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PREFACE 

This volume is closely connected with "Electrodynamics," Vol. I l l of my 
lectures. Not only the formalism of Maxwell's equations but also their intrinsic 
character, the invariance with respect to the group of Lorentz transformations, 
is adopted from Vol. I l l and is assumed to be known. 

Chapter I is entitled "Reflection and Refraction of Light." Only the 
(never realizable) ideal case of the monochromatic plane wave which is 
necessarily completely (and, in general, elliptically) polarized is treated in 
this chapter. Reflection and refraction are regarded throughout as boundary 
value problems associated with a single boundary surface or (in the case of the 
plate) with two boundary surfaces. It is surprising how much material falls in 
this category : It extends from the classical Fresnel formulae to the very timely 
problem of the tunnel effect and covers non-reflecting lenses, the Perot-Fabry 
étalon, and the (no longer timely) problem of the "black submarine." The 
fundamental question of the "coherence or non-coherence of light" is touched 
upon briefly only in fig. 2 of this chapter. Not until the last chapter, Sec. 49, 
will we return to the problem of characterizing white light. 

Chapter II deals at once with the optics of moving media. Indeed, these 
questions seem to me to be basically simpler and more fundamental than the 
contents of the later chapters because one is dealing here with the universal 
character of the velocity of light and with its physical and astronomical 
consequences. The first doubts about the classical wave nature of light 
appear at the end of this chapter in connection with the Doppler and photo-
electric effects, and the equivalent corpuscular nature of light makes its first 
appearance. 

Chapter III deals with the theory of dispersion from Drude's semi-
phenomenological point of view, which is based on the classically formulated 
resonance oscillations of electrons bound to atoms. However, it seemed to me 
unavoidable to add to this chapter a section in which the theory of dispersion 
is treated wave-mechanically, that is, where the characteristic oscillations are 
replaced by transitions between two different energy levels. 

Chapter IV is dedicated to crystal optics, the favorite subject of physics 
in the last century. Here again the treatment is phenomenological even in the 
problem of the rotation of the plane of polarization in acentric crystals, which 
turns out to be particularly simple thanks to our use of the complex notation. 

v 
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Chapter V and most of Chapter VI are devoted to the problem of diffrac-
tion. Diffraction by gratings (including three-dimensional ones) is treated 
first. Then follows Huygens' principle for scalar diffraction problems, which is 
applied to the question of "light and shadow" with its manifold paradoxical 
contradictions of geometrical optics. Chapter V closes with a presentation of 
the rigorously solvable boundary value problem of the perfectly reflecting 
straight edge. 

Chapter VI begins with the problem of the narrow slit, which Lord 
Rayleigh solved in the first approximation more than fifty years ago. The 
problem leads to an integral equation from which higher approximations 
can be derived if proper use is made of the insight gained in the problem of the 
straight edge by regarding the behavior of the branched solutions at the edge 
of the screen. In the succeeding paragraphs a more or less new comprehensive 
point of view is applied to the question of the resolving powers of spectral 
apparatus (including Michelson's mirrors for the measurement of the diameters 
of fixed stars). Thomas Young's theory of diffraction in the formulation given 
to it by Rubinowicz, and Debye's formulation of focal point diffraction are 
presented next. Finally, the difference between the scalar and the vector 
diffraction problems is emphasized and the vectorial generalization of 
Huygens' principle is discussed. This latter discussion follows the most recent 
and particularly lucid treatment of the problem by W. Franz. 

The presentation of the Cerenkov electron in Sec. 47 reaches beyond the 
limits of the conventional conception of optics and enters, so to speak, the 
realm of velocities greater than that of light. Section 48 deals with the (so far 
almost entirely neglected) geometrical optics. The introduction of the eikonal 
(and the unit vector associated with it) enables us to give a very brief presenta-
tion of several of the fundamental problems of geometrical optics. The very 
large field of physiological optics, on the other hand, could only be touched 
on in the introduction even though it is of primary importance with regard 
to our actual experience. 

The last section is concerned with the nature of white light which 
possesses not a trace of periodicity and attains its wave character only upon 
passing through a spectral apparatus. The wave representation which appears 
here only as a secondary attribute of light is missing entirely in geometrical 
optics and is replaced by a corpuscular conception in Fermat's principle. 
The corpuscular concept points the-way to the modern theory of photons and 
the complementarity of wave and corpuscle which was already stated at the 
end of the second chapter. Finally, it is impressed upon the reader that 
our presentation, which is essentially based upon the classical wave concept, 
forms only a part of the entire field of optics; in particular it does not en-
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compass the primary processes in the retina because these are photoelectric 
in nature and therefore their discussion must be based on the theory of photons 
and not on the wave theory. 

The text of this volume is based upon a careful record of my lectures on 
optics made by L. Waldmann in 1934. However, the last few subjects 
discussed go considerably beyond the contents of my lectures at that time. 

As in the case of Vol. I l l , I enjoyed the invaluable cooperation of 
Mr. J. Jaumann in the preparation of this volume. In our many discussions 
he not only communicated to me his rich experience in experimental optics, 
but in many instances he prepared the first drafts for the manuscript. I men-
tion, in particular, Sections 3 C, 6 C, 7 C, 30 C, 41, and 42. His part in the 
writing of this book should not be underestimated. My colleague, Dr. O. Buhl, 
subjected the entire manuscript to his critical inspection and has helped me 
with many useful remarks. Dr. P. Mann has kindly checked the exercises. 

Munich, end of 1949. 

Arnold Sommerfeld 

TRANSLATORS' NOTE 

The translators of this volume have endeavored to adhere to the spirit 
of the original as much as possible and to keep changes to a minimum. In 
addition to certain changes in notation, some modifications of the text have 
proved to be inevitable. These are especially contained in Sections 27 and 28 
which were kindly contributed by Professor P. P. Ewald. Furthermore, 
Sec. 47 should be read in the light of a recent paper by H. Motz and L. I. Schiff, 
Am. J. Phys. 21, 258, 1953. A completely new author and subject index was 
prepared. 

O. L. 

P. A. M. 
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INTRODUCTION 

1. Geometrical, Physical, and Physiological Optics. Historical Chart 

The eye is our noblest sense organ. It is therefore not surprising that 
even the natural philosophers of antiquity were concerned with the science 
of light. Leonardo da Vinci called optics "the paradise of mathematicians". 
Of course, by optics he meant only geometrical or ray optics, the theory of 
perspective and the distribution of light and shadow. How much more justified 
would his assertion have been had he known the wave optics with its marvelous 
color phenomena arising from diffracted light or the polarized light of crystals. 
It is in particular these latter phenomena which one has in mind when one 
speaks of physical optics. Physical optics is related to ray optics in the same 
way in which wave mechanics is related to classical mechanics. This fact was 
recognized by Schrodinger on the basis of the profound work of Hamilton. 

There is, however, still a third branch of optics which is called physiological 
, optics after the title of Helmholtz's principal work. Also in this field funda-
mental laws hold which, however, are based on the operation of the sense 
organs and the mind. But these laws are not encompassed by our physical 
theory. It was the tragedy in the life of Goethe that he would not recognize 
the distinction between physical and physiological optics; this was the 
reason for his fruitless fight against Newton. Today we understand without 
difficulty that the sensation yellow which is caused by the ZMines of sodium 
is a phenomenon which is entirely different from the wavelengths λ = 5890 Â 
and λ = 5896 Â by which we must describe these lines physically. For, we 
know that the psychological response to an event is something entirely 
different from the physical event itself; the two are different in nature and 
incommensurable. 

In this volume we shall be able to deal only briefly with ray optics and 
unfortunately not at all with physiological optics. Wave optics, which we 
shall develop directly from the results of Vol. Il l and which, through spectro-
scopy, opens the way to modern atomic physics, will give us enough to do. 
We shall not, for instance, enter upon the interesting field of the theory of 
color which was formulated in a classical manner by Thomas Young and 
Helmholtz, was further developed particularly by Grassmann, Maxwell and 

1 
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Schrödinger, and is even today not a closed subject. We shall here only 
demonstrate very briefly that, quite aside from the quality of colors and their 
contrast effects, there exists a profound difference between subjective percepr 
tion and objective fact even in regard to the quantitative determination of 
intensity. The phenomenon in question is that of the so-called "half-shadow". 

This phenomenon played a role in the earliest attempts to determine the 
wavelength of X-rays. On X-ray plates there appear half-shadow regions 

between the complete shadow and the 
region of full illumination. These are 
due to secondary X-rays which origi-
nate, for instance, at the edges of a 
slit. To the eye these half-shadow 
regions appear as bright and dark 
fringes which were at first interpreted 
as interference lines. However, Haga 
and Wind were able to show that these 
fringes were subjective in origin and 
they called attention to a phenomenon 
which had been investigated by E. 
Mach1 and had also been recognized 

F i by H. Seeliger in his studies of eclipses 
Rotating disc for the demonstration of ° f t h e m 0 0 n · W e s h a 1 1 d e S C r i b e {t h e r e 

a physiological optical illusion. as our sole example of physiological-
optical phenomena. 

Consider a white circular cardboard disc which is partially blackened as 
shown in fig. 1. The boundary between the black and white fields consists 
of two spirals of Archimedes and portions of a radius of the disc. Let us 
consider the average brightness (or blackness) along each circle concentric 
with the edge of the disc; this quantity determines, in accordance with a 
law due to Talbot, the perception of brightness when the disc is rotated 
sufficiently fast. The center of the disc is then perfectly black and so is its 
edge. Between the center and the edge there is a zone of maximum brightness. 
The transition between darkness and brightness consists of two half-shadow 
regions. Since the radius vectors of the spirals of Archimedes increase (or 
decrease) linearly with the central angle, the intensity in the half-shadow 
region also increases (or decreases; linearly with the distance from the center 
of the disc. If the disc is set into rapid rotation on the axis of a motor, then 

1See, for instance, his book Prinzipien der Physikalischen Optik, p. 158, J. A. Barth, 
publ. 1921. 

Fig. 1. 
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the intensity distribution presented to the eye is that represented by the dotted 
line in fig. la. But what does the eye see? Instead of the linearly varying 
half-shadows the eye perceives a uniform average brightness; where the half-
shadow borders on the completely black regions it perceives dark fringes 
which are considerably blacker than the regions of complete blackness; at 
the limits of full brightness it sees bright fringes which appear much brighter 
than the region of full brightness. The eye (or the mind?) is, as it were, 
startled by the transition from the half-shadow to full illumination; it 
exaggerates the contrast. The 
same exaggeration takes place I j 

at the transition from the 
half-shadow to complete black-
ness. The eye (or the mind) 
judges only contrasts and not 
objective intensity values; it 
is affected more by the deriv-
atives of the intensity curve 
than by the absolute values of 
its ordinate. The bright and 
dark fringes (which on the 
rotating disc are, of course, 
circles about the center) are 
so definitely pronounced that 
a naive observer would swear 
to their genuineness. 

Similar fringes are seen wherever extended light sources produce half-
shadows according to geometrical optics, as for instance, behind a pencil 
which is illuminated by a Welsbach mantle. Also the bright border which 
one sees about ones own shadow on the road when the sun is behind ones 
back and which has the effect of a sort of halo about the head and limbs is 
at least partly due to this optical illusion. Such fringes also played a part in 
certain occasional arguments between the author and a group of Munich 
painters which revolved around the old controversy "Goethe vs. Newton". 
The opponents in these discussions understandably enough considered these 
subjective phenomena as objective and offered them as proof of the falseness 
of the physical theories. 

It might be thought that this illusion could not be photographed and would 
thereby betray its subjective character. This is not so. Even though the 
number of blackened grains on the photographic plate corresponds to the 
correct intensity, the eye interprets the photographic image in the same way 

Center 

Fig. l a . 

The subjective intensity distribution perceived by 
the eye (full line) and the objective distribution of 
intensity (dotted line) when the disc is rotated. 
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as the original object and is deceived by its subjective contrast perceptions. 
This is illustrated by the following experiment1: a micrometer slit illuminated 
from the rear with parallel light is photographed. At the beginning of the 
exposure the slit may have a width 2b. It is then slowly and uniformly opened 
to a width 2a, whereupon the exposure is terminated. Thus the center por-
tion 2b of the photographic plate is continuously illuminated during the 
exposure; the adjoining portions a-b are illuminated a shorter time which 
decreases linearly to zero. On the photograph one sees again bright and dark 
fringes at the limits of the half-shadows (if the slit is opened non-uniformly, 
there appear also secondary fringes inside the half-shadow regions a-b which 
correspond to discontinuities in the derivative of the curve depicting 
illumination vs. time). 

So much (or rather so little) for physiological optics. In order to provide 
a general summary of the wealth of material to be covered in this volume we 
continue with a historical list of the most important optical discoveries. 
Snell's law of refraction (which became known only through Huygens) and 

Descartes, Dioptrices, 1637. The first theory of the rainbow is also due to 
Descartes. 

Grimaldi, Physico-mathesis de lumine, coloribus et iride, Bononiae (Bologna) 
1655; first textbook on optics; deviations from rectilinear ray paths; 
diffraction. 

Olaf Roemer, 1675; determination of the velocity of light from the eclipses 
of the satellites of Jupiter. 

Christian Huygens, Traité de la Lumière, Leiden 1690; wave theory without 
closer investigation of the nature of the oscillations (whether longitudinal 
or transverse). Huygens* principle; wave surfaces. Double refraction 
in calcite. 

Newton, Opticks 1706, English 1675. Colors of thin plates. Spectral colors 
and their composition into white light. Theory of emission with lateral 
"fits". 

Bradley, 1728; aberration of light. 
Thomas Young, Lectures on Natural Philosophy, 1807. Interference of light; 

diffraction; theory of color; the color triangle; Young also deciphered 
hieroglyphics. 

Malus, Sur une propriété des forces répulsives qui agissent sur la lumière, 1809. 
Polarization by reflection. 

Biot, Brewster, Arago, crystal physics, Arago, 1811, rotatory power of quartz. 
1 J . Drecker, Physikal. ZS. 2, 145, 1900. 
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Fraunhofer, 1787-1826, Fresnel, 1788-1827, the two classics of wave 
optics, both of whom died young after lives filled with work, success and 
fame. Fraunhofer was the greatest glass technician and telescope con-
structor of his time; he made the first diffraction gratings and was the 
father of spectroscopy and astrophysics because of his discovery of the 
Fraunhofer lines in the spectrum of the sun and the planets. Fresnel 
developed the wave theory; his dragging coefficient was a forerunner of 
the theory of relativity; he was an untiring experimenter in crystal optics. 
Fraunhofer and Fresnel diffraction. 

Bessel, in 1838, measured the first fixed star parallaxes in the constellation 
Cygnus by means of a Fraunhofer telescope. 

Christian Doppler, 1842, "Über das farbige Licht der Doppelsterne und einiger 
anderer Gestirne des Himmels". (On the Colored Light of Double Stars 
and Several Other Stars.) 

Terrestial determination of the velocity of light, Fizeau 1849 by means of a 
toothed wheel; Foucault 1850 by means of a rotating mirror; also 
Michelson, beginning in 1926. 

Faraday, 1845, "On the Magnetization of Light, and the Illumination of 
Magnetic Lines of Force". 

Maxwell, 1861, discovery of the electro-magnetic theory of light; Treatise, 1873. 
The experiment planned by Maxwell to determine by interferometry a possible 

dependence of the velocity of light on the azimuth of the earth in its orbit 
about the sun was carried out by Michelson in 1881, improved by Michelson 
and Morley in 1887, and repeated with greatest accuracy by Joos in 1930 
at the Zeiss works, Jena. 

The theory of dispersion based on an elastic theory was developed by Ketteler 
and Sellmeier. The electromagnetic theory of dispersion was started by 
Helmholtz and was completed by Drude on the basis of the theory of 
electrons; Drude, Lehrbuch der Optik, 1900. 1926, wave-mechanical 
theory of dispersion by Schrodinger. 

Abbe, 1840-1905, diffraction theory of optical images; also simultaneous 
work by Helmholtz and Lord Rayleigh. 

Standing light waves, O. Wiener, 1890, on their basis Lippmann's color 
photography. 

Lord Rayleigh, 1842 - 1919, explanation of the blue color of the sky; introduc-
tion of group velocity into optics ; resolving power of the prism. Conception 
of natural white light as a completely random, non-periodic process. 

Zeeman effect, 1896 ; explanation of the normal Zeeman effect by H. A. Lorentz. 
Einstein in 1905 deduced from the quantum theory the notion of photons 

(light quanta). 



CHAPTER I 

REFLECTION AND REFRACTION OF LIGHT 

2. Review of Electrodynamics. Basic Principles of Ideal and Natural Light 

In Vol. II, Sec. 45 we showed that at the interface between two optically 
different media the elastic theory of light provides more boundary condi-
tions than are consistent with the known facts of polarization, i. e. the 
transverse character, of light. Hence we turn our attention to the electro-
magnetic theory of light, which, in contrast to the elastic theory, specifies 
only two boundary conditions for the electric field strength E and two for the 
associated magnetic "disturbance" H, namely, the equality of the components 
tangential to the boundary surface. 

We shall assume the light to be monochromatic and will hence perform 
our calculations using a single frequency ω. This assumption involves a far-
reaching idealization of true conditions and has the following meaning: we 
consider the light to be spectrally decomposed and use only an infinitesimally 
small portion of the spectrum as a light source. The spectroscopic apparatus 
used for this purpose is called a monochromator. Furthermore, we do not 
consider any arbitrary bundle of light rays but, again by a far-reaching 
idealization of true conditions, we consider the mathematically much simpler 
case of a plane wave with a well-defined direction of propagation. This means 
that we use a collimator (a tube with a convex lens in whose focal plane is a 
slit) by means of which we can obtain a system of parallel rays of a certain 
width from an originally diverging bundle of light rays. 

Natural light does not possess either of these two properties. This holds 
even for sunlight which is completely irregular as regards frequency, and also 
lacks sufficient parallelism because of the finite size of the sun's disc. 

We will first consider ideal light which has passed through an ideal 
monochromator and collimator. Later, we will discuss the characteristics of 
natural light. 

We choose the #-axis in the direction of propagation of our plane wave, 
denote its electromagnetic field by the two vectors E and H, and represent 

6 



2. 3 REVIEW OF ELECTRODYNAMICS 7 

these by the real parts of the following expressions in which we suppress1 

the symbol Re which is to be thought of as attached to the right-hand 
sides : 

(1) E = A ei{k χ~ω1), H = A' *»■<*««> 

k is called the wave number of the light. A is a constant which is 
independent of x and t but which has different and generally complex values 
for the different components of E. A' is determined by A. Instead of H we 
could, of course, have used B to represent the wave. We prefer H mainly 
because the conditions at the boundary between two optically different 
media require the continuity of H as well as of E ; and partly also because the 
radiation vector S which is fundamental in optics is given by 

( la) S = E X H 

(this contains no additional factors, thanks to our M K S Q system of units 
which was introduced in Vol. I l l and upon which also this volume will be 
based). Furthermore, we are thus in better agreement with the7 usual literature 
in which H (given the designation "field strength", however) is almost always 
used in conjunction with E. 

In an isotropic medium which is free of charges electromagnetism requires 
the transverse character of light because of the condition div E = 0 which, 
see Vol. I l l , Sec. 6, leads to Ex = 0 for the case of our plane wave given by (1). 
Hence, there exist only the two components Ey and Ez. The same is true of H. 
k is connected with ω by the equation (see Vol. I l l , Sec. 6) 

. _ / j g = dielectric constant 
' ^ j μ = permeability. 

Dimensionally, ]/εμ is an inverse velocity. We shall call it \\u where u is the 
phase velocity of propagation in the particular medium. This follows from 
the exponents in expression (1), which, on differentiation with respect to t 
and setting equal to zero, give: 

, dx £——ω = 0. at 

In a vacuum with ε = ε0, μ = μ0 we have 

(3) u = c, c = . ~ 3. 108 meters/second. 
]/ε0μ0 

1 In exercise I. 1. we will illustrate by means of a very simple example the advantage 
of computing wave problems using complex exponential functions rather than using 
their real parts. 

(3)
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The connection between H and E or, what is the same, between the 
constants A' and A occurring in (1) follows from Maxwell's equations for 
nonconducting media 

(4) μ— = - curl E, ε — = curl H. 
01 01 

When specialized to the case of our plane wave, the first of these expressions 
gives, since Ex = 0, Hx = 0, 

-ζωμΑγ' = ikAz, -ιωμΑζ=-ιΗΑν 

and hence 

(5) Ay — Az— — 1/ — Az, Az — Av— 1/ — Ay. 
μω y μ μ ω ' y μ 

These expressions also follow, of course, from the second eq. (4). 
Depending on the choice of the constants Ayf Av there results as a 

necessary consequence of Maxwell's equations a uniquely determined state of 
oscillation or, as we can also say, a uniquely determined polarization of our 
monochromatic plane wave. 

In exercise 1.2. we shall observe that in general eq. (1) represents elliptic 
polarization. This means that if the electric vector E is drawn so as to 

2 n originate from the point y = 0, z = 0, its tip describes during the time τ = — 

an ellipse with its principal axes in the yz-plane. The same is true of the 
vector H. It need hardly be said that, according to our conception of the 
Maxwell theory, nothing material oscillates in this process, no motion of 
the ''light ether" takes place. We will see later how this ideal case of 
elliptic polarization can be realized practically to a good degree of approxima-
tion. (Total reflection, reflection on metals, crystal optics.) 

An important special case of elliptic polarization is circular polarization 
which results when 

(6) \Ay\ = \AZ\, - ^ = ± 1 . 
Ay 

Linear polarization is characterized by 

(6 a) -^ real (positive or negative), 
Ay 

in particular, of course, by the special cases Az =■ 0 or Ay = 0. 
In the following discussion we shall have occasion to speak not only of a, 

monochromator and collimator but also of a polarizer (Nicol prism, quarter 
wave plate, etc.). According to the above discussion, such a polarizer does 
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not actually produce polarized light but rather serves to transform the light 
from one type of polarization to another. The presence of general elliptic 
polarization is already guaranteed by the monochromator and collimator and 
by Maxwell's equations, paradoxical as this may sound to the experimentalist 
in practical optics. Theoretically it is correct to say that even after using 
an ideal monochromator and collimator, the four parameters contained 
in the arbitrary constants Ay and Az (two amplitudes \Ay\ and \AZ\ and two 
phase constants ay and OLZ) remain undetermined; only through the use of a 
polarizer are the values of these parameters restricted. 

Of course, an actual monochromator or collimator never functions ideally. 
Consequently, we are, in reality, never faced with ideal light but rather with 
a continuous superposition of ideal cases in which, at best, a certain region 
of frequency or a certain direction of propagation is strongly favored. Even 
light which has passed through the monochromator is, thus, not strictly 
monochromatic but has a certain spectral width even when it is reduced to 
a single spectral line. By the same token, the light emerging from the collimator 
is actually characterized by an integral over a region of spatial directions, 
though one of these directions contributes most strongly. Likewise, the 
various polarization devices also are endowed with a certain indefiniteness. 

For natural light the region of integration is in every respect unlimited; 
it comprises all frequencies 0 < ω < oo and in the diffuse case all possible 
directions of incidence. Moreover, for natural light no one direction of 
polarization takes precedence over all others. Planck had to analyze the 
consequences of this situation in order to set up his thermodynamic law of 
radiation and this law, in turn, led to the discovery of the quantum theory. 
He represented the radiation of a black body not by eq. (1), but for every 
ever-so-small frequency range A ω by an infinite sum of terms of the form (1) 
in which the constants A, even for neighboring co's change their absolute 
values and phases arbitrarily. This formulation is due to the fact that 
the elementary processes of black-body radiation originate in single 
atoms which emit independently of one another. Only the quantity y A y

2 + Az
2 

has a given value which is determined by the mean energy of all elementary 
processes. The Ay, Az taken singly, however, remain completely undetermined 
especially as regards their phases. All this is also true for what we call ' 'natural 
light". To be sure, even the naked eye exercises a certain amount of selection 
among the infinitely numerous components of the natural light. By fixating 
a certain point the eye acts as a collimator since, like the latter, it is equipped 
with a lens. Furthermore, by its spectrally selective sensitivity and its 
perception of color, the eye limits the frequency region. 
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The more the preference for a certain frequency and direction is emphasized 
in any single case, the larger is the region of space and time in which the plane 
wave represents a sufficiently good approximation of the natural light field. 
Outside of this region the phases are subject to statistically distributed 
variations in space and time. Fig. 2. attempts to illustrate this by means of 
an example. 

This figure represents the superposition of six plane monochromatic 
waves ; that is, the superposition of the six real parts of exponential functions 
of the form (1); their frequencies ω are in the ratios 

95 : 97 : 99 : 101 : 103 : 105; 

their directions of propagation k deviate in pairs by ± 1/20 radian from the 
direction of the middle pair; they are denoted successively by + 1/20, + 1/20, 
0, 0, - 1/20, - 1/20. 

The system of solid lines which are mostly straight shows the instantaneous 
nodes of the resulting state of oscillation. Between these nodes lie alternately 
wave crests and troughs whose amplitudes are denoted by the broken lines in 
a manner similar to the contour lines on a map. Successive contour lines 
have a difference in amplitude of 1. Except for the numbers 0, only the 
height of the tallest amplitude crest is given in each case. One sees that the 
regular sequence of waves is interrupted only at points where the amplitude 
vanishes; at such points a wave of new period infiltrates, so to speak. From 
this it follows that behind such a point the wavefronts overtake, or fall 
behind, the progress of the undisturbed waves corresponding to a locally 
closer succession of waves, or, effectively, to an increase in the frequency by 1. 
One must imagine that this whole wave picture propagates with the velocity 
of light in the direction of the arrows while its shape changes gradually. 

Visual inspection shows that there are finite regions, several wavelengths 
in extent, which have, to a sufficient degree of approximation, the character 
of a homogeneous plane wave and also retain this character as the wave 
propagates. Hence, these regions indeed satisfy the above postulated condi-
tions for "regions of good approximation". Only the zero points seem to be 
exceptions. However, just because the amplitude vanishes there, they do 
not produce any stronger effect than other points of varying intensity. 

In order to verify experimentally any results calculated by means of plane 
monochromatic waves, one must make certain that the entire object under 
observation is contained in such a region of good approximation during 
the entire time of observation. If this condition is satisfied, one speaks of 
the production of coherent light. To be more precise, one should speak of the 
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production of a sufficiently large region of coherence in space-time because 
even a natural light field always has small regions of coherence. 

The size of the region that is sufficient in each particular case, and hence 
the demands which are to be made upon the monochromatic quality and the 
directional uniformity of the rays, depend upon the relative sizes of the object 
and the wavelength. Anticipating a later discussion, we shall give a few 
examples. 

No optical instruments are required in order to see the interplay of colors 
resulting from colloidal particles or in a lunar corona. 

For the observation of the colors of thin plates a parallel direction of the 
incident light is of almost no importance. Also, in this case, the spectral 
selectivity of the eye suffices to limit the frequency range. 

From thick plates, however, one obtains interference fringes only if sharp 
spectral lines and well-defined rays are used; a telescope is necessary to 
separate the fringes. 

One cannot observe diffraction at a slit in sunlight unless the slit is ex-
tremely narrow. A collimator or auxiliary slit is necessary. Only rays 
originating from one and the same region of coherence can interfere with one 
another. For such rays the light vectors add. Radiation fields from more 
distant regions combine energetically in a time average sense. For these the 
intensities add. 

Before we turn to the actual subject of this chapter, namely reflection and 
refraction, we shall review briefly the units used above as well as some of the 
quantities from Vol. I l l which we will use later on. 

Using the four units M (meter), K (kilogram of mass), S (second), 
Q (electric charge)1, one obtains 

Unit of force: 1 newton = M K S - 2 = 105 dyne 
Unit of energy: 1 joule = 107 erg 
Unit of power: 1 joule S—1 = 1 watt 

Electric field strength: 
Force 
Charge 

Current strength: 

Current density: 

newton volt 

QS—* = amp. 

J = ^ = Q M - * s -

joule 

1 For numerical calculations one uses the coulomb as a unit for Q, i. e. the charge 
one ampere second. 
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The "displacement current'' D has the same dimension. Hence the dimension 
of Maxwell's "electric displacement" D which is our "electric excitation" 
becomes QM—2. Because D = ε E, the dimension of the dielectric constant 

0 2 M- 2 

becomes -^ = M- 1 SQ-1, 1 Ω = 1 joule S/Q2 = 1 ohm. newton J ' * 
Magnetic moment = Pole strength X Lever arm = PI. Following Wilhelm 

Weber this is defined as Current X Area. Hence, 
Pole strength P = QMS - 1 = "moving charge" in the sense of Ampere. 
Magnetic Induction (really "field strength") B = newton/P = newton 

SQ-^M- 1 = volt S/M2 

Magnetic Excitation H = P/M2 = QM _ 1 S _ 1 = amp/M 

Permeability μ = —■. = newton S2Q—2 = M—^Ω 

εμ = M~2S2 = (velocity)-2 

μ\ε = Ω2, ]/μ0Ιε0 = wave impedance of the vacuum 

Convention for the purpose of eliminating 4π from the formulae: 
μ0 = 4 π . 10*"7M_1SÛ. From this it follows that: 4πο 2 ε 0 = 107MS_1Q~1 

Radiation vector S = E x H = jouleM~2S- 1 

We shall not introduce here the magnetic pole strength P as a fifth unit 
(see Vol. I l l 8 B). 

3. Frcsnel's Formulae. Transitions from Rarer to Denser Media 

We can consider the boundary between two optically different media to 
be plane if we limit our consideration to a small portion of that boundary (for 
example, a piece several hundred wavelengths in size). We call this boundary 
the plane y = 0 of a right-handed cartesian coordinate system. Let a linearly 
polarized plane wave coming from the half-space y > 0 impinge upon this 
boundary. The plane of incidence shall be the plane of the paper in figures 
3 a, b, that is, the y#-plane. Let the direction of propagation of the wave 
form the angle a with the negative y-axis. For the solution of the "boundary 
value problem" under consideration we will introduce, besides the refracted 
wave in the second medium (angle β with the negative y-axis), a reflected 
plane wave whose angle with respect to the positive y-axis shall, for the 
present, be termed α'. We denote the electric amplitudes of the three waves 
by A, B, C, where A belongs to the incident ray Ŝ , B to the refracted or 
"transmitted" ray Sd, C to the reflected ray Sr. We first consider the case: 
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A. ELECTRIC VECTOR PERPENDICULAR TO PLANE OF INCIDENCE. 

Besides omitting the symbol for the real part in the relations (2.1) we 
shall also omit the time factor exp (-*' ω t), which is the same for all three 
waves. E is everywhere in the direction of the z-axis. We now introduce, 
temporarily, polar coordinates r, φ in the #y-plane. For the direction of 
propagation occurring in (2.1) and there denoted by xf we substitute 
x = r cos φ or, more generally, we take account of the differences between 
the three directions of propagation by writing x = rcos(ç>-y). According 
to fig. 3 a we must then use the following values for y : 

for the incident wave -—π + α, r cos (φ - γ) = x sin α - ycosoc, 

for the refracted wave - — π + β, y cos (φ - γ) = χ sin ß - y cos ß , 

for the reflected wave + — π - α', rcos{(p-y) — #sina ' + y cos a', 

where the x, y in the last column indicate, in contrast to the relation (2.1), 
the coordinates defined in the figure. The resulting superposition of the 
incident and reflected wave in medium 1 and the resulting refracted wave in 
medium 2 are given by 
/ i \ E = A £*^i(*sin a—y cos a) i C ßikt Usina'-!- ycosa') 

and 
(1 a) Ez = B e

ik*(xsinP—yQosft 

respectively. The boundary condition at y = 0 demands 
/y\ A pikxx%vsxa ! C pik^xsSna' __ ß pi^xsinß 

Because of its dependence on x, this condition can be fulfilled by a choice of 
the constants A : B : C only if the exponential factors cancel; hence if 

(3) a = a', kx sin a = k2 sin /?. 

