Experiments of Modern Physics I Report on Lock-in Amplifier

Zhe Li 16307110295

Department of Data Science Fudan University

June 13, 2019

Outline

Background & Frontier Application

Principle of LIA

Analysis and Conclusion

Background & Frontier Application

Principle of LIA

3 Analysis and Conclusion

- Detection of Weak Signals
- Multi-Harmonic Measurement of Weak Signals
- Micro-Impedance Measurement
- Measurement of Diode Junction Capacitance
- Resistance Thermal Noise Measurement

Outline

Background & Frontier Application

Principle of LIA

Analysis and Conclusion

Background & Frontier Application

Principle of LIA

3 Analysis and Conclusion

- Detection of Weak Signals
- Multi-Harmonic Measurement of Weak Signals
- Micro-Impedance Measurement
- Measurement of Diode Junction Capacitance
- Resistance Thermal Noise Measurement

Background

Background & Frontier Application

Principle of LIA

Analysis and Conclusion

Signal and Noise

Background

SNR and SNIR

Background & Frontier Application

Principle of LIA

Analysis and Conclusion

Background

Weak Signal Detection

Background & Frontier Application

Principle of LIA

Analysis and Conclusion

Method

- Filtering
- Null Method
- Modulation-Demodulation Method
- Lock-in Amplifier(LIA)

Frontier Application

Principle of LIA

Analysis and Conclusion

$$V = \frac{KI}{d}B$$
$$V \propto l^2 = [l_0 \cos(\omega t)]^2 = \frac{1}{2}l_0^2(\cos(2\omega t) + 1)$$

Ma Q , Xu S Y , Shen H , et al. Observation of the nonlinear Hall effect under time reversal symmetric

Outline

Background & Frontier Application

Principle of LIA

Analysis and Conclusion

Background & Frontier Application

·

Principle of LIA

Analysis and Conclusion

- Detection of Weak Signals
- Multi-Harmonic Measurement of Weak Signals
- Micro-Impedance Measurement
- Measurement of Diode Junction Capacitance
- Resistance Thermal Noise Measurement

Principle of LIA

Background & Frontier Application

Principle of LIA

Analysis and Conclusion

LIA is composed of

- (1) Signal Channel
- (2) Reference Channel
- (3) **PSD**
- (4) LPF

Principle of LIA

Theory

Background & Frontier Application

Principle of LIA

Analysis and Conclusion

Principle of LIA

Theory

Background & Frontier Application

Principle of LIA

Analysis and Conclusion

$$S_{I}(t) = A_{I}\sin(\omega t + \varphi) + B(t)$$

$$S_{R_{0}}(t) = A_{R}\sin(\omega t + \delta)$$

$$S_{R_{1}}(t) = A_{R}\cos(\omega t + \delta)$$

$$\begin{cases}
X = \frac{1}{2}A_{I}A_{R}\cos(\varphi - \delta) \\
Y = \frac{1}{2}A_{I}A_{R}\sin(\varphi - \delta) \\
R = \frac{\sqrt{2(X^{2} + Y^{2})}}{A_{R}} \\
\theta = \varphi - \delta = \tan^{-1}\frac{Y}{X}
\end{cases}$$

Outline

Background & Frontier Application

Principle of LIA

Analysis and Conclusion

Detection of Weak Signals Multi-Harmonic Measurement of Weak Signals Micro-Impedance Measurement Measurement of Diode Junction

Diode Junction Capacitance Resistance Thermal

Resistance Thermal Noise Measurement

Background & Frontier Application

Principle of LIA

Analysis and Conclusion

- Detection of Weak Signals
- Multi-Harmonic Measurement of Weak Signals
- Micro-Impedance Measurement
- Measurement of Diode Junction Capacitance
- Resistance Thermal Noise Measurement

3

Detection of Weak Signals

Background & Frontier Application

Principle of LIA

Analysis and Conclusion

Detection of Weak Signals

Multi-Harmonic Measurement of Weak Signals

Micro-Impedance Measurement

Measurement of Diode Junction Capacitance

Resistance Thermal Noise Measurement

June 13

Department of Data Science

Detection of Weak Signals

Background & Frontier Application

Principle of LIA

Analysis and Conclusion

Detection of Weak Signals

Multi-Harmonic Measurement of Weak Signals

Micro-Impedance Measurement

Measurement of Diode Junction Capacitance

Resistance Thermal Noise Measurement

Weak Signal Detection

V _{in}	V _{noise}	SNR / <i>dB</i>	<i>R</i>	Stability
1000	100	20	1010.2	0
100	100	0	100.77	0
10	100	-20	10.083 ± 0.002	0.02%
1	100	-40	1.005 ±0.005	0.5%
0.1	100	-60	$0.103{\pm}\ 0.002$	1.94%

