光泵磁共振实验中若干问题分析

陈巍月¹,何正字¹,周鲁卫² (上海市邯郸路 220 号,复旦大学,200433)

摘要:本文分析了光抽运信号的形成原因以及影响光抽运信号幅度的因素。通过对磁共振信号的观察测出研究对象中^{**}Rb和^{**}Rb的丰度比为 2.78,与自然界中同位素标准丰度比相差了 7.3%。分析了信号源产生的高频噪声对实验 结果的影响。以已有实验条件为基础,对进一步开展纵向弛豫时间的测量实验作了讨论。 关键词:光泵;磁共振;铷原子;丰度比;高频噪声;纵向弛豫时间

1.引言

光抽运(光泵)在上世纪五十年代由 A.Kastler 等人提出,它的引入提高了研究低浓 度样品时探测信号的灵敏度。二三十年来,光 抽运技术在原子结构研究、精测弱磁场等领域 有着广泛而重要的应用。^[1]

利用 DH807 型光磁共振实验仪可以完成光 抽运信号和磁共振信号的观察实验,并能够通 过观察磁共振信号来测量铷原子的g_F因子、共 振线宽以及地磁场的大小和方向。

本文就实验中光抽运信号的形成原因进行 了讨论。通过观察磁共振信号算出了样品中铷 原子同位素的丰度比。分析了扫场电源产生的 高频噪声对光抽运信号的观察以及 g_F因子的 测量带来的影响。分析了在现有仪器基础上开 展纵向弛豫时间的测量实验的可行性。

2.实验原理

2.1 光抽运现象

原子跃迁需要满足跃迁的选择定则,即 $\Delta l = \pm 1$, $\Delta F = \pm 1,0$, $\Delta m_F = \pm 1,0$ 。本实验中 射入铷泡的是铷灯的 $D_1\sigma^+$ 光,即波长为 7947.6Å 的左旋圆偏振光。由于 σ^+ 光子的角动量为 h, 因此原子受 $D_1\sigma^+$ 光激发跃迁时,只能产生 $\Delta m_F = +1$ 的跃迁,因此 $D_1\sigma^+$ 光能够将⁸⁷ Rb 基 态 $5^2S_{1/2}$ 中除了 $m_F = +2$ (对⁸⁵ Rb 来说则为 $m_F = +3$ 。以下均以⁸⁷ Rb 为例,不再列举⁸⁵ Rb 的情况。)以外各能级上的粒子激发到 $5^2P_{1/2}$ 的 相应子能级上。由于自发辐射,激发态上的原 子以几乎相等的几率跃迁回基态各能级上。经 过多次的上下跃迁,⁸⁷ Rb 基态 $m_F = +2$ 能级上 的粒子数只增不减,形成了粒子数的非平衡分 布。以上过程称为光抽运。

2.2 磁共振信号的探测

当铷原子因光抽运达到偏极化饱和时,铷 蒸汽对 D₁σ⁺光的吸收达到一个较小的恒定值, 因此透过铷泡的圆偏振光增强。此时在垂直于 1. 作者简介: 陈巍月,何正宇,复旦大学08级物理系本科生 2. 指导老师: 周鲁卫,复旦大学物理系教授

产生赛曼分裂的磁场 B 的方向加上频率为 ν 的 射频场,当满足条件 h $\nu = g_F \mu_B$ B时,赛曼子能 级间将产生感应跃迁,即发生磁共振。跃迁遵 守选择定则: $\Delta F = 0$, $\Delta m_F = \pm 1$,因而⁸⁷ Rb基 态 $m_F = \pm 2$ 子能级的粒子会向相应的基态能级 跃迁,原子的偏极化被破坏,再次出现大量能 够被入射光抽运的粒子。所以原子对入射光的 吸收加强,透射光强减弱。当扫描的总磁场离 开满足磁共振条件的值时,粒子又重新被抽运 到 $M_F = \pm 2$ 子能级上。随着粒子偏极化逐渐饱 和,透射光再次变强。如此往复,可看到磁共振信号。