The first of these equations is the law of reflection] the second is the law of 
refraction which, recalling (2.2), becomes 

sin/? kx \ ε1μ1 ' 

The right-hand side of this double equation defines the (relative) index of 
refraction of the media 1 and 2 

(3 b) 

(3 a) 



3. 5 TRANSITIONS FROM RARER TO DENSEK MEDIA 15 

If we assume medium 1 to be air, whose constants εχ and μ1 are almost the 
same as those of vacuum, and if we denote the constants of medium 2 merely 
by ε and μ, then we obtain the definition of the index of refraction with 
respect to air: 

(4) n = 
εμ c 

u 

Here, as in (2.3), u denotes the phase velocity in medium 2. After putting 
μ = μ 0 and ε/ε0 = ετΛ (dielectric constant relative to vacuum), this is usually 
written: 

(4 a) n = ]/erei, 

which is Maxwell's relation. As Boltzmann has shown, this relation is fairly 
well satisfied for homopolar gases and vapors but not at all for solid and liquid 
media, especially not for those with infrared resonance vibrations. For water, 
for instance, one gets ]/εΓίΓ/ ~ 9 as against 
n ~ 4/3. Maxwell's relation does not 
explain dispersion (dependence of n on 
frequency) at all. 

Because of (3), (2) reduces simply to 

(5) A + C = B. 

We obtain a second equation for the 
ratio of the constants A : B : C by 
writing the boundary condition for the 
tangential component Hx. According to 
(2.5) the amplitude factor of H follows 
from that of E by multiplication by 
dz ]/ε/μ where the sign is to be decided 
according to the right-handed screw rule : 
E, H and S form for all three waves a 
right-handed coordinate system. At an 
instant when E is positive, that is, 
directed out of the paper in fig. 3 a, 
H is generated by a clockwise rotation from the S direction. Hence, according 
to the ray directions as drawn, H must point to the left for the incident and 
refracted wave and to the right for the reflected wave. Accordingly, Hx is 
found by multiplying the corresponding amplitudes of the electric vector by 
- cos a and - cos ß in the case of the incident and refracted wave, respec-
tively, and by 4- cos a in the case of the reflected wave. One obtains then 
instead of (1) 

Fig. 3 a. 

Illustration for the derivation of 
Fresnel's formulae for transition from 
a rarer to a denser medium. Electric 
vector perpendicular to the plane of 

the drawing. 
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(6) Hx = ] / — cos a eik****a {- A e-
ik^cosa + C e

ik^cosa} 

and instead of ( la) 

(6 a) Hx = - 1 / ^ - cos ß eik*xsin0 B er-i**y«*ß. 
V fa 

Upon simplification by means of the law of refraction, the boundary condition 
takes the form 

(7) L ^ c o s a f - ^ + C} = -l/^casßB, 

which we shall write in the form 

m is generally (for μ2 φ μΛ) different from w. While n indicates the ratio of 
two wave velocities, we have to look upon m, according to our table of 
dimensions, as the ratio of two wave impedances. 

By addition and subtraction of the two equations (5) and (8), one obtains 

2 ^ 1 / , cos£ 
(9) . ^ } = 11 + m12 

In order to conform to the usual way of writing Fresnel's formulae, we put, 
using (8) and (3 b), 

(10) 

and obtain instead of (9) 

(ID 

In the case^2 ~μ± = μ0 which usually obtains, we can write the first Fresnel 
formula more simply as: 

(12) 

B. MAGNETIC VECTOR PERPENDICULAR TO PLANE OF INCIDENCE. 

We start now with the magnetic vector H in the direction of the 2-axis. 
As in (2.1), we denote the amplitude factor of the incident wave by A' and 
the amplitudes of the refracted and reflected waves by B' and C, respectively. 
Because of the continuity of Hz at y = 0, we have instead of (2) the boundary 
condition : 
(13) 
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The laws of reflection and refraction follow from this just as in (3), (3 a) 
and (13) reduces to 
(14) A' + C' = B\ 

For the E-waves (factor ^ε1\μ1 with A' and C, factor ]/ε2/μ2 with B') this gives 

(14 a) A+C = m12B. 

where the meaning of m12 is given by (8). 
A second condition follows from the con-

tinuity of Ex at y — 0. In order to determine 
the signs we look at fig. 3 b. and consider again 
an instant when H, represented as an arrow 
perpendicular to the plane of the paper, is 
directed toward the reader. From the fact 
that E, H and S, in that order, must form a 
right-handed system, the E arrows follow as 
drawn in fig. 3 b. Projecting these onto the 
#-axis one obtains, instead of (8), as a second 
boundary condition 

cos a (A - C) = cos β Β, 

and combining this with (14 a) 

"}-(-±=ϊΜα—+=Λ 

(15) 
In the usual case μ± 

μ\ s i n <x , cos^i B 

μ2 sin ß COS/Ä/ 

FIG. 3 b. 
J 

Illustration for the derivation of 
Fresnel's formulae for transi-
tions from a rarer to a denser 
medium. Electric vector in the 

plane of the drawing. 

(15 a) 

(15 b) 

4Λ 
B 

; μ2 one obtains the simplification 

sin 2 a + sin 2 β 2 sin (a + β) cos (a - β) 
sin ß cos a 

sin 2 a - sin 2 β 

sin ß cos a 
2cos(a + /?) sin (a-/?) 

sin ß cos a sin ß cos a 

From this it follows immediately that 

A : C = tan (a + β) : tan (oc-ytf). 

On the other hand, from (15 a) one can easily calculate 

A : B = tan (α + β) : 2 sin ß cos a 
cos (a + β) cos (a - β) 

tan (α + β) 

m sin (a + β) - sin (a - β) 
cos (a + ß) cos (a-/?) = tan (a + fi) : /tan (α + β) _tan (α - β)\ 

\cos (a - β) cos (a + ß)j 

4C 
B 
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Collecting these two ratios, one obtains the second Fresnel formula 

IML\ Λ D r ± / . o\ / tan(a + /?) tan (a - β)\ (16 A :B :C = tan (CL + β) : -=(■ ; : tan a - / ? . \cos (a - β) cos (a + ß)j 

In order to complete the above calculation, we will convince ourselves in 
exercise 1.3 of the fact that no electric charge is induced on the surface y = 0 
and that, therefore, no discontinuity in the electric excitation Dy = e Ey 

occurs. (In case A this is self-evident because of Ey = 0.) 

C. ARTIFICIAL SUPPRESSION OF REFLECTION FOR PERPENDICULAR 
INCIDENCE. 

The more complete solutions (9) and (15) of our problem in which we have 
μ^ φ μ2 are of some historic interest. During the war the problem arose to 
find, as a counter measure against allied radar, a largely non-reflecting 
(''black") surface layer of small thickness. This layer was to be particularly 
non-reflecting for perpendicular or almost perpendicular incidence of the 
radar wave. In this case a, and because of the law of refraction also /?, are 
almost equal to zero. The problem is solved according to (9) and (15) by 
making 

(17) m12 = 1. 

The criterion is, thus, not the index of refraction n but the ratio of wave 
resistances m. In order to ''camouflage" an object against radar waves, one 
must cover it with a layer for which this ratio of wave resistances has the 
value 1 in the region of centimeter waves. According to (8) this means that 
if we call the constants of the desired material ε and μ and those of air e0 

and μ0, then 

(18) t = lL. 
€Q μ0 

Hence, the problem concerns not only the dielectric constant but also the 
relationship between the dielectric constant and the permeability. A substance 
must be formed whose relative permeability μ/μ0 is of the same magnitude 
as its relative dielectic constant ε/ε0. 

But thereby the problem is not yet solved. For at its back surface the 
layer borders on the object (metal) which is to be camouflaged, and this second 
surface still reflects strongly. Hence, the further condition must be 
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imposed that the layer should absorb sufficiently strongly. This requires 
a complex rather than a real dielectric constant and because of the requirement 
(18) a corresponding complex permeability. The material must, therefore, be 
ferromagnetic and must possess a strong hysteresis or a structural relaxation 
that acts correspondingly. Thus, a difficult technological problem was posed 
which, though not unsolvable, required extensive preparatory work. 

Because of the urgent war situation the solution which had to be used 
resulted from the following considerations. According to our presentation 
reflection appears as a consequence of the discontinuity of the material 
constants between the two media 1 and 2. The question of whether a completely 
continuous transition also causes reflection is an old one and was disputed for a 
long time. It has been answered only lately and in a completely affirmative 
sense, owing to the special interest which wave mechanics1 as well as ionosphere 
research has recently brought to this question. 

It turns out, however, that reflection becomes extremely small when 
the change of the material constants is spread over a distance equal to or larger 
than one wavelength, while an increase within a distance which is less than 1/4 
wavelength acts appreciably like a discontinuous increase. By material 
constants we mean the complex dielectric constant (it must be complex 
because of the necessary absorption ; the permeability can be left out of this 
consideration). 

In practice it was necessary to approximate the required continuous 
rise of ε by a series of steps, that is, by the application of several layers whose 
dielectric constants (especially their imaginary parts, which are the more 
important) increase with depth from one layer to the next. In this manner 
the reflected intensity could be reduced to 1% of the value given by FresneVs 
formula for all wavelengths less than an upper limit whose value depends 
on the thickness of the layer. This could be accomplished without exceeding 
the admissible additional weight of the layers. 

We will treat another method for diminishing reflection (extinction by 
interference) in Sec. 7. 

1 In wave mechanics one is concerned with the penetration of an electron into a region 
of increasing repulsive potential which according to the energy theorem of classical 
mechanics, would be inaccessible to the electron with its given kinetic energy. See also 
the later remarks on the tunnel effect, Sec. 5 c. In particular S. Epstein found 
a special profile for the increase in refractive index for which the reflection can be 
calculated rigorously (by means of hypergeometric functions). For further details see, 
for instance, "Atombau und Spektrallinien" Vol. I I p . 29. A general discussion of the 
various methods of computation is given in Kofink and Menzer, Ann d. Phys. (Lpz) 89, 
388, 1941; Kofink, ibid. 1. 119, 1947. 



20 REFLECTION AND REFRACTION OF LIGHT. 4. 1 

4. Graphical Discussion of FrcsnePs Formulae. Brewster's Law. 

Let medium 1 be the optically rarer medium, for instance air, and let 
medium 2 be the optically denser medium, for instance water or glass. Since 
these media are non-magnetic (μ = μ0), m has the same value as n. The 
designations ''denser' ' and ' 'rarer' ' have their origins in the elastic (or rather 
quasielastic) theory of Fresnel. 

In our fig. 4 we use for the abscissa the angle of incidence a, where 
0 < a < π/2. In the direction of the ordinate we plot the amplitude ratios for 
the transmitted and reflected rays 

(1) D - * . R - ° . 

The negative sign of R is desirable because throughout the greater part of 
our figure the sign of the reflected amplitude C is opposite from that of the 
incident amplitude A. A change in sign during reflection obviously means 
a phase difference of π, that is, the addition of a phase factor 

We shall now distinguish the two cases A and B of the preceding paragraph 
by means of the indices p and s. Their meaning is: "plane of polarization 
parallel or perpendicular to the plane of incidence", and they contain a 
definition of the otherwise arbitrary term "plane of polarization". The 
significance of this definition is merely historical ; see the beginning of Sec. 8. 

A. PLANE OF POLARIZATION PARALLEL TO PLANE OF INCIDENCE. 

We begin with Rp which is given according to (1) and (3.12) by 

n\ J? s i n (a - P) 
(2) Rp = ^+J)' 
For small a we have, according to the law of refraction, 

(3) β = —, hence Rp = — — ; 
n n + 1 

For n = 4/3 (water) and n =■ 3/2 (mean value in the spectrum of light crown 
glass) this gives the results: 

R = 1/7 and 1/5, respectively. 

Correspondingly, the ratios of reflected to incident intensities are 

Rp
2 = 2% and 4%, respectively. 



4 . 6 GRAPHICAL DISCUSSION OF FRESNEL'S FORMULAE. 21 

Neither water nor glass can serve as mirrors for perpendicular incidence. 
If we look perpendicularly at water, we see our own mirror image less clearly 
than the bottom or the water's own color in the case of deep water. Ordinary 
mirrors are not glass mirrors but metal mirrors. The glass serves only for 
the protection of the silver on the reverse side1. 

We wish to improve the approximation for small a by one order. Hence, 
we set 

1 

and obtain 
exercise 1.4, 

sin ( α Τ Α - ( α ψ β) 

instead of (3), 

{l-[(«T^} 
see 

(4) Ri n -j- 1 \ nj 

Hence our representation of Rp in 
n - 1 

fig. 4 begins at a distance ——-
n -\- 1 

from the abscissa with a horizontal 
tangent and increases parabolically. 

We now move from perpendi-
cular to grazing incidence, α = π/2. 
Here we get, according to the law 
of refraction, 

R, 

/ 

kl 

V 

n+/1 

,£_ 
- - . 

« = r 

& -

^C " V —oc f 

(5) 
sin β = — 

sin (a =f β) = cos β = 
| / n 2 - l 

F I G . 4. 

The amplitude ratios R, for the reflected 
ray, and D for the transmitted ray, as 

functions of the angle of incidence a. 

hence Rp = 1. For grazing incidence reflection is complete. This is the reason 
for the beautiful mirror image of the opposite shore in the waters of a 
mountain lake, as well as for the mirror image of the setting sun in a smooth 
sea; this image approaches the sun itself in intensity. 

We also wish to determine at what angle our Rp curve approaches its 
end point Rp = 1 at α = π/2. For this purpose we compute dRpjdoi at that 
point. We note that (again because of the law of refraction) 

dß (6) cos α du. = n cos ß dß, hence — = 0 as we approach cos a = 0. 
don 

1 To be sure, the reflection from the front surface of the glass, weak as it is, makes 
such back-silvered mirrors unsuitable for optical purposes. For these the front surface 
of the glass must be covered with metal, preferably with rhodium. 



22 REFLECTION AND REFRACTION OF LIGHT 4. 6a 

Hence we need to differentiate (2) only partially with respect to a and by so 
doing obtain for α = π\2 : 

dRb 2 1 
(6 a) —r2- = 2 tan ß = Τ Ί = because sin ß = — . 
V dtt ]/n2-\ n 
It follows that the angle denoted in the figure by yp is given by : 

(7) t a n r , = L — . 

It is now very simple to draw also the curve for Dp. In our present1 

notation (1) we have, according to (3.5), 

(7 a) Dp=\-Rp. 

The ordinates of the two curves add up to 1. We obtain Dp by reflecting Rp 

on the center line of the figure (ordinate 1/2). Hence the curve Dp starts 
n — \ 

with a horizontal tangent at a distance ——- below the ordinate 1 and proceeds 

B. PLANE OF POLARIZATION PERPENDICULAR TO PLANE OF INCIDENCE. 

According to (3.16) CjA is positive for angles of incidence that are not too 
large; hence, following our definition (1), Rs becomes negative: 

tan (α - β) 
(8) Rs = - tan (α + β) 

If we let a -^ 0 then, except for the sign, equation (3) holds true also here 
and its next degree of approximation becomes, see exercise 1.4, instead 
of eq. (4) 

(9) n + 1 \ n] 

Hence the curve for Rs is a quadratic parabola which starts with a horizontal 
n — \ tangent at a distance below 
n+ 1 

α = π\2 with the positive ordinate 

n — \ 
tangent at a distance below the abscissa. It ends according to (8) at 

n + 1 

1 Our quantities R and D are not to be confused with the quantities r and d which 
will be defined on the basis of energy in section E. 

as a parabola which terminates at the point α = π 2, Όϋ — 0. In the case of 
grazing incidence no light passes from the rarer into the denser medium. 
Dp falls off at the endpoint at the same angle yp as determined by (7). 
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tan 
(10) Rs = j ^ (-= + 1. 

tan ■(H 
Its slope is steeper than that of Rp; the angle γ8, computed in a manner 
similar to (7), is given by 

(11) tan γ, = ^ 2 < tan γρ. 

Between its negative beginning (9) and its positive end (10) the Rs curve 
crosses the abscissa. We call this point 
(12) a = ccpoi = angle of polarization. 

From eq. (8) we conclude that at this point the denominator must suddenly 
change its value from + oo to - oo and that hence 

For glass In =—) and water \n = —I 

CLpoi = 57° and 53°, respectively. 
Since Rs vanishes at this angle, the reflected light is polarized completely parallel 
to the plane of incidence. This was the discovery of Malus. Our eq. (13) also 
contains "Brewster's law"; see the later fig. 5: the reflected ray Sr is 
perpendicular to the refracted ray Sd. 

Next we complete fig. 4 by drawing the curve for Ds. This can be derived 
from the relation (3.14 a) which, in our present notation, reads 
(15) \-Rs = nDs. 

If we now make the same construction as in the case of Dp, that is, if we 
mirror the curve Rs about the center line of the figure, then we are carried 
beyond the ordinate 1, as indicated by the broken curve denoted by n Ds in 
the figure. The starting point of this curve has the ordinate 

n - \ 2n 
1 + n + 1 n + 1 

(13) sin ß = cos oLpoi. 

On the other hand, according to the law of refraction, 

(13 a) 

By comparing (13) and (13 a) it follows that 

(13) 
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To obtain Ds itself we must reduce this curve by a factor of 1/w. Then we 
obtain the same starting point ordinate as in the plot for Dp, namely 

n - 1 2 
1 -

n + 1 n + 1 

C. PRACTICAL PRODUCTION OF POLARIZED LIGHT. 

While the reflected component provides complete polarization at the 
angle of polarization, it provides only low intensity. Though the refracted 
component is only incompletely polarized, its intensity is greater. Indeed, 
according to (13) and (14), for a = OLpol 

sin ( a + 0 = 1 ^ _ χ 

sin (a - β) — sin2 a - cos2 a = 
n2+\ 

and hence, according to (2), 
n2 - 1 5 

Rp= "S«+T = Ί3 ior n = 3 /2 ( g l a s s ) · 

The efficiency of this ''polarizer" (ratio of reflected ^-intensity to the entire 
incident (p + s) - intensity) amounts, therefore, to only 

I i ^ = 7.4%. 

For other angles of incidence α Φ oLpol the reflected light is also polarized 
parallel to the plane of incidence but only partially so. 

On the other hand, a glance at fig. 4 shows that Ds > Dp for every a. The 
refracted light is always partially polarized perpendicularly to the plane of 
incidence. For instance, for the special case a = OLPO1 we get according to 
(15) and (7 a) 

06) D.-1, D,= l - 4 ^ 1 = * W=-r±>'-
n n2 + 1 n2 + \ Dp 2n 

If we consider the passage of light through a plate at the back surface of 
which a second transition with index of refraction \\n takes place, then at 
this point the amplitude ratios are again the same1 because 

n2 1 + n2 

2/n ~ In 

For the generality of this relationship, see exercise 1.2. 1 
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Thus for a glass plate the resulting ratio of refracted amplitudes Ds : Dp is 

and the ratio of intensities is 

(1.17)2 = 1.37. 

Hence, by means of a stack of glass plates the polarization can be successively 
increased without decreasing the intensity (if the material is completely trans-
parent and the surfaces are clean). In this way half of the intensity of the 
incident natural light (namely the s-polarized half) is completely utilized. 
The efficiency of an ideal stack of glass plates would thus be 50%. To be 
sure, complete polarization is approached only asymptotically as the number 
of glass plates is increased to infinity. 

While the production of polarization by means of crystal structure is 
readily understandable, its origin in an isotropic material is, because of the 
complete lack of structural elements, somewhat paradoxical. This situation 
will be clarified in the next section. 

D. BREWSTER'S LAW FROM THE POINT OF VIEW OF ELECTRON THEORY. 

We now leave, temporarily, the phenomenological viewpoint of Maxwell's 
theory and interpret the process of refraction as scattering of the light by the 
atoms of the second medium (the first medium can be thought of as a vacuum). 
From this physically more profound viewpoint refraction takes place only 
because the electric field acting in the second medium sets the atomic 
electrons into oscillations, these oscillations being in the direction of the field. 
Thus, we are concerned with real material oscillations and not merely with 
alternating fields as before. 

Fig. 5 represents the case of ''plane of polarization perpendicular to the 
plane of incidence" in which the electric vector oscillates in the plane of incidence. 
Its direction of oscillation in the second medium is, of course, perpendicular 
to the direction of the refracted ray. The electrons oscillate in this same 
direction. They act like Hertzian oscillators and like them radiate no light in 
the direction of their oscillations (the same is well-known to be true for the 
antennas of radio transmitters). Regular reflection in the first medium can 
occur only if the electrons of the second medium deliver radiant energy in 
the direction of reflection (as determined by the law of reflection). This is 
not the case when this direction is parallel to the oscillations of the electrons, 

1.17 
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hence perpendicular to the refracted ray, in agreement with Brewster's law. 
In other directions of reflection the electrons yield part of their radiation, 
which explains the variation of the strength of reflection with varying angles 
of incidence. 

We also see immediately that this consideration does not affect the other 
case: "plane of polarization parallel to plane of incidence". In this case the 
electric vector and hence also the electron oscillations are perpendicular to the 
plane of incidence, hence also perpendicular to every position of the reflected 

ray. Every one of these directions is a 
direction of maximum radiation from the 
electrons. Thus there is no reason for a 
forbidden direction of reflection such as 
Brewster's law demands. 

We do not claim that the reflecting 
power can be calculated in this simple 
manner; for that purpose our method is 
still too primitive. Furthermore, it must be 
observed that only the layer next to the 
surface can be taken into consideration 
because at greater depths the contributions 
of the single atoms cancel by interference. 
But nevertheless, the null effect of Brewster's 
law is incontestably illustrated by our 
method. 

These considerations also show that 
polarization depends, even in the case of 

isotropic substances, on a structural property of the material. This structure 
is, however, not prescribed crystallographically but is brought about by 
the electromagnetic field itself in creating a directed dipole structure in the 
otherwise unordered atoms. 

Fig. 5. 

Brewster's law from the point of 
view of electron theory. At the 
angle of polarization the reflected 
and refracted rays are mutually 

perpendicular. 

E. ENERGY CONSIDERATIONS. REFLECTING POWER r AND TRANSMISSIVITY d. 

Clearly these phenomena conserve energy in every case. In order to see 
this one may consider the flow of energy through an arbitrary cross section q 
of the incident wave. The corresponding cross section in the reflected wave is 

<1 again q. But on the refracting plane q subtends the larger area 
cos a 

and 

for the transmitted light the corresponding cross section is given by 
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(17) 
cos/? 9 = 9 
cos a 

We write for the time average of the energy flow through these three cross-
sections 

Si = q Si, Sr = qSr, Sd = q'Sd, S = ExH= | / - E2 

and define the reflecting power and the transmissivity by 

(18) Sr d = 
Si 

e3fJL1q_ 

P%*\9 

cos/? 
cos a 

where the meaning of m is the same as in (3.8). We will convince ourselves 
in exercise 1.5 that, in compliance with the energy law, for every case 

(19) r + d=\, 

and also that r and d are the same for both transitions : rarer ^ denser medium. 

Our energy equation (19) is to be well distinguished from the amplitude 
equations (7 a) and (15) 

Rp + Dp = 1 and Rs + nDs= 1. 

5. Total Reflection 

In principle our formulae of Sees. 3 and 4 remain unchanged if we transfer 
the incident wave into the denser medium and investigate its reflection into 
the same medium and its refraction in the rarer medium. In particular, no 
changes need be made in the derivation of the law of refraction in (3.3). But 
because we want to preserve the former meaning of n > 1, we will substitute 
\\n for n and must hence write 

(1) sin a 
sin/? 

2̂  
n 

From this it follows that /? > a for small a but that β is imaginary for 
n sin a > 1. In this latter case the coefficients A : B : C in Fresnel's formulae 
also become complex. 

In the older literature this situation was rejected as being unphysical, but 
it is entirely consistent with our viewpoint for we consider the problem of 
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reflection and refraction as a boundary value problem. Any procedure which 
leads to a self-consistent solution of this problem is justified. Calculations 
with complex magnitudes are just as admissible and advisable in optics as 
they are, for instance, in two-dimensional potential theory. 

\fi\-/ 

pol tot max 
—** a 

% 

FIG. 6. 

Reflection ratios Rp and 
Rs before and after total 

reflection occurs. 

A. DISCUSSION OF FRESNEL'S FORMULAE. 

We shall adopt immediately the graphical method of Sec. 4 and again 
neglect the distinction which, in principle, exists between n and m. The 
abscissa of fig. 6 again represents the angle of incidence 0 < α < π/2. On it 
we mark the point n sin a = 1 at which the angle of refraction β attains its 
largest real value β = π/2. We call this point 

(2) OLM = Limiting angle of total reflection. 

For glass against air 

s in oitot ' OLtot' '42°. 

Limiting ourselves for the time being to reflected light, we shall plot the 
following quantities along the ordinate: 

(3) R 
C 
A' 

j? s i n ^ «) 
■ a ) 

Rs = -
tan (β - a) 
tan (β + α) 

Consequently, we now choose the sign of R oppositely from that in (4.1). 
Thereby we attain the advantage that in spite of the opposite state of affairs 
(β < a in fig. 4., β > a in fig. 6) the curves for Rp and Rs are similar to those 
in fig. 4 for small a. They both start with horizontal tangents at the same 
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n - 1 
ordinates ± as before. But they reach the ordinate 1 not at α = π\2 

n+l 
but already at a = cx.tot. Indeed, since at that point β = π/2, 

(4) ilp 

. In \ f In \ 
sinl— - a tan I— - oc| 

p \ 2 / i p \2 / 
s in(?+a) t a n ( l + a ) 

Before reaching that point the curve for Rs will have crossed the abscissa 
at the angle of polarization 

n 1 
v-poi + ß = -r, tan αρβΐ = — 

z n 

which corresponds to equations (4.12) and (4.14). 

We are interested in the slopes at which the Rp and Rs curves approach 
the ordinate 1 at oitot. To this end we note that in contrast to (4.6) we now have 

dcf. 
—■ = o because sin β = 1, cos β = 0, 
aß 

and, hence, that we need to differentiate the expressions (3) only with respect 
to ß in order to be able to compute the angle in question. Thus by setting 
β = π/2 after differentiating, we first obtain the result, 

dRf, Ä sin a 
— - — 2 
dß cos a 

Then recalling (4.6) with n replaced by I/Λ, we obtain in the neighborhood of 
the critical point 

dRp Λ sin α dß 2n sin a 2 
doc cos a den cos ß cos ß 

The limit as β -* π /2, becomes oo ; the Rp curve has a vertical tangent at the 
point in question. 

Correspondingly, one obtains 

dRs 2 dß 2n 2n2 

(5 a) 
doc. sin a cos a den sin a cos/? cos/? 

The Rs curve runs even steeper than the Rp curve in the vicinity of the critical 
point. It also has a vertical tangent at that point. 

(4)
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This circumstance is of special experimental importance; it led Abbe 
and F. Kohlrausch to the construction of total reflection meters (total 
refraction meters, respectively). Because of the abrupt increase of the reflected 
light (the abrupt disappearance of the refracted light, respectively), the limit 
of total reflection can be determined very closely and thereby the index of 

refraction can be computed, according to the formula n = , with 
sin oca* 

great accuracy. 

We complete fig. 6 by drawing through the critical point R = 1 a line 
parallel to the abscissa and denoting it by \R\ = 1. This means the following 
for both components Rp and Rs: reflected intensity equals incident intensity, 
hence indeed total reflection. To justify this assertion we follow the course 
of the /?-point as given by the law of refraction in a complex /?-plane. Its path 
follows the real axis from 0 to π/2, as a goes from 0 to 0Lt0t. At this point the 
path of β splits into two, mathematically equally justifiable, branches 
β = π\2 ± i β' which run parallel to the imaginary axis. For both branches 

= sin(!±i-/r) (6) sin β = sin \-±iß'\ = cos ( ± i β') = cosh β' > 1 

as is required by the law of refraction sin β = n · sin a > 1. Using (6) one 
obtains from (3) 

S i l l \— ZL· * H <*· I / -T- · Λ / \ 

cos (ai*/? ') 

tan L _j_ - ~ w. , . Λ#ν 

(7a) \ 2 - / _ c o t ( « T , / n „ 

tan 

Since the numerators and denominators of Rp and Rs contain mutually 
conjugate quantities, the absolute values of these quotients are equal to 1. 
y and ô are real phase angles whose experimental utilization we will consider 
in section D. In preparation we have already sketched their curves in the 
right-hand part of fig. 6. \R\ = 1 immediately explains the excellent action 
of prismatic field glasses whose operation is based on the principle of total 
reflection. 

(6)
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B. LIGHT PENETRATING INTO THE RARER MEDIUM. 

The general formulae for the refracted wave in Sec. 3 give a field in the 
rarer medium not only for a < atoi but also for a > cntot. 

In the case of ^-polarization we start with eq. (3.1 a) by substituting 

ß=7Tj-±t β', sinβ = coshβ', cosβ = =F isinhβ' 

and obtain for k2 = k (vacuum) 
■p D Jk(xcoshβ' ±iysinhβ') 

We see that only the lower sign in front of i is physically admissible (Ez must 
remain finite as y -► - oo) so that we must set 

/g\ E = B eky sinh ̂  el k x cosh ^ 

This wave has an entirely different structure from that of the usual 
"homogeneous" plane wave. It is called "inhomogeneous". Though this 
wave propagates without attenuation along the boundary surface, its strength 
decreases perpendicularly to it. Since k — 2 π/λ, the wave is noticeable only 
within a distance of a few wavelengths from the boundary surface. 

We compute, next, by means of Maxwell's equation μ0 H = - curl E, 
the magnetic excitation H belonging to (8). We consider the right-hand side 
of (8) to be provided with the time factor exp (-iœt) and take into account 
the relationship ω/k = c = (ε0μ0)~~Υ2. We thus obtain besides Hx = 0: 

(9) 

Hx = -i P-sinhyS' 
V Mo 

Hy = -] / 5 t cosh β' 

D p k y sinh β' p i k x cosh β' 

Both components of H have the same inhomogeneous structure as (8). 
We now turn to the radiation vector S = E x H. We must not, of course, 

multiply the complex expressions (8) and (9) but only their real parts taking 
account thereby of both the time factor and the complex nature of (8) and (9). 
We write 

Rt J cosh β' cos2 τ 
' sin τ cos τ (10) Sx = - EzHy\ = I/*» \B\*e + 2 * y ^ r ί c o s h β ' 1 "" Sy = + E.H, J ]/μ0

1 l \ sinh β' 

where τ = ωί-k x cosh β'. Wre see that the %-component of S, which is the 
component parallel to the boundary surface, is always positive. On the other 
hand, the flow of energy in the direction perpendicular to the boundary 
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surface changes its sign periodically. Its time average vanishes while an 
actual energy flow takes place parallel to the boundary surface. 

This seems to contradict both the name "total reflection" and our oft-
repeated statement that no energy is lost in this process. We must, however, 
consider the fact that we have always performed our calculations for the 
ideal case of an infinitely wide wave front. For the actual, laterally restricted 
waves energy can very well pass from the denser into the rarer medium or, 
respectively, flow back from the rarer into the denser medium at the lateral 
boundaries1 of the wave. This is the energy which is transported parallel to 
the boundary surface or, so to say, meanders about it. 