Multi-Harmonic Measurement of Weak Signals

Background & Frontier Application

Principle of LIA

Analysis and Conclusion Detection of Weak

Multi-Harmonic Measurement of Weak Signals

Micro-Impedance Measurement

Measurement of Diode Junction Capacitance

Resistance Thermal Noise Measurement

Fourier expansion of square wave

Multi-Harmonic Measurement of Weak Signals

Background & Frontier Application

Principle of LIA

Analysis and Conclusion Detection of Weak

Multi-Harmonic Measurement of Weak Signals

Micro-Impedance Measurement

Measurement of Diode Junction Capacitance

Resistance Thermal Noise Measurement

Fourier expansion of square wave

$$f(t) = \frac{2E}{\pi} \sum_{k=0}^{\infty} \frac{\sin[(2k+1)\omega t]}{2k+1} \quad \Rightarrow f_n(t) = \frac{2E}{n\pi} \sin(n\omega t)$$

Multi-Harmonic Measurement of Weak Signals

Fitting Function

Background & Frontier Application

Principle of LIA

Analysis and Conclusion

Detection of Weał Signals

Multi-Harmonic Measurement of Weak Signals

Micro-Impedance Measurement

Measurement of Diode Junction Capacitance

Resistance Thermal Noise Measurement

Multi-Harmonic Measurement of Weak Signals

Background & Frontier Application

Principle of LIA

Analysis and Conclusion

Detection of Weal Signals

Multi-Harmonic Measurement of Weak Signals

Micro-Impedanc Measurement

Measurement of Diode Junction Capacitance

Resistance Thermal Noise Measurement

Fitting Result

	Estimaye	Std.Error	p – value
а	231.3	0.2	$< 2 imes 10^{-16}$
b	0.036	0.042	0.408

$$a=rac{\sqrt{2}E}{\pi}$$
 \Rightarrow $E=(513.8\pm0.5)\mu$ V; $\eta=2.8\%$

A 95% confidence interval of *b*: (-0.4632, 1.1832)

Micro-Impedance Measurement

Principle of LIA

Analysis and Conclusion

Detection of Weak Signals Multi-Harmonic Measurement of Weak Signals

Micro-Impedance Measurement

Measurement of Diode Junction Capacitance

Resistance Thermal Noise Measurement

(f) Schematic Diagram

ωLi

(g) Impedance phase

Z_X : The impedance of measured component R_S : The standard resistance

Micro-Impedance Measurement

Background & Frontier Application

Principle of LIA

Analysis and Conclusion

Detection of Weak Signals Multi-Harmonic Measurement of Weak Signals

Micro-Impedance Measurement

Measurement of Diode Junction Capacitance

Resistance Thermal Noise Measurement

$$Z_x = \frac{R_s(X_{dut} + Y_{dut}i)}{X_s + Y_s i}$$

= $\frac{R_s(X_{dut}X_s + Y_{dut}Y_s)}{X_s^2 + Y_s^2} + \frac{R_s(Y_{dut}X_s - X_{dut}Y_s)}{X_s^2 + Y_s^2}i$
= Real_x + Image_x i

Ideal Resistance: $\operatorname{Real}_{X} = R$; $\operatorname{Image}_{X} = 0$ **Ideal Capacitance:** $\operatorname{Real}_{X} = 0$; $\operatorname{Image}_{X} = \frac{1}{2\pi f C}$ **Ideal Inductance:** $\operatorname{Real}_{X} = 0$; $\operatorname{Image}_{X} = 2\pi f L$

Theory

Resistance($R = 1\Omega$)

Background & Frontier

Application

Principle of

Analysis and Conclusion

LIA

Resistance($R = 0.1\Omega$)