3.实验装置

本实验中, 铷灯光谱线经过干涉滤光片、 偏振片以及 1/4 波片产生波长为 7947.6Å 的 D₁σ⁺光。实验用的铷样品泡内充有同位素比例 与天然组成相同的铷原子,并充入了缓冲气体。 铷泡前后两侧垂直于光轴方向放着一对可以提 供射频场的线圈, 铷泡和射频线圈一起放在可 控温的吸收池中。吸收池放在两对分别平行和 垂直于水平面的亥姆霍兹线圈的中心。产生水 平磁场的亥姆霍兹线圈有两套绕组, 分别产生 恒定水平场和水平扫场。实验装置如图 2^[2]:

实验前,利用指南针将实验光路调至与地磁场水平方向平行的位置,并利用垂直场亥姆 霍兹线圈抵消地磁场垂直分量,使通过铷泡的 总磁场只沿着光轴方向。实验时扫描磁场的频 率 恒 定 为 10Hz,吸收池的温度恒定在 40°C-60°C之间。

4.实验现象及分析

4.1 光抽运信号的观察

①将水平场电流调为最小值 0.002A,相应的磁感应强度为 9.5×10⁻⁷T,相对于10⁻⁵T 量级的地磁场来说可以忽略。以方波扫场为例。使 扫场方向与地磁场水平分量反向,从 0 开始缓 慢增大扫场幅度。当扫场幅度非常小时,探测 信号为一条直线。增大扫场幅度到一定值后, 可以看到如下图所示的光抽运信号:

这是因为在水平扫场的过程中,地磁场水 平分量的贡献不可忽略。逐步增大扫场幅度的 过程中,通过铷原子的总磁场变化规律可以由 下图示意:

可见当扫场的幅度大于地磁场水平分量时, 锄 原子接受到的磁场才会周期性地反向。在半个 周期的同向磁场作用下,原子因光抽运作用逐 渐达到偏极化饱和,入射光的透过率逐渐增大。 而周期性的磁场反向使粒子数的偏极化被周期 性地打破,入射光重新开始对散布在其他能级 上的粒子进行抽运,从而周期性地出现入射光 的吸收峰。

②刚出现抽运信号时,方波波峰对应的探测信号幅度小于方波波谷对应的探测信号幅度。继续增大扫场幅度,方波波峰处对应探测信号 幅度将超过波谷处对应探测信号的幅度。以下 分析原因:

观察发现,在方波扫场下改变扫场幅度, 示波器上观察到的方波信号反向的速率几乎没 有变化,因此可以认为改变扫场幅度后不会改 变磁场突然反向时的粒子数布居状态,从而可 以认为不同扫场幅度下的原子在磁场突变后的 瞬间,对入射光的吸收程度是相近的。当原子 体系的偏极化达到饱和时,单位时间内被 $D_1\sigma^{\dagger}$ 抽运到基态 $m_F = +2$ 的⁸⁷ Rb 数目等于该时间内 从 $m_F = +2$ 跃迁到其他能级的⁸⁷ Rb 数目。铷原 子之间的相互碰撞以及原子和壁的相互碰撞均 可能导致原子磁矩方向的变化,从而导致⁸⁷ Rb 从基态 $m_F = +2$ 能级向其他能级的跃迁。在绝 热近似下利用微扰理论可以证明,⁸⁷ Rb 从基态 m_F = +2 能级跃迁到其他能级的概率 W 与加 在体系中的磁场 B₀存在平方反比关系 $W \propto \frac{1}{B_0^2}$ ^[3]。因此,方波扫描的磁场越强,单 位时间内⁸⁷ Rb 从基态 m_F = +2 能级跃迁到其他

能级上的概率越小,则抽运达到饱和时,单位 时间内用于抽运从 m_F = +2 跃迁出去的⁸⁷ Rb 的光子数减少,光的透过率增大。所以磁场幅 度越大,光抽运信号的幅度也越大。