If one may be permitted to use a military analogy, we can describe the 
situation in the following manner: an army marching inclosed ranks comes in 
its advance upon difficult territory which forces it to change its direction of 
march. The wing of the army detaches a weak patrol with orders to penetrate 
the difficult region and to secure the flank. This patrol needs to be only a 
few men strong in depth. After carrying out its orders the patrol returns to 
the army. 

Just as the lack of such a precaution would violate all rules of military 
caution, so would a sudden discontinuity of our totally reflected wave 
violate all ru1 i of electrodynamics. 

C. THE TUNNEL EFFECT OF WAVE MECHANICS. 

The experimental proof of the existence of the inhomogeneous wave in 
the rarer medium has posed a difficult problem. Quincke tried his hand 
at it for many decades. He placed two precisely cut glass plates side by side 
at a distance of a few wavelengths, and allowed light to be reflected totally 
in the first plate. He believed he was then able to observe traces of transmitted 
light in the second plate. He considered this as an indication that the air 
gap between the plates was bridged by the light field. Woldemar Voigt 
repeated similar experiments with an improved set-up. 

The experiment becomes very simple with Hertz waves. In the Bose-
Institute2 in Calcutta the following set-up is demonstrated: two asphalt 

1 These boundaries also have to do with the "lateral displacement" of the totally 
reflected ray as studied recently by F. Goos and H. Hänchen experimentally, and 
by K. Artmann theoretically, Ann. d. Phys. (Lpz) 1, 333, 1948 respectively 2, 87, 1948. 
See also C v. Fragstein ibid. 4, 271, 1948. 

2 The botanist Sir Jagadis Bose in his younger years imitated experiments of classical 
optics with short Hertz waves, e.g. λ — 20 cm. See Collected Physical Papers, especially 
No. VI of the year 1897, Longmans, Green and Co., 1927. 
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prisms 1 and 2, fig. 7, are placed opposite each other at a distance of several 
centimeters. The waves are incident perpendicularly to 1 and are ''totally 
reflected' ' on the back face of 1. Still, one obtains distinct signals in a receiver 
placed behind 2 and these increase in strength as the distance between the 
prism faces is decreased. 

In wave mechanics quite analogous 
situations occur under the name of ''tunnel 
effects" (Condon and Gurney, 1928). By 
assigning a wave to a particle (electron, 
ion), according to L. de Broglie, and making 
the former obey the Schrodinger equation, 
one shows that the particle can, as a wave, 
pass through a potential barrier which, 
considering its kinetic energy, the particle 
could not surmount according to classical 
mechanics. This happens with a specific 
probability which depends on the thickness 
of the wall and the original energy of the 
particle. In the wave mechanical for-
mulation the potential barrier plays exactly the same role as the air space 
in the experiments on total reflection. The parallelism between classical 
and quantum mechanics on the one hand and ray optics and wave optics 
on the other is hereby well illustrated. The wave mechanical tunnel effects 
proved to be fundamental in the theories of chemical binding, of "cold" 
electron emission of metals, of radioactivity, and also of the process of 
uranium fission. 

Fig. 7. 
Experiment to prove that Hertz 
waves enter the rarer medium. 
The distance between the two 

prisms is a fraction of the 
wavelength. 

D. PRODUCTION OF ELLIPTICALLY AND CIRCULARLY POLARIZED LIGHT 

Starting from equations (7), (7 a) we assume that the incident light is 
linearly polarized at an angle of 45° to the plane of incidence, a situation 
which is attainable by means of a Nicol prism. Then the amplitude factors A 
of the incident p- and s-waves will be equal and, according to the above-
mentioned equations, the amplitudes of both totally reflected components 
will be the same but their phases y and ô will differ; for by dividing (7) by 
(7 a) one obtains 

01) , t ( v — *) — 
sin ( a + */?') 
sin (a ± * ß) 
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For a = aw the right-hand side of this equation becomes 1, hence the phase 
difference becomes zero because there β' = 0. The same is also true for α = π\2 
because there sin (π/2 - i β') = sin (π/2 + i β') = cosh β''. Hence between 
these two limits lies a point of maximum phase difference. The magnitude of 
this difference and the associated angle of incidence cnmax are given by 

(12) tan -—i- = — — , sin2 o^ax « > *-"·" *-max — « . Λ 

We shall derive these expressions in exercise 1.6. Here we shall apply the 
result to glass of refractive index n = 1.51 and find 

tan - ^ = 0.424, o - y = 45°36', sin o w = 0.781, awa* = 51°20'. 

We cannot attain the special case of circular polarization by a single total 
reflection since γ - δ ^ 45°36' for all angles of incidence; but by two such 
reflections this case can be produced. For this purpose Fresnel constructed 
a glass prism with a parallelogram for a base. If linearly polarized light 
is incident perpendicularly upon the shorter prism face then, after being 
totally reflected twice at the longer prism faces, it emerges at the opposite 
short face as circularly polarized light. 

6. Metallic Reflection 

In Maxwell's theory metals are characterized by the conductivity or. 
However, actual conduction of electricity has to be thought of as a phenomenon 
consisting of the interactions between free electrons and metallic ions at 
fixed positions and as being brought about by an averaging of many elementary 
processes. Only in stationary or slowly varying fields does this averaging 
lead to a constant which is independent of frequency. One cannot expect 
that the phenomenological Maxwell theory will still suffice in the visible 
region of the spectrum. We have already encountered such a failure of the 
theory in the optics of transparent media (the failure of water, for instance, 
to satisfy the Maxwell relation n2 = erel. See p. 15). Again, the pheno-
menological description of metallic reflection proves to be insufficient in the 
visible domain though it agrees well with experiment in the infrared spectral 
range (see section B). Hence, the Maxwell theory of metallic reflection has 
general significance only in the sense of being a limiting theory. 

As is well known, Maxwell's equations for conductors differ from the 
equations (2.4) for Jion-conductors only in that the Ohmic current σ Ε is 
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added to the displacement current ε Ë. In the periodic case this means that 
-ειω is to be replaced by - ε i ω + a ; hence ε is to be replaced by the 
complex dielectric constant 

(t) e' = e + i - . 
ω 

We accept this formulation in optics because it embodies, for a given ω, 
the most general linear relationship between D and E. But according to 
the above discussion we must not expect that ε and σ will retain their 
electrodynamic, ω-independent meanings. 

Together with ε the index of refraction of eq. (3.4) also becomes complex: 

n — / —— = n i (2) n ' = I -£- = n(\+ix). 

The significance of the real quantities n and κ which are here introduced 
follows by squaring (2) and equating real and imaginary parts on both sides 
of the equation: 

(2 a) - -£- = w2 (1 - κ2), — L· = 2 w2 κ. 
ε0 μ0 ε0(ϋ μ0 

The metallic index of refraction n and the absorption coefficient κ thus defined 
are the optical constants of the metal. In connection with this usual designa-
tion "absorption coefficient,, it should be remarked that the "ideal" conductor 
a -+ oo of electrodynamics is characterized, not by κ -> oo, but by 

(2 b) κ -► 1, n -* oo. 

Indeed by dividing the two equations (2 a) one obtains 

— = and hence κ2 -*· 1 as σ -► oo 
σ 2 ωκ 

from which it also follows, by referring back to (2 a), that n -> oo. 

Together with n the resistance ratio m and the wave number k become 
complex. Corresponding to (3.8) and (2.2) we let 

(3) m' = n^ (1 +ix), k' = kn(\+ix), k = - · 
11 C 

We shall first concern ourselves with the structure of a monochromatic, 
linearly polarized, plane wave which propagates, for instance along the #-axis, 
in the metal. This wave is no longer homogeneous as in non-conductors. Its 
inhomogeneity is, however, of an entirely different nature from that which we 



36 REFLECTION AND REFRACTION OF LIGHT 6. 4 

Furthermore, we see from (4) that the wave is damped longitudinally in its 
propagation in the ^-direction, not transversely as in total reflection. The 
decrease in amplitude per wavelength amounts to exp (- 2πκ). In addition, 
the complex nature of A ' shows that there exists a constant phase difference 
between the magnetic and electric components. The nodes and the maxima 
of the two wave components no longer coincide as in the non-conductor but 
are displaced from each other by an amount depending on κ. 

A. FRESNEL'S FORMULAE 

Formally, we can take over Fresnel's formulae without change from Sees. 3 
and 4, as well as the laws of reflection and refraction from (3.3). The former 
says again that angle of reflection == angle of incidence = real magnitude. 
The latter becomes because of (2) 

sin a , . x (5) -— = n(i+tx) sin/? 

which shows that the angle of refraction β is complex for all a, not merely for 
a > (x.tot as in total reflection. 

Since the wave refracted into the interior of the metal is well-nigh 
unobservable because of its strong absorption, we must deduce the optical 
properties of a metal exclusively from the reflected light. Hence, we shall 
only have to discuss formulae (4.2) and (4.8) for Rp and Rs: 

Because of the complex value of β, y and ô differ from zero and from each other. 

and the wavelength 

It follows from this that the phase velocity is 

(4) 

encountered in the case of total reflection. We write, as in (2.1), omitting the 
time factors, 

(6) 
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We consider first reflection in the case of almost perpendicular incidence. 
Then a and LSI are small and from (5) 

(n + l)2 + η2κ2 (n + l)2 + η2κ2 

Assuming that we have a good conductor (n -► oo according to eq. (2 b)), 
we get r ~ 1. In contrast to the glass or water mirror (see p. 21) the metallic 
mirror is a complete reflector. 

Turning now to oblique angles of incidence, we assume, as in eq. (5.11), 
that both components of the incident light, p and s, are equal in amplitude 
and phase. Then the quantities given by (6), namely the amplitude ratio 
\Rp/Rs\ and the phase difference γ-δ, determine directly the nature of the 
reflected light. Generally, it is elliptically polarized. It will be circularly 
polarized only when y - δ = π/2 which we assume to be true for the special 
angle of incidence a = aÄ, the so-called "principal angle of incidence". One 
observes this angle and converts the circular polarization, for instance by 
means of a A/4 plate, to linear polarization. The azimuth <x.p of the plane of 
polarization associated with the latter is called the "azimuth of the restored 
polarization". From cnp and αΛ the metal constants n and x can then be 
computed. The latter are to be looked upon as phenomenological substitutes 
for the real metal properties in the spectral range of visible light. 

B. EXPERIMENTS BY HAGEN AND RUBENS 

We come now to the experiments which demonstrate for infrared rays 
the validity of eq. (7) which was derived from Maxwell's theory. 

Hagen and Rubens, Ann. d. Phys. (Lpz) 1903, used for their experiments 
so-called residual rays which were left over from a larger spectral range 
after repeated reflections from crystals of alkaline earth halides (CaF2, 
CaCl2). These crystals possess pronounced resonances in the region from 
X = io to 25.5 μ and hence have a highly selective reflecting power for 
such wavelengths. Then, according to (2b), κ ~ 1 and, according to (7), 

4 n 2 (8) 1 - r = -—-z = — is proportional to λ~ι/ί. 
2 nΔ -\- . . . n 

Hence, according to (6) 

Therefore, we obtain for both components the reflecting power 

(7) 
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This proportionality to λ~^ follows from the second eq. (2 a) (n2 proportional 
to ω~*). 1 - r is the loss in reflection and 100 (1 - r) is the loss in reflection 
in %. Hagen and Rubens observed r and computed from it the values of 
100 (1 -r) given in the following table: 

λχ = \2μ 

λ2 = 25μ 

Ratio 

Ag 

9.05 

7.07 

1.2 

Au 

13.8 

8.10 

1.7 

Cu 

12.1 

6.67 

1.8 

Pt 

10.6 

6.88 

1.5 

The last line gives the ratio of the two numbers above. According to (8) this 
should be constant and equal to 

This is almost exactly the arithmetic mean of the four numbers in the last 
line of our table. Hagen and Rubens were also able to confirm the dependence 
of their observations on temperature which is to be expected according to (2 a) 
because a is proportional to l/T{T = absolute temperature) as well as the agree-
ment of the conductivity a thus obtained with the electromagnetic value. At very 
low temperatures these simple laws no longer hold even for infrared light1 

because then the mean time between two collisions of an electron with metallic 
ions becomes comparable with the period of oscillation of the light and, hence, 
the averaging procedure mentioned at the beginning of this paragraph fails. 

C. SOME REMARKS ON THE COLOR OF METALS, GLASSES AND PIGMENTS. 

The dependence on wavelength contained in equations (7) and (8) would 
in itself result in a kind of coloring of the reflected light. The real color of 
metals, however, is caused by the characteristic oscillations of the electrons 
or ions which will be treated in Chapter III for the case of transparent bodies. 
Gold appears yellow when viewed directly. Very thin layers of gold allow 
green light to shine through. Except for metals real surface colors appear 
only where the optical constants n and x are of a different order of magnitude 
from those of the bordering air and depend strongly upon wavelength. Dried 
red ink (solution of fuchsin) shines yellow-green in the incident light. Its red 
color on white paper is due to the light passing through the ink. 

XK. Weiss, Ann. d. Phys. (Lpz) 2, p. 1., 1948 or E. Vogt, ibid. 3, p. 82., 1948 (Planck 
volume). 
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All other materials reflect practically unselectively; after reflection the 
incident white light remains almost white. This~is the origin of the "glare" 
well-known to painters. The latter can also be observed, for instance, on the 
beautiful blue copper sulfate crystals or on ruby glass. One must however be 
careful to prevent any internally reflected light which has passed through 
the material and is therefore colored from entering the eye in addition to the 
glare. For otherwise the glare light itself will appear complementarily colored 
owing to the purely physiological "simultaneous contrast". 

Colored glass obtains its color only from the transmitted light. Since the 
lengths of the light paths through the glass always amount to many hundreds 
of wavelengths even a very weak selective absorptivity suffices to color the 
glass intensively. That the glass shows the same color when looked at as 
when looked through is due to the fact that the light seen by looking at it 
has actually passed through the glass from the other side. If the back surface 
of the glass is painted with black lacquer, the color of the glass becomes invis-
ible and only the colorless glare of the front surface remains. If, however, 
the glass is laid on a white surface, it looks colored because the light reflected 
by the white surface and leaving through the front surface has passed through 
the glass twice. 

If a white textile is soaked in a dye solution, the crystal-clear fiber 
substance becomes selectively absorbing. The light reflected by the rear 
surface of the fibers, or by the fiber surfaces lying further back, has passed 
through the fibers several times. If the dyed fabric is soaked in water — 
or better, in a mixture of alcohol and benzene, then it appears dark and colorless 
because the reflection at the inner fiber surfaces has been stopped as a result 
of the equalization of the index of refraction. 

Many inorganic "pigments" are pulverized melts. In their compact state 
they are dark; after pulverization and mixture with a binding substance 
reflecting surfaces are formed in the interior; the color becomes visible. 

The green of leaves consists of transparent green grains. In order for 
foliage to appear light green, it must have in its interior sufficiently many 
inhomogeneities at which the light is reflected. If these are absent (coniferae, 
box-wood trees), a black-green color appears. Nevertheless, the chlorophyll 
of the coniferae is the same as that of other trees and plants. 

When mixedr pigments act subtractively like color filters placed behind 
each other. Every component of the mixture extinguishes by absorption its 
own region of the spectrum. The colors of pigments placed alongside each 
other, on the other hand, add when mixed, as for instance, in* the sectorially 
colored disc of a top. Also the illumination coming through colored church 
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windows and the picture of a Lumière plate is put together additively from its 
single colors. 

Very beautiful colors are produced by diffraction of light by larger aggre-
gates of atoms, so-called colloidal particles. Lapis lazuli, for instance, owes 
its deep blue color to colloidal sulfur particles. The blue of the sky is, according 
to Einstein, brought about by the density variations of the air molecules 
which are to be expected statistically ; Lord Rayleigh originally explained this 
phenomenon in a somewhat more special way by the diffraction on the 
(irregularly distributed) air molecules themselves. 

Nature attains her most beautiful color ornament through interference 
colors, see Sees. 7 and 8 c, as witnessed in the wings of butterflies, the plumage 
of the tropical humming bird, the opal and mother-of-pearl. What oppor-
tunities would present themselves to painting if it were possible to develop 
a convenient interference color technique! 

7. Colors of Thin Membranes and Thick Plates 

In this section we shall discuss on one hand the age-old observations of 
Newton which motivated him to assume a kind of spatial structure of light 
and which might almost have led him to interference and the wave theory. 

On the other hand we shall describe 
the most modern experimental 
arrangements which serve in the 
most exact analysis of spectra. The 
mathematical problem which is the 
basis of both is that of the trans-
parent plate with parallel surfaces, 
that is to say, the problem of 
reflection and refraction at two boun-
dary surfaces. Until now we have 
actually solved this problem for 
only one boundary surface. Ordi-
narily, the two-surface problem is 
reduced to that of one boundary 
surface by dealing with repeated 
reflections and refractions. In con-

trast to this we shall treat the problem of the plate directly as a 
boundary value problem1. We seek, therefore, the extension of Fresnel's 

π -t— 

m 

Fig. 8. 
Reflection and refraction in a plate with 

plane parallel surfaces, considered as a 
boundary value problem. 

xOi course this method has occasionally been used before; however only for special 
cases. See, e. g., M. Born, Optik, Berlin, Springer 1933, p. 125. 
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formulae corresponding to the generalized problem as described above; we 
thereby avoid the trouble of performing the summations over an infinite 
number of single processes which are necessitated by the other method. It is 
obvious, and will be shown in section E, that both methods must lead to the 
same result. However, we emphasize here already that in the case of the plate 
the above-mentioned single process is no longer a fundamental process and 
disappears in our extended boundary value problem. 

A. THE GENERAL CASE 

While in the case of one boundary condition two amplitude ratios A:B:C 
were sufficient, we now require four of these ratios: 

(1) A:B:C:D:E 

The meaning of the five amplitude factors A . . . E is evident from fig. 8. 
The angle of incidence a is also the angle of reflection and would be encountered 
again as the angle of emergence of the transmitted light D if we allowed the 
bottom surface of the plate to border on the same material (air) as the top 
surface. We prefer, however, to let the medium behind the plate be arbitrary 
and to denote the angle of emergence by y. The index of refraction of the 
plate with respect to that medium shall be n± and that with respect to air n. 
The thickness of the plate shall be 2 h ; at the top and bottom surfaces we let 
y = ± h. The 2-axis is to be thought of as pointing out of the paper. The 
fact that the upward-reflected wave is represented by two arrows, bracketed 
together, is due only to the nature of the drawing. In reality all arrows in the 
figure represent, as before, not rays but unbounded plane waves. 

We consider, for instance, the case of />-polarization, that is E parallel 
to the 2-axis, and obtain above the plate 

/T\ E = A £**i(*sin a — ycosa) _i_ Q £*'Ä1(#sina+ y cos a) 

as in (3.1). Inside the plate eq. (3.1 a) holds true but is to be completed by 
adding to the right-hand side the second particular solution in this region 
{+ i y instead of - i y) multiplied by the arbitrary factor E: 
/JJ\ E2= B eik*(xsinß — ycosß) + E ei^(xsmß+ycosß)^ 

Only below the plate does the field consist of a single wave because we must 
include among the conditions of the problem the fact that the plate is not 
irradiated from below: 
( H I ) Ez = D £*A(*siny—y cosy) # 
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The two laws of refraction at y = ± A 

n\ si™ - h - „ !H1Z _ Ä2 _ « 

are necessary conditions to enable us to cancel the ^-dependent factors from 
all terms in the following expressions. If, furthermore, we write k for kv we 
obtain for y = + h, instead of (3.5) 
/τ\ A *—ikhcosa i Ç g+ ikhcosa __ ß g—iknhcosß ι Jß p+iknhcosß 

and for y = -h 

. . . n ., , „ t 'Ä | — ) A cosy 
M \ ß gtknhcosß \ J? e—iknhcosß _ JJ e \nj 

Next we must write the expressions for Hx in I, II, and III in analogy 
to (3.5) and must require their continuity at y = j - h. If we assume the 
plate to be non-magnetic, i. e. we set m = n, we obtain for y = + h instead 
of (3.8) : 

cos ß 
/c\ ^ g—tÄAcosa _ Q £ + ikh cos a __ ^ L_ / ^ ^ — iknhcosß _ J? e + iknhcosß\ 

cos a 
and for y =■ - h 

(5) ß ciknhcosß Jß c— iknhcosß _ C Q S ^ 2) g* W / °° S y . 
% COS /? 

We have, then, four linear homogeneous equations for the 5 unknowns A . . . E, 
which we can collect in the form 
(7) ai A +biB + CiC + diD + eiE=:0, i= 1,2,3,4. 

From this, the values of A : B . . . : E are computed as the ratios between the 
five corresponding four-rowed determinants of the scheme of coefficients 
ab cd e. Hence the Fresnel formulae of our plate problem assume the same 
form as before for the case of the single boundary surface, except that in place 
of the three-fold proportion, a five-fold proportion appears. 

Since, however, the computation of this scheme of determinants becomes 
too cumbersome for the general case, we will in the following special examples 
do better to use the unsolved equations (3) to (6) as a starting point. 

B. THE OIL SPOT ON WET ASPHALT. 

Everyone has seen on the pavement the beautiful interference colors 
on a thin layer of oil. Medium I is air, medium II a layer of oil which 
is to be assumed as bounded by parallel planes. If the oil were to lie on dry 
asphalt, its lower boundary would not be plane but would be optically rough. 
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Hence, as medium III we must add a layer of water wetting the asphalt. 
The asphalt as a black material serves to absorb the transmitted wave D and 
thereby prevents further reflection processes. 

We look at the oil spot perpendicularly from above and assume for 
convenience that the (actually diffuse) illumination also comes perpendicularly 
from above. Then α = β = γ = 0. Furthermore, to abbreviate, we let 

(8) η = eikh. 

From (4) and (6) we obtain by eliminating D 

Βηη + Εη—η = ηΛ (Βηη -Εη~η), hence E = — Brj2n. 

Then (3) and (5) become 

Αη-1 + €η = Βη-»1\ + ^^η*Α, 

Αη-1-Οη = ηΒη-η[\ - ^ 1 ~ Î?4W) -

By eliminating B, a relation between A and C results which we can write 

(9) 
C 

=---η~ 
1 1 - vx η 4n 

n + 1 \-ν2ψ 
v9 = 

n-\ nx + 1 
n - 1 nx - 1 
n + 1 ηλ + 1 

Since we are only interested in the reflected intensity (or rather its ratio with 
the incident intensity), we can simplify (9) to 

(10) 
\n + l/ 

\-νχη An 

\-ν2η
Αη\ 

In order to discuss this formula we calculate 
(11) (\-νη*η) (1-νη~*η) = 1 - v (η*η + η~*η) + v2 = 1 - 2î>cos<p + v2 

(v = vv v2 is real, η has the absolute value 1). The angle φ introduced here 
is, according to (8), defined by 

ηΐη = 6%φ9 (p = 4nkh. (12) 

In section E we shall discuss the physical meaning of this "phase difference" φ 
in terms of optical path length. 

Equation (10) becomes, because of (11) 

(13) -
4̂ ( n - l \ 2 1 + vx

2 -2 vx cosç? 
n + 1/ 1 + r2

2 - 2 v2 cosç> 
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The phase differences between intensity extremals are obtained by differen-
tiating (13) with respect to φ and hence are found from the equation 

0 = {2 vx (1 + v2
2-2v2 cosç?) - 2 v2 (1 + v^- 2 vx coscp)} sinç? = 

= 2(v1-v2) (l-ViViJsÜKp 

to be 
(14) φ = ζπ, ζ = integer 
Substituting this in (13), one finds by elementary computation 

c\ 
<p = 7t, 3 7i, 5 7i.. ; 

(15) 
ψ = 2π, 4π, 6π. 

A \n nx + 1/ 

= ln - ηλ2 

χη + nj 

maxima, 

minima. 

The denotations "maxima" and "minima" refer to the case nx < n which 
prevails in the case of oil on water. In the opposite case the denotations are 
reversed. 

The layer of oil is very thin. Though not monomolecular, it has, however, 
only a thickness of perhaps a wavelength λν at the violet end of the spectrum. 
If we assume this, i. e. let 2 h = λυ, and estimate the index of refraction of 
oil to be 1.5, then we obtain, according to the definition (12) of φ 

* o h * φ = o · 271-Γ- — OTi. 
λν 

This means, according to (14) and (15), that the reflected violet light has a 
minimum for z = 6. On the other hand, since λΫ ~ 2 λν, one obtains for the 
red end of the spectrum 

h 
φ = 6 · 27i y- = 3π. 

Hence, according to (14) and (15), one obtains a maximum of reflected red 
light for z = 3. The middle portion of the spectrum gives rise to a further 
minimum and maximum corresponding to z = 4 and 5. Hence, the light 
reflected by the oil spot has a mixed color, namely a predominantly blue-green 
tint under our assumptions. If the thickness of the layer varies locally, 
the color also varies. 

C. COATED (NON-REFLECTING) LENSES 

The light passing through a system of lenses is weakened by reflection. 
Even though for central rays (perpendicularly incident light) the attenuation 
arising from a single reflection is small (4% according to p. 20), it becomes 
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considerable for a system of lenses. Many optical firms strive to eliminate this 
reflection, which is especially disadvantageous in the design of photographic 
apparatus. The problem is solved by applying thin layers to all surfaces at 
which the lenses of the system border on air. Such a layer was originally 
produced by a structural modification of the glass surface (etching or solution 
of components of the glass flux). Nowadays one prefers to evaporate onto 
the glass a layer of suitable material whose index of refraction is lower than 
that of glass, taking care to make the layer as uniform as possible. 

If we consider only one boundary layer and because of its thinness neglect 
the curvature, we are again faced with our problem of three media: 

/ air, index of refraction 1 
II surface layer, index of refraction n 
III lens, index of refraction nx = n\ng 

where ng is the index of refraction of the lens glass relative to air. Since our nx 

should correspond to the transition II -* 777 in the formulae (15), the transition 
I -* III is characterized by ng = n\nx in conformity with eq. (3.3 b). When, 
in view of this, we let nl = n\ng in the first eq. (15), we obtain zero 
reflection, for 

n2 l / 

(16) — = 1 , « = V l - n , . 
ng 

Hence, the index of refraction n of the evaporated layer II should be the 
geometric mean of the indices of refraction 1 and ng of media / and III (both 
relative to air). The optical industry tries to fulfill this requirement together 
with the first condition (15), namely φ =π, by a choice of a suitable material, 
e. g. lithium fluoride, and by a suitable thickness of the layer to be precipitated. 
Since however, n, ng and therefore also φ depend on wavelength, the condition 
<p = π, in particular, cannot be satisfied for all wavelengths. One favors the 
brightest spot of the spectrum (λ = 0.55 μ in the yellow-green) and suppresses 
reflection as completely as possible for this wavelength. Then the reflection 
of the complementary purple is, to be sure, not zero but it is nevertheless small. 
Indeed a lens prepared in this way has a weak purplish tint. 

We have here assumed the layer to be homogeneous, hence n to be a 
constant for a given wavelength. For literature on reflection in inhomogeneous 
layers we refer to footnote1 on p. 19. However, we must still note that reflec-
tion is to be avoided not only at the front surface but also at the back surface 
of the lens as well as at all other surfaces of the lens system which border 
on air. Because of the interchangeability of media / and III in our condition 
n = y 1 · ng, this is accomplished by the same compensation procedure, that is, 
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by evaporating the same thickness of the same material on the back of the 
lens as on the front. Our result is true not only for the central ray 
(a = ß = y = 0) but it is true sufficiently closely also for neighboring ray 
directions. For, since in our initial formulae (3) and (6) only the cosines of 
these angles appeared, only a ' 'cosine-error' ' appears in the reflection of 
neighboring rays (a second order deviation from zero reflection). 

D. SOAP BUBBLES AND NEWTON'S RINGS. 

The color play of thin soap bubbles is explained in the same manner as that 
of the oil spot. The only difference is that medium III (interior of the soap 
bubble) is now the same as medium I, namely air. Hence, we have nx = n. 
According to (15) this has the result that the intensity of the minima becomes 
zero and that, therefore, when the condition for a minimum is fulfilled for a 
wavelength λν the complementary color λ2 is seen in particularly pure form. 
In general however, the reflected colors are mixed colors. 

We estimate the order 
of magnitude of the thick-
ness of the soap bubble as 
equal to or smaller than 
some visible wavelength. 
This we conclude from the 
fact that when the bubble 
is strongly inflated, a dark 
spot appears at the top 
which indicates a very 
small thickness compared 
to the wavelength. Because 
the soap solution flows off 
to the bottom, the thickness 
of the soap film does indeed 
become vanishingly small 
at the top. 

Quite similar circumstances prevail in the case of Newton's rings : a plano-
convex lens is placed with its weakly curved convex surface on a plane glass 
plate, so that between the two an air gap is created which widens toward the 
outside. Again media I and III have the same index of refraction as compared 
to medium 77 which is now air. If the illumination is monochromatic, one 
sees a number of dark circles between bright rings. In white light a small 

Fig. 9. 

Summation process for multiple reflection in a 
plane-parallel plate. 
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number of colored rings appear. These show no pure spectral colors but, 
rather, mixed colors. The transmitted light is colored complementarily to the 
reflected light. 

E. COMPARISON OF METHODS : SUMMATION OR BOUNDARY-VALUE TREATMENT ? 

Let a plane-parallel glass plate of thickness 2 h which at the front 
and back borders on air be obliquely illuminated by parallel, mono-
chromatic light. Ordinarily one argues in the following manner (see 
fig. 9): at point 0 on the front face there emerges, besides the directly 
reflected light, also light which entered the plate at 1 and was reflected at Γ. 
Furthermore, light which entered at 2 and was reflected at 2', 1 and Γ, etc., 
will also leave the plate at 0. Generally speaking, the light emerging at an 
arbitrary point of the front face is a sequence of components which have been 
refracted twice and reflected an odd number of times. Correspondingly, the 
light emerging from an arbitrary point on the back face is composed of a 
sequence of component waves which have been refracted twice and reflected 
an even number of times. We must calculate the differences in phase and 
amplitude of these various rays. 

The length of the light path ll'O measured in wavelengths Xg in the glass 
(λ = wavelength in air) amounts to 

4 Ä/cos β _ 4 n Ä/cos β 

h λ 

When multiplied by 2π, this is the increase in phase which the light attains 
along the path 1Γ0 

_2n4nh__4knh 
(17) ^1 = Τ^Γ"^" 
But, in addition, this light is ahead in phase compared to the light incident 
at 0 by 

(18) <p2 = 2n-r- = k-üL, 

where L is the point at which the perpendicular form 1 to 0L intersects the 
ray, see fig. 9: 

0L == sin a · 01 = sin a · 2 tan /? · 2 A. 
The total phase difference against the light incident at 0 amounts, then, to 

\nkh[ sinasinM 4nkh 
τ τ± ΤΔ cos/? \ n f cos/? 

(18 a) 
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For perpendicular incidence (/? = 0) this φ proves to be identical with the 
auxiliary angle φ introduced in (12) and explains the physical meaning of the 
latter. For the light path 22ΊΓ0 the corresponding phase difference obviously 
amounts to 2 φ, for the following path to Ζφ, etc. 

In order to determine, on the other hand, the amplitude differences, we 
use the energy coefficients r and d from (4.18) which are, as was emphasized 
there, the same for the front and back side of the plate. Expressed in these 
terms, the factor which is to multiply the amplitude in the case of one-, 
three-, five-, . . .fold reflection and, in every case, two-fold transit across the 
front face amounts to 

(19) ]/rdf )/r~rd, ]/7r2d,... 

