

Comsol Multiphysics电子光学模拟 00000000000000

电子光学模拟 近代物理实验A

蔡天骏&尤嘉阳

材料科学系

2022/12/22

蔡天骏&尤嘉阳 电子光学模拟 材料科学系

3 Comsol Multiphysics电子光学模拟

(1日) (注) (注)

3 Comsol Multiphysics电子光学模拟

蔡天骏&尤嘉	阳
电子光学模拟	ι

材料科学系

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

实验目的

• 利用上述模拟软件探究电子光学

▲御 ▶ ▲ 注 ▶ ★ 注 ♪

绪论 00●0

- Simion是一款静电透镜分析模拟软件,由爱达荷国家工程与 环境实验室(INEEL)开发,能在给定透镜电压及粒子初始 条件的情况下,计算静电场的分布及场中带电离子的运动轨 迹。
- Comsol Multiphysics是一种专业的工程模拟软件,用于对多物理场进行建模、仿真和分析。它可用于解决各种工程和科学问题,包括电子和电信、生物医学工程、化学工程、土木工程、能源和环境等领域。

材料科学系

< □ > < □ > < □ >

报告内容

利用Simion和Comsol Multiphysics建立图1中的电子枪模型的 过程

- 对电子枪的电子聚焦过程和聚焦结果进行分析
- 介绍另一种电子枪模型——Pierce电子枪

操作过程模拟结果

3 Comsol Multiphysics电子光学模拟

蔡天骏&尤嘉阳	
电子光学模拟	

材料科学系

< ロ > < 回 > < 三 > < 三 > < 三 >

Simion电子光学模拟 操作过程 模拟结果

3 Comsol Multiphysics电子光学模拟

< ロ > < 回 > < 三 > < 三 > < 三 >

蔡天骏&尤嘉阳 电子光学模拟

首先利用电子枪模型的轴对称性,在 "Modify" 界面选择轴对称 模型并设置y轴镜面对称,将格点参数设置如图2所示

SIMION	- • ×	
File Help		
	Create a new potential array (PA) in memory.	
	Symmetry: Cylindrical	
	Mirroring: 🗆 X 🔤 Y 🗆 Z	
	Dimension x: 166	
	y: 31 points	
	z: 1 🗢 points	
	Max PA size: 20000	
	Field type: Electric V	
	Magnetic scaling 100 factor (ng):	
	Use Geometry File	
	Help:	
	Number of ord points along the y dimension (wy) for the pointal array, - For 2D and 3D polara potential array, the blanch of the notestatial array in	
	grd unts is actually ny - 1 (no mirrorinn) or 2 = (nu - 1) (with	
<u>O</u> K	Cancel Command;	
PA is empty. Crea	ating new PA.	
	Q 2: Madify 思 面	
		3

蔡天骏&尤嘉阳

电子光学模拟

Simion电子光学模拟 ○OO●OO○○○○○

Comsol Multiphysics电子光学模拟 00000000000000

然后进行建模。图3为建模界面。

Simion电子光学模拟 ○00000000000

Comsol Multiphysics电子光学模拟 000000000000000

可以通过点击 "3D" 按钮检查其三维模型, 图4为三维模型。

电子光学模拟

设置入射粒子为电子,共发射25个电子,以中心为0,半径1mm的圆柱体发射,初始动能100eV。图5为粒子设置界面。

Defines initial par	ticle parameters.						
Load Save	es defined?			Coordinates reb	ative to		
Jadvidusty (JON) Conversed (FLV2) Old Crevered (FLV2)				PA Instance 10	1) Origin 🗸	Edit as Text	
Durid Ca			eu (anti)		.,		
Particle groups							
	Add Delete Move	Delete All					
	Import						
Selected partic	le group:						
Use: Electron	Proton Default						
Num particles:	25						
Mas	s: single value	 0.000548 	579903			amu	
Charge	single value	 ✓ -1 				е	
Source position	: cylinder distribution	Center: {	x: 0	y: 0	z: 0	} mm or gu	
		Axis: {	x: 1	y: 0	z: 0	}	
		Radius: 1	Le	ngth: 0	S Filed		
Velocity forma	t direction+KE	~					
Direction	: single vector	✓ { x: 1	v: 0	z: 0	3	unitless	
KE	single value	~ 100				eV	
TOP	single value	~ 0				usec	
CW	single value	~ 1				unitless	
Colo	single value	~ 0	-	ſ		index	
C010	: sirgle value	~ 0	•			#10ex	