由图 3 可知,增大扫场幅度之后,方波的 波峰对应的总磁场会随之增大。根据以上的分 析,方波波峰处对应的抽运信号幅度也会增大, 从而造成了实验观察到的现象。

③调节方波和三角波的扫场幅度,使一个 周期中出现的两个光抽运信号的幅度相同。参 考图 3 可知,此时扫场幅度正好等于地磁场水 平分量大小的 2 倍。实验测得方波此时扫场幅 度为 920mV,三角波扫场幅度为 960mV。由于 示波器幅度值测量的最小分度是 40mV,因此可 以认为出现上述现象时方波和三角波的扫场幅 度相同。此时方波和三角波对应的抽运信号幅 度分别为 224mV 和 132mV,抽运信号形状分别 如下图(a)、(b)所示(两幅图的纵坐标比例不同):

上述条件下,造成方波扫场下光抽运信号 的幅度大于三角波扫场下光抽运信号幅度的可 能原因有以下两点:

首先,除了方波磁场反向的瞬间和三角波 磁场达到顶点的瞬间之外,方波磁场的幅度总 是比三角波磁场幅度大。根据前文所述磁场大 小和跃迁概率的关系可以推断,除了以上瞬间 之外,三角波扫场下单位时间内⁸⁷ Rb 从基态 $m_F = +2$ 能级跃迁到其他能级的概率比方波扫 场时大,因此相同光强下三角波扫场时光抽运 的净效率更低。虽然三角波扫到顶点的一瞬间 与方波的幅度相同,但是由于此前三角波扫场 时跃迁到其他能级的⁸⁷ Rb 更多,因此这一瞬间 三角波扫场下的原子体系残留了更多可抽运的 粒子,因而这一时刻三角波扫场时入射光的吸 收仍然会比方波扫场时强烈。所以三角波扫场 时透射光强的极大值小于方波扫场时透射光强 极大值。

第二,方波扫场时,从示波器上观察到扫

场方波在 8ms 内能够从一个方向的恒定值转化 为另一方向恒定值;而三角波扫场是在 100ms 的周期内缓慢变化振幅的。磁场的突变和缓变 对新的粒子数布居影响是不同的。方波扫场时, ⁸⁷ Rb 首先在半个周期内被抽运到 $m_F = +2 \pm$ 。 磁场突然反向时,根据原子磁矩在恒定外磁场 $\overrightarrow{B_0}$ 下的磁位能公式 $E = -\mu \cdot \overrightarrow{B_0} = \gamma m_F \hbar B_0$ 可知, 原来处在赛曼能级 m_F 上的粒子相对于新磁场 变成了 $-m_F$ 能级上的粒子。所以磁场突变后,

⁸⁷ Rb 基态 $m_{\rm F}$ = +2 能级上的粒子突然变成了 $m_{r} = -2$ 能级上的粒子,即粒子布居数突然反 转。因此磁场突变后绝大部分粒子均能吸收入 射光从而被抽运。而三角波扫场时,磁场是缓 慢变化的,因此原子的赛曼能级经历了一个从 能级差变小到能级简并、再分裂的过程。赛曼 能级简并时铷原子的磁矩方向由于碰撞等因素 会变得无规律,从而失去偏极化。简并的过程 会使重新分裂后各赛曼子能级上的粒子数趋于 等概率分布。显然,对⁸⁷Rb来说,磁场方向突 变后大部分粒子都积聚在可以被入射光抽运的 $m_F = -2$ 能级上;而磁场缓变后,由于各赛曼 子能级上粒子数趋于平均分布,故有一部分粒 子积聚在不能被抽运的 $m_{\rm F}$ = +2能级上。因此 磁场突变后能够吸收入射光从而被抽运的粒子 数目更多,因此对光的吸收也更加剧烈。所以 方波扫场时抽运信号透射光强的极小值应该小 于三角波扫场时透射光的极小值。

