相对论动能-动量关系验证

08300300096 张之明

摘要 通过测量高速 β⁻粒子的动能与动量,验证相对论动能-动量关系;对造成实验误差的 因素进行了分析与修正,得到较为符合相对论的实验结果。依据实验结果与分析,对实验提 出了改进建议。

Abstract The relativistic relationship of kinetic energy-momentum is verified by measuring the kinetic energy and momentum of high-speed β particles. Analysis and correction of the factors causing experimental error are also presented. Suggestions for improvement are put forward based on the experimental results and analysis.

关键词 相对论 动能-动量关系 β 能谱 修正

0. 引言

相对论与经典理论的差别在物体高速运动的情况下可以明显反映。本文描述的实验以高 速 β 粒子为研究对象,用多道分析能谱仪测量其能量、β 磁谱仪测量其动量,验证其动能-动量关系符合相对论。对于造成实验误差的因素,本文通过实际测量与拟合等方式进行了初 步的分析与修正,使实验结果更为准确。基于上述实验结果以及对造成实验误差的因素的分 析,本文对于更好地达到实验效果提出了一些建议。

1. 实验内容

1.1 动能-动量关系

在经典力学中,动量值与动能的关系为:

$$E_k=P^2/2m_0$$
 (1)
本实验中,β⁻磁谱仪所研究的电子速度已接近光速,其满足相对论关系式:
 $E_k=(P^2c^2+m_0^2c^4)^{1/2}-m_0c^2$ (2)

式中 mo为电子的静止质量。

1.2 实验装置

实验所用装置如右图1所示。

从 β⁻源射出 β⁻粒子经准直后垂直射入 均匀磁场, 粒子受到与其运动方向垂直的 洛伦兹力而作圆周运动, 满足 P=BeR。同 时, 在磁场边放置一个能量探测器, 其接 收窗口狭缝距 β⁻源 Δx, 其长度为粒子运 行的直径, 故可由磁谱仪获得动量实验值

P=eB∆x/2

入射到闪烁体探头的射线能量与探头 的输出电压脉冲幅度成正比,经微机多道 分析仪后,将脉冲幅度转换成道数值,得 到脉冲计数按道数(即能量)的分布。通 过谱峰道数值即可得到β⁻粒子能量实验值 E。

图1 实验装置示意图

由于从 β ⁻源射出的 β ⁻粒子具有连续的能量分布,故实验中通过移动闪烁探头,即改变 Δx 的长度而获得一系列动能与动量值。

(3)

1.3 能量定标

通过标准¹³⁷Cs 和⁶⁰Co 源的 γ 能谱对多道分析能谱仪进行 定标。测量以下各能谱峰的道 址:¹³⁷Cs 的光电峰(0.662MeV) 与反散射峰(0.184MeV)、⁶⁰Co 的光电峰 I (1.170MeV)与光电 峰 II (1.330MeV)。

通过测量得到的四个定标 峰的道址,对 E-CH 进行最小二 乘法拟合,得到定标曲线如下: E(MeV)=0.00182CH+0.00175。 1.4 不同 Δx 位置 β⁻能谱测量

依次将探头置于不同 Δx 位置, 定时 300s,记录相应的 β 能谱, 如右图所示。各 β 一能谱的峰道址 数据如下表所示:

∆x/cm	СН
10.0	243
12.5	367
15.0	489
17.5	607
20.0	721
22.5	843

表1 不同Δx位置β能谱峰道址

图 3 不同 Δx 所对应的 β 能谱

2. 误差讨论与实验结果

依照 1.3 述能量定标曲线,可以求得不同 Δx 位置 β ⁻粒子能量 Ef,然而 β ⁻粒子在运动过 程中存在一定的能量损失,需对相应误差进行分析与修正。

2.1 穿过有机塑料薄膜与铝膜的能量损失修正

有机塑料薄膜用于密封真空盒,β⁻粒子在穿出真空盒时需穿过一层有机塑料薄膜;实验 所用闪烁体探头中的 Nal(TI)极易潮解,在其表面有厚约 200µm 的铝膜,β⁻粒子需穿过铝膜 才能进入探头。对于上述两项带来的误差,采用线性插值法进行修正,能量修正经验表格如 附录 1、2 所示^[1]。由于β⁻粒子依次穿过有机塑料薄膜与铝膜,故修正按照铝膜、有机塑料 薄膜的顺序进行。修正后的β⁻粒子能量为 Ei,如表 2,可见对β⁻粒子能量有较大的影响。 2.2 本底与干扰的修正