From (18 a) and (19) it follows that the summation of the first p rays is 
given by 
(20) ]/r>> -d + Yrr e2i<*> d+ ... + ]/7τΡ-χ &**> · d. 

To this is to be added the contribution corresponding to the direct 
reflection at 0. This is, including the correct phase factor1, CjA = - \r. 
One obtains finally: 

C_ 
A 
(21) 

i/— i / - f 1 - r * β**φ\ 
= -]/r{\-dei<!>(l+reiv+... + rP-1e&-Vi'P)} = -)/r Al-de** ^ - | . 

v [ \-ret(P) * λ-re^ 

The amplitude factor for the light passing through the plate at 0', which 
we shall call D/A, is determined quite similarly. Because of the two-fold 
passing across the boundary surface (once front, once back) and zero-, two-, 
four-, . . . fold reflection (see fig. 9), one obtains instead of (19) and (20) 

(19 a) d,rd,r2d,... 

2 (20 a) e {d + r e^d + r2e2i<Pd + ... + rP-1 ett-Vt*d) 

and instead of (21) and (22), respectively 
D {Jh \ïi \-rPeip<P 

(21 a) ~7 = e2 di} +rei(?+ . . . + r*-V(*-i>*) = e 2 d—-—^-

τ¥οτ reflection at the denser medium the sign of C\A was chosen opposite from that 
for reflection at the rarer medium; see, for instance, the comment after formula (5.3). 

(22) 

For p = oo, because r < 1 and r + d = 1, this contracts to: 
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hence 
C 

A 

2 

= r 
D 

A 

and for p = oo 

M \ D - e * d 

We note here that the expressions (21) and (21 a) become essentially the 
same if we suppress in (21) the first term on the right which is due to direct 
reflection. For we then have 

(23) C = y - e < ( „ - ^ ) Z ) a n d 

The reflected intensity is thus equal to the intensity transmitted through the 
plate except for a factor r. 

The use of the symbols r and d in (21), (22) already indicate that the 
results are valid for both polarization cases (parallel and perpendicular 
to the plane of incidence), r and d only stand for somewhat different ex-
pressions in the two cases. 

In particular, we consider the special case of perpendicular incidence in 
which this difference disappears and in which a comparison of (22) with our 
formula (9) is possible if we specialize the latter by setting nx = n (air also at 
the back face of the plate). Then we have to set in (9) 

, v (n+l)2 

(24) ^ = 1 , „t = L - ± ^ = r. 

In addition, the following must be taken into account: in (9), just as in our 
general assumption (I) on p. 41, C and A refer to the center of the plate, namely 
to y = 0 in the choice of coordinates used there, and not to the top surface 
of the plate y = h. Therefore, at the top of the plate A must be multiplied 
by the factor exp (ikh) and C by the factor exp (-ikh) (both for 
perpendicular incidence: a = 0) if we wish to compare (9) with our present 
amplitude ratio CjA given by (22), since the coordinates of the latter refer 
to the top surface. This means that we must suppress in (9) the factor 
rj~2 = exp (-2/&J h). Thereupon (9) becomes, using (24), 

<W i-F-i - r e % * 

which now indeed agrees with (22). 
Thus both of our methods lead to the same result and not only in the 

special case of perpendicular incidence which was used here for the comparison 
but quite generally. Both methods have their advantages and their 
disadvantages. The boundary value method saves us the somewhat laborious 
phase considerations in fig. 9. The summation method seems to lend itself 
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more readily to visualization and is not limited to the assumption that p = oo. 
The latter can also be used to treat the case of a plate of finite length and of 
an incident light bundle of finite width1. This problem is inaccessible to the 
formal hypothesis underlying our boundary value problem which is restricted 
to the *y-plane. That is why the summation method is preferred in treating 
the problems on resolving power in Chapter VI. Another reason is that this 
method fits in better with the usual grating theory. As we shall see, both 
methods are in fact equivalent for the two types of high resolution interference 
apparatus which we will now discuss. 

F. THE LUMMER-GEHRKE PLATE (1902). 

In our discussion of total reflection in Sec. 5 the wave was incident 
in the denser medium and emerged into air. For angles of incidence a ~ <x.tot 

we obtained angles of emergence ß nearly equal to π/2 and a reflecting power 
of almost 1. Lummer's original idea was to let the light impinge on the top 

Fig. 10. 
The interference of rays in the Lummer Plate. 

of the plate at a grazing angle so that the refracted portion would be reflected 
back and forth at an angle close to α^. In this way the high reflecting power r 
of almost 1 would be utilized. Gehrke simplified the procedure by capping the 
plate with a prism of angle OLM (see fig. 10). Light which is incident per-
pendicularly upon the face of the prism strikes the lower surface and thence 

xThe fact tha t the summation method is only an approximation in the sense tha t it 
does not account for the diffraction phenomena at the corners of a finite plate and a t 
the boundaries of the light bundle has hardly any practical significance. 



7. 28 COLORS OF THIN MEMBRANES AND THICK PLATES 51 

alternately the upper and lower surfaces under the desired angle; it emerges 
at a grazing angle. In this way the first reflection of the incident beam is 
suppressed as had indeed been assumed in eq. (23). 

The number p is not very large for the Lummer Plate because a perfectly 
homogeneous plane-parallel plate of thickness say 1 cm. cannot be made 
with a length much greater than 20 cm. Nevertheless we can without hesitation 
go to the limit p -+ oo and, hence, we can use eq. (22 a) as a starting point. 
We will write it here in the form 

(26) 1 
1 -ret(p\ 

This is justified because the limit a -* oitot cannot be approached arbi-
trarily closely. If for no other reason, this is so because we never deal with a 
precisely parallel incident plane wave but always with a wave bundle which 
has a certain angular distribution. Hence r is never exactly equal to 1, but 
only to a certain degree of approximation. Therefore, already for p = 20, 
rp becomes vanishingly small and it is immaterial whether we set p equal to 
the maximum value occurring in the Lummer Plate or to oo. Thus it is evident 
that in spite of the finite value of p there can be no difference between the 
results of the summation and boundary value methods. 

From eq. (26) we find immediately 

(27) 
= 1 for φ = 2 π z, z = integer 

0 for all φ appreciably different from 2πζ. 

The latter expression is correct because the numerator \-r»—Ό, the former holds 
because for φ = 2 π ζ numerator and denominator of (26) become exactly 
equal. 

In order to see what "appreciably different*' means, we rewrite the 
denominator of (26) in the form 

(27 a) ]/(!-re**) (1-r*-*>) = ]/l + r 2 - 2 r cos<p. 

(Αφ)2 

We set φ = 2 π z - Δ φ, and hence cos φ = cos Δ φ = 1 In par-
ticular, we seek those values of A φ which correspond to the so-called ' 'half-
width" of the intensity maximum 1 occuring at φ = 2π ζ, that is, those values 
which satisfy the condition 

(28) (\-rY 
{\-r)* + r{A<pY 
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Carrying out the computation one obtains directly 

The half-width is twice \Δφ\, hence 

(28 a) 2\Δφ\~2(\-ή. 

As expected, this width becomes narrower as r approaches its limiting value 1. 
This low value of the half-width will play a decisive role for the resolving 
power of the Lummer Plate. We shall discuss this problem in greater detail 
in Chap. VI. 

G. THE INTERFEROMETER OF PEROT AND FABRY (ABOUT 1900) 

While Lummer attained a high reflecting power r by approaching very 
closely the limiting angle of total reflection, Perot and Fabry employed the 
surfaces of a half-silvered glass plate and used an angle of incidence almost 
perpendicular to the surface. The importance of their method is increased 
by the fact that the glass plate can be replaced by an ''air plate" between two 
glass surfaces which have been silvered semi-transparently. These surfaces 
can be spaced by means of invar-steel pieces and in this way a standard 
measure ("étalon") for the exact measurement of wavelengths is created. This 
standard is entirely independent of temperature, index of refraction or 
irregularities in the glass. 

It is again advantageous to use the boundary value method. But we 
must alter our former boundary conditions. Assuming ^-polarization, that 
is E parallel to the 2-axis, we consider the ^-component of the second Maxwell 
eq. (2.4). For the displacement current D in this equation we substitute the 
specific conduction current σ Eg in the silver layer. We integrate this equation 
over a rectangle lying in the x, y-plane of length 1 in the ^-direction and 
having the very small thickness of the silver layer as its width in the y-
direction. The left-hand side of the integrated equation is then equal to the 
total current per unit length in the silver layer. The right-hand side yields, 
according to Stokes' Theorem, the contour integral of H around the rectangle 
which equals the discontinuity of Hx in passing through the silver layer. In-
stead of the previous continuity of Hx we have now a discontinuity in Hx 

which is proportional to Ex. We write 

(29) Discontinuity of Hx=-g\/^Ex. 
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g is a factor of proportionality which depends on the conductivity and thickness 
of the silver layer and is dimensionless owing to the factor (ε0/μ0)

1/2. Because 
of the inertia of the electrons g is, in the visible spectrum, actually not a real 
but a complex number. 

Fig. 11. 
The amplitude-ratio |£)/^4| vs. the phase difference ψ for the Lummer Plate 

(\DfA\nax = 1) and for the Perot-Fabry Etalon (|Ζ)/Λ j ^ , < 1). 

The continuity of Ex and the resulting boundary conditions (3) and (4) 
as well as the law of refraction (2) are unchanged by the silvering; they 
become somewhat simpler, however, because now nY = n and y = a (same con-
ditions at the top and bottom plate surfaces). On the other hand, according to (29), 
the boundary conditions (5) and (6) must be modified in the following manner: 

(31) 
(B e+ *"»**«*0 - E e-

inkhcosß) n cos ß - D e+ ikhco^ cos a = 
a iß g+ inkhcosß _i_ ]? ^—inkhcosß\ __ g jT) e+ ikhcosa 

The two forms in which the right-hand sides of these equations are written 
correspond to the two ways of expressing the value of Ez in (29) in 
terms of the left- or right-hand sides of eqs. (3) and (4), respectively. 
Thus the four equations embodied in (30) and (31) represent the complete 
system of boundary conditions pertaining to the present problem. 

For most practical applications only the transmitted light, represented 
by the quotient D/A, is of interest. By elementary, though somewhat 
laborious, computation, we obtain from (30) and (31) 

(30) 
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D 
(32)

 - j . A
 , „ , x φ i 1(1 + g/cosa)2 «cos/A . œ 

1 + g cos a c o s ^ - - v τ % ί- + £ sin^ 

^ ° ! ^ cos yö/cos a cos a / 2 

x 9 * /(I 
ia c o s ^ - - — 

2 2 \ Λ < 

9? represents the phase difference generated by the ray in passing back and 
forth in the plate and is defined as in (18 a) by 

(32a) <p = 4w£Äcos/? (where n = 1 in the case of the air plate). 

The dependence of the absolute value of (32) on φ is shown in fig. 11, 
where variations in the independent variable <p may be thought of as expressing 
either variations in the wave number k or variations in the angle of incidence 
a which is connected with β by the law of refraction, a and β themselves can 
be considered as constants insofar as they appear explicitly in (32). But in 
(32 a) where cos β is multiplied by the very large factor k h even extremely 
small changes in β cause φ to change appreciably. Therefore, in spite of the 
practically constant β, φ can be used as an independent variable in fig. 11. 

Let us check the figure using the special case of the air-étalon (n = 1), 
almost perpendicular incidence (α = β = 0) and almost real g. Equation (32) 
then yields simply 

(33) j-Jj 2 = ( l + g ) 2 c o s 2 | + I ( [ l + g ] 2 + i ) 2 s i n 2 | . 

The extremal condition which follows from this by differentiation with 
respect to φ is: 

sm -7- cos -J- = 
2 2 

To sinç>/2 = 0 corresponds: 

(33 a) 
D 

~A 
1 

max 1 + g ' 
to cos<p/2 = 0: 

(33 b) D 
1 min 

2 
i + g)2 + r 

= 0. 

φ = 2ζπ, 

φ = (2z + \)π 

In both cases z is a very large integer. 
In (33 a, b) we assumed g to be large. By definition this assumption 

corresponds to a heavy layer of silver (a strong conduction current). Conse-
quently the incident light is very much weakened even at the maxima. The 

minima, on the other hand, are weaker than the maxima by a factor of . 
l+g 

The maxima are equidistantly spaced, and so are the minima which lie halfway 
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between the maxima. The maxima are sharp ; the minima are very flat. This 
is a consequence of (33) because only if the condition for a maximum, i. e. 
sin φ/2 = 0, is exactly fulfilled is the maximum value (33 a) of order of 
magnitude (1 + g)—1 attained; for all other φ the second term on the right-
hand side of (33) dominates because of the fourth power of g which it contains ; 
the resulting magnitude of \D/A\ is then about [(1 + g)2 sinç?/2]—1 and 
reaches the minimum as given by (33 b). Thus fig. 11 has been checked for 
the case of sufficiently large g. 

We shall also compute the "half-width'' of the intensity maxima. Since, 
according to (33 a), the latter are equal to (1 + g)—2, we must substitute on 
the left-hand side of (33) the value 2 (1 + g)2. On the right-hand side we let 

ψ- = ζπ-ΔΨ> sin*^=(A(p)\ c o s 2 | = 1 - (Δφ)2 

and dividing by (1 + g)2, we obtain 

2 = 1 + ] ( 1 + £ ) 2 ( Λ φ ) 2 , Αφ~±τ~. 

The half-width is therefore 

(34) 2 1^1 = ^ · 

In exercise 1.7 we shall explain these results concerning the positions and 
half-widths of the interference maxima from the point of view of the electro-
magnetic characteristic oscillations. 

In Chap. VI we shall see that the Perot-Fabry Etalon attains its excellent 
resolving power only because of a large value of g. Only for large g, i. e. strong 
silvering, is the half-width of the maxima sufficiently small and thus the 
prime purpose of this interferometer, namely the resolution of fine structures, 
is attained. One must, therefore, accept the large loss in intensity which is 
engendered by heavy silver layers. The Lummer Plate, because of r ~ 1 , 
is preferable from the point of view of intensity. But it cannot attain the 
resolving power of the Perot-Fabry Etalon and is, furthermore, experimentally 
less convenient than the latter. 

It is to be emphasized that the general formula (32) encompasses also the 
Lummer Plate. The latter is described by the opposite limiting case g = 0 
(no silvering). For 9? = 2πζ (32) gives then immediately 

(35) 
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which agrees with the first equation (27). For all other values of <p, on the 
other hand, 

A\ 1°φ 2 + 4 \ t t c o s £ + c o s a / S m 2] 

Passing now to grazing incidence, as required by Lummer, that is allowing 
cos a to approach 0, the coefficient of sin2 <p/2 tends to infinity and one obtains, 
in agreement with the second eq. (27) 

(35 a) 0. 

(35) and (35 a) confirm our earlier assertion that the Lummer plate can also 
be treated by means of the boundary value method. 

8. Standing Light Waves 

The question of the position of the "light vector" with respect to the 
plane of polarization was left unanswered by the elastic theory of light. 
Fresnel was of the opinion that the light vector was perpendicular to the plane 
of polarization while F. Neumann thought it to be parallel to that plane. 
But the word light vector could not be clearly defined on the basis of the 
elastic theory. Electromagnetically we have two light vectors E and H (in 
a crystal there are even four : E, D and H, B). We saw in Sec. 4 that in the produc-
tion of polarized light by reflection, the electric vector E is perpendicular and 
the magnetic vector is parallel to the plane of incidence. Since in this case 
the plane of polarization is traditionally identified with the plane of incidence, 
we have also that E is perpendicular and H is parallel to the plane of polari-
zation. Therefore, depending on whether one calls E or H the light vector, 
one decides the question in favor of Fresnel or Neumann. But even in this 
way only a nominal definition of the word "light vector" is achievable; 
physical significance, however, can be attributed to it on the force of 
electromagnetic evidence. 

When light acts on a photographic layer, an electron is removed from a 
silver bromide or chloride molecule and thereby a silver atom is prepared to 
blacken during the development of the film. Only the electric field strength 
E is able to accomplish this. Since, moreover, the processes occurring in the 
eye's retina are quite similar (both phenomena are without doubt "photo-
electric effects"), we have good reason to give the name "light vector" to 
the field vector E rather than to the magnetic vector H. 
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The beautiful experiments by O. Wiener (Ann. d. Physik, 1890) have 
placed the results of these general considerations on a sound empirical basis. 
This was accomplished by a thorough study of the photographic process. 

A. MONOCHROMATIC, LINEARLY POLARIZED LIGHT WHICH IS INCIDENT 
PERPENDICULARLY UPON A METAL SURFACE 

A polished silver mirror is used as a reflector. The normal to this 
surface shall, as before, be the y-axis. Let the direction of incidence be the 
negative y-direction and the direction of reflection the positive y-direction. 
Because of the transversality of 
light, Ey = 0. There is no need to 
distinguish between Ex and Ez since 
both directions are equivalent for 
normal incidence. We can write 
for either or both of these com-
ponents : 
(1) Ei = Ae-iky-ioit

> 

Er= Ce+ iky-iœtm 

As a good conductor (a -* oo) 
the silver mirror does not permit 
the existence of an electric field 
tangential to its surface. Any such 
field vanishes because of conduction. 
Hence, we have 

(2) Etan = Ei+Er = 0 

From (1), it follows that 

(3) C = - A (Phase change during reflection) 

and, writing real parts and letting A be real, we have for y ^ 0 

(4) E = Re (Ei + Er) = 2 A sink y cos ω t. 

This is the typical expression for a standing wave. The nodes are at 

Wiener's experiment on standing light waves. 
The photographic plate placed at an angle <5 
is blackened at the antinodes of the electric 

vector (indicated by dotted lines). 

for y = 0. 

ky = ηπ, 

the antinodes at 

:? = (« + ί)π. 

y = n-, 

+ n2-
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We would expect maximum photographic blackening at the antinodes and 
no blackening at the nodes. The distance of the first blackening from the 
metal surface should then be equal to half of the spacing between succeeding 
blackened spots. 

To prove the foregoing, Wiener used an age-old method for measuring 
the water level of rivers. A photographically sensitive film which was spread on 
the bottom surface of a glass plate was placed against a silver mirror at the 
extremely small angle ô, as shown in fig. 12. Distances measured perpendicular 
to the mirror are thus magnified on the film by a factor of 1/(5. The distances 
A/4 and λ/2 are in this way depicted on a macroscopically measurable scale. 

The result confirmed completely the expected periodic spacing of blackened 
spots as well as the fact that the first maximum occurred at 1/2 of that 
spacing from the metal. Thus the electric vector E is indeed photographically 
active and is to be considered as the light vector1. The magnetic vector is not 
the light vector. Its antinodes alternate with those of the electric vector, 
the first one being on the surface itself. Indeed, using Maxwell's relationship 
between H, D and E, it follows directly from (4) that we obtain for H 

(5) H = 2 A /— cos k y sin co t. 

B. OBLIQUELY INCIDENT LIGHT. 

The following experiment performed by Wiener is also very revealing. 
The photographic film was placed in the same position as before but the light 
was incident upon the silver mirror at an angle of 45° with the normal. When 
the light was polarized in the plane of incidence, ( E perpendicular to that 
plane), then the film exhibited blackened stripes which were qualitatively in 
the same positions as in the case of perpendicular incidence. If, however, the 
plane of polarization was placed perpendicular to the plane of incidence and 
the angle of incidence was made precisely 45°, then no stripes appeared and 
rather the blackening was uniformly distributed over the plate. 

In exercise 1.8 the results of this experiment will be computed for 
arbitrary angles of incidence a. 

1 The fact that, according to H. Jäger, Ann. d. Phys. (Lpz) 34, 280, 1939, the proof can be 
based directly on the photoelectric process instead of photography corresponds to the 
above remark concerning the identity of photographic and photoelectric action. 
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C. LIPPMANN'S COLOR PHOTOGRAPHY. 

Lippmann arranged a very fine grained photographic film in the manner 
of Wiener's experiment by placing it flat on a mercury surface and shining 
a spectrum perpendicularly upon the surface. At the antinodes of the standing 
waves thus created, a system of Wiener-type silver layers was formed 
photochemically. These layers were spaced at distances of λ\2 where λ was 
the wavelength of the spectral region which illuminated the particular point 
in question. 

If a film prepared in this way is developed and then illuminated perpen-
dicularly with white light, every spot of the film emits the same wavelength λ 
to which it had been exposed during preparation. Only this wavelength (or a 
submultiple of it) will fit into the screen formed by the system of Wiener 
planes. All other λ are destroyed by interference. Thus, looking perpendicularly 
at the film, one sees the whole spectrum in brilliant interference colors. 
If the film is breathed upon, it swells and the spectrum is shifted toward 
the red because longer wavelengths fit into the expanded screen. When 
looked upon obliquely, the spectrum shifts toward the violet. This is due to 
the relationship 

(6) 2 d cos ex. = λα 

where λα is the wavelength seen at the angle of reflection a and d is the spacing 
of the planes of the screen. Equation (6) represents the condition that a plane 
wave incident at the angle a shall be reflected by all planes of the system 
with the same phase (or phases differing by multiples of 2π). We shall 
encounter this equation again under the name of Bragg's Equation in Chap. V, 
Sec. 32 where it will be in a somewhat more general form and somewhat 
different notation. For the present it suffices to make two observations: 

1. For d = λ\2 and a = 0 (perpendicular incidence and viewing), λα = λ, 
i. e. the color is unchanged. 

2. For d = A/2 and a ^ O (oblique incidence and viewing), λα = λ cos α < λ, 
i. e. shift toward the violet. 

As is well known, the modern practical solution of the problem of color 
photography is based on entirely different principles. Nevertheless, as the 
earliest proposal of ''photography in natural colors'', the Lippmann method 
has great historical interest. 



CHAPTER II 

OPTICS OF MOVING MEDIA AND LIGHT SOURCES 
ASTRONOMICAL TOPICS 

The fundamental optical constant is the velocity of light in vacuum. 
According to the Theory of Relativity this constant governs the scale of time 
and space. We shall, therefore, discuss the velocity of light before turning, 
in later chapters, to the optical properties of matter which, though apparently 
more elementary, are fundamentally really more complicated. We shall 
discover the most important facts about the velocity of light, c, not from 
terrestrial experiments but rather by discussing astronomical measurements. 

9. Measurement of the velocity of light 

The satellites of Jupiter were discovered in 1610 by Galileo. He called 
them Medicean Stars in honor of his patron Duke Cosimo of Florence. These 
were the four bright satellites which are close to Jupiter. The periods of 

their orbital motions amount to several 
days and are, therefore, very short 
compared to the period of Jupiter's 
orbital motion around the sun (twelve 
years). At the present time twelve 
satellites of Jupiter are known. 

The periods of these satellites can 
be determined exactly by means of their 
eclipses (times at which they enter 
Jupiter's shadow in the sun light). The 
Dane Olaf Römer (1676) discovered 
remarkable variations in the records 
of measurements of these periods: they 
increased when the earth moved away 

from Jupiter and decreased when the earth moved towards Jupiter. From 
this Römer concluded that it must take a finite amount of time for light to 
traverse the diameter of the earth's orbit. Using the radius of the earth's 
orbit as it was then known, he computed a fairly accurate value of the velocity 
of light c. 

Fig. 13. 

Determination of the velocity of light 
by the method of Olaf Römer. J, 

Jupiter; M, satellite of Jupiter; 
ABCD, earth's orbit. 

60 
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X = wavelength, τ = period of oscillation, v = relative velocity of observer 
and source. The signs ± hold when the distance between source and observer 
increases or decreases, respectively. The direction of propagation of the 
observed light is here assumed to be parallel to v, that is in the same direction 
or opposite to it. Since the Doppler effect is a purely kinematic phenomenon 
(it is true for sound as well as for light) we can apply it to the satellites of 
Jupiter with their periodic eclipses. The sunlight reflected by Jupiter itself 
plays no part in this consideration. 

In our case, see fig. 13, τ is the orbital period of a satellite of Jupiter as 
measured from the moving earth. One of these satellites is denoted by the 
letter M in fig. 13 and its true orbital period will be called τ0. A BCD are 
points on the earth's orbit. At B the earth is moving away from the satellite 
of Jupiter and the period of the latter appears to be lengthened by Δ x = VTQ/C. 

At D the earth is moving toward the satellite and τ appears to be shortened 
by v TJC. At A and C where the velocity of the earth is perpendicular to the 
direction of the light coming from Jupiter, Δ τ = 0 and, hence, there the 
true period r0 is observed. The extreme values of τ are found at B and D and, 
according to (1), they are 

V 
(2) tmax — TQ H TQ, 

C 

From this follows 

(3) TB-TD = Tmax " 

V 
Xrnin = = TQ TQ. 

v 

or if the value In R\T is substituted for 

(4) TB-TD = 

v: 

4 π Γ 7 ' 
where T is the time interval of one year and R is the radius of the earth's 
orbit. Thus, this latter value must be known for the computation of c. 

This result can be represented as in fig. 13 a and in this form it has been 
widely used in popular lectures. As the earth moves from A to C, it moves 
away from the eclipse-signals coming from Jupiter so that the intervals 
between receptions of such signals keep increasing. The opposite happens 
when the earth in its travel from C to A moves toward the eclipse-signals. 

(1) 

We can best explain this computation by comparing it with the Doppler 
Effect. This phenomenon will be treated more thoroughly in 11. For present 
purposes it will suffice to characterize it by the statement 
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The total time difference in each case is equal to the time which light takes 
in moving through the diameter of the earth's orbit, that is 

(5) ΣΔ x = 
c 

This is fairly close to the area1 bounded by the sine curve above A C 
(or below C A ') whose growth (and decay) is plotted separately at the bottom 
in the step-wise form in which it can be read directly from data tables. 

Not until almost 200 years later were the first successful terrestrial deter-
minations of c made. These were done by Fizeau using a rotating toothed wheel 
(the light passing through a gap between teeth is reflected at a distant point 

and upon returning is stopped 
by the following tooth, pro-
vided the rotation of the wheel 
is sufficiently fast) and by 
Foucault using a rotating 
mirror (a device used later by 
Michelson in his much more 
precise experiments). 

The most important fact 
about the propagation of light 
is that it is independent of 
the state of motion of the 
emitting source, that the light 
velocity cannot ' 'remember* ' 
the velocity of the source. 
Only wavelength and period 
of oscillation have such a 
"memory" according to eq. 
(1). This fact seemed to be 

understandable in terms of the notion of a stationary light ether acting 
as the carrier of the propagation of light. It is now well known that 

Fig. 13 a. 

The variations in the period of the light signals 
due to the earth's motion. 

xThis area equals the product of the integral 
T/2 

(a) 

o 

and the ordinate of the sine curve at C which, according to (2), is 

i / Z 

r t T 
I sin 2 π — dt = — 

J T π 

(b) Δ Tfinax = -~ TQ = — T0 

The product of (a) and (b) divided by τ0 does, indeed, yield the right hand side of eq. (5). 
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this theory did not stand up in the face of the experiments to be described 
in 12 and 14 and in the face of the theory of relativity. 

In the following discussion it will be assumed that the reader has a certain 
amount of knowledge of the special theory of relativity. Such knowledge can 
be gained, for example, from Sec. 27 of Vol. I l l of this series. Without such 
knowledge the reader will have to omit several quantitative proofs in the 
following paragraphs. 

10. Aberration and Parallax 

By the parallax of a star we will here mean the so-called "yearly parallax", 
i. e. the solid angle of the cone which is formed by the lines of sight from 
different points on the earth's orbit to the star. The projection of this cone 
on the celestial sphere is the parallactic orbit which the star appears to describe 
in the course of a year. This orbit is generally a small ellipse and, in particular, 
it is a circle if the fixed star is at the pole of the ecliptic (as is assumed in 
fig. 14 a) and it is a straight line if the star lies in the ecliptic. Because of 
its importance as the final confirmation of the Copernican system, the proof 
of the existence of such an orbit was sought for a long time. While seeking 
this proof Bradley discovered the aberration of light in 1728. 

Apparent orbits of the star in the case of the North Star, a) The parallactic 
orbit arising from the star's finite distance from the sun. b) Orbit resulting from aber-
ration of light. The apparent locations of the star ABCD belong to the corresponding 

points on the earth's orbit. 

This phenomenon also causes the locus of a star to describe a small ellipse 
on the celestial sphere and this ellipse again degenerates into a sphere at the 
pole and into a straight line in the ecliptic. But the direction and magnitude 

Fig. 14. 
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of the angular deviation are entirely different from those caused by parallax : 
the two directions are perpendicular to each other, see fig. 14 a, b; the 
magnitude of the deviation due to aberration is independent of the distance 
of the star and is much greater than the deviation due to parallax even for 
the fixed stars which are closest to the sun. The first confirmation of a real 
parallax of a fixed star was found 100 years later by Bessel. 

Lenard's attempt to invoke aberration as a contradiction to the relativity 
of motion was an incomprehensible misunderstanding; especially so, as 
Einstein had derived aberration directly from the principle of relativity as 
early as 1905. Aberration does not reveal the "absolute motion" of the earth 
in space but rather the earth's relative motion during its yearly orbital period, 
that is to say, the differences in the direction of motion from one season to 
the next. Observatories are built (among other reasons) in order to make it 
possible to determine and measure these differences in motion. If these 
differences in direction of the earth's motion did not exist, that is, if the 
earth's motion were linear, then no aberration could be observed. 

Still referring to fig. 14 b but 
removing the restriction that the 
star shall be at the pole of the 
ecliptic, we consider the plane con-
taining the star and the direction 
of the earth's velocity. This ïs the 
plane of the drawing in fig. 15 a. 
We let the velocity of the earth be 
directed along the λ-axis and call 
a the angle between the incoming 
ray and the #-axis. The coordinate 

Fig. |5. system x, y, z, which is at rest with 
Figures for computing aberration a) heliocentric respect to the plane of fig. 15 a is a 
coordinate system, b) geocentric coordinate heliocentric s y s t e m since b o t h the 
system x = direction of motion of the earth. -. , , , ,, , J fixed star and the sun are at 

rest with respect to it. If, however, 
we move with the velocity v of the earth, we have to introduce a geocentric 
coordinate system x\ y', t' (fig. 15 b). The fact that the time as well as the 
space coordinates are transformed is a characteristic feature of the theory 
of relativity and is made necessary by the constancy of c. The transformation 
between the two systems is the Lorentz transformation 

(1) 
■vt 

■yrzp' y, r = 
t-ßxjc 

* = ■ 
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dx dy 

b y
 u*=^· u>=Tt 

Differentiating, we get 
/»\ . , dx-vdt , dt-ßdxjc 
2 dx' = , dy' = dy, dt' = Ί / . 