综合以上两点,可以解释扫场幅度相同时, 方波扫场下光抽运信号的幅度大于三角波扫场 下光抽运信号幅度的现象。

4.2⁸⁵ Rb 和⁸⁷ Rb 丰度比的测量

在一个充有⁸⁵ Rb 和⁸⁷ Rb 原子的体系中射 入D₁σ⁺光,对每一个光子来说,它被体系中的 任一铷原子吸收从而使原子发生跃迁的概率是 相同的,因此原子对光子的吸收量与参与吸收 光子发生跃迁的原子数目成正比。又由于在相 同的磁场下,⁸⁵ Rb 和⁸⁷ Rb 对应的拉莫进动角频 率不同,因而它们对应的射频共振频率也不同, 所以当其中一个同位素发生磁共振时,另一同 位素不受射频信号的影响,所以只有发生共振 的元素才对透射光强度产生影响。又因为共振 信号的幅度对应了共振时原子吸收入射光子的 数目,因此,⁸⁵ Rb 和⁸⁷ Rb 对应的共振信号的幅 度正比于参与吸收入射光子的原子数目

实验中使用三角波扫描磁场,获取⁸⁵Rb和 ⁸⁷Rb的共振信号时磁场条件完全相同。观察共 振信号时调节射频频率,使其对应的共振磁场 正好等于三角波顶端对应的总磁场。此时的共 振图像对应三角波的一个周期仅能看到一个共 振吸收峰,如下图所示:

由图可见在实验的扫描频率下, 铷原子的偏极 化被共振射频场破坏之后, 能够在一个扫描周 期内重新完成偏极化并几乎达到饱和。因此示 波器读出的共振信号峰峰值能够代表真实共振 幅度的大小。

由赛曼能级粒子数分布的等概率原理及辐 射跃迁的选择定则,在未偏极化的体系中,一 个⁸⁵Rb原子和一个⁸⁷Rb原子吸收一个光子发 生跃迁之后,它们最后分别落在基态 $m_F = +3$, $m_F = +2$ 子能级上的概率分别为3/38和3/62^[33]。 由于实验对象由大量铷原子组成,因此假设样 品中⁸⁵Rb和⁸⁷Rb的原子个数分别为m,n;磁共 振信号的幅度分别为p,q,则有:(3/62)m: (3/38)n=p:q,所以有m/n=1.632p/q。因此只要 测出⁸⁵Rb和⁸⁷Rb磁共振信号的幅度比,就可计 算出两种同位素的丰度比^[44]。

以实验中在水平场电流为 0.350A (对应水 平磁长为1.60×10⁻⁴T) 且与地磁场方向相同、 用三角波扫场的条件下得到的数据为例进行计 算。该条件下分别在共振磁场为三角波的上、 下顶点处时测量了 ⁸⁵ Rb 和 ⁸⁷ Rb产生的共振信 号的幅度,其中 ⁸⁵ Rb 两次对应的共振信号幅度 为 96.0mV 和 88.0mV; ⁸⁷ Rb 两次对应的共振信 号幅度为 56.0mV 和 52.0mV。计算两种情况下 ⁸⁵ Rb 和 ⁸⁷ Rb 共 振 幅 度 之 比 : $p_1/q_1 = 96/56 = 1.71$, $p_2/q_2 = 88/52 = 1.69$ 。 再利用公式 m/n=1.632p/q,得到 $m_1/n_1 = 2.80$, $m_2/n_2 = 2.76$,平均丰度比为 2.78。而自然界 中二者丰度比的标准值为 2.59。所测结果与标 准值相差了 7.3%。

4.3 信号源的高频噪声对实验的影响

实验时信号源产生的方波和三角波信号非 常粗,如下图所示:

增大示波器的扫描频率,可以看到示波器输出 的方波和三角波其实是由许多高频小波组成的, 我们看到的方波或者三角波实际上是这些小波 振动的波包。示意简图如下:

这种高频噪声对实验会造成如下影响:

①观察光抽运信号时,三角波扫场时总磁 场连续变化。有了高频噪音之后,三角波扫描 到磁场零点附近时,总磁场大小会以一个很高 的频率不断地通过和离开总磁场的 0 点,进而 使得总磁场扫过零点附近的一段时间内,原子 的能级不断简并和再分裂,使原子因原子之间 及原子与容器壁之间的碰撞而失去偏极化的现 象越明显,总磁场通过零点后原子磁矩的分布 越无规则。有可能以三角波原本的扫描速度, 原子赛曼能级简并再分裂的时间非常短,各赛 曼子能级上的粒子数来不及完全达到平均分布。 但是存在了这种幅度较大的高频噪音之后,新 形成的赛曼能级上的原子分布可能更加均匀, 因此相对非均匀分布时⁸⁷ Rb 基态 m_F = +2 能级 上的粒子数更多,其光抽运信号幅度会更小。

②由图 7: 图中的水平线代表几个不同的 射频场频率所对应的不同的共振磁场。由于扫 场信号中小波的频率非常高,所以在三角波扫 描至顶点附近时, 总磁场会以高频率多次通过 图中画出的几个共振磁场,亦即在它们对应的 共振频率下,能够短时间内多次发生磁共振, 使原子偏极化不断被破坏。由于相邻共振之间 的时间很短,因而在该时间内原子来不及完成 抽运偏极化。所以将射频频率调节到图 7 中画 出的几个磁场所对应的共振频率时,三角波磁 场扫到顶点附近时原子体系偏极化均会被强烈 破坏,透射光强度均会剧烈减小,所以都能看 到类似于图 5 所示的共振信号。这种情况下, 根据观察到的共振信号形状很难判断对应它的 共振磁场到底是多少,也就无从判断两次观察 共振信号时共振磁场的大小是否相同。

实验中用磁场反向法测量铷原子的g_F因子, 其中需要确定不同同位素在三角波顶点磁场下 的共振频率。实验发现,在出现图 5 所示共振 信号时对应的频率附近,微调射频频率,在 7.4kHz 的频率变化范围内均能够看到形如图 5 所示的共振信号。根据反向法测量g_F因子的计

算公式
$$g_F = \frac{h}{\mu_p B_0} \frac{\nu_1 + \nu_2}{2}$$
 可以估算出这一频率

的不确定度对g_F因子的测量带来的不确定度, 其量级为10⁻³。(⁸⁵Rb和⁸⁷Rb的g_F因子分别为 1/3 和 1/2。)

解决该问题的一个可行办法是,利用 Labview 编写低通滤波程序,配合反馈电路,对 信号源输出的电压信号进行滤波,从而去掉高 频噪声。

由于线圈中的电流大小并不能完全反映其 在铷泡位置产生的磁场的大小,因而要精确验 证以上分析是否正确以及解决方法是否可行, 需要用高响应的磁力计直接测量铷泡位置的磁 场变化。

5.实验拓展——纵向弛豫时间的测量

在一个自旋方向无规则排列的自旋粒子体 系中突然加入恒定磁场,则体系中的磁偶极子 会立刻绕着磁场轴向产生进动并慢慢向主磁场 方向偏移。一段时间后,偶极子将与磁场达到 热平衡。从磁场方向的零磁化强度开始,经过T₁ 时间,粒子在外磁场方向的磁化强度达到最大

值的 $1-\frac{1}{e}$,则 T_1 称为该体系的纵向弛豫时间。

由于体系的纵向弛豫时间越长,利用该体系得 到的顺磁感应共振信号就越窄,用该体系做出 的电磁感应透明信号也会越窄,因此很多原子 泡的制作者都希望能够做出纵向弛豫时间长的 产品。测量纵向弛豫时间是研究原子体系特征 的一个重要的手段之一。现在常用的测量体系 纵向弛豫时间的方法是反转-恢复法。而通过观 察光抽运信号也同样能够完成测量。

