

李耀鑫 13307110111 指导教师:姚红英

目录 Contents

实验原理

经典理论 分子的电极化模型: $p = \vec{\alpha} \cdot E$,电极化率张量 $\vec{\alpha}$ 是简正坐标 $\{q_i\}$ 的函数 不能计算出Raman光谱的强度

量子理论 振动能级的跃迁:激发后回到原能级(Rayleigh)、高能级(Stokes)、低能级(反Stokes) 可以计算出Raman光谱的强度——Boltzmann分布

Raman散射

散射光中,在频率与入射光相同的Rayleigh散射线两侧有频率和入射光不同的谱线。长波一侧称为Stokes线,短波一侧称为反Stokes线。

2016/6/15

李耀鑫近代物理实验报告

$$p = \vec{\alpha} \cdot E$$

$$\vec{\alpha} - \text{阶Taylor展开}: \vec{\alpha} = \vec{\alpha_{0}} + \sum_{i=1}^{\infty} \frac{\partial \vec{\alpha}}{\partial q_{i0}} q_{i} , q_{i} = q_{i0} \cos(\omega_{i}t + \phi_{i})$$

$$E = E_{0} \cos(\omega t)$$

代入得:
•
$$p = \vec{\alpha_{0}} \cdot E + \frac{1}{2} \sum_{i=1}^{\infty} q_{i} \{\cos[(\omega - \omega_{i})t - \phi_{i}] + \cos[(\omega + \omega_{i})t + \phi_{i}]\} \frac{\partial \vec{\alpha}}{\partial q_{i0}} \cdot E_{0}$$

Rayleigh Stokes 反Stokes
微分极化率张量:
$$\frac{\partial \vec{\alpha}}{\partial q_{i0}} \equiv \begin{pmatrix} \alpha'_{xx} \alpha'_{xy} \alpha'_{xz} \\ \alpha'_{yx} \alpha'_{yy} \alpha'_{yz} \\ \alpha'_{zx} \alpha'_{zy} \alpha'_{zz} \end{pmatrix}, 与坐标系有关, 反映简正模对称性$$

Polarization state of scattered light and degree of degeneracy polarization

散射平面:入射光与散射光传播方向构成的平面 散射光强: ${}^{l}I_{s}(\theta)$ i,s:入射光、散射光偏振方向相对散射平面的取向(垂直⊥、平行॥或自然光n) θ : 散射光、入射光夹角 退偏度: $\rho_n(\theta) = \frac{n_{I_{\parallel}}(\theta)}{n_{I_{\perp}}(\theta)}$, $\rho_{\perp}(\theta) = \frac{1_{I_{\parallel}}(\theta)}{1_{I_{\perp}}(\theta)}$, $\rho_s(\theta) = \frac{n_{I_{\perp}}(\theta)}{1_{I_{\perp}}(\theta)}$ 定义标量:平均极化率: $\bar{\alpha} = \frac{1}{3} \left(\alpha'_{xx} + \alpha'_{yy} + \alpha'_{zz} \right)$ 各向异性率: $\gamma^2 = \frac{1}{2} \sum_{i < j} (\alpha'_{ii} - \alpha'_{jj})^2 + 6 \sum_{i < j} {\alpha'_{ij}}^2$ 则

$$\rho_n\left(\frac{\pi}{2}\right) = \frac{6\gamma^2}{45\bar{\alpha}^2 + 7\gamma^2} , \ \rho_\perp\left(\frac{\pi}{2}\right) = \rho_s\left(\frac{\pi}{2}\right) = \frac{3\gamma^2}{45\bar{\alpha}^2 + 4\gamma^2}$$

实验装置及过程

激光波长:532nm 波长范围:200nm~800nm 波长精确度:≤0.4nm 谱线半宽度:≤0.2nm

1.调节外光路(聚光部分、集光部分) 2.词咺0.5mm;将测达本火路,完点打进微速。

- 2.间隔0.5nm粗测检查光路、定点扫描微调光路
- 3.间隔0.1nm测量CCl₄的Raman光谱

4.在相同条件下测量 CCl_4 的偏振Raman光谱和相应的空样品管的光谱 5.测量 $CH_4OnC_2H_5OH$ 的Raman光谱

关键参数:入射缝宽、出射缝宽、积分时间

实验结果及分析

1) CCl₄的Raman光谱

Raman spectrum of CCl₄

李耀鑫 近代物理实验报告

CCl_4 的简正模^[1] (T_d 点群的不可约表示)

一种是两个CI垂直于

与C形成的平面运动。

Normal mode of CCl₄

别与其它3个CI沿其连线振

动。

体3个正交方向振动。

定标方法:

2016/6/15

了假设的合理性

定标前结果全部减0.5nm得到定标后的结果, 除了第一条谱线,几乎与理论值完全相同

理论位置/nm	定标前结果/nm	定标后结果/nm
510.9 (T_1)	514.9	514.4
519.3 (A_1)	519.8	519.3
523.3 (T ₂)	523.8	523.3
525.9 (E)	526.3	525.8
538.2 (E)	538.6	538.1
541.0 (T_2)	541.4	539.9
545.3 (A ₁)	545.8	545.3
554.9 (T ₁)	554.9,555.8	554.4,555.3

- •为何会分裂(展宽)?
 原子晶体:原子能级→化学键→能带
 分子:分子振动能级→Van der Waals力→简并消除
- 为何只有*T*₁谱线分裂(展宽)?
 Van der Waals力:取向力(Keeson力)(永久偶极-永久偶极) 诱导力(永久偶极-非极性分子)
 色散力(London力)(瞬时偶极-瞬时偶极)
 *A*₁, *E*, *T*₂: 正负电荷中心重合, *T*₁: 正负电荷中心不重合

C沿一边运动,Cl与C 反向运动,4个Cl同相,质 心不变,振动波数776/cm, 能量三重简并。 三种分别为C沿正方

体3个正交方向振动。

2) CCl₄的偏振Raman光谱

Polarized Raman spectra of CCl₄

- 入射缝宽: 0.500mm 出射缝宽: 0.500mm 负高压: 8 积分时间: 1000ms 阈值: 13
- 强度定标:每个谱线减去该偏振态下 空样品管谱线(CCl₄散射减去空气散射)

1. 定标后最小强度几乎为0

2. Ⅱ⊥偏振态强度很低,CCl₄散射小于 空气散射

3.不同位置的谱线变化趋势不同

4.实验发现光源并非自然光

数值

数值

Calculation of the degree of degeneracy polarization

1.根据群论和微分极化率的坐标变换计 算3个退偏度的理论值^[2]

2.分别计算每条谱线的3个退偏度, Stokes线、反Stokes线取平均值

3.以峰下方积分面积代表强度,同一谱 线积分区间一致

4. II 上偏振态不再扣除空样品管的谱线, 而是扣除一个常数,使最小值为0

5.计算 $\rho_s\left(\frac{\pi}{2}\right)$ 时,两个强度再除以扫描范围总积分面积,忽略扫描范围之外的强度分布

理论∖实验	$ \rho_n\left(\frac{\pi}{2}\right) $	$\rho_{\perp}\left(\frac{\pi}{2}\right)$	$\rho_s\left(\frac{\pi}{2}\right)$
A_1	0\0.17	0\0.11	0\0.45
Ε	$0.86\left(\frac{6}{7}\right) \setminus 0.89$	0.75\0.68	0.75\0.95
T_1	$0.86\left(\frac{6}{7}\right) 0.74$	0.75\0.71	0.75\1.91
<i>T</i> ₂	$0.86\left(\frac{6}{7}\right)$ \1.02	0.75\0.73	0.75\1.10

- 1. A_1 与其它谱线退偏度的区别可以定性看出 2. $\rho_s\left(\frac{\pi}{2}\right)$ 相比理论值普遍偏大
- 3. $\rho_{\perp}\left(\frac{\pi}{2}\right)$ 与理论值最接近

Error analysis and improvement

误差分析

1.激光光源是部分偏振光 , $\rho_n\left(\frac{\pi}{2}\right) = \frac{n_{I_{\parallel}}\left(\frac{\pi}{2}\right)}{n_{I_{\perp}}\left(\frac{\pi}{2}\right)}$ 不适用

2. $\rho_s\left(\frac{\pi}{2}\right) = \frac{\|I_{\perp}\left(\frac{\pi}{2}\right)}{\|I_{\perp}\left(\frac{\pi}{2}\right)\|}$,两个入射总光强应一致, 处理数据时用扫描范围散射光强代替入射总 光强,对于 $\|I_{\perp}\left(\frac{\pi}{2}\right)$ 偏差更大,结果偏大

3.光栅对不同偏振的光灵敏度不同,对 $\rho_n\left(\frac{\pi}{2}\right)$ 和 $\rho_{\perp}\left(\frac{\pi}{2}\right)$ 有影响