Hence, the geocentric velocity components 
,_dx^ , _dy' 

Ux - dt" Uy ~W 
are expressed in terms of the heliocentric components 

dx dy 

( 5 ) U'~\-ßuxlc' Uy~ \-ßux\c 
Now, instead of considering the velocities of material particles in the two 
systems we shall consider the velocities u and u' of the light radiated by the 
star as seen by observers in the respective systems. This is quite admissible. 
The heliocentric velocity is u = c with the components (see fig. 15 a) 
(3 a) ux = c cos a, uy = - c sin a. 
We write the corresponding components of u' in the form (see fig. 15 b) 
(3 b) ux' = u' cos a', uy' — ~u' sin a' 
where the magnitude of u' is left undetermined for the present. Taking the 
ratio of the two equations (3) and using (3 a), we obtain 

Uy _ -cs inoc] / l - /?2 

(3 c) - — > 
ux c c o s a - v 

which, according to (3 b), can be written 
, s i n a V l - / ? 2 

v ' cos a- /? 
Thus the angle of incidence a' as seen in the geocentric system is different 
from the angle a as seen in the heliocentric system. By squaring (3) it is seen 
that the geocentric velocity of light propagation u' is equal to the heliocentric 
velocity. For, substituting (3 a) we have 

c2 cos2 a - 2 c */cos a + v2 4- c2sin2a (1 -v2lc2) 
u'& — : i—L 

(1 -/?cosa)2 

c2-2 cv cos ce-{-v2 cos2 ÖL 2 
= (1-yflcosa)2 = ° ' We could have written down this result without computation merely on the 

basis of Einstein's theorem on the addition of velocities. According to this 
theorem the following brief and seemingly paradoxical expression holds 
(see Vol. I l l , Sec. 27 F) : 

c -\- v = c. 



66 OPTICS OF MOVING MEDIA. ASTRONOMICAL TOPICS 10. 5 

Returning to the relationship between the angles a and α', we write the 
first order approximation of (4) by neglecting terms of order β2 

, sin α / β \ tan a = 11 -\ 1 = tan a cos a \ cos a/ 
yßsina 
cos2 a (5) 

Letting a' = a + Δ a, (5) now becomes 

x i x A \ J. ß s i n a tan (a + Zl a) - tan a = 5— 
cos^a 

and, expanding the left-hand side in terms of the small quantity Δ a, the 
denominator cos2 a on both sides cancels to give 

(6) Δ α = ß sin a. 

ß is called the "constant of aberration", and is almost exactly equal to 10~~4 

if Δ α is measured in radians. Hence, in degrees we have 

ß = 10-* — = 20.5". 
π 

If the fixed star is at the pole of the ecliptic, then a = 90° all along the 
earth's orbit. Hence the aberrational orbit is, in this case, a circle about the 
pole of the ecliptic with radius Δ α = β. For stars in the plane of the ecliptic, 
which coincides with the #y-plane in fig. 15 a, a alternates between ± 90° 
and 0. In this case also the aberration is in the plane of the ecliptic and 
oscillates between ± β passing twice through 0. For stars in general 
the aberrational orbit is an ellipse whose major axis is β and whose 
minor axis is β sin δ, where ô is the "celestial latitude" of the star (complement 
of its polar distance). 

The above formulae, in particular eq. (2), make it clear that aberration 
is a direct consequence of the relativistic deviation of the time measure t' 
from the time measure t. From the point of view of classical kinematics it was 
difficult to reconcile aberration with the universality of c. Now we recognize 
it to be a necessary consequence of the fact that the light velocity is independent 
of the reference system. In the following paragraph aberration will come 
up again in connection with a more general point of view. 

11. The Doppler Effect 

The elementary explanation of the Doppler effect is well known. If a 
light source which is at rest emits waves of period τ, then the number of 
oscillations which meet a stationary observer during a time interval tisN = t\x. 
But if the observer moves toward the wave with a velocity v, thus covering 
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a distance vt in time tt he will meet an additional vtjX oscillations. Therefore, 
altogether the moving observer encounters 

(1) 
_ / vt _ t l x\_ t I v\ 

x λ x \ λ) x \ c) 

oscillations in the time t. 

If, one the other hand, it is the light source which moves with velocity v 
toward the observer who is now at rest, then the spacing between two successive 
crests or troughs is no longer λ but, because the light source has progressed a 
distance vx in time τ, this spacing is 

( la) λ' = λ-νχ= All - -

The corresponding spacing in time is 

( lb) 

Therefore, during the time t the observer at rest encounters 

(2) N" 

ie observer at 

Γ-Ϊ,-ΙΤ±Τ-·.(Ι+'-+++..\ 
x x \-vjc x \ c c2 I 

oscillations. N' and N" differ by terms of second and higher orders in β = vjc. 
They agree only up to terms of first order. 

Against this argument can be said: nature knows no absolute motion, 
be it that of the light source or that of the observer. She gathers both 
cases (1) and (2) into the same law, which thereby becomes simpler and more 
beautiful. How this is accomplished we shall discover from the following 
consideration : 

Every physical relation must be invariant with respect to the group of 
transformations which governs the particular domain being considered. 
If a relationship is expressed by means of an analytic function, then the 
argument of that function must be a dimensionless scalar. With this in mind, 
we consider the exponential function in the expression for a plane wave. Its 
argument is, aside from the factor i, the phase of the wave. In particular, 
this argument may be written in different forms representing various levels 
of generality as follows: 

(3) kx-cot, k r - ω Ζ , ÏC· R. 

In the last of these expressions R is the space-time four-vector 

(4) R = xlt x2, X& #4 where #4 = i c t. 
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We now view the wave from a primed coordinate system which moves 
with a velocity v = ß c in the ^-direction with respect to the unprimed system. 
The Lorentz transformation (10.1) must then be applied to K, where we must 
replace t by the quantity xji c or, in the present case, by kjic. Thus we 
obtain the following components of the transformed four-vector K': 

(6) v = \t££^, v = K v - %^B. 
]/\-ß2 l/l-/?2 

These expressions are somewhat specialized in that we have taken cos a3 = 0, 
that is the wave is assumed to propagate in the xx #2-plane, and we have 
omitted the equation k3' = 0. For cos a3 = 0 we get cos2 a2 = 1 - cos2 ax = 
= sin2 OLV If a / a2' are the corresponding angles in the x{ ^'-plane, we also 
have cos2 a2' = 1 - cos2 a / = sin2 a / . From now on we shall write a, a' 
in place of ax, a / . 

Substituting eq. (5) in (6) and applying the definitions (5 a), we get 

From this it follows that the absolute value of K is zero: 

a, a2 a3 are the angles which K makes with the 

(5 a) 

and the space components of K are given by 

where 

(5) 

K is the wave number four-vector with the dimensions of an inverse length: 

(7) 

Forming the ratio of the first two of these equations, we obtain 

(7 a) 

which is identical with the equation for the aberration (10.4), while the third 
of eqs. (7) represents the exact relativistic formulation of the Doppler principle. 

tan i 

xx x2 #3 axes and 
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We could have derived these equations in an even more elementary 
manner using the second expression (3) for the phase of the plane wave. We 
could, namely, require that 

W τ'-ω'ϊ = k - r -co t , 

write # / , %2 , t' in terms of xv x2, t by means of a Lorentz transformation, and 
then equate the coefficients of the terms xlt x2, t on both sides. We have 
favored the former method (using the covariance of the wave number vector 
instead of the invariance of the phase) because it expresses more clearly the 
relativistic four-dimensional origin of the Doppler equation. 

For general directions of the velocity of the light source with respect to the 
observer or vice versa, we let v cos a = vn = projection of this velocity on 
the normal to the wavefront and according to (7), we get 

(8) ^'ϊ/πβ' 
Letting Δ λ = λ' - λ, it follows that 

() Αλ yî^P-l+Vnlc 
[) λ \-vn\c 
In the first order approximation this yields the well-known elementary 
expression for the Doppler effect 

(1) ^ = — -f ^ ( 1 
n l ηψ 

(10) 

A more detailed discussion of (9) will show that this equation contains 
not only the longitudinal Doppler effect in the case vn = ± ν, which is a 
first order effect, but it also contains the second order transverse Doppler 
effect. For if vn — 0, we have 

recently this transverse effect has been measured accurately by means of 
the red shift of spectral lines (see Vol. I l l Sec. 27 D). 

12. FresnePs Coefficient of Drag and Fizeau's Experiment 

Regarding the velocity of propagation of light in a moving transparent 
medium, the most obvious assumption suggested by the classical ether theory 
would have been that the velocity of light c\n (n = index of refraction of 
the medium) is added to the velocity v of the medium. However, Fresnel, 
through ingenious reasoning, found the resulting velocity to be 
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The factor (1 - 1/n2) is called the "Fresnel Coefficient of Drag". The formula 
was completely confirmed by performing the Fizeau experiment in streaming 
water. 

The light originating from the source L passes in two separate bundles 
of rays through the two pipes shown in fig. 16. In one of the pipes the light 
velocity is increased and in the other decreased and the resulting optical 
path difference can be measured at A by means of an interferometer. 

~~A 

Fig. 16. 
Fizeau's experiment for the determination of Fresnel's drag coefficient. 

As was first noted by v. Laue1, Eq. (1) can be explained purely phenomeno-
logically on the basis of the velocity addition theorem as given by formula 
(27.15) Vol. I l l 

(2) u = 1 + vx vjc2 

without making any special assumptions regarding the nature of the 
propagation of light in the moving medium. If in Eq. (2) vx is set equal to 
the phase velocity in water of index of refraction n, i. e. equal to c/n, and v2 

is set equal to the velocity of the water with respect to the reference system 
which is at rest in the laboratory, i. e. v2 is -f v in the upper pipe and - v 
in the lower one, then according to the addition theorem, the resulting 
velocities u are 

(3) 

c 
n±V 

nc 

!Ann. d. Phys. 23, p . 989, 1907. 
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From this it follows in the first approximation if v <C cjn, that 

n \ c J \ ncj n \ c ncj 

which, indeed, agrees with (1): 

(4) u = - ± vl 1 - -J . 
n \ ft2/ 

Lorentz1 showed that this formula can be refined by combining it with 
the Doppler effect. In this way one obtains 

(5) u = ^± /i _ 1 _ * *a\ 
\ n2 n dX}' 

This equation is derived in the following way: n is not constant but is a 
function of the wavelength. One now considers a certain spectral line λ which 
is emitted by the light source L. As seen from a reference frame moving with 
the water, this spectral line is modified to λ' = λ + Δ λ. One obtains, 
therefore, 

dfi 
(5 a) n (λ') = η(λ + Αλ)=η+ —Δ λ. 

In the upper pipe the water flows away from the light source and in the lower 
pipe it flows toward it. A λ is found from Eq. (11.10) by replacing c by the 
velocity of propagation cjn in water. Accordingly 

—r- = ± - : - ; hence from (5 a) n (λ') = n ± λ -γτ - n, 
λ cjn αλ c 

and 
c ein c I dn v\ 

* (X) ~ ,dn v ~ n\ άλ cj' 
'" άλ c 

The numerator in Eq. (3) is thereby changed to 
c L· ^- * dn v , v\ 

6 - 1 = F % - ±n 
n \ dA c cj 

The correction in the denominator would amount only to a term of second 
order in vjc, which may be neglected. As before, the inverse of this denominator 
reads 

(6 a) I T - -
nc 

1 Versuch einer Theorie der elektrischen und optischen Erscheinungen von beweg-
ten Körpern, Leiden 1895, p. 101. 
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Multiplying (6) and (6 a) one obtains 
c I __ . dn v v __ v\ 

v ' n\ αλ c c nc] 

which agrees with (5). Zeeman's1 mastery of spectroscopy enabled him to 
verify this more exact formula experimentally. 

The following general conclusion is to be drawn regarding the dragging 
of light in moving (ponderable and isotropic) bodies: as seen by an ob-
server moving with the body, or at rest with respect to it the light propagates 
with the velocity c\n uniformly in all directions (first term of eq. (1)], 
regardless of whether the body is at rest or in a state of uniform motion. 
For an observer at rest in the laboratory with respect to which the body is 
moving with velocity v, a first order effect is added in the direction of the 
motion (this effect is given by the second term in eq. (1) or eq. (5) and is 
small compared to the first term by the order of magnitude v\c). As in the 
case of the transverse Doppler effect, an effect of second order exists in the 
direction perpendicular to the motion. Though not included in the Fresnel 
formula (1), this second order effect is easily computed by means of the 
addition theorem of velocities. 

When n = 1 the first order effect disappears. A medium of index of 
refraction 1, however fast it may move (for instance, the so-called "ether 
wind"), has no effect at all on the propagation of light. This fact was once 
considered to be a proof that the ether was at rest and ponderable matter 
moved through it. According to that theory, only the charges associated with 
matter which find their expression in the index of refraction n were to affect 
the propagation. We know now that no particular assumptions need be made 
regarding the mechanism of the emission of light. The concepts of electron 
theory are, to be sure, useful for the visualization of the dragging term but 
they are in no sense necessary for its derivation. 

13. Reflection by a Moving Mirror 

The problem to be discussed in this section will serve as a preparation for 
the experiments to be described in 15 and will, moreover, be of help in connec-
tion with the thermodynamics of radiation which will be treated in Vol. V. 
(Wien's Displacement Law). We distinguish two cases: a) the mirror is moved 
in a direction tangential to its plane surface and b) it is moved in the direction 
perpendicular to its surface. In both cases the mirror will be assumed to be 
perfectly reflecting and its velocity will always be uniform. 

1Amsterd. Akademie Versl. 1914, p. 245 and 1915, p. 18. 
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a) We use the wave number four-vector defined in (11.5) referred to the 
"primed" system1 which moves with the mirror, see fig. 17 a. In this system 
we call our vector k' and its components are 
(1) k±, k2' in the plane of incidence, k3' = 0. k4' =-- i œ'/c. 

We shall call the corresponding quantities 
describing the reflected ray k' and k±', etc., 
respectively. Since the mirror is at rest with 
respect to the primed coordinate system, the 
ordinary law of reflection holds : 

(ΐ') 

When observed from the laboratory 
with respect to which the mirror moves 
at a velocity v = ß c in the direction of the 
#-axis, the four-vectors describing the inci-
dent and reflected rays shall be denoted by k 
and k and their components by kx... £4 and 
kx... kA, respectively. Inverting the transfor-
mation eq. (11.6) by replacing β by - β and 
vice versa, we find for the incident wave 

Fig. 17 a. 

Reflection from a moving mirror. 
Direction of motion parallel to the 

plane of the mirror. 

(2) * ! = ■ 

1/i-A2 /22 — «2 ' * 4 = K + ißK 

and for the reflected wave, taking into account (Γ), 

ißkt' 
(2') ü-v- «2 — /v2 , 

k^ + iß^' 
«4 — 

If we denote the angles of incidence and reflection as measured in the 
laboratory system by 

a and a, respectively, 
then by definition 

(3) tan a = K tan a = 

1The convention by which the primed system is identified with the "moving" body 
and the un-primed system with the "stationary" laboratory is, though customary, entirely 
as arbitrary as the words "moving" and "stationary" themselves. Since we shall call 
the angle of incidence in the primed system a.', we must change our former notation for 
the angle of reflection (Chap. I). We will, therefore, distinguish the latter from the angle 
of incidence by a superposed bar. 
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From this it follows, according to eq. (2) and (2'), that 
(4) a = a. 
From the connection between ω' and k± given by (1) and the corresponding 
relationships between ω and k± and between ω and &4 it follows that 
(δ) ω = ω. 

Thus, for a mirror moving tangential to its surface the law of reflection which 
holds for stationary mirrors is preserved,, and, seen from the laboratory system, 

the frequency of the light remains unchanged 
by reflection. However, a differs from the 
angle of incidence in the primed system a' 
by a small term of first order (which we 
could call the angle of aberration). Also 
the frequency ω differs somewhat from ω' 
because of the Doppler effect. 

w/////mm/////4 

b) Now let the mirror move in a direction 
perpendicular to its surface, for instance, 
forward against the incident light. The 
#-axis will again be in the direction of the 
velocity v, see fig. 17 b, and the y-axis will 
be in the plane of the mirror. In the primed 
coordinate system which moves with the 
mirror one finds, because of the interchange 
of indices 1 and 2, instead of (Γ) 

(6) k^ = - kx', k2' = k2', k3' = 0, k± = k± = i co'/c, 

From the Lorentz transformation, taking (6) immediately into account, one 
obtains instead of (2) and (2') 

Fig. 17 b. 
Reflection from a moving mirror. 
Direction of motion perpendicular 

to the plane of the mirror. 

(7) 

and 

(7') 

kt'-ißkt' b - 2 ! 1 ÎL-

*1 = 

Ko — « θ ' 

«2 —= ^2 » Κ = 
y - î / ? y 

Fi-/?2 

In contrast to (3) the angles of incidence and reflection are now to be 
defined by 

(8) tan a = —=- = -v + ̂ v tan a = ^=- = -k^-i ßk^' 

Thus, as observed from the laboratory, the angle of reflection differs from the 
angle of incidence. The same is true for the frequencies ω and ω. 
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In the case illustrated by fig. 17 b, ω > ω ; if v were in the opposite 
direction, then we would find that ω < ω. This is readily understood by 
temporarily replacing the plane wave by a stationary point source at a finite 
distance and by considering the image of this source produced by the moving 
mirror. This image approaches the observer at a velocity 2 v and hence the 
wavelength of the reflected light appears shortened due to the Doppler effect, 
and its frequency appears increased. If the mirror moves in the opposite 
direction, the whole situation is merely reversed. Correspondingly, a < a 
in the case illustrated by fig. 17 b, while a > a when the motion of the mirror 
is in the opposite direction (or, to speak more precisely, when the relative 
motions of mirror and observer are opposite). 

Anticipating the corpuscular considerations of Sec. 16, we may point out a 
mechanical analogue: a tennis ball which falls obliquely on the racquet is 
reflected at a smaller angle than that at which it impinges. This is because 
the perpendicular component of the ball's velocity is increased by the forward 
motion of the racquet. 

14. The Michelson Experiment 

The most famous experiment in the field of optics of moving media is that 
of Michelson. For dates see the historical table in Sec. 1. After its repeti-
tion at Jena the negative result of this experiment can be considered as 
definitely established. The following will serve to indicate the degree of 
accuracy which was striven for : the apparatus was operated entirely automat-
ically ; in order to eliminate every possible temperature effect the apparatus 
was set up in a cellar of the Zeiss works and was inaccessible to the experi-
menter. Joos rightfully considered these precautions more important than the 
measures taken by D. C. Miller, another successor of Michelson. The latter 
placed his apparatus in a wooden shed on a high mountain in order to provide 
the "ether wind" with the freest possible passage through the apparatus. 
The apparatus used by Joos is now in the "Deutsches Museum" in Munich. 

Michelson's experimental set-up is sketched in fig. 18. As in the case of 
other experiments of Michelson as well as of Perot-Fabry, the most 
important item is the semi-reflecting plate H. This plate allows the light 
coming from the lamp L to follow two different paths between L and B 
(observing telescope), namely, 

LHS^B and LHS2HB. 

Since along both these paths the light passes once through H and is once 
reflected by H, the attenuation along both paths is the same and is given by 
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A A 

H 
JSI 

?j 

N> 
»V 

the product r d. It is, therefore, not necessary to obtain exact semi-trans-
parency (d = r). Likewise, it is immaterial whether the mirrors Sx and S2 

are precisely perpendicular to each other or not, a condition which, in any 
case, would be experimentally unattainable. Hence, we are here not 

concerned with interference arising 
° I from a plane-parallel air plate but 

rather with the kind of fringe 
pattern to be expected from an 
air space which is somewhat wedge 
shaped. Even the equality of the 
distances lx = H 5X and l2 = S2 H, 
though desirable, is not of critical 
importance (see footnote p. 78) 
and is never exactly attained. 
We shall, however, carry out 
all computations using lx = l2 = I. 
In the experiment of Michelson and 
Morley the light paths were increased 
to eleven meters by repeated reflec-
tions. The whole apparatus floated 
on mercury1. First it was oriented so 
that the direction L H S was parallel 
to the direction of the earth's 
motion about the sun. Then the 
whole apparatus was rotated through 
90° and any possible shift in the 

interference fringes was observed. According to the theory of relativity no such 
shift of the fringes can occur. This is due to the fact that the earth qualifies 
as a practically unaccelerated reference system and (in contrast to the 
experiments on aberration) the change of the earth's direction of motion 
during the duration of the experiment is negligible. 

This is, however, not true from a non-relativistic viewpoint when the 
stationary reference system is assumed to be at rest with respect to the sun. 
For in this case, we would have to assert that the light always moves with a 
velocity c with respect to this reference system. The velocity of propagation 
of light with respect to the moving apparatus has then to be calculated. For 
this purpose the positions of H and S± for the first part of the experiment 

s, 
Fig. 18. 

Michelson's experiment to prove that the 
velocity of light is independent of the earth's 
motion. L i s a monochromatic light source. 
H is a semi-transparent plate. Sv S2 are 
mirrors. B is the telescope used for obser-

vation. 

1 In Joos' set-up the apparatus was suspended by springs. The arms lx and l2 consisted 
of quartz glass, the light paths amounted to 21 meters and for a source the Hg-line 
A = 5461 A.U. was used. See Ann. d. Phys. (Lpz) 7, p. 385, 1930-
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(L Sx parallel to v) have been drawn in fig. 18 a in the following way. H is 
the position of the semi-transparent plate at the moment at which it is 
traversed by- a certain 
phase of the monochromat-
ic wave coming from L, 
a maximum for instance. 
S1 is the simultaneous 
position of the mirror Sx' 
is the position of the mirror 
at the instant at which it 
reflects the above-men-
tioned phase. This reflec-
tion will occur a time tx lat-
er. H' is the position of H at 
that instant. H" is the 
position of H at the time 
t2 when the same phase 
returns to the semi-trans-
parent plate. If we use 
the path lengths Sx S / = 
v tv H' H" = vt2 shown 
in the figure and let 
HS1 = H' Sx' = I, then 
ordinary non-relativistic 
kinematics yields 

s,s; 

zmt 

Fig. 18a. 
Determination of the light path in Michelson's exper-

iment. Ray parallel to the motion of the earth. 

(i) 

I + vt1 = ctv 

l-vt9 = cL 

h = 

U = 
c + y 

Hence, the total time taken by the light is 

(2) h + h = 
I l__ 

c + v 
lie 2 Ijc 

: 2 _ , l-ß2 

The fact that the light actually meets the telescope B, which has itself moved 
forward, is due to the changed law of reflection at the moving ^-mirror when 
in the position H" \ 

1In this case the reflection is from a mirror which moves neither perpendicular to 
its surface as in 13 a, nor parallel to it as in 13 b. This mirror H is inclined at an angle 
of 45° with respect to its direction of motion. It is evident, however, that also in this 
case the event (arrival of the reflected light at B) which is observed on earth must be 
relativistically preserved if the reference system is moved to the sun. 
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For the computation of the other ray path we use fig. 18 b. Here H is the 
position of the semi-transparent plate at the time at which it reflects the same 
light phase, as before. S2 is the position of the second mirror when this phase 
is reflected from it after a time t', and H' is the simultaneous position of H. 
H" is its position when the light again passes through it. Since, in this case, 
the reflection takes place at the mirror 5 which moves parallel to its surface, 
the ordinary law of reflection holds and 
(3) HH' = H' H" = vt' and HS2 = S2 H" = yp~+v*7*. 

On the other hand, in the stationary 
n system of the sun it must be true 

that 
(3 a) H S2 = ^2 = c t. 

From (3) and (3 a) follows c2 t'2 = 
I2 + v2 t'2 and also 

2l\c 
(4) It' 

l / i-/?2' 
This time interval differs from 

that found in (2). The difference 
is only of second order in ß (ß = 
aberration constant = 10~~4, see 
Sec 10), namely, 

(5) At = tL +12 -2t' = -ß2 

c 

or, expressed as a light path length, 
(5 a) cAt = lß2. 

Nevertheless, this difference means 
that the phase under consideration 
reaches the observer B noticeably 
later when it goes by way of S1 

than when it goes by way of S2. 
If we now rotate the apparatus through 90°, then 52 takes the place of S t 

and vice versa. Thus the time intervals tx + U and 2 t' are interchanged1 

Fig. 18b. 
Determination of the light path in 

Michelson's experiment. Ray perpendicular 
to the motion of the earth. 

xThe arms lx and l2 interchange in the same way even if they differ in length from one 
another (ly = I, l2 = I + ô I). In this case, however the term 2 δ I (1 + /?2/2) is 
added to (5a), and the part independent of β2 cancels in (5a) and one obtains 

(5 c) 
21 

(-τ) 
which agrees closely with (5 b) as long as o / < C / . 
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so that the expressions (5) and (5 a) change their signs. The difference in the 
time of arrival at B is thereby doubled. Hence B should observe twice the 
shift given by (5 a). Expressed in fractions of one whole fringe width, this 
amounts to 

(5b) AZ = 2°-^=2jß'. 

For the above-mentioned values of I = 21 meters, λ = 5461 X 10—10 m, 
this gives 
(6) Δ Z = 0.4. 

In contrast to this result Joos summarized the result of the Jena experiments 
as follows: "We can say with a clear conscience that the upper limit of the 
effect due to any true ether wind which might still be possible on the basis 
of these experiments is 1/1000 of a fringe/' 

In order to reconcile this disagreement between theory and experiment, 
Lorentz and, independently, Fitzgerald found it necessary to introduce the 
following bold hypothesis: every moving body contracts in the direction of 
its motion by a factor |/l - ß2. From Vol. I l l , Sec. 27 C we know that this 
"Lorentz contraction" is a general consequence of the principle of relativity 
and that it holds true, not only for the particular experiment here considered, 
but for all relative motions and for all space measurements parallel to such 
motion. Thus the Lorentz contraction is not an "ad hoc hypothesis". We 
should never have had to mention it had we used the relativistically 
correct kinematics immediately in (1) and had there replaced / by l\\ - ß2. 
In eq. (3), where I is the length of the arm which is perpendicular to the 
direction of the motion, no such change would have been necessary. 

15. The Experiments of Harress1, Sagnac2 and Michelson-Gale3 

The negative result of Michelson's experiment has, of course, no bearing 
on the problem of the propagation of light in rotating media. To discuss this 
problem one must use not the special but rather the general theory of relativity 
with its additional terms which correspond to the mechanical centrifugal 
forces. However, in view of the fact that in the following experiments only 
velocities v <^ c occur and only first order effects in vjc are important, 
relativity theory can be dispensed with entirely and the computations can be 
carried out classically. 

iDiss. Jena, 1912. 
2 Comptes Rendus, 1913. 
3Astrophys. journ., 1925. 
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The Sagnac experiment is the easiest to describe. As shown in fig. 19 the 
semi-reflecting plate H and the three mirrors 5 are mounted at the 
corners of a square which is inscribed in a disc. The plate H is mounted in a 
radial position, the mirrors 5 are mounted tangentially to the disc. The 
monochromatic light source L and the photographic plate Ph are, likewise, 
rigidly attached to the disc. The two rays emitted by L and separated by H 
are made to interfere at Ph. If, the disc is made to rotate, then the ray going 

in the same direction as the rotation is made 
to travel a longer path and the ray which 
is oppositely directed travels a shorter path. 
Thus interference fringes are formed whose 
positions differ for oppositely directed rota-
tions. If this shift Δ Z in the fringes is 
measured, it is found to obey the following 
theoretical formula: 

(1) ΔΖ = 4β 
τλ' 

Fig. 19. 
Sagnac's experiment. The inter-
ference arrangement consists of the 
light source L, the semi-transparent 
plate H, three mirrors S, and the 
photographic plate Ph. The entire 
set-up rotates with angular velo-
city ± ω about a central axis 
perpendicular to the plane of the 

paper. 

ω in the same direction, φ_ 

F is the surface enclosed by the ray path, i. e. 
a square in Sagnac's experiment; r is the 
radius of the disc; v is the velocity of the 
disc's circumference and β = v\c. 

In order to prove eq. (1) we note that 
owing to the law of reflection at tangentially 
moving mirrors, the four sides of the 
"square" (which for a rotating disc is no 
longer a closed figure) subtend the same 
central angle ; namely, φ0 if ω = 0, φ+ for 

for ω opposite to the direction of the fay: 

π π , 1 

where τ± is the time which it takes the corresponding ray to travel its path 
L -* Ph. Neglecting the distances L H and H Ph which are the same for 
both rays, the length of this path is equal to c τ±. It is also equal to four times 
one side of the square, where this side has been lengthened or shortened by 
the rotation. Thus: 

c τ± = 4 · 2 r sin — φ± = 8 r sin 'π ω \ 
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From this one finds the time difference to be 

Λ Sr\ . In t ω \ . In ω \\ 
J r = r + - r _ = - | S i n ^ + - r + j - s m ^ - ¥ r _ j j 

(2) 16 r In ω . \ . ω . 
= - - c o s ^ - + ^ Z l r j s m - ( T + + r _ ) . 

Neglecting small quantities on the right-hand side, one can put 

cos ( n to . \ n 

1 + T6AT)~COS-* 

sin -^ (T+ + τ_) ~ sin — τ0 ~ — τ0, 

where T0 is the time taken by the light if the disc is at rest and is given by 

Sr . n 
υ c 4 

Thus (2) becomes 
SOJT2 

(3) Δ T = 
Is 

Since ω = v\r and F = (r]/2)2
} one can write instead 

(3a) Ατ = 4β —. 
re 

This expression becomes identical with (1) if one computes the shift of fringes 
A Z from the time difference Δ τ. 

We could have shortened the above calculations had we started out by 
using the Doppler effect. The Doppler effect originates in the semi-
reflecting plate H which acts as a moving light source emitting different 
wavelengths in the forward and backward directions (while no additional 
Doppler effect is caused by the tangentially moving mirrors). The shift in the 
fringes A Z is due to the difference in wavelength between the ray going with 
and against the direction of rotation. 

In Harress* experiment a number of glass prisms were arranged along the 
circumference of the disc. The same formula (1) again applies, where, however, 
F is the area bounded by the polygon that is described by the ray in its path 
from prism to prism. Formula (1) was entirely confirmed by the results of 
both experiments. 
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In the experiment of Michelson and Gale the earth plays the role of the 
rotating disc. The component of the earth's angular velocity along the 
perpendicular at the place of observation takes the place of ω. Preliminary 
experiments on Mt. Wilson showed that if the necessarily long light paths 
were placed in free air, then even under the best atmospheric conditions the 
interference fringes were too unsteady to make measurements possible. 
Hence, it was necessary "to resort to a pipe line about one mile long and one 
foot in diameter which could be exhausted of air". The area F was· a rectangle 
with sides of 340 and 610 meters. The mirrors 5 and the semi-transparent 
plate H were attached at the corners of this rectangle. In order to obtain a 
zero setting for the fringe shift, a comparison path enclosing only a small 
area was provided. A total of 269 observations yielded a mean shift of 
A Z = 0.230 ± 0.005 fringes which is again in full agreement with eq. (1). 

This experiment is a beautiful analogue to Foucault's Pendulum experiment. 
While the translatory motion of the earth cannot be noticed either mechanically 
or optically, the earth's rotation is measurable both mechanically according 
to Foucault and optically according to Michelson-Gale. 

16. The Quantum Theory of Light 

At the end of the seventeenth century Huygens' wave theory and Newton's 
corpuscular theory entered upon a period of competition. Although the corpus-
cular theory prevailed during the eighteenth century, at the beginning of the 
nineteenth century the interference experiments of Thomas Young brought 
about the victory of the wave theory. But with the start of the twentieth 
century a rebirth of the corpuscular theory was brought about by the work 
of Einstein : Über einen die Erzeugung und Verwandlung des Lichtes betreffenden 
heuristischen Gesichtspunkt, Ann. d. Phys. (Lpz) 17, 1905. (On a heuristic view-
point concerning the creation and conversion of light.) 

This paper was much more radical than the theory of relativity which 
had its origin in the same year. While the latter represented the crowning 
achievement of classical physics, the former revolutionized it. 