图 5: 粒子设置界面

Simion电子光学模拟 操作过程 模拟结果

3 Comsol Multiphysics电子光学模拟

蔡天骏&尤嘉阳	
电子光学模拟	

材料科学系

< ロ > < 回 > < 三 > < 三 > < 三 >

电子聚焦

电子光学模拟

将作图区延长至400,可看到第一阳极和第二阳极对电子聚焦的 影响 (如图7):

电子聚焦

Simion电子光学模拟 ○○○○○○○○○●○

Comsol Multiphysics电子光学模拟 000000000000000

第二阳极电压↑ ⇒ 焦距↑&变化速度↑

图 8: 电子离轴距离在不同第二阳极电压下与横坐标的关系

蔡天骏&尤嘉阳 电子光学模拟 材料科学系 16 / 32

▲ 御 ▶ ▲ 注 ▶ ▲ 注 ▶

第一阳极电压↑ ⇒ 焦距↓

图 9: 不同的第一阳极电压下电子枪的焦距随第二阳极的电压变化

蔡天骏&尤嘉阳 电子光学模拟 < 🗗 > < 🗄

► < Ξ</p>

3 Comsol Multiphysics电子光学模拟

操作过程 模拟结果 Pierce电子枪的模拟

蔡天骏&尤嘉阳	
电子光学模拟	

材料科学系

3 Comsol Multiphysics电子光学模拟 操作过程

模拟结果 Pierce电子枪的模拟

▲御入 ▲注入 ▲注入

Comsol Multiphysics电子光学模拟

同样可以利用电子枪模型的轴对称性,直接选择二维轴对称模型进行建模(图10(a))。也可以直接选择三维模型进行建模(图10(b))。

电子光学模拟

对材料 (Perfect Vacuum) 和物理场 (静电和带电粒子追踪) 进行设置 (图11)。

蔡天骏&尤嘉阳 电子光学模拟 材料科学系

对研究进行设置(图12(a)),其中瞬态的输出时步经过预实验后 选定了以0.01ns为步长共10ns(图12(b))。

双向耦合粒子追踪

▲ ◇ 所选物理场接口的预设研究 ▲ ◇ 带电粒子追踪 ▲ 次向耦合粒子追踪

图 13: 双向耦合粒子追踪

材料科学系

▲御 ▶ ▲ 注 ▶ ★ 注 ♪

3 Comsol Multiphysics电子光学模拟

操作过程 模拟结果 Pierce电子枪的模拟

▲御入 ▲注入 ▲注入

电子轨迹

三维模型的电子轨迹

蔡	天	骏	&	尤	嘉	阳
电	子	光	学	模	拟	

材料科学系

▲御 ▶ ▲ 注 ▶ ▲ 注 ▶

Comsol Multiphysics电子光学模拟

近轴电场分布

- E,导致:聚焦 ⇒ 发散 ⇒ 聚焦(图6)
- E_z 导致: 加速 \Longrightarrow 减速 \Longrightarrow 加速 (动画25)

蔡天骏&尤嘉阳 电子光学模拟

Comsol Multiphysics电子光学模拟 ○○○○○○○○○○○○○○○○

z场随电势大小的响应

(a) z场对第一阳极电势的响应

(b) z场对第二阳极电势的响应

< 🗗 > < 🗄

(三)

图 15: z场随电势大小的响应

3 Comsol Multiphysics电子光学模拟

操作过程模拟结果

Pierce电子枪的模拟

◆御 → ◆言 → ◆言 →

Pierce电子枪

•
$$V = V_a (\frac{r}{d})^{4/3} \cos \frac{4\theta}{3}$$
,
• $V = 0$ 的解为直线 $\frac{4\theta}{3} = \frac{\pi}{2}$,
• $V = V_a$ 的解为曲线 $r = d(\sec \frac{4\theta}{3})^{3/4}$

<**∂** > < ∃

< ∃ >

|x| < 0.01m部分电场线与y轴平行

图 17: 电场分布

蔡天骏&尤嘉阳	
电子光学模拟	

▲御▶ ▲ 注▶ ▲ 注▶

蔡天骏&尤嘉阳

电子光学模拟

电子运动为直线运动

Thanks!

材料科学系