实验中的本底来源于如下两个方面: (1)周围环境存在本底辐射:周围环境中由于存在难 以预期的电磁波或运动粒子,故存在着一定的本底辐射,如实验仪器附近放置的放射源产生 的辐射等; (2)能谱仪探头中的光电倍增管存在暗电流:包括光阴极材料的热电子发射、电 极间绝缘材料的漏电及场致发射等^[4]。本底取决于仪器工作环境及能谱仪工作条件的设置, 故需通过实测确定。实验中针对上述 Δx 位置依次测量了本底,扣除本底后的 β 能谱如图 3 所示。图中 β 能谱依颜色与图 2 所示 β 能谱对应。

实验中的干扰主要来源于如下:β射线在经过空气及探头中的原子核时引发轫致辐射等, 发出 X 射线,对计数造成干扰,尤其在低能段干扰应较大。干扰取决于实际发生的过程,然 而该过程难以完全理论求得或直接测得,故利用去除本底后的β能谱数据,对低能部分进行 拟合,拟合区间选取与拟合结果见附录 3。扣除干扰后的β能谱如图 4 所示。

可以看到,图 3 所示 β⁻能谱的谱峰对称性较差、偏离高斯峰较大,低能部分本底与干扰 严重;扣除本底和干扰后,β⁻能谱的谱峰对称性及低能区均有了明显的改善。然而考察各β⁻ 能谱的谱峰道址,其与修正前没有明显的变化。

另外,扣除本底与干扰后β能谱图在低能区仍然存在明显可见的干扰。实验者推测存在 两个较为可能的原因: (1)选取的拟合方程形式不能很好地满足这一区段的实际干扰值; (2) 存在未考虑到的干扰来源。具体原因尚需要进一步探讨。

2.3 对β⁻粒子在空气中能量损失的讨论

β⁻粒子在空气中运动的过程中将引发空气电离,造成一定的能量损失,能量损失随β⁻粒 子能量的增加而增大^[4]。实验中为磁谱仪提供了低真空设备,工作环境气压约在数十帕量级, 故该部分能量损失较小,不予赘述。

2.4 磁场强度不均匀带来的误差

实验所用磁场实际为近似均匀磁场,特别在其边缘存在相当程度的非均匀性。在用(3)式 计算 P 的实验值时,不同的磁场处理方案将带来不同的误差,该部分误差将对实验结果带来 明显的影响。但由于实验者并无实验所用仪器的磁场强度分布数据,故对该部分误差未能进 行有效的修正。

2.5 对其他误差来源的讨论

实验仪器通过固定的毫米刻度尺与通过螺旋方式传动的探头测量 Δx。实验中发现,采用 螺旋传动的方式,在分别向两侧方向旋进时,探头的螺纹将贴在螺旋杆螺纹不同的两侧;探 头上的刻线没有达到固定与刻度尺垂直,在向不同方向旋进时将向不同方向倾斜,以上两点 在 Δx 测量中将引入一定的误差。

限于目前采用的实验方法与仪器,能谱仪定标时定标峰道址的读取和能量修正均有实验 者根据经验完成,该过程会引入一定的人为误差。

上述两部分误差的值相对较小,且应通过改进实验仪器设计等方式予以改善,故在误差 修正过程中未予考虑。

2.6 实验结果

依上述讨论,实验结果如表 2 所示。其中 Ei 为经过修正的 β⁻粒子动能最终值,PCT'为根据 Ei 计算得到的经典情况理论 PC 值,PCT 为根据 Ei 计算得到的相对论情况理论 PC 值,PC 为依据(3)式计算得到的实验值,DPC 为 PC 与 PCT 的相对误差;等效磁场法与均匀磁场法为