用方波对铷原子泡进行水平扫场,并让扫场频率足够小,以使每个半周期内光抽运都能达到饱和。方波方向突变后,+m 能级和-m 能级上的粒子数会突然反转。以⁸⁷ Rb 为例,原本处在 $m_F = +2$ 上的粒子突然变为了 $m_F = -2$ 上的粒子。实际实验中失去 $m_F = -2$ 偏极化的时间很短,可以忽略¹⁵¹。因此用方波扫场时观察到的光抽运信号的弛豫时间近似等于该体系在自由无规则状态下突然加入恒定外磁场和抽运光后体系与外界环境趋向热平衡的时间。

这样观察到的"弛豫过程"包含了系统本征的纵向弛豫过程和光抽运的过程。设在光强 I_0 下观察到的光抽运信号的弛豫时间是**T**,而体系的本征弛豫时间是 τ ,则可以证明二者存在以下关系: $T = \frac{\tau}{cI_0\tau+1}$ ^{G3},其中 c 为比例系数。我们可以通过改变高频振荡器的功率来

改变铷灯的亮度,并用光功率计来测定光线进 入铷泡之前的光强,从而在不同的已知光强下 测量光抽运信号的弛豫时间 T,并根据上式对弛 豫时间 T 和光强 I₀进行拟合,通过拟合结果得 到体系的本征弛豫时间τ值。

6.总结

本文分析了光抽运信号的形成原因以及影 响光抽运信号幅度的因素;通过对磁共振信号 的观察得到了研究对象中⁸⁵ Rb 和⁸⁷ Rb 的丰度 比为 2.78,与自然界中标准值相差了 7.3%;分 析了信号源产生的高频噪声对实验结果的影响; 以本实验已有仪器为基础对进一步开展纵向弛 豫时间测量的拓展实验进行了设想。

参考文献:

【1】复旦物理系实验中心. 近代物理实验补 充讲义[M]. 2011.02:3

- 【2】复旦物理系实验中心. 近代物理实验补 充讲义[M]. 2011.02: 10
- 【3】周健,俞熹,王煜.光磁共振实验中壁弛豫 过程与外磁场的关系[J].大学物理.2009 年6月.第28卷第6期
- 【4】邵先亦.光泵磁共振法测量同位素铷的丰 度比[J].台州学院学报. 2003 年 6 月. 第 25 卷第 3 期
- [5] H. G. DEHMELT. Slow Spin Relaxation of Optically Polarized Sodium Atoms[J]. PHYSICAL REVIEW. VOLUME 105, NUMBER 5. MARCH 1, 1957
- [6] H. G. DEHMELT. Slow Spin Relaxation of Optically Polarized Sodium Atoms[J]. PHYSICAL REVIEW. VOLUME 105, NUMBER 5. MARCH 1, 1957

Several Discussions Concerning Optical Pumping and

Magnetic Resonance Experiment

Weiyue Chen, Zhengyu He, Luwei Zhou

(Department of Physics . Fudan University , Shanghai 200433 , China)

Abstract: The mechanism of optical pumping under different types of scanning magnetic field is analyzed. The abundance ratio of ⁸⁵Rb and ⁸⁷Rb is measured with the method of photo-magnetic resonance, the outcome is 2.78, while the standard value in natural world is 2.59. The effect on the experiment caused by high frequency noise is estimated. Further Experiment related to longitudinal relaxation time is designed.

Keywords: optical pumping, magnetic resonance, rubidium, abundance ratio, high frequency noise, longitudinal relaxation time

致谢

感谢本实验中周鲁卫老师对我的指导,感谢实验中心老师对我的帮助,感谢我的 搭档何正宇和我默契的合作。

> 陈巍月 2011 年 6 月于复旦大学

ACKNOWLEDGEMENT

I want to express my gratitude to prof. Luwei Zhou, who guided me in this experiment; and teachers from Fudan Physics Experiment Center, who have helped me a lot in my experiment in this semester; and also Zhengyu He, who has accomplished this experiment with me and gave me lots of wonderful advises.

Weiyue Chen June, 2011 Fudan University