In 1887 Hertz discovered the photoelectric effect and soon afterwards it 
was measured electrostatically by Hallwachs. The explanation of this effect 
on the basis of electron theory as given by Lenard and J. J. Thomson led to 
the following results: the number of electrons ejected from a metal plate by 
light depends on the light intensity but the kinetic energy of these electrons 
is solely determined by the frequency of the incident light. Einstein, applying 
Planck's discovery of the quantum of action h and the quantum of energy hv, 
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interpreted these results in the following way: the upper limit v of the ve-
locity spectrum of the photoelectrons is given by the energy equation 

m 
(1) hv = — v2 + A 

where A is the minimum energy required to separate the electron from the 
metal. Only when hv > A does a photoelectric effect appear. Ultraviolet 
light always yields a photoelectric effect while only the alkali metals, which 
have a small A, are photoelectrically active under red light. In 1916 Millikan 
confirmed the existence of such an upper bound of the velocity spectrum 
precisely and used it to determine h. 

Thus a new elementary particle, the ''photon", was introduced into 
physics. Its energy is 
( la) E = hv. 

Since this particle always moves with the velocity c, we must ascribe to it 
the rest mass//0 = 0; otherwise its velocity mass μ = μ0]/\ - β2 would become 
infinite. From the general relation between mass and energy 

Ε=(μ-μ0)^ 

the mass is found to be a = h vjc2 and the momentum 

(2) ρ=μο = ^ . 

In his original paper Einstein also called attention to Stokes rule for 
fluorescence : the frequency of the fluorescent light is always displaced toward 
the red with respect to that of the exciting light. This rule is also generally 
true for phosphorescence bands (delayed fluorescence) and for the characteristic 
radiation frequencies in the X-ray spectrum. To excite, for instance, the K 
radiation of an atom the exciting radiation must be harder than the hardest 
line of the K spectrum. 

The continuous X-ray spectrum is produced by a kind of reversal of the 
photoelectric effect. While in the ordinary photoelectric effect primary 
photons produce secondary electrons, we now have the case of primary 
electrons (cathode rays of energy E) impinging on a target electrode where 
they excite the secondary photons of the continuous X-ray spectrum. The 
following Stokes rule is obeyed: 
(3) hv <E, h vmax = E. 

Therefore, the continuous X-ray spectrum has a short-wave limit Xmin = cjvmax 

which can again be used in connection with eq. (3) to determine h. In contrast 
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to this the classical computation of the radiation given off by a decelerating 
electron, as performed in Vol. I l l , eq. (19.22) or (30.11), always yields a 
spectrum which is continuous up to v = oo. 

The following consideration is to be added: the "accumulation period" 
which would be necessary if the energy provided by single cathode ray 
electrons were to accumulate to an X-ray energy of hv would become very 
long — of the order of several hours ! But actually the secondary X-rays are 
emitted simultaneously with the primary cathode rays just as the photoelec-
tric effect starts immediately with the primary illumination. As a last des-
perate attempt to save the classical theory of radiation, Debye and the 
author undertook in 1913 to explain the photo effect classically by using a 
special hypothesis regarding the action integral1. 

Since that time it has, of course, become possible to register directly the 
discontinuous quantum nature of weak X-rays or ultraviolet light through 
the amplifying action of the counter tube. It is even possible to make the clicks 
associated with the separate discharges audible. We will not discuss here the 
Compton effect which makes the corpuscular nature of X-rays especially 
evident. Rather we shall limit our discussion to those effects which have 
already been explained wave-theoretically in this chapter. In the case of the 
moving mirror we have already indicated the possibility of a corpuscular 
explanation by using the example of the tennis ball at the end of Sec. 13. While 
our previous derivations of the aberration and dragging effects were ultimately 
based upon the velocity addition theorem, these two phenomena can also 
be easily explained on the basis of the corpuscular theory. But how about the 
Doppler effect with its expansion or crowding of wave surfaces which seems 
to require a definitely wave-theoretical explanation? Schrödinger2 showed 
that this effect also can be understood from a photon point of view. 

We shall assume that a radiating atom O, instead of emitting a spherical 
wave, sends out photons of energy hv and momentum hvjc in random 
directions. In this way such a photon will occasionally also travel in the 
direction of the observer P. When this is the case, the atom recoils in the 
direction PO. We shall assume here that the observer is at rest and the 
emitting atom is in motion, though we could equally well treat the reverse 
situation. The recoil momentum hv\c combines with the original momentum 
of the atom Mv1 to give Mv2. Let a be the angle between OP and v1 and 
a + den the angle between OP and v2. We construct the momentum triangle 

1Ann. d. Phys. 41 (Lpz), 1913, see also: First Solvay Congress,"Theorie du rayonne-
ment et des quanta", p. 344. These efforts had to fail, of course, because of the tremen-
dous length of the required accumulation period. 

2Physikal. ZS. 23, 301, 1922. 
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OAB, as shown in fig. 20, where OA = Mvv OB = Mv2, AB = hvjc. We 
now project OB on OA and find that for the infinitesimal right triangle 
ABC the following relation holds: 

(4) 
h v 

M A ν = — cos α. 
c 

This is the law of conservation of mo-
mentum. The conservation law of energy 
is: 
M M 
— v1

2 + E1 = —v2
2 + E2 + h(v+A v) 

(5) 
where h (v + A v) is the energy emitted 
by the moving atom. Quantum-the-
oretically the energy of the photon emitted 
by an atom which is at rest or moving 
uniformly (vx = v2) and which experiences 
a change in its configuration E1 -** E2 is 
given by 
(5 a) E1-E2 = h v. 

Substituting this in (5) one obtains 

Fig. 20. 
The corpuscular explanation of the 

Doppler effect. 

(6) hAv = Y (V - v2
2) =ΜΔν ν-λ±^Ά. 

Neglecting (A v)2 we let (vt + v2)/2 =lv and obtain, from (4), 

v 
(7) h A v = h v — cos a. 

c 

Characteristically, h cancels out and we obtain the Doppler formula which is 
identical with (11.10) 

A v 
v (8) = — cos a 

c 

The reader may convince himself that the significance of the sign mentioned 
in connection with (11.10) is also in agreement with fig. 20. 

This derivation appears to be inconsistent in that the recoil momentum 
was assumed to be h v\c instead of h (v + A v)jc. However, if we use the 
latter value, the result will differ from our present result only in terms of 
second order, i. e. terms proportional to (vie)2. If we had considered such 
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terms, however, we should have had to carry out our calculations relativistically 
from the very beginning. In particular, the kinetic energy of the atom should 
have been set up differently. As Schrödinger has pointed out, we would 
then have obtained the relativistically rigorous Doppler formula, that is 
eq. (11.9). 

From an epistemological point of view we are thus faced with an extremely 
remarkable situation: the phenomena described in this chapter, and in 
particular the Doppler effect, can be understood in terms of either the wave 
theory or the corpuscular theory. This is also true of the light 
pressure which was treated wave-theoretically by means of Poynting's energy 
flux in Vol. I l l , Sec. 31. According to the corpuscular theory this pressure can 
be described very vividly in terms of a "photon-hail". However, the wave 
theory completely fails to explain the photoelectric effect and the most 
important results of X-ray spectroscopy. On the other hand, the photon 
theory, at least in its present state of development, is unable to account 
precisely for polarization and interference phenomena. Therefore, we are 
forced to adopt a dualistic conception of light: not Huygens or Newton, but 
Huygens and Newton. Newtons' theory explains the coarse but nevertheless 
fundamental energy problems while Huygens' theory is of use for the much 
more delicate problems concerning interference. Light has a dual nature) 
it presents us with either its corpuscular or its wave aspect depending on the 
particular question which we are posing. It is wrong to ask which of these 
aspects is the true one. As far as we know today, they are both on an equal 
footing and only both aspects taken together are capable of representing the 
nature of light completely. 

One speaks, therefore, not of a duality of light but, more appropriately, 
of its complementarity. This expression, which was coined by Bohr, is all the 
more appropriate because we know today that also electrons and all material 
bodies possess in addition to their corpuscular character and on an equal 
basis with it also a wave-mechanical nature. There are matter waves as well as 
light waves. Our previous characterization of cathode rays as corpuscles 
and X-rays as waves was an antiquated way of speaking. The difference 
between these two lies not in their wave character but rather in their velocities 
and charges and consequently their'very different interactions with the atoms 
of material bodies. 

It is clear that this complementarity overthrows the scholastic ontology. 
What is truth ? We pose Pilate's question not in a skeptical, anti-scientific 
sense, but rather in the confidence that further work on this new situation 
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will lead to a deeper understanding of the physical and mental world. Indeed, 
the revised quantum theory and Heisenberg^ uncertainty principle on which 
it is based demonstrate that there can be no logical contradiction between the 
corpuscular and wave-theoretical viewpoints. 

In the following chapters we shall only rarely have occasion to return to 
these fundamental questions. We shall have to restrict ourselves to a 
development of the wave theory. However, we should always remember that, 
though the latter forms the most important practical part of optics, it does 
not reveal its full content. 



CHAPTER III 

THEORY OF DISPERSION 

So far we have discussed only the nature of light. Now we shall investigate 
more closely the nature of refractive media. We have already mentioned in 
connection with eq. (3.4 a) that the electromagnetic explanation of the index 
of refraction is inadequate since it even fails to account for the decomposition 
of white light in a prism. We can understand such phenomena only by learning 
more about the optical properties of matter. 

The electric composition of matter is well known: every atom consists 
of a positive nucleus and a shell of more or less mobile electrons. However, 
we need not go into electron theory in the usual sense. We can carry out 
our calculations using, instead of individual electrons, an electron fluid1 

which is spread uniformly throughout the whole body. The situation here is 
analogous to the theory of hydrodynamics in which a continuous density 
replaces the individual molecules. In the same way the electrons will be 
thought of as "smeared-out"2 into a continuum. 

We shall treat the charges of the positive ions in the same way. They will 
serve the purpose of neutralizing the enormous electrostatic repulsive forces 
which would otherwise act within the electron fluid, and conversely the 
latter will neutralize the electrostatic repulsion of the ions. This point of 
view, which is usually adopted in dispersion, is entirely justified in the optical 
spectrum where a cube one wavelength in dimension contains a tremendously 
large number of atoms; in the X-ray region, however, this mode of 
attack fails. 

In hydrodynamics we use a volume element to define displacement and 
velocity ; the definition of displacement in the electron fluid will be explained 
in eq. (17.2) ; the corresponding definition for ions will be found in the beginning 
of Sec. 18. 

1 Using a currently popular word one could speak of an electron "plasma". 
21 am afraid that this ugly word which I used in my lecture in 1912 has come into 

general usage. At that time I posed to P. Ewald, as a theme for his dissertation, the 
problem of explaining double refraction and dispersion in crystals in terms of their lattice 
structures, tha t is not to smear out the electrons but to assume them to be bound to the 
individual building stones of the crystal. There was a close causal connection between 
this dissertation and the ingenious idea of M. von Laue to investigate the lattice structure 
of crystals with X-rays. See also Chap. V, Sec. 32 C. 

88 
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17. Ultraviolet Resonance Oscillations of the Electrons 

Let us now investigate a transparent isotropic non-conducting material. 
The optical field will be described by the two light vectors E and H. Excluding, 
for the present, magnetizable materials we set B = μ0 H. However, we do 
not set D = ε Ε as in the case of slowly varying fields, but rather more 
generally we let 
(1) D = *0E+P. 
P is the polarization vector which was introduced in Vol. I l l , Sec. 11. Polari-
zation means that the field E displaces the electrons from their rest positions. 
We shall call the displacement vector s and set 
(2) P = -Nes. 
- e is the charge of the electron and N is the number of dispersion electrons 
per unit volume. These definitions of P and s obviously presuppose individual 
electrons rather than a continuum. Equation (2), therefore, refers to the 
state of affairs before the "smearing-out". 

Let us note that this assumption is dimensionally correct. The dimension 
of P is, like that of D and ε0 E, Q M~~2 (see table at the end of Sec. 2). And 
indeed, since N has the dimensions M~~3, Ns has the dimensions M—2. Let 
us note further that the sign in (2) is chosen correctly. Figure 21 represents 
the action of the field E upon the electronic charge - e. This charge is 
separated from the ionic charge + e, with which it originally coincided, by 
being displaced in a direction opposite to the displacement of the positive 
charge. We can assume the ionic charge + £ which carries the ionic mass M 
to be stationary. Thus an electric moment (+ e, - e) with moment arm |s| 
and directed parallel to E is created as represent*A in «^ /o\ 

Fig. 21. 
Separation of the electron charge (mass m) and io 

(mass M) in the electric field E. 

In fig. 21 we assume that the electrons ai~ ^ ^«.w* v^cw^^j 
their rest positions, so that they will seek to return to those positions when 
displaced from them by a field E. Therefore s satisfies the following differential 
equation : 
(3) m s + / s = -e E. 
Here the restoring force - / s has been put on the left-hand side with the 
opposite sign. On the right-hand side is the field force acting on - e. Instead 
of (3) we shall write 

e f (3 a) s + ω0
2 s = E where ω0

2 == — · 
m m 
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e 2 
— co2, 

ω0 is the characteristic frequency of the electron (and therefore also of the 
electronfluid) which the title of this paragraph asserts to be in the far 
ultraviolet. This is particularly the case for the gases H2, N2, 02, etc. Written 
in terms of the polarization eq. (3 a) becomes: 

(4) 

Thus we have not two, but three light vectors, E, H and P which are 
connected by three vector differential equations. For we have, besides (4), 
the two Maxwell equations 

(5) 

In the second of these equations D is already expressed in terms of E and P 
by means of (1). Eliminating H from the two eqs. (5), we obtain, taking 
account of div E = 0 (uncharged dielectric) 

(6) 

see Vol. I l l eq. (6.2). We need now only eliminate P from eqs. (4) and (6) 
to obtain a pure differential equation for E. For this purpose we operate on 
(6) and (4) with the operators d2/dt2 + ω0

2 and μ0 d2ldt2, respectively. 
Thus we get the following fourth order differential equation : 

(7) 

We specialize this immediately to the case of a linearly polarized plane 
wave of frequency ω and wave number k 

(8) 

Then (7) yields the following algebraic relation between ω and k: 

which, when solved for k2, gives 

(9) 

Now, u = to\k is the phase velocity of our plane wave (8) in the dispersive 
medium. The index of refraction of this medium relative to the vacuum is, 
according to the definition (3.4), 

(9 a) 



17. 13 ULTRAVIOLET RESONANCE OSCILLATIONS OF THE ELECTRONS 91 

. « _ , i ^ / » « b 

Setting μ0 c2 equal to 1 Ιε0 we write instead of (9) 

(10) »2 = 1 4-
UJQ- — UJ-

Thus, the index of refraction has become frequency dependent. This is what is 
meant by dispersion. Because 

Cured < CO < COviolet < COQ 

the denominator ω0
2 - ω2 is positive in the entire visible spectrum and is 

larger at the red end than at the violet end. Blue light is refracted more than 
red light. This is normal dispersion. 

Assuming ω0 very large, we now develop (10) in powers of ω/ω0 and retain 
only the first two terms: 

Ne2 I 
(11) n2=\ + -2 1 + 

ηιε0ω0
2\ ω{ 

2 71 C Setting ω = —i—, where λ is the wavelength in vacuum, we are led to a 
A 

formula which corresponds to an old molecular elastic theory of Cauchy 
(ca. 1830). Abbreviating, we write 

\ A21 ^ ε 0 ω 0
2 ω0

2 

A and B are called the coefficients of refraction and dispersion, respectively. 
We note that the ratio BjA does not contain the characteristic frequency ω0, 
so that the value of this ratio is the universal number 

(12 a) * - 4 π 2 * 2 ε ° 
( 1 2 a ) A~ Ne2/m 
Its dimension is M2, as can be ascertained directly from (12). 

We shall now compare (12) and (12 a) with very exact measurements1 

of the dispersion in hydrogen which yield 

(13) n2 = 1 + 2.721 x 10~4 + ~ 10~18. 

This gives the values 

B = YWX 10~u M2· i = jêïk* l°-10=°·29 x 10-10 M 2 · 
1 J . Koch, Nova Acta Upsal. 2, 1909. The measurements refer to 0° C and 760 mm Hg. 

In conformity with our system of units we have written (13) so that λ is measured in 
meters. 

(11)
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We substitute this in the left-hand side of (12 a). In accordance with the 
table at the end of Sec. 2, we put 4π c2 ε0 = 107 M S~* ΩΓ1 on the right-
hand side and obtain 

(14) — = - ^ - 1 0 1 7 = 1.1 x l O ^ M - 1 S ^ Q - 1 . v ' m 0.29 
N is found from the density of H2 which at 0° C and 760 mm Hg is almost 
exactly equal to 9.00 X 10""2 KM~3. Hence, the mass per unit volume is 
9.00 X 10~~2 K. But the mass per unit volume is also equal to 2 N0 mH 

where mH is the mass of a hydrogen atom and N0 the number of molecules per 
unit volume. Hence 

9.00 x 10-2 

Furthermore, since each H2 molecule has two electrons, 

N = 2N0f Ne = 9.00 x 10~2 — . 
mH 

Now e\mHy which is Faraday's electrochemical equivalent (the charge of one 
gram-atom in electrolysis), is also a very precisely known number, namely 
9649 in abs. e. m. u. and hence 9649 X 104 = 9.65 X 107 QK _ 1 in our Q, K 
units. Equation (14) becomes, therefore, 

Ne--- = 9.00 X 10-2 X 9.65 X 107 X — = 1.1 x 1018 
m m 

which yields 

(15) - - 1 . 4 X 1011 QK-1. 
v ' m x 

This is of the same order of magnitude as the "specific charge of the electron" 
e\m = 1.76 X 1011 QK""1. The resonance frequeny ω0 which is easily computed 
by comparing (12) and (13) confirms our basic assumption by being in the far 
ultraviolet. Clearly, our theory is still very crude in comparison to the detailed 
results on molecular structure and emission of light which atomic physics 
has provided. 

We shall not justify a once much debated rule (Drude, Natanson) 
according to which the number of "dispersion electrons" of an ideal gas is the 
same as the "valence number" of the particular molecule (namely 2 X 2 for 
02, 2 X 3 for N2). From the point of view of our present atomic models this 
rule is less understandable than the number 2 X 1 in the case of H2, because 
in the cases of O and N the valence is not the number of electrons present 
as in the case of H, but rather it is the number of electrons missing from the 
complete shell of eight electrons. Empirically, however, this rule is satisfied 
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to a good degree of approximation, and this is also understandable from the 
point of view of atomic physics because in many respects (for instance, in 
the Pauli principle) present and missing electrons play the same role. 

We shall now mention, though again only briefly, a refinement of the 
dispersion formula which yields the dependence of the index of refraction on 
pressure in the case of gases and which is known as the Lorenz-Lorentz 
formula. This formula results from a more exact calculation of the polariza-
tion P, which depends not only on the external field E, as was assumed in (2) 
and (3), but is also influenced by the electric moments of the neighboring 
molecules. We investigated this dependence more closely in Vol. I l l , Sec. 11 
and derived there the Clausius-Mosotti formula (11.8) for the dielectric 
constant, in which we now have to replace erd by n2 and the molecular 
constant as defined there 

NOL by — ^ — ^ . 

Thus we obtain 

η « - ΐ ΐ Ne*lrne0 
K ' n2 + 2 3 ω 0

2 - ω 2 " 
When n2 differs only slightly from 1, which is true in particular for ideal 
gases, then it can be seen that (16) goes over into the above eq. (10). 

18. Infrared Resonance Oscillations of the Ions in Addition to Ultraviolet 
Electron Resonance Oscillations 

If there is a considerable difference between the indices of refraction for 
visible light and for Hertzian waves, one must expect that other resonance 
oscillations besides the ultraviolet one contribute to the index of refraction. 
If, furthermore, the material in question is transparent so that there are no 
resonances in the visible spectrum, these additional resonances must be 
infrared resonance oscillations (perhaps rotational resonances). It is reasonable 
to ascribe these not to the mobile electrons, but rather to the much more 
inert ions. These, too, we shall consider to be "smeared out"; thus we shall 
not use individual ions, but rather a continuous ion-fluid. 

The polarization P is then the sum of the two contributions Px (electrons) 
and P2 (ions): 
(1) P = P 1 + P B . 
Again, as in the case of Px in eq. (17.2), the definition of P2 refers to the state 
before the "smearing-out", namely to the dipole moments formed by the 
separations of the ions from ions of opposite charge. 
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By eliminating Px and P2 from (2), (4) and (5), we obtain in place of (17.7) a 
somewhat complicated sixth order differential equation for E. We do not 
need to write out this equation, but can immediately treat the pure harmonic 
state of a linearly polarized wave of frequency ω of the type (17.8); that is, 

(2) 

The resonance frequency of the electrons which we called ω0 in Sec. 17 will now 
be called cov The number of electrons per unit volume will again be N. The 
differential equation for the oscillations of the electrons brought about by the 
alternating field E is, according to the model of (17.4) 

where the displacements have already been replaced by the electric moment P. 
The resonance oscillation of the ions, whose frequency will be called ω2, 

consists of a relative oscillation of oppositely charged components. If only 
one pair of such components is present in each molecule, and we shall here 
limit ourselves to this case, then the relative displacement of these components 
takes the place of an absolute displacement and the so-called "reduced mass" M 
takes the place of the individual masses Mx and M2. As will be shown in 
exercise III. 1, the reduced mass is given by 

(5) 

This mass M enters into the differential equation for the forced ion oscillations 
in place of the mass m in eq. (2). Let p denote the valence of the ion as 
determined by electrolysis, e. g. p = 1 for Na+ Cl~, p = 2 for Ca + + F2 etc. 
Because the optical material is electrically neutral, the number of ions per 
unit volume is equal to the number of electrons N divided by p, while the 
charge of each individual ion is the electron charge e multiplied by p. In this 
way we have in place of N e2/m 

Hence, we obtain the following differential equation for P2: 

(4) 

The Maxwell relationship between P and E remains the same as in (17.6), 
where however, P must now be replaced by Px + P2 in accordance with (1): 

(5) 
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we assume that the electrons as well as the ions have attained their steady 
state in this field of frequency ω. Then, according to (2) and (4) 

— CO2 ·· — (O2 

P, is proportional to —s r, P« is proportional to —5 5 , 
ωλ

2-ω2 ω 2
2 - ω 2 

and by (5) k2 becomes an algebraic function of ω2: 

/A ί>2 ω 2 _ 2 I Ne*lm , pNe2/M 
Ü)9 

According to the definition of the index of refraction in (17.9 a), the left-hand 
side equals (n2 - l) œ2/c2. Hence, we obtain immediately the following 
generalization of (17.10): 

( 6 ) n2=i+
Ne2lm£o , pNe2IMe0 

\2-ω2 ω2
2-

Evidently when a larger number of resonance oscillations are present, whether 
they be in the ultraviolet or in the infrared or perhaps in the visible spectrum, 
a formula of the same structure is obtained. The summation on the right-hand 
side must then include a term for every one of the resonance oscillations. 

In order to make eq. (6) more convenient for purposes of comparison with 
observations, we express ω in terms of the wave length in vacuum λ, and 
similarly we express ωχ and ω2 in terms of λτ and A2: 

Using the 

(7) 

we obtain 

(7 a) 

2nc 

abbreviations 

r — C l - 4π· 

n2-\ 

2nc 

Ne* 
'■c*s0m' 2 ~ 

-c^t + c 

or, eliminating λ2 from the numerators, 

(8) n2 = 1 + V λ 4 

W + Λ2 C2 + -τγ-

2nc 

pNe2 

4πζο2ε0Μ 

λ21* 

Next we consider the limiting case as λ -*· oo. Then the last two terms on 
the right-hand side vanish and we obtain 

(9) n 0 0
2 = l + A 1

2 C l + A2
2C2. 



96 THEORY OF DISPERSION 18. 9 a 

Only in this limiting case when the actual resonance terms vanish is the 
Maxwell relation (3.4 a) fulfilled exactly. Thus, the failure of the Maxwell 
relation to hold in the visible spectrum can be understood in terms of the existence 
of infrared resonance oscillations (because λ±

2 <C λ2
2 the term in (9) which 

contains A2
2 is clearly the decisive one). Hence the Maxwell relation should 

be corrected to read 

(9a) ft«, = ye instead of n = ye 

(by ε is meant in both cases the dielectric constant relative to vacuum). 
We turn now to the visible part of the spectrum. In this range very exact 

measurements for some cubic halide crystals are available. (As we shall see 
in Chap. IV, cubic crystals, strangely enough, behave optically isotropic, while 
elastically, thermally, etc. they reveal their anisotropy). From among these 
we select fluorspar CaF2 (or fluorite, from which substance the phenomenon 
of fluorescence received its name). According to measurements by Paschen1 

the following holds for fluorite : 

s c ΛΛ , 6-12 X 10-1 5 , 5.10 X 10-9 

(10) n2 = 6.09 + ,a O O Q w i n _ 1 5 + 
A2-8.88 X 10-1 5 λ2-1.26 X 10~9 

Comparing this with (8) we obtain 

C2_ V 5.10 X 10-9 

Cx A2
4 6.12 x 10 

On the other hand (7) yields 

-9 _ /8.88 X 10-1 5 \ 2 5.10 X 10-9
 5 

^ " \ 1 . 2 6 x 1 0 - · / '6.12 x l O " 1 5 " 4 1 5 X 1 0 

Cx
 γ Μ 

Because p = 2 (the Ca++ ion has given two electrons to the two F ions) 
we conclude that 

(ii) £ = 221!2 ! . 
V ; m 4.15 

To calculate the reduced mass M we set in (3) Mx = 40 mH (40 = atomic 
weight of Ca, mH= mass of the H atom), M2 = 2 X 19 mH(\9 = atomic 
weight of F, therefore 2 X 19 = molecular weight of the negative component 
F2). Thus we obtain 

^ ^ = 1 — - + — - I — , hence M =\9.5mH. 
M \40 38/ mH 

U n n . d. Phys. (Lpz.) 54, p. 672, 1895. 
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From this and (11) we find 

This value is of the same order of magnitude as that obtainable from the 
values for ejm and ejmH given in Sec. 17. Our original assumption: ultra-
violet resonance oscillations — electron oscillations, infrared resonance 
oscillations = ion oscillations, is thus confirmed. 

The relationship between n^2 and the dispersion constants Cv C2, λν λ2 

required by eq. (9) is also tolerably well fulfilled. For, according to (9), one 
obtains 

nx* = 6.09, V C, = ~ = 0.7, V C2 = ^ = 4.06, 

hence 
1 + V C, + λ2

2 C2 = 5.76. 
The electric determination of the dielectric constant gives 

s = 6.7 to 6.9. 

When Drude arrived at these and many similar results around 1900, he 
made the incidental remark to the author: "We live in a grandiose era; we 
are beginning to get a glimpse of the electric composition of matter." Had 
he lived to witness the developments of the following decades, he would 
have seen his boldest hopes surpassed. 

From a practical point of view the shape of the dispersion curve for glass 
is clearly of paramount importance to the problem of designing achromatic 
lenses and other optical apparatus. In exercise III. 3 we shall treat the 
achromatic prism and in the same connection also the direct vision prism. 
Exercise III. 2 serves as preparation for these problems. 

19. Anomalous Dispersion 

We shall now investigate the dispersion in the immediate vicinity of a 
resonance frequency ω = ω0. We assume that the latter lies in the visible 
spectrum, because only in the visible spectrum can sufficiently precise 
measurements be made with which to check the theory. Hence, our body is 
no longer transparent as had previously been assumed, but, as we shall see, 
it is colored and the coloration depends on the value of ω0. 

Since for ω = ω0 the equation for the forced oscillations (17.3 a) would 
result in an oscillation of infinite amplitude, we must add a damping term. 
This same procedure is used in all other resonance problems of mechanics 

(12) 
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and electrodynamics. We shall write this term in the form g ω0 s, because 
it is convenient to make the term proportional to the velocity s and because 
inclusion of the factor ω0 makes the damping constant g a dimensionless 
number. In order for the resonance to be sharp, g must be < 1 , Equation 
(17.4) is thus changed into 

W \W + ^Jt + <)?=-nT^ 
Since ω0 is in the visible spectrum, and the oscillating particles are therefore 
ions, m is a reduced mass and also includes the valence number p of the 
ion as in (18.4). 

For a field E of frequency ω and for steady harmonic oscillations of the 
ions, (1) gives 

p=Ne2 Ε 
m (ω0

2 - ω2 - i g ω0 ω) 

and, corresponding to (17.10) and (18.6), the resulting index of refraction is 

(2) «=«-*+„J.?!*"· ■ 
ω^-ω'-ι £ωηω. uo 

nm is the average contribution in the vicinity of ω = ω0 of all other resonances 
which add to the dispersion in the visible range (also included in nm 

is the contribution 1 of the pure displacement current which has heretofore 
been written down separately). As in the case of metallic reflection the index 
of refraction n has now become complex. As in eq. (6.2) we again replace n 
by n (I + ix); by separating real and imaginary parts we obtain from (2) 

(3) η2(\-κ2) =nm
2 + 

(7) v = 
nm

2 x :Vi + * 
α 2 χ2 + g2 ( l + χ) > x 2 + g 2 ( l + x ) 

(4) 

We introduce the abbreviation 

(5) (dimensionless number) 

and use as variables 

(6) 

Then eqs. (3) and (4) become 
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The extrema of y are found in the following way: 
dy 1 / , 2x2+°2· 
dx x2 + g2 (1 + 

/ 2 x2 + g2 x \_ 

^ ) \ 1 _ * 2 + g2(i + *)/~°' 
hence *2.: 

+ i Jmin 
1 

«2 2 g + g 2 

1 
a- 2g-g2 

We now visualize the content of our formulae by means of a table and a 
graph. For the sake of clarity we shall treat g as a small number. Then we 
can neglect g2 as compared to g and, where they occur together, g as compared 
to 1. In the first line of the table x is used as a spectral measure and in the 
last line ω is given. 

X 

y-nm
2la2 

z 

ω 

- 1 

+ 1 

0 

0 

-* 

1/2* 

1/2* 

ω0 | / l - g 

0 

0 

1/* 

ω0 

+ g 

- 1 / 2 * 

+ 1/2* 

ω0 [/l + * 

οο 

0 

0 

00 

In agreement with this 
table fig. 22 shows that the 
extrema of the y-curve occur 
at x = ± g and that the 
curve cuts the line y = nm

2la2 

at x = 0. Furthermore, the 
narrow bell-shaped z curve 
attains its maximum at x ~0 
(more precisely at x = - g2/4 
+ . . . ) and its half-value 
width is 2 g. The scales to 
which the y- and ^-curves are 
drawn in fig. 22 are not 
comparable. The scale of the 
z-curve is indicated on the 
right of the figure. 

Besides representing y and 
of the behavior of n2 and κ. 
somewhat distorted from the 
eq. (3) and (4). 

-1 -gOg +1 
Fig. 22 

Representation of anomalous dispersion. 

+ X 

ω2-ω0
2 

y = 
w 2 ( l — κ 2 ) 2« 2κ 

ω0< αύ α' 
The y-curve (scale on the left) indicates substantially 
the course of the index of refraction. The ^-curve 
(scale on the right) indicates the coefficient of 

absorption. 

z, fig. 22 also serves as a qualitative illustration 
Only in the vicinity of κ = 0 are the curves 

exact representations of n and κ as given by 
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In fig. 22 the portion of the curve for the index of refraction lying between 
A and D is of greatest interest to us. While before A and after D this curve 
rises with increasing ω (normal dispersion), between A and D it descends with 
increasing x. This is called anomalous dispersion, i. e. the short waves are 
refracted less than the longer ones. The Dane Christiansen first observed this 
phenomenon in fuchsin around 1870. Almost at the same time and 

independently Kundt detected it in 
various dyes. 