Micro-Impedance Measurement Measurement of Diode Junction Capacitance

Measurement of

Resistance Thermal Noise Measurement (j) Real Part

(k) Imaginary Part

Fitting Result						
	Estimate Std.Error <i>p</i> -value					
а	$1.952 imes 10^{-6}$	$3 imes 10^{-9}$	$< 2 \times 10^{-16}$			
b	$-2.2 imes10^{-4}$	1.8×10^{-4}	0.242			

Capacitance(*C* = 10*nf*)

Principle of LIA

Analysis and Conclusion

Detection of Weak Signals Multi-Harmonic Measurement of Weak Signals

Micro-Impedance Measurement

Measurement of Diode Junction Capacitance

Resistance Thermal Noise Measurement

Fitting Result					
	Estimate	Std.Error	p – value		
а	-1.742×10^{7}	9.807×10^3	$< 2 \times 10^{-16}$		
b	5.09	0.252	$< 2 \times 10^{-16}$		

Capacitance(C = 100 nf)

Principle of LIA

Analysis and Conclusion

Detection of Weak Signals Multi-Harmonic Measurement of Weak Signals

Micro-Impedance Measurement

Measurement of Diode Junction Capacitance

Resistance Thermal Noise Measurement

 Fitting Result

 Estimate
 Std.Error
 p-value

 a
 -1.738 × 10⁶
 8.45 × 10²
 < 2 × 10⁻¹⁶

 b
 4.4
 0.2
 < 2 × 10⁻¹⁶

June 13

- 22 -

Summary

Background & Frontier Application

Principle of LIA

Analysis and Conclusion

Detection of Weak Signals Multi-Harmonic Measurement of Weak Signals

Micro-Impedance Measurement

Measurement of Diode Junction Capacitance

Resistance Thermal Noise Measurement

Summary

	$R(\Omega)$	<i>C</i> (<i>nf</i>)	$L(\mu H)$	η
$R = 1\Omega$	0.98 ± 0.17	0	0.331	2%
$R = 0.1\Omega$	0.102 ± 0.002	0	0.310	2%
<i>C</i> = 10 <i>nf</i>	0	9.14	0	8.6%
<i>C</i> = 100 <i>nf</i>	0	91.57	0	8.4%

Conclusion

(1) Quantitative agreement has been obtained between theory and experiment

2) The Resistance is Impure

Summary

Background & Frontier Application

Principle of LIA

Analysis and Conclusion

Detection of Weak Signals Multi-Harmonic Measurement of Weak Signals

Micro-Impedance Measurement

Measurement of Diode Junction Capacitance

Resistance Thermal Noise Measurement

$R(\Omega)$ C(nf) $L(\mu H)$ η $R = 1\Omega$ 0.98 ± 0.17 0.331 2% 0 $R = 0.1\Omega$ 0.102 ± 0.002 0 0.310 2% C = 10 n f9.14 0 8.6% 0 *C* = 100*nf* 0 91.57 8.4% 0

Summary

Conclusion

(1) Quantitative agreement has been obtained between theory and experiment

(2) The Resistance is Impure

Measurement of Diode Junction Capacitance

Principle of LIA

Analysis and Conclusion

Measurement of Weak Signals

Measurement of Diode Junction Capacitance

Resistance Thermal

(s) Schematic Diagram

Theory Formula:

Experiment Formula:

$$C_{X} = \sqrt{A \frac{\varepsilon SqN_{0}}{2V}} \propto \sqrt{\frac{1}{V}}$$
$$C_{X} = \frac{V_{out}}{V_{sine} - V_{out}} \cdot C_{0}$$

June 13

Department of Data Science

Zhe Li | 16307110295

Measurement of Diode Junction Capacitance

Principle of LIA

Analysis and Conclusion

Measurement of Weak Signals

Measurement of

Diode Junction Capacitance

Resistance Thermal

(u) Linear Regression

Measurement of Diode Junction Capacitance

Background & Frontier Application

Principle of LIA

Analysis and Conclusion

Detection of Weak Signals Multi-Harmonic Measurement of

Weak Signals Micro-Impedance

Measurement

Measurement of Diode Junction Capacitance

Resistance Thermal Noise Measurement

Fitting Result						
	Estimate Std.Error <i>p</i> -value					
а	0.225	0.006	$< 2 \times 10^{-16}$			
b	-0.069	0.003	$< 2 imes 10^{-16}$			

