计算机实测物理实验操作指南

实验内容1:

禁止将计算机实测仪面板上的导线拔出! 1)

- 2) 正弦波和三角波由 "音频输出"通道输出,在"信号源"程序中设置信号类型和 频率,物理通道不用设置,观测正弦波和三角波应将计算机实测实验仪面板上"音 频输出"与"模拟输入1(或者2)"使用导线或者九孔板连接。
- 3) 方波由"模拟输出"通道输出,在"信号源"程序中设置信号类型和频率,物理通 道选择 Dev*/ao0 (Dev 后的*为数据采集卡编号),观测方波应将计算机实测实验仪 面板上"模拟输出"与"模拟输入1(或者2)"使用导线或者九孔板连接。
- "计算机实测"程序应选择合适的采样设备通道(Dev*/ai4 对应模拟输入 1、Dev*/ai5 4) 对应模拟输入2),建议以程序默认的采样时间1s和采样频率2000S/s点击"开始采 样",若能观测到正确的信号,说明器材和软件设置都没有问题,再按照**表 1** 进行 正式测量,观察并记录程序图形窗口中的波形(请多次采样,以免错过可能出现的 各种波形),点击进行分析可得到当前信号的FFT 主频。
- 5) 表1中的采样时间和采样频率采用控制变量的方法设计,分别以信号周期和频率的 1、2、5等倍率进行设置,若时间充裕,可以自行设置采样参数增加测量数据。

待测信号	采样时间	采样频率	经生业资源团	FFT
	(s)	(S/s 或 Hz)	宏时双形间图	(Hz)
(50Hz) 正弦波 三角波 方波	0.1	50		
		100		
		200		
		500		
		1000		
		10000		
	0.01	1000		
	0.02			
	0.04			
	0.08			
表?测	RC 串联	日路的相位差	采样时间 采样频率	

表1 采样时间和采样频率对波形和 FFT 的影响

表 2 测 RC 串联电路的相位差(采样时间

电阻	双正弦波图形测相位差 φ_1				$\overline{\varphi_1}$	李萨如图形测相位差 🕫			$\overline{\varphi_2}$		
1kΩ											
2kΩ											

实验内容 2:

1) 在九孔板上连接测量电路如下图所示:

- "信号源"程序中设置信号类型为正弦波、频率为 50Hz。点击"计算机实测"程 序界面的李萨如选项,将 U_i 采样通道和 U₀ 采样通道分别设置为"Dev*/ai4"和 "Dev*/ai5"。点击"采样"即可得到双正弦波曲线图和李萨如图形。
- 点击复位使黄色光标线可见,将光标线移动到 t₁、t₂、t₃处时分别点击记录(t₁、t₂、 t₃分别为 3 个波峰对应的时间值,适当调节位置和范围的滑块有助于放大波形图, 减小读数误差),点击计算得到相位差。
- 4) 点击右侧"李萨如分析"中的复位,分别移动横向光标线(勿拖动蓝色竖线)到中 垂线(蓝色竖线)与李萨如图形的两个交点处点击记录,得到Y₁、Y₂,(程序自动 给出A值,B值由Y₁、Y₂计算得到),点击计算得到相位差。
- 5) 请参考表2格式进行多次测量。

实验内容3(选做):

- 在"计算机实测"程序界面的拨号音选项中操作。使用"打开、导入"按钮将"办公室.wav"打开并显示(该文件为座机拨打 8 位电话号码的手机录音,波形图中的 8 个小块才是拨号音,适当调节下方和右侧的滑块以便观察和测量)
- 2、点击复位,使光标线可见,拖动光标到某个按键音的起点和终点时分别点击定位确 定波形分析范围,适当调节"频域下限"(<500Hz)和"频域上限"(>1800Hz)后再 点"分析",根据下方"电话按键对应频率表"得出 8 位电话号码。
- 3、电话按键对应频率表:

DIMF keypad frequencies (with sound

clips)						
	1209 Hz	1336 Hz	1477 Hz	1633 Hz		
697 Hz	1	2	3	A		
770 Hz	4	5	6	В		
852 Hz	7	8	9	С		
941 Hz	*	0	#	D		