The portion BC of the descending 
curve AD is marked with hatch lines 
to indicate that in this range the 
spectrum is extinguished by absorption. 
Hence the anomalous dispersion is 
observable only along the short 
segments AB and CD. In the case 
of fuchsin the absorption band is in 
the yellow-green. The transmitted 
unabsorbed light therefore, has the 
complementary intensely red color. 

The above remarks regarding dyes 
apply even more strongly to the 

Fig. 23. 

Family of y curves for increasing damping 
(expressed by the parameter b). b = 0 

gives the rectangular hyperbola. 

vicinity of all the spectral lines of 
gases. By virtue of this fact Kundt's 
original "method of crossed prisms" 
has been developed into a powerful 
spectroscopic method. 

In order to familiarize ourselves with the characteristic shape of the 
y-curve, we recall (fig. 23) the method of avoiding the singularity, at x = 0, 
of the hyperbola y = - \\x by substituting the continuous function 

which, in the limit as b -* 0, approaches the rectangular hyperbola y =-\jx. 
The latter function corresponds to the index of refraction for the case of an 
undamped resonance denominator. The continuous function corresponds to 
the index of refraction for the case of the damped resonance denominator in 
eq. (7). 

Figure 22 furthermore demonstrates that in passing through the resonance 
from short wavelengths to longer wavelengths the y-curve (n2la2) is raised 
by unity. We can also verify this by comparing the second and last columns 
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in the above table. Every resonance frequency contributes such an increase 
in the value of n2\a2. Every time n2 passes through a resonance it is increased 
by a2. This enables us to understand why for solids with complex molecules, 
e. g. glass, the indices of refraction in the optical range differ from those in 
the range of Hertz waves. 

The particularly striking case of water (n = 4/3 in the visible spectrum, 
= ]/7= \'80 in the limiting case of electrostatics λ = oo) does not belong 

in the same category, but is rather due to the polar nature of the H20-
molecule; see Vol. I l l , p. 74, footnote 1. Owing to their triangular structure 
the water molecules possess a permanent electric moment which can follow 
the external field oscillations only at long wavelengths. A sort of molecular 
stiffness prevents them from being set into oscillation by short waves. The 
transition between the two regions of behavior is in the vicinity of A = 1.7 cm; 
and it is here also that the main portion of the jump between the optical 
value of n2 and the electrostatic dielectric constant lies. 

20. Magnetic Rotation of the Plane of Polarization 

One of the important contributions to the development of the electro-
magnetic theory of light was Faraday's discovery in 1845 (see historical table) 
of a connection between optics and magnetism, two up to that time entirely 
distinct fields. Although this connection does not apply to processes in free 
space, but is limited to ponderable bodies and is related to the motions of the 
dispersion electrons in such bodies, Faraday's discovery was, nevertheless, 
an impressively strong hint of the electromagnetic nature of light. 

We begin with eq. (17.3) where the force of the field on the electron was 
described solely by - eE. On the other hand we know from Vol. I l l that the 
force of the field on a moving charge (which we shall again denote by - e) 
is given generally by the Lorentz force expression 

(1) F = -e(E + vx B). 

Setting B = μ Η and noting that according to (2.5) the relation 

|H| = ]/^|E| 

holds for a light field, we remark that the B term in (1) differs from the E 
term by the factor 
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The magnetic force is, therefore, only a correction of first order in ß and can 
be neglected in comparison to the electric force - e E. 

But now we shall suppose that the material is placed in an external field B 
which can be made much stronger than the optical B-field. In that case the 
equation of motion (17.3) must be provided with a possibly large correction 
term, and it then reads: 
(2) ros + /s = -é?(E + s X B). 

We choose the direction of B as the positive ^-direction and assume that the 
light wave propagates in this same direction. With these assumptions E and s 
are vectors in the ^y-plane1. Separating the components of (2), dividing by m, 
and letting ω0

2 = fjrn, we obtain the two simultaneous equations. 

(3) 

+ 

y~ 

e 
m 
e 

m 

B 

B 

S y 

Sx 

+ 

+ 

ω0
2 

ω0
2 

Sx 

sy 

= 

= 

e 
m 
e 
m 

Ex 

Ey 

1 

±i 

However, it must be emphasized that this method of deriving (4) by way 
of (3) is unnecessarily indirect. For (4) is nothing else than the initial eq. (2), 
provided the latter is interpreted in the following way: two-dimensional 
vectors are complex numbers of the form a + i b and therefore the vectors 
s and E in (2) are identical with the complex quantities 5 and E as defined 
in (4 a). Moreover, since multiplication by i means a right-handed rotation 
from x to y around z, and since the vector product is also defined by the 
right-handed screw rule, it follows that s X B in (2) is simply the complex 
number =F i B S which appears multiplied by - ejm on the left-hand side 
in eq. (4). 

This point of view is quite generally valid. It suggests that we treat the 
complex quantities E themselves as the basic field variables, rather than the 
components Ex, Ey. Physically this implies a transition from linear to circular 

1Like all quantities which we use to represent monochromatic states, E and s are, 
of course, everywhere multiplied by the same time factor exp (-iœt). While heretofore 
we could almost always omit writing this factor it improves the clarity of the calculations 
to retain it occasionally and we shall do so starting with eq. (5) The transition to real 
parts is again postponed until the final formula (14). 

(4 a) 
where the following abbreviations have been used: 

(4) 

Multiplying by the factors indicated on the right and adding we get 
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polarization. If originally (i. e. without magnetic field or where the light 
enters this field) we have a linearly polarized wave E : Ex= A cos ω tt 

Ey = 0, then we decompose this wave into the two right and left circularly 
polarized waves, say E+ and E_, and in agreement with (4 a) set 

(4 b) EX = \(E++E_), Ey = ~AE+-EJ). 

Then we carry out all calculations using E± as the simplest elements of the 
field and find expressions for their velocities of propagation and indices of 
refraction (which will differ somewhat for the two components). After the 
light has passed through the magnetic field, we again combine E± into a 
linear oscillation E which will have been turned through a certain angle χ 
in the #y-plane compared to the original oscillation Ex. The resulting law for χ 
is rather complicated and becomes clear only because of our simpler assump-
tions about E. 

We assume the wave to be monochromatic, i. e. simply periodic in t, 

(5) Ε± = ΑβΗ^ζ-ω1) 

where A is a real number. We thereby fulfill our initial condition at z = 0 
(entrance of linearly polarized light into the magnetic field) : 
(5 a) Ex = A cos ω t, Ey — 0, 

and at the same time we take into account the circular nature of E± in the 
magnetic field: 

(5 b) \E±\=A\ei{k±'-°ti\ = A, 

since, as we shall show below, this expression describes two circular oscilla-
tions, provided only that k± are real. 

Using (5) and the corresponding expression for 5 we obtain from (4) for 
the steady state, that is, for the purely periodic state of the electron fluid 

-elm 
(6) S± = 

œ2zf — Bœ + ω0
2 

m 
It should be remarked that the denominator here is real and not complex as 
in the case of anomalous dispersion, eq. (19.2). This is due to the fact that the 
magnetic field does no work on the electrons. We can disregard the absorption 
which takes place when ω —- ω0 since that effect is not caused by B. 

The vector P which is proportional to s behaves just like the latter. If 
we set 

P± = Px±tPy 
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then, according to (17.2), we get 
N e2lm 

(6 a) P± = — ' 
e - ω 2 = ρ — Βω + ω η

2 

Therefore, for the periodic state the differential eq. (17.6) gives in place of (17.9) 

(7) * ± ' = ^ / ΐ + ^ c 2 J V g 2 / W -
ω0

2 =F —B ω-ω2\ υ m ' 

Hence there are two different indices of refraction corresponding to the two 
wave numbers k±, namely 

(7a) W± = ^ 

and their values are given by (compare with (17.10)) 

2__i , Ne2lme0 (8) « ±
2 = M 

« ^ 

This then, is the result of our dispersion calculation in its simplest form, 
i. e. using E±. We see that n+ and n_ differ from one another, and n+ is 
somewhat larger than n_. 

This difference is small, however, because, as was remarked in connection 
with (2), the middle term in the denominator is only a correction term. By 
neglecting the square of this correction term we get from (8) 

9 9 Ne2 ^ e Bco 
(9) n+2-n-J = 2-ms0 m((o0

2-œ2)2 

or, if we introduce the mean index of refraction n = 1/2 (n+ + n_), 

Ne* Βω 
(9 a) nm2e0 (ω0

2-ω2)2 

We now turn to the method of measuring this effect. First we shall justify 
the title of this section: "Rotation of the Plane of Polarization." Let the path 
of the light in the magnetic field extend from z = 0 to z = I. Let us determine 
the values of E± at z = I. For this it is advantageous to decompose k± into 
two terms which are symmetric and antisymmetric, respectively, with respect 
to an interchange of k+ and k_. Thus we set 

(10) A ± = i (*+ + *_) ± - j (*+-*- ) · 
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We also introduce the abbreviations 

(11) <p = L(k++k-)-œt} Z = i(*+-A_). 

As we shall see, φ is a phase difference and χ is an angle of rotation. We obtain 
then 

^ 
i 1 
-(k+-k-)-cot\, 

(12) E± = A expi \- (k+ + k-) ± - (k+ - k-)-œt\ 

and applying (11) 
(13) E+ = A ei(P e1*, E_ = A ei(? £-***, 

from which follows, according to (4 b), 
(14) Ex = A e** cos χ, Ey = e** sin χ. 

Since Ex and Ey oscillate with the same phase, they combine into a linear 
oscillation which is rotated in a positive sense (right-handed screw direction 
around the magnetic field B) by an angle χ with respect to the incident oscillation 
(5 a). At the same time the phase <p is changed from its original value at z — 0 
in (5 b) by the amount 

K + k- y 

The angle χ can be measured very precisely. One sets 
(15) x=VlH 

where V is called Verdet*s Constant. By (11) and the relation (7 a) between 
k± and n± this constant is 

ω η+ - n_ 
2c H 

From this follows by (9 a) 
Π^ Ne* μ ω* 
Κ ' 2nm2ce0(œ0

2-œ2)2' 

At first sight it might seem that the strong rotation of the plane of 
polarization in ferromagnetic materials is due to the factor μ in (16). However, 
this is not the case. For// plays only a formal role in (16). It appears there 
only because of the conventional definition (15) of χ (which postulates 
proportionality to H, rather than to B} which would actually be better). 
As a matter of fact, our theory cannot encompass ferromagnetism at all 
because it fails to take the electron spin1 into account. 

xThe extent to which the electron spin is able to explain the rotation of polarization 
in ferromagnetic media has been investigated by H. R. Hulme. Proc. Roy. Soc. London 
185, 237, 1935. 
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Clearly, (16) is frequency dependent. Therefore, as with refraction, the 
magnetic rotation of the plane of polarization is connected with dispersion. 
One could develop V in powers of ω2/ω0

2, which is the procedure used for n 
in Sec. 17, and by eliminating ω0 from the first two coefficients of the resulting 
expansion one could derive a universal relationship between e, m and N. 
However, the accuracy with which the dispersion factor in (16) can be measured 
is hardly sufficient to justify this procedure. A better method is to use the 
first terms of the expansions of both n and V; the resulting relation is satisfied 
sufficiently well for the gases H2> 02 , N2 *. 

More important and more interesting than the magnetic rotation is the 
natural rotation of the plane of polarization in crystals which have helical 
structure (quartz, sodium chlorate, etc.) and in liquids which have an 
asymmetrically bound carbon atom (sugar solutions). This rotation of the 
plane of polarization is an indispensable reagent in the entire sugar industry. 
We shall take up these phenomena in Chap. IV. 

At this stage a basic difference between natural and magnetic rotation 
should be emphasized : if at the end of the path /, one reflects the light ray 
backwards, then the natural rotation is cancelled while the magnetic rotation 
is doubled. The magnetic effect is due to the fact that for the return 
path not only k+ and k_ are interchanged in formula (11), but also / and - i 
must be interchanged in formulae (12) and (13). For after the reflection the 
vector direction of a positive rotation in the Gaussian plane is opposite to the 
direction of the magnetic field. Because of this Faraday was able to multiply 
his very minute rotation effect by repeated back and forth reflections. 

21. The Normal Zeeman Effect and Some Remarks on the Anomalous 
Zeeman Effect 

The above considerations provide us with a very simple approach to the 
Zeeman effect, even if only to the normal Zeeman effect in which the spin 
of the electron plays no essential role. Even for the hydrogen atom with its 
single electron the Zeeman effect is actually anomalous. 

Strictly, the normal Zeeman effect occurs only for singlet lines, i. e. when 
the spins of the contributing electrons add up to zero. The simplest example 
is parahelium (two electrons with opposing spins). On the other hand, the 
hydrogen lines, as well as the alkali lines, are doublet lines. However, the 
Zeeman effect of the hydrogen atom approaches the normal Zeeman effect 
very closely even for weak magnetic fields. In the case of the alkalis, which 

1 According to observations by Siertsema. See A. Sommerfeld, Ann. d. Phys. (Lpz.) 
67, 513. 1917. 
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have the same anomalous Zeeman effect as hydrogen, this approach to the 
normal Zeeman effect, the so-called Paschen-Back effect, takes place only in 
very much stronger fields. Latter, we shall give the necessary field strengths 
for each case. H. A. Lorentz worked out the theory of the normal Zeeman 
effect on a classical basis. The spin of the electron, and hence the anomalous 
Zeeman effect, can be understood only quantum-mechanically. 

The treatment of the Zeeman effect for absorption, that is of the interaction 
of an incoming light field with a magnetic field, remains entirely within the 
framework of the basic concepts of the theory of dispersion. Woldemar Voigt 
used this method very successfully to treat the ZMines of sodium. He called 
it the method of the inverse Zeeman effect. Experimentally one is usually 
concerned with the Zeeman effect in emission, the "direct Zeeman effect", 
which we prefer to discuss here because of its mathematically simpler theory. 

We start out from the equation of motion of the electron (20.2) in which 
we must, however, set E = 0, since we are concerned only with the magnetic 
action upon the emitted radiation.1; This equation then reads 

(i) S + W O 2 S = = _ J L ; X B . 
m 

ω0 is the frequency of the light emitted by the atom without magnetic field. 
The term ω0

2 s is due to the retarding "quasielastic force"; see fig. 21 and 
eq. (17.3). 

As in Sec. 20 let the 2-axis lie along the direction of the magnetic 
field B. In this direction s X B = 0, hence 
(2) sz + co0

2sz = 0. 
Therefore, the ^-oscillation of the electron has the original frequency ω0. 
It is not influenced by the magnetic field. 

As before we use complex notation in the #y-plane; that is, as in 
(20.4 a) we set 
(3) 
Hence we get 

(4) 

which corresponds to (20.4). This equation is integrated by assuming 
(5) 

where the factor a is due to the original excitation producing the oscillation 
and remains, therefore, undetermined. Equation (5) implies a circular 
oscillation. Substitution of (5) in (4) yields: 

(6) 
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The middle term is small compared to the other two. Hence, assuming Δ ω 
small, we set 

ν=αω 

ω2 = ω0
2 + 2ω0Δ ω, Β ω = Β ω0, 

and find from (6) 

[vxB] 

υ = αω 

- 2 ω0Δ ω ± — Βωο = 0. 
tn 

Hence 

(7) *ω=±1±Β. 

We verify (7) by the 
following elementary con-
siderations : the circular 
oscillation must be such as 
to maintain equilibrium 
between the centrifugal 

inertia force on the one hand, and the sum of the centripetal quasielastic 
force and the magnetic force on the other. Figure 24a represents the oscillation 
S+ = sx+is . For the radius r = a and the velocity v — a ω (OJ = angular 
frequency and also the angular velocity), the centrifugal force is 

Direction of the Lorentz force v χ Β as centrifugal 
force for left-handed rotation (a), and as centripetal 
force for right-handed rotation (b). The vector B is 

directed out of the paper. 

(8) m- ■ = maoy = ηια\ω0 + — — B\ =ma ω0
2 + a ω0 e B. 

The first term in the last of these expressions is balanced by the quasielastic 
force. The second term is balanced by the magnetic force - e v x B. As 
shown in the figure, v x B is directed centrifugally, hence - e v x B 
is centripetally directed like the quasielastic force. 

Figure 24b shows the same for the oscillation S_ = sx-i sy which we can 
describe, according to (5), by reversing the sign of i: 

sx-isy = ae—ioit. 

Hence, we are now dealing with a circular path with the same radius a but 
the opposite direction of motion and with its Δ ω given by the lower sign in (7). 
The centrifugal force is now 

(8 a) = ma ω' = 
=*·ρ4£Β) - m a coJ -aœne B. 

v X B is here centripetally directed and, therefore, - e v x B is directed 
centrifugally. The magnetic force acts oppositely to the quasielectric 
centripetal force which it holds in equilibrium together with the now reduced 
inertial force. 

Fig. 24 a. 
α.) b.) 

Flg. 24 b. 
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How do the theoretically expected spectra look now? 1. Longitudinal 
observation, i. e. observation in the ^-direction. The linear oscillation (2) has 
the magnetically uninfluenced frequency ω0 and does not radiate in the 
^-direction ; just as a radio antenna does not radiate in its own direction of 
oscillation. On the other hand, the two circular oscillations with their 
magnetically influenced frequencies, eq. (7), radiate two circularly polarized 

o. 

Av Av Av Av 

v=vQ 

a.) 
Fig. 25 a. 

v=v0 

b.) 
Fig. 25 b. 

Normal Zeeman Effect for (a) longitudinal 
and (b) transverse observation. 

electromagnetic waves, one of which is 
left polarized and the other right 
polarized. We define these directions 
of polarization as those seen by an 
observer who is looking in the 
direction of B (that is, looking out 
of the picture in fig. 24). Thus we 
obtain in fig. 25a the picture which 
shows the spectrogram seen by an 
observer looking in the direction of 
the B-field: no light is seen at the position of the original spectral line. 
To the right and left of that position there are equally intense magnetically 
displaced lines. 

The quantitative connection between the primary electron oscillation and 
the emitted radiation which has here been implicity assumed rests upon the 
treatment in Vol. I l l , Sec. 19. 

We also note that in fig. 25a, b the angular frequency ω has been replaced 
by the frequency v = ω/2 π, as is usual in spectroscopy. Thus we get instead 
of A ω as given by (7) 

(9) A v 
\π m 

where, following common usage, B has been replaced by H = #/μ0. 

2. Transverse observation, i. e. observation in a direction perpendicular to 
the magnetic field, as, for example, in the y-direction. The components sy 

of the circular oscillations do not radiate in this direction and can be omitted. 
The components sz emit their strongest radiation in this direction, just as the 
radiation of an antenna or a Hertzian dipole has a maximum in the transverse 
direction. The frequency v0 belonging to sz is now present in the spectrogram. 
The frequencies v0 ± A v of the two circular components are also present, 
but their intensities are only half as great1 because only sx contributes to 

xFor statistical excitation the intensity of the linear oscillation sz is of the same 
magnitude as that of each of the circular oscillations sx ±i sy which were denoted by a% 

in (5). Since on the average sx
2 = sy

2, it follows that sx
2 = a2/2 as stated in the text. 
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them. Since sx oscillates perpendicularly to the magnetic field, the transverse 
E-field emitted by sx is also perpendicular to H. On the other hand, the 
E-field emitted by sg is directed parallel to H. In fig. 25b the corresponding 
lines are denoted by the usual symbols π (parallel) and a (perpendicular). 
The intensity ratio 2 : 1 is indicated by the widths of the lines. The resulting 
picture is called a "normal Lorentz triplet". Indeed, H. A. Lorentz formulated 
the theory, which we have here sketched, immediately upon Zeeman's 
discovery of the magnetic splitting of lines in 1896. 

To be sure, Zeeman's original observations were far from yielding the 
precise spectrograms which we have drawn here. He did not use the light of 
a singlet line but rather that of the (unresolved) sodium D-line doublet and, 
instead of obtaining discrete components, he saw only a general broadening 
of the spectroscopic picture. This was, nevertheless, sufficient to demonstrate 
the existence of a new fundamental effect; an effect, by the way, for which 
even Faraday had searched in vain. Furthermore, Zeeman's result sufficed 
to indicate a qualitative similarity to Lorentz's theory of the effect. For, 
the outer edges of the spot of light were linearly polarized with the direction 
of oscillation of the E-vector, perpendicular to H, if the observation was made 
transverse to the magnetic field. For longitudinal observation, on the other 
hand, the edges were circularly polarized with the rotational sense the same 
as that indicated in fig. 25a. This latter fact was of special significance to the 
electron theory which was then being formulated because it indicated the 
negative charge of the oscillating particles. Indeed, if these particles had 
positive charges,, the sign of Δ v and thereby the sense of the circular 
oscillations would be reversed in all the above formulae and figures. 

The following circumstance, which could not be known at that time, was 
essential to this comparison between experiment and theory: Also in the 
anomalous Zeeman ejects, the σ-components lie near the edges of the pattern while 
the n-components are nearer its center, as shown by fig. 25b. In these 
effects the short wave components are circularly polarized in a right-handed 
screw sense around the magnetic field lines while the long wave components are 
left circularly polarized, as in fig. 25a. 

We shall confirm this by considering the complete transverse decomposition 
of the two D-lines as it was later measured by Zeeman and others. The two 
lines are the D2 line, λ = 5896 Â, fig. 26a, and the D± line, λ = 5890 Â, 
whose intensity is half that of the D2 line; fig. 26b. In both drawings the 
distance of eadi component from the position v = v0 is a multiple of one 
third of the normal Δ v. In both cases the center position is unoccupied and is 
indicated by a broken line. The positions ± Δ v are occupied by strong 
σ-components in fig. 26a and are unoccupied in fig. 26b. The π-components 
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A V 
lie nearest to the center and are displaced from it by — in fig. 26a and by 

o 

2 A r/3 in fig. 26 b. Instead of being normal Lorentz triplets as shown in 
fig. 25b, fig. 26a is a sextet and fig. 26b a quartet. 

Runge's rule says: for all anomalous Zeeman effects the displacements 
of the components from the position of the original line, measured in wave 
numbers, are rational multiples of the Lorentz A v. The denominator of these 
rational multiples is called Runge's <r <τ π π σ σ σ π π σ 
denominator. It's value is 3 for 
the principal series of sodium and 
all other alkalis. A general formula 
which is due to Lande enables one 
to compute the complete splitting 
diagram, including the denominator, 
for every series character. Preston's 
rule says that spectral lines with 
the same series character have the 
same Zeeman splitting. 

However, to these rules must be added the reservation "provided the 
magnetic field is not too strong". What is meant by "not too strong"? 
Paschen and Back found the answer to this question to be: 

Δ* Av 
V=Vr 

Av Av 
V=Vn "0 " = "0 

a.) b.) 
Fig. 26 a. Fig. 26 b. 

Splitting of the Na D-lines under transverse 
observation. 

Dx'. λ = 5890Â; D2: λ = 5896Â. 

(10) Av<.Av0. 

where A v is the magnetic splitting arising from the normal Zeeman effect 
as given by (9), and A 1>0 is, in the case of a doublet line such as the D-lines, 
the spacing of the original two lines. In the case of a "multiplet" A v0 is the 
smallest spacing which occurs between two individual lines. If, with increasing 
H, A v approaches A v0 in magnitude, then A v no longer increases pro-
portionally to H. As A v becomes much larger than A v0, the multiplet shrinks, 
so to speak, into a singlet compared to the strong magnetic field ; the Zeeman 
effect becomes more and more normal. This degeneration phenomenon is 
called the Paschen-Back effect. One consequence of this effect is that the 
hydrogen lines with their extremely small doublet spacing A v0 exhibit a 
normal Zeeman effect even for very weak fields. Therefore these hydrogen 
lines as well as the helium lines (and not only the singlet lines of parahelium, 
but also the close triplet lines of orthohelium) were for a long time considered 
to be typical examples of the normal Zeeman effect. 

We shall compute the critical value of H for which A v = A v0 in the case 
of hydrogen. The magnitude A v0 for the hydrogen doublet is given by the 
formula R oc2/24 where R is the "Rydberg frequency" in reciprocal seconds 
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and a ~ 1/137 is the "fine structure constant". In agreement with 
spectroscopic results this formula yields Δ v0 = 1.08 X 1010 S""1. Hence, 
according to (9), we set 

(11) ψ- — H= 1.08 X lOWS-1. 

The factors on the left are (see table at the end of Sec. 2) : 

(11 a) £ - = l O - ' M - i S Q , — = 1 . 7 6 X 1011 QK-1. 
4 TE m 

Their product has the dimensions 

(11 b) M - S Û Q K - i = M-iS ™ Q K - = M - S K - ^ = ψ ± 
' Amp Amp Amp 

Hence, eq. (11) stipulates that 

1.76 x 1 0 4 # ^ ^ = 1 . 0 8 x 10 M S- 1 , H = 5.8x 1 0 5 A r ^ · 
Amp M 

Since (see Vol. I l l , Sec. 8, eq. (5a)) 

(11 c) 1 —™ -̂ = 4π · 10-3 Oerstedt 

XZ. f. Phys. 18, p. 26, 1923. A precise comparison of these observations with the theory 
of the Paschen-Back effect can be found in Sommerfeld and Unsold, ibid. 36, p. 268, 1926. 

the desired value turns out to be 
(12) ί ί = 4 π χ 5 . 8 χ 102 = 7200 Oerstedt. 
This agrees well with very precise experiments made by Försterling and 
Hansen1 with a Lummer plate. They observed the beginning of the Paschen-
Back effect at 4000 Oerstedt and found that the^r-components of the hydrogen 
doublet merged at 10,000 Oerstedt. In the case of the ZMines whose A v0 

is fifty times that of the hydrogen doublet, the critical field is, instead of (12), 

(12 a) H = 50 X 7200 = 360,000 Oerstedt, 

a field strength which even today is not easy to attain. 
Before ending our brief description of the extremely interesting subject 

of the anomalous Zeeman effect, we wish to reproduce a photometer curve 
taken by Zeeman which he very kindly contributed to the fifth edition of 
"Atombau und Spektrallinien'' Vol. I, p. 523. This result will serve to demon-
strate the progress in technique which has been made in this field. The line 
in question is the chromium line λ = 4254 Â from the septet system of that 
element. In agreement with Landé's theory the splitting consists of seven 
π-components (A v > Δ vnOTm) and twice seven σ-components (A v ^ A vnona). 
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Runge's denominator is 4. All 21 components are beautifully discernible on 
the photometric curve which represents an automatic thirty-six fold enlarge-
ment of the original photographic pattern. 

Returning once more to the normal Zeeman effect and its splitting Δ vnorm, 
we evaluate eq. (9) numerically using the numerical values and dimensions 
given in eqs. (11a, b, c). Thus we obtain 

103 

( 13 ) A 1>norm = 1 . 7 6 X 1 0 4 # A m p / M = 1 . 7 6 X 1 0 4 - — #Oerstedt 
4 71 

where A v has the dimensions sec- 1 , in agreement with the definition of v as 
frequency. However, we want to express this result in the dimensions cm-"1 

as is customary in spectroscopy (reciprocal wave length instead of reciprocal 
period of oscillation). To 
do this, we must divide (13) 
by c = 3 X 1010 cm/sec. 
Then we obtain 
/1iwm = 4.67 x l O - 5 ^ . 

(13 a) 
Since the units Gauss and 
Oerstedt are defined as the 
basic units of the absolute 
cgs-system, H in (13 a) 
means Hn^TS.t as well as H. abs· 

Abnorm. Abnorm. 
v=v0 

Fig. 27. 
Photometer curve of the anomalous Zeeman effect for 

the chromium line λ 4254 Â. 

The entire discussion 
of this section has remained 
within the realm of classi-
cal mechanics and electro-
dynamics. That these re-
sults still remain valid 
in the quantum theory is 
due to the fact that 
Planck's constant h, which 
is characteristic of the quantum theory, accidentally, so to say, drops out of the 
quantum conditions for magnetically influenced spectral lines. A somewhat 
similar statement can be made with regard to the anomalous Zeeman effect. 
The introduction of electron spin and the "vector model", which is constructed 
from the spins and the orbital angular momenta of the electrons, made it 
also possible to formulate a theory of the anomalous Zeeman effect even 
before the introduction of a definitive quantum theory. In that way Runge's 
rule, the Paschen-Back effect, etc. could be understood. The complete theory 
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of spin and the anomalous Zeeman effect, however, had to await the relativ-
istic Dirac theory. We want to point out briefly the interesting interpretation 
of Δ ω in (7) as the Larmor frequency. According to this point of view the 
additional frequency defined in (7) can be considered as the angular velocity 
of an additional rotation which the emitting atom experiences in a magnetic 
field which is switched on infinitely slowly (adiabatically). See exercise III. 4. 

22. Phase Velocity, Signal Velocity, Group Velocity 

In our discussion of dispersion we considered only the steady, purely 
sinusoidal state of the electrons and ions. It was made clear that without 
these induced oscillations no dispersion and refraction, and therefore no value 
of n different from 1 can exist. Hence also the phase velocity u = cjn refers 
exclusively to purely periodic states of the light and of matter, which is to 
say, states that will last for all eternity and were established an infinitely long 
time ago. 

A. FOURIER REPRESENTATION OF A BOUNDED WAVE TRAIN 

This fact immediately enables us to overcome an objection to the theory 
of relativity which was much discussed around the year 19101. In a region 
of anomalous dispersion it may happen that n < 1, hence u > c. To see this 
we need only assume in fig. 22 that the medium has no infrared resonance 
oscillations. Then the value of nm in the figure is equal to 1 and the y-curve 
which coincides with the w-curve (except in the immediate vicinity of the 
absorption frequency) lies below the line n = nm —- 1 to the right of D. Thus u 
would be a velocity greater than that of light which cannot exist according to 
the theory of relativity. 

However, we emphasized in Vol. I l l , Sec. 27 F, that this prohibition is 
limited to processes which can serve as a signal and are able to initiate 
material events. A monochromatic light wave without beginning or end can 
do no such thing. The Morse signals used in wireless telegraphy are interrupted 
wave trains. So far, our considerations in no way imply that the front of such 
a Morse signal propagates with the phase velocity u. In order to be able to 
apply our previous results to such a signal we must decompose the interrupted 
signal into a sum of purely periodic waves without beginning or end. WTe do 
this with the aid of the Fourier Integral. 

1 Gesellschaft der Naturforscher 1907, Physikalische Zeitschrift 8, p. 841, and Weber 
Festschrift 1912 (publ. by Teubner). Further discussed in Ann. d. Phys. (Lpz.) 44, 
1914: Α. Sommerfeld, p. 177, L. Brillouin, p. 203. 
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The resulting spectrum of partial waves is calculated in Vol. VI, 
exercise 1.4, and is represented there in fig. 33 c. It can be described 
as a ''fluted spectrum'' which has a pronounced maximum at ω = 2π\τ 
and a half-width which decreases as the length of the wave train contained 
in the signal increases. This result pertains to a signal which consists of a 
finite sequence of identical sine oscillations of period τ. It is noted in Vol. VI 
that such a wave train which is bounded on two sides can be treated as the 
difference between two wave trains each of which is bounded at only one end. 

However, for a signal bounded on only one side, such as 

0 t < 0 
sin2ntlr t>0 (1) f i t ) 

the usual form of the Fourier integral fails because the latter obviously 
diverges since / (t) does not vanish as t -> oo. In Vol. VI the Fourier integral 
is, therefore, replaced by a converging contour integral in the complex plane. 