Summary

$$C_X = \frac{(2.25 \pm 0.006) \times 10^{-10}}{\sqrt{V}} - (6.9 \pm 0.3) \times 10^{-11}$$

(1) $V = \sqrt{(4KTRB)} \Rightarrow S_t(f) = 4KTR(V^2/Hz)$

Theory

Background & Frontier Application

Principle of LIA

Analysis and Conclusion

Detection of Wea Signals Multi-Harmonic

Measurement of Weak Signals

Micro-Impedance Measurement

Measurement of Diode Junction Capacitance

Resistance Thermal Noise Measurement

(2) Thermal noise is White Noise

- Background & Frontier Application
- Principle of LIA
- Analysis and Conclusion
- Detection of Wea Signals Multi-Harmonic Measurement of Weak Signals
- Micro-Impedance Measurement
- Diode Junction Capacitance
- Resistance Thermal Noise Measurement

Histogram, Kernel Curve and Gaussian Curve of X & Y

 $R = 1000\Omega; f = 997Hz$

Background & Frontier Application

Principle of LIA

Analysis and Conclusion

Detection of Weak Signals Multi-Harmonic

Measurement of Weak Signals

Micro-Impedance Measurement

Measurement of Diode Junction Capacitance

Resistance Thermal Noise Measurement

Measuring Principle

(1) Background Noise: V_{BN}

(2) Thermal Noise: V_{TN}

(3) Measurement:

$$V_{SN}^2 = V_{TN}^2 + V_{BN}^2$$

Background & Frontier Application

Principle of LIA

Analysis and Conclusion

Detection of Weak Signals Multi-Harmonic

Measurement of Weak Signals

Micro-Impedance Measurement

Measurement of Diode Junction Capacitance

Resistance Thermal Noise Measurement

Method

NOISE =	NOISE _{sum}	Standard Error of data
	ENBW	ENBW

Fitting Result

(nV)	$\frac{1}{4}$	1 8	$\frac{3}{32}$	$\frac{5}{64}$
V _{SN}	10.864	7.012	6.716	6.287
Theory (V _{TN})	2.008	1.420	1.230	1.122
V'_{BN}	10.677	6.867	6.602	6.186
Theory(V _{BN})	11.875	5.938	4.453	3.711
η	10.1%	15.6%	48.3%	66.7%

- Background & Frontier Application
- Principle of LIA
- Analysis and Conclusion
- Detection of Weak Signals Multi-Harmonic Measurement of
- Weak Signals Micro-Impedance
- Measurement of Diode Junction Capacitance
- Resistance Thermal Noise Measurement

Error Analysis

- (1) Electromagnetic Interference
- (2) Capacitive Coupling
- (3) Inductive Coupling
- (4) Flutter Noise

Reference

- Background & Frontier Application
- Principle of LIA
- Analysis and Conclusion
- Detection of Wea Signals Multi-Harmonic
- Measurement of Weak Signals
- Micro-Impedance Measurement
- Measurement of Diode Junction Canacitance
- Resistance Thermal Noise Measurement

Jia Lianlian, Wang Zixin. Teaching Experiments on Weak Signal Detection. Sun Yat-sen University.

Wang Zixin et al. Design of teaching experiment platform for weak signal detection based on PLA [J]. Experimental technology and management, 2017.2, 34(2), 88-96.

- OE1022 Digital Phase-Locked Amplifier User Manual [M]. CUHK Instrument, 2016.4-6.
- Han Tuanjun. Design of weak signal extraction circuit based on PLA [J]. Chinese Science and Technology Paper, 2018,13(24): 2804-2808.
- Wang Qi, Jiang Chuandong, Du Hailong. Low noise and high gain phase locked amplification weak signal detection system [J]. Experimental technology and management, 2018,35(03): 84-86+100.
- - Wang Zixin.OE5001 Weak Signal Detection Teaching Laboratory Box (with Digital Phase-Locked Amplifier)[J].Physical Experiments, 2017,37(11): 62.

- Background & Frontier Application
- Principle of LIA
- Analysis and Conclusion
- Detection of Weal Signals
- Measurement of Weak Signals
- Micro-Impedance Measurement
- Measurement of Diode Junction Capacitance
- Resistance Thermal Noise Measurement

THANKS