implanted into P-type silicon
with an energy of 20 keV. After implantation the sample is annealed for 30 minutes
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Problem 11.5:
MOSFETs are fabricated in two P-type silicon wafers. The doping concentration in
the wafers is uniform and equal to The gate material is degenerately
doped N-type polysilicon, and the gate oxide thickness is 20 nm.
Wafer one is implanted with boron prior to gate oxide growth with a dose of

at an energy of 20 keV. Wafer two receives no implantation. The
gate oxide growth is carried out at 1000°C for 30 minutes. The diffusion constant
for boron at 1000°C is Neglect any oxidation-
enhanced diffusion effects.
Using a finite-difference numerical technique (see Problem 2.4), calculate the
threshold voltage in the two types of transistors (wafer one, implanted and wafer
two, non-implanted) and plot the doping concentration as a function of depth, as
well as the depletion charge as a function of depth at threshold for both
wafers. There are no charges in the oxide and no interface states. Linearization of the
Poisson equation is recommended (see Problem 7.16).
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A2. Physical Constants
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A3. Concepts of Quantum Mechanics

In this Annex the Reader is reminded of some concepts from quantum
mechanics that will be used in this book.

1)

2)

3)

A particle can be fully described by a function, called wave function.
The wave function is noted and it contains all measurable
information about the particle.

To each dynamic variable corresponds a quantum-mechanic
operator:

To the position x corresponds the operator

To momentum corresponds the operator

To the total energy E corresponds the operator

To the potential energy V(x,y,z) corresponds the operator

where and where h being Planck's constant.

The wave function also gives the probability of finding the particle in
a given region of space. If the wave function is real (i.e., not
complex) the probability of finding the particle between positions a
and b in one dimension (x) is given by:

For all space in one dimension the particle must be somewhere
between and and therefore, we obtain the
normalization condition:

Consider the total energy of a particle in a classical Newtonian physics
approach. If the particle has a momentum p and a potential energy V, its
total energy is given by:
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Note that p=p(x,y,z), and V=V(x,y,z)

Applying these concepts to an electron having a mass m for the one-
dimensional case one obtains Table A. 1:

In this Table, k is a wave vector or a wave number that corresponds to the
momentum of the particle.

The Schrödinger equation is basically the quantum mechanical equivalent

of classical mechanics For the one-dimensional case the

quantum mechanical equivalent of total energy is:

and, in three dimensions:

where is the Laplacian operator defined by:
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If the potential energy function is time independent one is
able to construct a solution to the Schrödinger equation through the
technique of separation of variables where the wave function is written as
the product of a time-independent term, and a space-independent
term, T(t), such that The introduction of these
terms into (A3.8) yields:

or

The left-hand term of this equation depends only on space, while the
right-hand term depends only on time, which indicates that the separation
of into the product of and T was successful. We can now solve the
Schrödinger equation for the variables and T separately, and with this
solution find Equation A3.9 makes sense only if both terms are
equal to a constant which we shall call E, therefore, we can write:

and therefore:

Introducing Expression A3.11 into A3.8 one obtains the time-
independent Schrödinger equation:

where E is the (constant) energy of the particle, where the energy of the
particle is given by:
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A4. Crystallography – Reciprocal Space

Most semiconductors are crystalline materials. Elemental semiconductor
atoms such as silicon or germanium belong to column IV of the periodic
table and have four electrons on their outer shell. In a crystal these atoms
form four covalent bonds with neighboring atoms in order to complete
their outer shell. Each atom is thus in the center of a tetrahedron, the
corners of which are occupied by other similar atoms (Figure A.1).

The atoms in a crystal form a pattern that is repeated in the three
directions of space with perfect regularity. That pattern is called the "unit
cell". Silicon and germanium have the diamond lattice structure. This
structure can be viewed as two interweaving face-centered lattices. In this
case the unit cell is a cube (Figure A.2). The length of each cube side is
called the "lattice parameter", which is equal to 5.43 and 5.64 Å in silicon
and germanium, respectively.

In the unit cell presented in Figure A.2 atoms labeled "1" are completely
enclosed in the unit cell. Atoms at the center of each of the six sides of
the cell and labeled "1/2" belong half to the unit cell and half to an
adjacent cell. Atoms located at the corners of the cube and labeled "1/8"
have one-eighth of their volume included in the unit cell and contribute to
seven other cells. Therefore, the unit cell contains 4 × l + 6 × l/2 + 8 ×
1/8 = 8 atoms. Semiconductors formed using elements from columns III
and V of the periodic table, such as gallium arsenide (GaAs), have the
zincblende crystal structure. The GaAs lattice cell can be viewed as two
interpenetrating face-centered lattices, one containing gallium atoms, and
the other containing arsenic atoms. It is also represented by Figure A.2
where atoms labeled "1" are gallium and atoms labeled "1/2" and "1/8" are
arsenic (and vice-versa). The lattice parameter of GaAs is 5.65 Å.
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The most basic property of a crystal is that the same pattern of atoms is
repeated over and over again in the three directions of space. The
position of any cell in the crystal is given by a vector 1 defined by:

where m, n and p are integer numbers, and a, b and c are the vectors of
the lattice parameters of the unit crystal cell (Figure A.3). In most
semiconductors the cell is cubic and a,b and c have the same length.