4.偏振片的偏振方向、散射角有偏差

5. $\rho_{\perp}\left(\frac{\pi}{2}\right)$ 最接近理论值,表明第一种误差对退偏度的影响最大

改进设想

1.入射偏振片前方再加一偏振片,偏振方向 平分入射的II方向和工方向

2.散射偏振片后方再加一1/4波片,光轴方 向平分散射的II方向和⊥方向,将两个偏振 的散射光都变为圆偏光,再进入单色仪

3.用Nicol棱镜重新确定偏振片的偏振方向, 并提高调节的精度

李耀鑫 近代物理实验报告

谱线和分子基团振动

Spectral lines and the vibration of groups

定标谱线 /cm ⁻¹	1038.2	1466.0	2837.8	2946.7	3300左右
振动基团	C-O骨架面 内伸缩	CH₃反对称 形变	CH ₃ 对称伸 缩	CH ₃ 非对称 伸缩	O-H伸缩
基团振动波 数/cm ^{-1[3][4]}	1015~1030	1452~1473	2700~2850	2945~2948	3345左右

定标谱 线/cm ⁻¹	882.3	1047.6	1091.6	1256.6	1451.0	2881.1	2926.5	2966.7
振动基 团	C-C-O 骨架面 内伸缩	C-C伸 缩	C-C伸 缩	C-O-H 平面内 变形	CH ₃ 不 对称变 形	CH ₃ 对 称伸缩	CH ₂ 非 对称伸 缩	CH ₃ 非 对称伸 缩 ^[6]
基团振 动波数 /cm ^{-1[5]}	837~90 5	950~11 50	950~11 50	1251~1 270	1440~1 473	2880~2 889	2912~2 929	2965~2 969

实验结论

得到了 CCl_4 的Raman光谱, 定标后除了 T_1 反Stokes线之外, 其它谱线位置与理论值相符, 误差不超过1nm。 用色散力的模型定性解释 了 T_1 谱线的分裂和展宽现象。

得到了5种散射偏振态下的 Raman光谱,由此计算出每条 谱线的3个退偏度。 由于激光光源不是自然光, 以及光栅对不同偏振态的光灵 敏度不同,导致退偏度与理论 值相差较大,只能作定性分析。 此外提出了改进的设想。 得到了CH₄O和C₂H₅OH的 Raman光谱。找到了特征谱线 并进行定标。定标后与文献参 考值比较,找到每个谱线对应 的分子内基团的振动模式,结 果位于参考值的范围内。

- •改进光路后继续测量 CCl_4 偏振Raman谱的退偏度,与理论值以及现有结果比较。继续考虑如何产生自然光,以计算 ρ_n 。
- 考虑到对于CCl₄, $\tilde{v}_{A_1} + \tilde{v}_{T_2} = 773 \text{cm}^{-1}$, $\tilde{v}_{T_1} = 776 \text{cm}^{-1}$, 可能 发生Fermi共振, 能量从776 cm⁻¹向773 cm⁻¹转移, 且两条谱线 都发生频移。估算两种原因占比。
- •测量不同浓度比的甲醇、乙醇混合液Raman光谱,利用特征谱线的强度,尝试定量给出测量未知混合液浓度的表达式。

References

- [1] 戴道宣、戴乐山. 近代物理实验[M]. 北京:高等教育出版社, 2006: 234-235
- [2] 王海燕,张仲秋,赵迎春,王明辉. 拉曼光谱偏振特性的研究[J]. 大学物理, 2003, 22(11): 40-43.
- [3] Harry B Mark , James S Mattson .Water Quality Measurement: The Modern Analytical Technique[M]. New York and Basel: MARCIL DEKKER, INC, 1981: 304-310
- [4] R J Bartholomew, Drish. Study of the Raman Non-coincidence. Effect form Methyl Mormate Acetonitrile Solutions[J]. Journal of Raman Spectroscopy, 1998, 29: 115-122
- [5] Paulo J .A .Ribeiro -claro .L .A .E .Batista de Carvalho and Ana m. Amado. Evidence of Dimerizat in Through C -H ...O interact ions in liquid 4-methoxy Methoxybenzaldethy de from Raman Spectra and Abinitio Calcalations. Journal of Raman Spectroscopy, 28: 867-872
- [6] 谭红琳, 李智东, 张鹏翔, 段云彪. 乙醇、甲醇、食用酒及工业酒精的拉曼光谱测定[J]. 云南工业大学学报, 1999, 15(2): 1-6
- [7] 高淑琴, 贺家宁, 李荣福, 左 剑, 李兆凯, 曹 彪, 里佐威. 四氯化碳费米共振的拉曼光谱研究. 光谱学与光谱分析, 2007, 27(10): 2042-2044
- [8] 谷开慧. 应用群论分析甲烷的拉曼光谱[D]. 长春:东北师范大学, 2007.