				表 2	实验数据纲	处理表格				
Δx/	СН	Ef/	Ei/	PCT/	PCT'/	:	等效磁场法 均匀磁场法 (B=647.3Gs)			
cm		wev	wev	wev	wev	B/Gs	PC/MeV	DPC/%	PC/MeV	DPC/%
10.0	243.0	0.444	0.550	0.930	0.750	644.34	0.967	3.9	0.971	4.4
12.5	367.0	0.670	0.764	1.168	0.884	647.77	1.215	4.0	1.214	3.9
15.0	489.0	0.892	0.987	1.408	1.004	649.13	1.461	3.7	1.457	3.4
17.5	607.0	1.106	1.198	1.631	1.107	650.31	1.708	4.7	1.700	4.2
20.0	721.0	1.314	1.409	1.851	1.200	650.75	1.953	5.5	1.943	4.9
22.5	843.0	1.536	1.631	2.080	1.291	651.37	2.199	5.7	2.185	5.0

两种不同的磁场强度处理办法。

3. 结论与建议

由上述讨论可以看到,通过实验较好地验证了相对论的动能-动量关系。

同时可以看到,在目前的实验条件下,对实验造成较大的影响的误差来源主要是穿过有 机塑料薄膜与铝膜的能量修正、磁场强度不均匀等方面。穿过有机塑料薄膜与铝膜的能量修 正目前采用了依据经验表格线性插值的方法,建议改为实验中实际测量获得能量损失的数据。 可采用增加有机塑料薄膜或铝膜层的方法进行测量。磁场强度的处理目前由实验室软件自动 完成,其处理方法有一定的局限性,建议给出各磁谱仪的磁场分布,由实验者选择较好的处 理方案获得所需磁场强度值。

另外,对于 Δx 测量中用到的丝杆传动机构,可改用直接牵引或推动的机械结构,并采用 更加稳固的探头刻线标示方法,从而降低 Δx 测量中带来的误差,提高实验的精度。

致谢

实验得到了姚红英老师的悉心指导与建议,在此对姚老师表示由衷的感谢。

4. 参考文献

[1] 复旦大学物理教学实验中心. 近代物理实验补充讲义[M]

[2] 陈宏芳. 原子物理学[M]. 合肥: 中国科学技术大学出版社, 1997:280-300

[3] 沈元华、陆申龙. 基础物理实验[M]. 北京: 高等教育出版社, 2003

[4] 郭惠民、周会. 相对论动量-能量关系实验中的一些问题[J]. 北京师范大学学报. 2002.1

7/1	. =.
-M4	ऋ
1.14	-1-

Ei/Me	eV	Ef/MeV	Ei/Me	eV	Ef/MeV	
0.31	7	0.200	1.18	4	1.100	
0.36	0	0.250	1.23	9	1.150	
0.40	4	0.300	1.28	6	1.200	
0.45	1	0.350	1.33	3	1.250	
0.49	7	0.400	1.38	8	1.300	
0.54	5	0.450	1.43	5	1.350	
0.59	5	0.500	1.48	9	1.400	
0.64	0	0.550	1.53	6	1.450	
0.69	0	0.600	1.58	3	1.500	
0.74	0	0.650	1.63	8	1.550	
0.790		0.700	1.68	5	1.600	
0.840		0.750	1.74	0	1.650	
0.887		0.800	1.78	7	1.700	
0.937		0.850	1.83	1.834		
0.988		0.900	1.88	9	1.800	
1.03	9	0.950	1.93	6	1.850	
1.09	0	1.000	1.99	1	1.900	
1.13	7	1.050	2.03	8	1.950	
附录 2 β⁻糕	立子穿过有机塑	料薄膜的能量修	正经验表格			
Ei/Me	eV	Ef/MeV	Ei/Me	eV	Ef/MeV	
0.38	2	0.365	1.17	3	1.166	
0.581		0.571	1.36	7	1.360	
0.777		0.770	1.56	1.567		
0.973		0.966	1.75	1.752		
附录3 β 能	8谱干扰拟合结!	果	·			
Δx/cm	10.0	12.5	15.0	17.5	20.0	2
拟合区段 CH	35~100	35~200	35~300	35~300	35~200	
拟合方程 N=	1111.8e ^{-0.01CH}	813.56e ^{-0.007CH}	499.44e ^{-0.005CH}	325.14e ^{-0.005CH}	190.67e ^{-0.006CH}	

其中,在扣除本底后, $\Delta x=22.5$ cm 在低能部分的曲线拟合效果不佳,故未列出其拟合结果。 图 4 中 $\Delta x=22.5$ cm 所对应的 β能谱亦为仅扣除本底后的 β能谱。