416 Annex

One can define three new vectors:

Vectors a*, b* and c* belong to what is called the "reciprocal lattice".
While vectors a, b and c belong to real space and are measured in meters
or centimeters, vectors a*, b* and c* belong to a space where the
measurement unit is or which is called the
"reciprocal space". Note that and

a* is thus parallel to a and perpendicular to b and c, if there is
such a thing as being parallel or perpendicular to a vector belonging to
another space.

Figure A.4 represents vectors a*, b* and c*. They are perpendicular to
crystal planes (100), (010) and (001), respectively. Vectors perpendicular
to planes (110) and (111) are represented as well. Any vector k in the
reciprocal space obeys the following equation:

where f, g and h are integer numbers.
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Problems

Problem A4.1:
a: Calculate the number of atoms in a cubic centimeter of silicon and germanium.

b: Calculate the number of atoms per square centimeter at the surface of an (100)-
oriented silicon sample.

Problem A4.2:
Using Matlab place silicon atoms in the silicon unit cell in order to produce a 3D
plot similar to Figure A.2. View it from different directions: random, (100), (110)
and (111). The lattice parameter is 5.43 Å. Use commands
[sx,sy,sz]=sphere(20) and surf1(sx,sy,sz) to draw the atoms. Use command
line([X1 X2],[Y1 Y2],[Z1 Z2]) to plot the bonds between the atoms.

Problem A4.3:
Using Matlab place silicon atoms in 3×3×3=27 silicon unit cells in order to produce
a 3D plot of the lattice. View it from different directions: random, (100), (110) and
(111). The lattice parameter is 5.43 A. Use commands[sx,sy,sz]=sphere(20)
and surf1(sx,sy,sz)to draw the atoms. Use command line([XI X2], [Yl
Y2],[z1 z2]) to plot the bonds between the atoms.
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A5. Getting Started with Matlab

Matlab contains a powerful and user-friendly HELP function. For
example:

help help
help graphics
help * or  help +

will display a general help message, help on graphic functions, and help on
operations such as multiplication and addition, respectively.

Matlab is based on matrix operations. The following commands:

will of course produce b=2 as a result, but internally both a and b are
treated as 1 x 1 matrices, such that a = [1] and b = [2].

Characters preceded by a percent sign (%) are treated as comments.
Here is an example of commands:

The resulting matrices and vectors are:

Note the important difference between "*" and ".*" or "/" and "./" !

1
2

a = 1
b = a + a

1
2
3
4
5
6
7
8

clear
A=[l 2;3 4]
B=A/A
C=A*A
D=A .*A
E=A ./A
a=l:2:12
b=a'

% Clears all variables
% Build a 2x2 matrix
% Divide the A by itself
% Multiply A itself
% Multiply the elements of A by themselves
% Divide the elements of A by themselves
% Generate a vector
% Transpose it
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Using Matlab graphic results can be produced very easily. Here are some
examples:

1
2
3
4
5

Plot sin(x) and cos(x)
clear %Clear all variables
X=0: 0 .1:2*pi; % x varies from 0 to in steps of 0.1
SINE=sin(X);COSINE=cos(X);
plot(X,SINE,'-r',X,COSINE,'--b');
title('Sine and Cosine functions')

Note that x, sin(x) and cos(x) are vectors. There is no need for FOR or
DO loops!

1
2
3
4
5
6

Plot a spiral
clear; clf % Clear all variables; clear figure
R=0 : 0 .1: 5*pi; % R varies from 0 to in steps of  0.1
SINE=sin(R);COSINE=COS(R);
plot(SINE .*R,COSINE .*R, '-b')
axis square
title('Spiral')
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Plot a two-dimensional "Mexican hat"
clear; clf; % Clear all variables; clear figure
t=50; % number of mesh points in each direction
A=zeros(t); % build a 50x50 matrix array
for i=l:t;

for j=l:t;
% Distance from center of matrix

r=sqrt(((i-t/2)/2)^2+((j-t/2)/2)^2);
A(i,j)=sin(r)/r;
end

end

A(t/2, t/2)=l; %center point of matrix is equal to 1
surf1(A) % Plot the 2D graph
shading interp;
colormap(pink);
title (' "Mexican hat function" ')
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Matlab can be used to conveniently solve many matrix
problems. Here is a simple example. Consider the circuit below.
We need to find the value of currents and as well as voltage

Using Kirchoff' s voltage law we can write:

or, in a matrix form:

Using this simple program:

The solution is           from which we infer

and

1
2
3
4

clear
A=[150 50 0;50 150 0;0 100 -1];
B=[10 10 0] ' ;
IV=A\B



422 Annex

Here are some Matlab functions that can be useful to solve some
Problems from this Book:

Concatenation and iterative equation solving:

If then writing B = [A A A] yields:

The following example solves the equation x=cos(x) iteratively and uses
concatenation to plot the values of x at each iteration:

1
2
3
4
5
6
7
8
9
10
11
12

clear
test=l;x=0;graph=[];
while test>le-4
x2=cos(x) ;
test=abs(x2-x);
graph=[graph x];
x=x2 ;

end
('the solution is')
x
plot(graph)
xlabel('Iteration number');ylabel('X value');



If one tries to solve x= 2cos(x) using the iterative method described
above, convergence will not be reached. Convergence can be improved by
introducing a relaxation factor, used during each evaluation of a new x
value. The value of ranges between 0 and 1.

Instead of writing x2=cos(x)
one can write x2=x*(alpha-l) + alpha*cos(x)

such that x2 is some average value between the old x value and the newly
calculated value for x.

The program below uses the values 0.2, 0.4, 0.6 and 0.8 for a.
Convergence is obtained for the lower values, but not for Not
using a relaxation factor is equivalent to writing for which there is
no convergence.
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Relaxation factor:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

clear;clf
graph2=[]
for alpha=0.2:0.2:.8

x=0;graph1=[];x=0;
for counter=1:12

x2=2*cos(x);
test=abs(x2-x);
graph1=[graph1 x];
x=x*(1-alpha)+alpha*x2;

end
graph2=[graph2 graph1'];

end
plot(graph2,'-k')
xlabel('Iteration number');ylabel('X value');
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Diagonal matrices: The following program

1
2
3
4
5
6
7

clear
t=6;
A=diag ( o n e s ( l , t ) , 0 )
B=diag(ones(l,t-1),1)
C = d i a g ( o n e s ( 1 , t - 1 ) , - 1 )
A=–2*A+B+C
A(l,l)=l;A(l,2)=0;A(t,t)=l;A(t,t-l)=0

yields:

A similar matrix is used in problems based on a numerical (finite-
differences) simulation technique.

Numerical integration and differentiation:

The following program integrates and differentiates

1
2
3
4
5

6
7
9
10
11

dx=0.01;
x=-5:dx:5;
y=x.^2;
integral=sum(y)*dx %Definite integral (from x=-5 to x=5)
integral_curve=cumsum(y)*dx; % Integral curve
% derivative=diff(y)./diff(x);
% Since the differentiation of an n-element
% vector produces an (n-1)-element vector we add
% a dummy "Not a Number"(NaN) at the end of the
% derivative vector, such that it has the same
% length as the x-vector:
derivative=[derivative NaN];
plot(x,y,'-b',x,integral_curve,'--r',x,derivative,'--k')
text(-4,80,'BLUE:y=x^2')
text(-4,70,'RED: integral of y')
text(-4,60,'BLACK: dy(x)/dx')
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Note 1: On some computers some versions of Matlab may give you
frustrating problems if you use uppercase letters in file names. So, it is
good practice to use file names such as "test.m" instead of "Test.m",
for example. The Problems in this Book were designed using the Student
Edition of Matlab, version 5.0 for Macintosh, and version 5.3 for PC.

Note 2: Some people may find the font size in Matlab plots too small for
easy reading. Plot properties such as font size and line width can be
modified using the following commands:

set(0,'defaultaxesfontsize',14) sets the axes font size to 14
set(0,'defaulttextfontsize',14) sets the text font size to 14
set(0,'defaultlinelinewidth',14) sets the plot linewidth to 2
set(0,'defaultaxeslinewidth',14) sets the axes linewidth to 2
set(0,'defaultaxesfontname','Arial') sets the axes font

name to Arial
set (0,'defaulttextfontname','Arial') sets the text font name

to Arial
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A6. Greek alphabet
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A7. Basic Differential Equations

In the examples below, A and B are given constants, and
are integration constants. Integration constants can be numerically
determined by applying boundary conditions to the general solution of the
equation.

To solve:

using separation of variables we write:

which yields the general solution:

To solve:

we write:

or:

Noting that d(AF(x) +B) = A dF(x) and using a change of variables
where AF(x) + B = y we can write:

The integration results in:
Therefore, the general solution is:

or, noting
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To solve:

we integrate a first time to find:

and then integrate a second time to obtain the general solution:

To solve:

we must find a function that is equal to its second derivative,
multiplied by a positive constant. The only function satisfying this
condition is the exponential function, since:

and

Comparing the initial differential equation and the possible solutions,
we find that Therefore, the general solution is:

Since and we

can also write:
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To solve:

we must find a function that is equal to its second derivative,
multiplied by a negative constant. The only functions satisfying this
condition are the sine and cosine functions since:

and

Comparing the initial differential equation and the possible solutions,
we find that Therefore, the general solution is:

Using and we can write:

or:
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