We repeat1 the same procedure here. The original path of integration shall 
be the upper curve in fig. 28 a : 

dco 
(2) / ( ' ) = · 

hl· 
-i cot 

ω 2 - (2π / τ ) 2 ' 

*-2π/τ0+2π/τ 

One sees immediately that for negative values of t, -i ω t has a negative 
real part in the upper half of the complex ω-plane, and that this real part 
goes to - oo as the distance from the real axis increases ; that is, exp (- i ω t) 
becomes vanishingly small. Since there 
is nothing to prevent us from shifting 
the path of integration to infinity in 
the upper half-plane (indicated by the ] 
arrows), / (t) vanishes as required by 
the first line in (1). For t>0, however, 
exp (- i ω t) vanishes at infinity when 
approached through the lower half-
plane. If the path of integration is 
pushed out to infinity in the lower half 
plane (indicated by the I arrows), it is 
left hanging on the poles ω = ± 2 π\τ. 
Integration around these poles yields -2ni times the sum of the residues 
at the two poles (direction of integration in a negative sense in the complex 

Fig. 28 a. 
Representation of a wave train bounded 
at one end. Path of integration in the 

complex ω-plane. 

x In a somewhat changed form since we write exp(-ico/) instead of exp ( + iœt). 
Correspondingly, the upper and lower half planes of the complex ω-plane are interchanged 
in the present figure in comparison to fig. 24 b in Vol. VI. 
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plane). Since the contributions to the integral of the paths from the poles 
to infinity and back cancel each other, it follows from (2) that 

2 Tt Î 6 — 2 π * ί/τ _ ^ 4- 2 π i t\x 

(2 a) / (/) == —— = sin In t\x 

as required by the second line of (1). 

B. PROPAGATION OF THE WAVE FRONT IN A DISPERSIVE MEDIUM 

We now consider one of the individual component oscillations of (2) 
having the time dependence exp (- i ω t) and complement it to form the 
wave exp i (k x - ω t) which propagates in the positive ^-direction. At time 
t = 0 let the front of the resulting wave train fall upon the boundary plane 
x — 0 of a dispersive medium which extends from x = 0 to x = oo. Each 
component wave train knows nothing, so to speak, of its origin in the bounded 
wave train but behaves exactly like the plane wave in a dispersive medium 
which we treated in Sec. 17. Therefore, we can use for k the value obtained 
in Sec. 17: 

(3) k = m, »«=1 
c 

The abbreviation a2 is the same as that used in eq. (19.5). 
Treating all component waves of the aggregate (2) in this same way and 

superposing them by means of our complex integral, we obtain a possible 
state in the dispersive medium which has the form (2) at x = 0 and is, 
therefore, the complete solution of our problem, namely 

! «2«O2 

eo0
2 - <w2 ' 

*» Ne2 

m ε0 ω0
2 

(*,*) = - ! / e*lhi (4) f(x.t) = - - \ eH* *-*')■ dü) 

ω 2 -(2π/τ) 2 

It remains only to discuss this expression for values of x > 0. 
To do this we must know its singularities in the ω-plane. These are, besides 

the poles ω = ± 2 π/τ, the singularities of k. (3) yields 

ω 1 /ω0
2 1 + a2)-ω2 ω 1 [ΰΤ- ωχ Ί ω + ωχ y——^ 

(5) k = —\ u g = — \ / — i » ω 1 = ω 0 ^ 1 + α 2 · 

Thus k has two pairs of branch points. For small values of a (ω1 ~ ω0, n ~ 1) 
it is best to treat ω0 and ω1 together as one pair, and - eo0 and - ω\ as another. 
Each of these pairs of branch points is joined by a branch cut which the 
path of integration must not cross. Since damping was neglected in (3) so that 
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ω0 and ωλ in (5) are real, we consider the cuts to be along the real axis in fig. 28 b. 
In any case the upper half-plane is free of singularities. According to (3), 
k approaches ω/c asymptotically at infinity in the upper half-plane. Hence, 
there we can replace 

(6) exp {i (k x - ω t)} by exp {,„(!-,)}. 
From this it follows that for t < xjc the argument of the exponential function 
has a negative real part in the upper half-plane of the complex co-plane. 
Hence, we can shift the integral (4) into the upper half-plane and thus obtain 

(7) / (x, t) = 0 for x 
t<—· 

c 

ωΊ -ωη 

2π/τ 0+27Γ/Τ 

w 

The wave front penetrates to the depth x in the medium only after a time 
t ^ xjc. It certainly does not propagate with a velocity greater than that of light. 
If any light at all is noticeable at the time t = xjc, {see C), then it must have 
propagated with the velocity c of light in vacuum. 

This is also made clear 
by the following considera-
tion: the dispersion electrons 
are originally at rest (their 
thermal agitation which is in 
no way related to the rhythm 
of the light wave can obviously 
be disregarded). But according 
to our theory, refraction and 
dispersion are due entirely 
to the induced periodic oscilla-
tions of the electrons or ions. 
Thus, to begin with, the 
medium is optically void like a vacuum. The propagation velocity is equal to c 
and the index of refraction, if one still cares to speak of one, is equal to 1. 

So far we have assumed that the wave train falls perpendicularly upon the 
surface x = 0. If we let it enter obliquely, then at first it is neither refracted 
nor reflected. The law of refraction takes effect only as the electrons are brought 
into forced oscillations. Accordingly, on a photographic plate placed behind 
a dispersive medium, the gap between the light spot corresponding to the 
regular refraction and the rectilinear projection of the incident beam 
should be bridged by an extremely weak line of light. 

Fig. 28 b. 
Propagation of the wave train in a dispersive 
medium. In deforming the integration path 
downward the poles and branch points must be 

taken into consideration. 
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So far we have assumed our medium to be isotropic. If the medium is a 
crystal, calcite for instance, then no double refraction should appear at the 
moment of incidence of the wave train. Such crystals also must be traversed 
by the initially incident wave train in an undeviated straight line. 

It is obvious, however, that the above paradoxes depend on a practically 
unattainable degree of monochromatism, straightness of direction, and 
regularity of the wave train. 

C. THE PRECURSORS 

We shall use this name, adopted from seismology, to denote the events 
observed at a depth x immediately following the arrival of the initial wave 
front. We introduce the time interval 

t = t — 

which according to the above discussion is positive and which we shall assume 
to be very small. We deform the original integration path of fig. 28 b into a 

semicircle of very large radius R in 
the upper half-plane plus the 
segments of the real axis, as shown 
in fig. 29. Because of the denomina-
tor ω2 - (2π/τ)2, the integrand goes 
to zero as 1/co2 on the real axis. We 
may add the path in the lower half 
plane which is shown as a dotted 
line in the figure, for if the radius 
of the semicircular portion of this 
lower path is increased to infinity, 
the integrand vanishes exponen-

tially because t > 0. Therefore, we may replace our original path of 
integration by the entire circle. Expressing t in terms of t we obtain, instead 
of (4), 

Fig. 29. 
Transformation of the path of integration of 
fig. 28b into a very large semicircle in the 
upper half-plane (for the calculation of the 

precursors). 

(8) f (Xj) = - l φ expi Ilk -^\ x - ωί\ 
άω 

α>2-{2πΙτ)2 

Now, according to (3), for large |ω| 

(8 a) 
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Using the abbreviation 
a* ωο2 

(9) ξ=-2-Γ
Χ> 

and henceforth neglecting 2π/τ as compared to ω, we obtain from (8) 
_ . . . . . ^ .. dm 

ω 
/(x, t) = ft (ξ,ί) = Λ φ exp i - J - ω t 

^fxp-.{v*n(i|/f+ly| dco 

This integral can be transformed into a known form by making the substitution 
l / T dco dco . l / T . 7 (11) ω \1r = etw, — = idwt — = i\ -e~lwdw. 
]/ ξ ω ωι ]/ ξ 

Then (10) becomes 
- i l / Τ ί , , 

'dw. (12) /χ (f, t) = -ΐ]/^φ exp {- 2 % ]/ξ t cos w} e~ 

Taking our radius R equal to (since t <Cl, this is indeed a very large 
radius), w becomes, by (11), the central angle of our circle, and its value 
therefore goes from 0 to 2 π along the path of integration. Now we compare (12) 
with the familiar integral representation of the Bessel function of order 1 
(see, for instance, Vol. VI, eq. (19.8): 

2π 

J (o) = (T) exn (i n cos w) e V 2Λ 
o 

Because / x is real for real ρ, we can change the sign of i. Then we see that (12) 
can simply be written as 

(12 a) J1 (o) = -— (T) exp (/ ρ cos w) e ^ 2' dw. 

(13) / , ( { . ( )= ^ Ι / τ / ι (2Κ**)-^l/i/,(^ 
From the behavior of / x (ρ) for small ρ (where Jx becomes equal to ρ/2) 

we find the state of the signal immediately upon its arrival at the depth x to 
be the following : the initial amplitude is very small compared to 1, that is to 
the amplitude of the incident oscillation. The initial period of oscillation is 
extremely small compared to the incident period x. The amplitude and period 
both increase with increasing t, the former because of the factor y t , the latter 
because of the positions of the roots Jx (ρ) = 0 which are spaced at distances 
of approximately π apart. This gives the following time interval for the mth 

half-period of the precursor: 

. , mn2 

(10) 
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According to (9) this value is independent of the incident period of oscillation τ. 
It depends only on the depth x and on the dispersive power of the medium. 
For not too small values of x the first precursors are perhaps in the %-ray 
region. Figure 30 illustrates this phenomenon qualitatively by means of a 
very coarsely scaled graph. 

D. THE SIGNAL IN ITS FINAL STEADY STATE 

In contrast to C, we now assume t to be so large that the electrons have 
already attained their final state of oscillation of period τ. The process by 
which the electrons attain this state is, clearly, represented by the integration 
around the two pairs of branch points in the lower part of fig. 28 b. The 

positions of these branch 

f/i(^t) points depend on the 
nature of the electron 
binding forces and on the 
resonance frequencies of 
the electrons. But now the 
previously neglected dam-
ping term must be taken 

Fi£- 30. into consideration, so that 
Schematic sketch of the excitation immediately upon t h e r e s o n a n c e osc i l la t ions 

arrival of the precursors. -,. . T£ , , , . ,, 
* can die out. If we do this, the 

branch points which fig. 28 b 
show to lie on the real axis are shifted somewhat downward into the lower half 
plane. This means that for very large values of t the factor exp (- i ω t) 
which occurs in (8) becomes very small. Therefore, the contributions to the 
integral from the paths around the branch points vanish. All that is left, 
then, are the loop integrals around the two poles ± 2π/τ on the real axis 
in fig. 28 b and these can be evaluated directly by the method of residues. 

At the two poles we have, according to (3), 
, _ 2 π ^ _ 2 π 1 

τ c τ u 
where n and u are the index of refraction and the phase velocity, respectively, 
which belong to the period of oscillation τ. Then we get from (4) 

(14) 
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But this is precisely the wave pattern that results from the incident wave (2 a) 
when it is displaced towards increasing x with phase velocity u. 

In fig. 31 we have plotted t horizontally to the right and the depth x in 
the medium divided by c vertically downward. The straight line t = xjc 
makes an angle of 45° with the horizontal and it marks for each depth x the 
time of arrival of the precursors. The line t = xju makes a smaller angle with 

Scheme of propagation of a wave to a depth x in a dispersive medium. Transition of 
the precursors to the steady state. 

the horizontal because u < c and it indicates how the amplitude and phase 
are transmitted to the depth x : The wave train starting at time / = 0on the 
surface reproduces itself identically at the depth x, its phase being merely 
shifted by x/u. Any other result would be disastrous to the theory of 
interference phenomena which rests upon the precise transmission of the 
phase through dispersive media. 

To be sure, the validity of eq. (14) is assumed only if a sufficiently long time 
t = t - xjc has elapsed. This condition is not necessarily fulfilled at t = x/u. 
Therefore, we have shown the beginning of the wave train which starts at 
/ = xju as a dotted curve and have drawn it as a solid curve only after a later 
time t —- xjg. The locus of points t = xjg is drawn in the figure as a dotted 
straight line (just like the locus of points t = xju). If g < u, this line makes 
a smaller angle with the horizontal than the line t — xju. 

Fig. 31. 
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E. GROUP VELOCITY AND ENERGY TRANSPORT 

The concept of group velocity is familiar from hydrodynamics, Vol. II, 
Sec. 26. This velocity refers not to the propagation of the phase but rather to 
the propagation of energy (or amplitude). We denote1 the group velocity 
by g and compare its formal definition with that of the phase velocity; 

(15) g = l k ' U = J-
Because ω = u k, dœ — u dk + k du, it follows that 

. du 
g=sU + kw 

If we take into consideration that k = 2 π/λ, dk\k = - άλ/λ, then we can 
write 

du 
(16) g = = M _ A _ . 
For normal dispersion 

dn du c 
-77 < 0, and hence - ^ > C because u = — · 
αλ dA n 

Therefore, as was emphasized already in Vol. II, loc. cit., 

(16 a) g<u. 

This fact accounts for the smaller slope of the line t -— x\g in fig. 31. In the 
case of anomalous dispersion this line would be steeper than the line t = ujx. 

As in hydrodynamics we expect that the full amplitude 1 of the incident 
wave will be attained not at t = xju, but at t = x\g. This has been confirmed 
by L. Brillouin in the paper referred to on p. 114. The previously neglected 
contour integrals around the branch points in fig. 28 b are here essential and 
are discussed precisely by Brillouin by means of the saddle-point method 
(Vol. VI, Sec. 19 E and Sec. 21 D). The evaluation of these integrals is not too 
simple and will be omitted here. The result shows that the precursors are 
followed by a transition state which corresponds to the gradual building up 
of the electron oscillations to the point where these oscillations correspond to 
the incoming frequency and amplitude. Thus the ultimate steady state of 
amplitude 1 is reached not at the time t = x\u but rather (for normal dis-
persion) at the later time t = x\g. In this final state the free oscillations of 
the electrons have been damped out and only the forced oscillation of period τ 
remains. The wave train which is drawn dotted in fig. 31 is to be replaced by 

1 I n Vol. I I we wrote V, U instead of the present notation u, g. 



While neighboring oscillations generally cancel each other when integrated 
with respect to ω because of the changes in sign of the exponential function, 
this is not the case for the ''stationary" ω given by (17). In the vicinity of 
this ω the contributions to the integral have the same sign and add. Therefore, 
the energy propagation is determined essentially by the stationary co, that is, 
by eq. (17). According to the definition (15) of g, (17) does indeed yield 

x 
t = - . 

S 
We conclude with a remark, due to Lord Rayleigh, concerning the 

measurement of the velocity of light c. Fizeau's toothed wheel, as well as 
Foucault's mirror, uses cut-off wave trains of the type we have considered 
here. Therefore, it is the group velocity and not the phase velocity which 
determines the time interval necessary for the light to pass through the 
required distances in air. Thus, these experiments really measure g, and not 
u or c. It is only because of the small dispersion and refraction in air that 
g ~ u and that c can be computed from u by applying a small correction. 

23. The Wave-Mechanical Theory of Dispersion 

So far we have not made use of an atomic model. We shall now show 
how according to Schrödinger3 we can obtain a deeper understanding of the 
theory of dispersion if we replace our previous rough assumption of a 
"quasielastic binding" by well-defined wave-mechanical binding energies. 

1 According to fig. 20 in Brillouin, loc. cit., the transition from / = xju to / = xjg 
is by no means as simple as we have sketched it in fig. 31. 

2 See Vol. II Sec. 27 under 3, where we also used this method as a substitute for t he 
mathematically precise saddle-point method. 

3 In his fourth communication, Ann. d. Phys. (Lpz.) 81, 1927. 

(17) 

is "stationary" with respeGt to a displacement along the real ω-axis if 
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this transition state1. Beyond t = xjg the solid wave train correctly represents 
the final amplitude and phase. The formula t = xjg also gives the time 
required for the transport of light energy through a distance x in the dispersive 
medium. 

These results can also be derived directly by the method of stationary 
-phase2. The phase of the exponential function under the integral in (4) 
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Of course, we cannot here develop the formalism of wave mechanics with any 
degree of completeness. Rather, we must limit ourselves to describing the 
progress made by the wave-mechanical treatment as compared to our previous 
discussion. This will be done in subsection A. In subsection B we shall only 
indicate how the dispersion formula used in A may be derived. 

We shall use the particularly simple case of the Na spectrum as an example 
(qualitatively the same results will hold for the other alkalis). We consider, 
therefore, a gas of Na atoms mixed with one of the noble gases (the latter 
will not further enter into our considerations). If we illuminate this gas with 
the prismatically decomposed continuous spectrum of a hot flame, then in 
the light which has passed through the gas, the principal series of the Na 
atom appears as an absorption spectrum. The first of these lines is the yellow 
D-line1. The spectrum has a series limit in the near ultraviolet where the lines 
of higher frequency converge. By means of extremely refined resolving 
apparatus spectroscopists have been able to find and measure more than 50 
lines in the principal series. 

We denote the angular frequencies of these series lines 

ωλ (D-line), ω2, ω3, . . . , ω«,. 

Wave mechanics associates with these frequencies the energy levels of the 
atom 

W09Wl9W2t...9Wn. 

Let W0 be the energy of the atom in its ground state and let Wv W2, . . . 
be the energies of excited states when the valence electron of the Na-atom is 
lifted out of its original orbit2 into a higher orbit which is more distant from 
the atom. Wœ = Wj is the ionization energy needed to separate the electron 
from the atom and leave a Na+ ion behind. Above the series limit there is a 
continuous spectrum of ω-values, or energy levels W, which we will not need 
to go into further here. The connection between ω;· and Wj is 

where h is Planck's quantum of action divided by 2π. See fig. 32. 

JWe can here neglect the doublet nature of the D-line. 
2 Abbreviation for "eigenfunction". 

(1) 
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A. COMPARISON OF THE OLDER DISPERSION FORMULA WITH THE WAVE-
MECHANICAL FORMULA 

If we take into account not just a single resonance frequency ω0 but a 
series of such frequencies ω1} ,,.,ω^ . . . , our dispersion formula (17.10) 
becomes 

(2) «2-l =—Σ Ni 

m ε0 ~ coj 
2 . 

; 
Nj is the number of electrons per unit volume which have a resonance 
frequency ω;·. The numbers Nj themselves are unknown. But they must 
collectively satisfy 

(2 a) ΣΝί = Ν 

where N is the number of Na-atoms and therefore also (for single valency Na) 
the total number of valence electrons per unit volume. 

In place of this, wave mechanics yields 

(3) W 2 _ 1 = J _ 2 7 Nfi 

men 

fj is called the ''transition probability", or the ''oscillator strength", and is a 
definite number which can be calculated from the atomic model by wave-
mechanical methods. It is subject to the "sum rule" which is analogous to 
the requirement (2 a), namely, 

(3a) JT//=1. 

The difference between eq. (2) and (3) lies not so much in the greater 
definiteness which distinguishes the latter because the /· occurring in it can be 
computed. The difference lies principally in the meaning of the ω;. In eq. (2) 
which we have taken over from Sec. 17 the ω; are resonance frequencies of 
different electrons with different binding energies. In (3) the ω;· are frequencies 
of transition of one and the same valence electron from the excited state Wj 
to the ground state W0. In (2) the oscillations ω; occur side by side and 
independently of one another. In (3) the transitions take place one after the 
other, depending on the excitation just preceding each, so that they mutually 
exclude one another. Thus, in spite of their formal similarity, the meanings 
of eq. (2) and (3) are quite different. This new interpretation of the ω} as 
energy differences is equivalent to Ritz's combination principle which, since 
Bohr, has been the foundation of the theory of spectral lines. The ideas on 
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which eq. (3) is based are represented schematically in fig. 32. The energy 
levels W^ are plotted vertically upward from the ground state W0 to the 
ionization energy WJm The transition frequencies co7 with their limiting value 

œœ are plotted horizontally to the 
W r i § h t · 

The wave-mechanical scheme can be 
extended considerably. Instead of starting 
with the ground state, we could investi-
gate the dispersion formula for any 
desired excited state of energy Wk. Then 
we would have to draw the arrows 
originating above Wk only down to Wk. 
Arrows pointing up from the levels below 
Wk would also enter the picture and 
these would contribute negative dispersion 
terms. See fig. 32 a in which we have 
chosen k = 2. In such a case the tran-

level W sition frequencies must be provided with 
double indices œ,h. To be consistent the 

&2 

w* 

Wn 

Fig. 32. 
Correspondence between emission 

frequencies ων ω2, . . . and energy 
level Wlt W9 

and 
and the ground 

w, 

w, 

w 

θω32ω. -co 
-ω 

20 '42 

Fig. 32 a. 
Dispersion of light due to an excited 
atom. Besides the positive dispersion 
terms also negative terms appear 
which correspond to transitions from 

deeper lying levels. 

o)j in fig. 32 should, then, be denoted 
as WjQ. 

B. OUTLINE1 OF THE DERIVATION OF EQ. (3) 

The Schrödinger equation for the 
wave function ψ of our valence electron 
reads 

(4) Ay>+^r(W-V)y) = 0. 

V is the potential of the force field and 
takes into account not only the attrac-
tion of the nucleus but also the mean 
repulsions of the remaining atomic elec-
trons. Equation (4) has continuous, 
normalizable solutions only for the 

\¥Λ, . . . , Wk> . . . These solutions are the 
"eigenfunctions" of the atom. The kth of these functions, completed so as to 
include its time dependence, is: 

discrete set of values W = Wn 

xFor further details see any text book on wave mechanics, e. g. "Atombau und 
Spektrallinien", Vol. I l , p . 360. 
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(5) uk = ipk exp (.ψ). 
Let the atom be perturbed by an incident light wave of angular 

frequency ω which propagates in the ̂ -direction and is polarized in the 
y-direction. We represent the space-time dependence of this wave by 

Ή) , -'-(-f) 
The perturbed state u of the valence electron satisfies the time-dependent 
Schrödinger equation 

(6) 
limdu 2m ί ίωί-±) , -imL-A\du 

a is a constant factor which is proportional to the amplitude of the incident 
wave. The reader may convince himself that for the case of no perturbation 
(a = o, u = uk) eq. (6) reduces to eq. (4). The factor du/dy on the right 
corresponds to the term (A · grad u) in the general time dependent Schrödinger 
equation and takes that form because the 'Vector potential·' A has the direc-
tion of the light vector E which, according to our assumption, is the 
y-direction. 

Owing to the perturbation the state (5) becomes 

(7) u= Uk alw^ exp (- — Wkt-i cot\ + w— exp | - - r W** + ΐ 'ω / 

where the perturbation factors w± must satisfy a time-independent differential 
equation which is derived from (6), namely 

(7a) Au>±+-£(Wk±K(o-V)w± = - ^ e : ~ . 

This equation can be integrated by the general methods of perturbation 
theory. The right-hand side of (7 a) which is to be considered as a known 
function of the position x, y, z must be expanded into a series in terms of the 
complete system of eigenfunctions ψ·; that is, it is written in the form1 

(8) ΣΑΐ Wl· 

1 Actually we should have denoted the coefficients Aj of the series (8) by Aj±, 
corresponding to the ± sign on the right-hand side of eq. (7 a). But because the wave 
length A = 2 n c/ω of the incident light is very large compared to the size of the atom, 
the exponent ± i ω x\c is very small for all values of x which come into consideration. 
Therefore, the ± sign can be suppressed for Aj. 
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In the same way we write on the left-hand side of (7 a) 

J*W (8 a) w±=2jBf 
i 

and obtain 

(9) ΣΒΑΔΨί + 2^(π*±η°>-ν)Α= Σ Α<Ψί· 
i . j 

If we substitute here the value of Δ ψ^ as given by (4), the position dependent 
quantity V is eliminated form the left-hand side and (9) simplifies to 

(9 a) ψΣ B? (W» ~W>±n «>) fi = Σ Ai W· 
i i 

By comparing coefficients one finds 

Bf = ± »- A, 
2tnWk-Wj±hco 

Applying eq. (1) and recalling the remarks made in connection with fig. 32 a, 
we may write this as 

(10) B , * = -1 Imcojk^Fco 

Thus the values of the transition frequencies œjk (which in (1) are defined for 
the ground state) result automatically from the perturbation calculation and 
take the place of the oscillation frequencies ω in the dispersion formula (2). 
With this result we have attained the essential purpose of our wave-mechanical 
considerations. The following remarks will serve only to show how this result 
leads to eq. (3) which is analogous to the classical dispersion formula (2). 

It follows from (7) that together with w± the function u, which describes 
the perturbed state, may also be represented as a series in terms of the ipj. 
We need not go into the calculation of the coefficients Aj of this series which is 
performed in the Fourier manner and requires that the system of eigen-
functions y;· be known. From u one obtains the density distribution ρ = uu* 
and from it is found Py, the component of the electric moment of this distribu-
tion in the direction of polarization y of the incident wave. From P which is 
the average of Py taken over all possible orientations of the atom the 
value of n2 - 1 is found. In this way one obtains precisely eq. (3) with a 
definite expression for / which takes the form of a space integral over the 
eigenfunctions. 



CHAPTER IV 

CRYSTAL OPTICS 

So far, we have assumed all optical media to be isotropic. But the complete 
range of optical refinement is revealed only by anisotropic media. The inter-
ference patterns of crystal plates in polarized light are among the most 
beautiful and splendidly colored phenomena of nature. They indicate the 
regular structure of crystals even more clearly than the outward shape does. 
Moreover, calcite, mica, and quartz are essential components of some of the 
most important optical apparatus. 

However, we shall in general not deal with the atomistic structure of 
anisotropic media but shall treat these only from a phenomenological point 
of view, just as we have done with isotropic media. The simplest assumptions 
regarding directional dependence and symmetry suffice for a fairly complete 
description of the phenomena. The condition required by such methods, 
i. e. that "the wave length of the light shall be large compared to the inter-
atomic distances'', is certainly fulfilled in the visible spectrum. 

24. FresnePs Ellipsoid, Index Ellipsoid, Principal Dielectric Axes 

A medium is electrically anisotropic if the relationship between the 
excitation D and the field strength E is determined by a "linear vector 
function" 

J^l = £χι ̂ ι + £χ2 ̂ 2 l ε13 ̂ 3> 

(1) -^2 = £21 ̂ 1 i £22 ̂ 2 "Γ" ε23 ̂ 3> 

^ 3 = = %L ̂ 1 i ε32 ̂ 2 ~Γ £33 ̂ 3 

rather than by the simple proportionality D = ε Ε as in the isotropic case. 
1, 2, 3 in (1) are three mutually perpendicular coordinate directions which are 
fixed in the crystal in some particular way. The dielectric constant is now 
not a scalar but a symmetric tensor of rank two. The symmetry condition 

(1 a) 6ik = Ski 

follows from the requirement that the work done per unit volume ( E · ^D) 
in building up a field must be a total differential. See Vol. I l l , eq. (5.6 d) 
and footnote 2. Only if this symmetry condition is fulfilled does there exist 

129 
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an ''electric energy per unit volume'' as a variable of state which is independent 
of previous events, namely 

(2) Wt = l{E-D) = l2J Σ^Ε*Ε"· 
i k 

Because of (1), E and D are not parallel but have, in general, different 
directions. 

We have met linear vector functions before on various occasions. There 
was, for instance, the relationship between the angular velocity and the angular 
momentum of a rigid body in Vol. I, eq. (24.9). This relationship led to 
Poinsot's construction: to find the angular momentum M corresponding to 
a rotation ω, place a plane tangential to the inertia ellipsoid (/ = const.) 
through the tip of the ω vector, which is in that ellipsoid. Then draw a perpen-
dicular to this tangential plane from the center of the ellipsoid. This perpen-
dicular is in direction and magnitude the desired angular momentum. The 
same thing written as formulae1 reads: 

xThe Iik' are related to the usual products of inertia Iik of Vol. I in the following way: 
in = in, Iik' = - Iik- This changed notation is clearly convenient for the comparison 
with the eik in eq. (1) and (2). 

(3) 

where i» 2» "Î a r e the rectangular coordinates of the tip of to as measured 
in our 1, 2, 3 system. We may also say: "M is the normal to that polar plane 
of the inertia ellipsoid which belongs to the co-direction." 

We have already emphasized in Vol. I that this same construction is valid 
for any linear vector function which is derived from a symmetric tensor. 
Indeed, one obtains our eq. (1) for D from the eq. (3) for M by replacing in 
the latter the tensor (Iik') by (eik) and the vector ω by E. Then the characteris-
tic "tensor surface'' to be used in the construction 

(4) 

is called FresneVs ellipsoid. That this surface is in fact an ellipsoid and not a 
general second order surface follows, as in the case of the inertia ellipsoid, 
from the fact that the left-hand side of (4) represents an energy. This left-
hand side must therefore be a positive definite quadratic form. 

The polar planes belonging to the three principal axes of the ellipsoid are 
perpendicular to these axes. Hence along these axes and only along them 
are D and E parallel. We call these axes "principal dielectric axes" (in contrast 

const., const. 
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to the "optic axes" to be introduced later). If these axes are chosen as the 
coordinate axes, one obtains instead of (1) 
(5) D1 = e1E1, ϋ2 = ε2Ε2, D3 = ssE3. 

These ε{ are called "principal dielectric constants'. Just as in mechanics where 
the products of inertia Iik vanish in the coordinate system of the principal 
moments of inertia, so here the mixed eik vanish and Fresnel's ellipsoid assumes 
the form 

(6) εχ χλ
2 + ε2 x2

2 + ε3 xs2 = const., const. = 2 We. 

Making use of Maxwell's relationship for non-magnetic media n = y ε/ε0, 
we can write instead of (6) 

2 We 

(6 a) nx
2 #j2 -f n2

2 x2
2 + n^ *3

2 = const., const. = 
€o 

The wi which are here introduced are called the "principal indices of refraction". 
Equation (6 a) shows that the lengths of the principal axes of Fresnel's ellipsoid 
are the reciprocals of the three principal indices of refraction. For later use we 
also define the three "principal light velocities" as 

(6b) „ ,= Λ = . 

We now take the opposite viewpoint and assume D to be given and 
express E as a linear vector function of D. This is done by solving eq. (1). 
We write this solution as 

Ei = nn Di + *7i2 D2 + Vis Ds> 
(7) E2 = η21 Dx + η22 D2 + η2Ζ Ζ)3, 

Ez = %i Di + Vs2 D2 + Vsz Dv 
The η are the minors of the previous ε, divided by the determinant of ε: 

(7 a) r\m n = | ' , · 

The symmetry of the ^-tensor follows from that of the ε-tensor as expressed 
in eq. (1 a) (our present notation obviously has nothing to do with the electric 
susceptibility in Vol. I l l , Sec. 11 C). 

Using (7), eq. (2) can be rewritten 

(8) W.= λ- (D · E) = ί J T 2J VmnDmDn. 
m n 

The corresponding tensor surface becomes 

(9) ^ Σ TJmnXmXn = COnst. 
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ε2 0 
0 e3 

* 
εχ 0 0 
0 ε2 0 
0 0 ε3 

This equation is different from (4), but because of its connection with the 
electric energy it also represents an ellipsoid. Transformed to its principal 
axes system this equation assumes the form 

(9 a) η1 V + η2 χ2
2 + η3 *3

2 = const. 

The principal axes of the ^-tensor (9 a) are in the same direction as those of 
the ε-tensor (6) because both are determined by the condition that D and E 
shall be parallel. 

Furthermore, it can easily be shown that 

(io) ψ = \ . 
bi 

For by substituting into (7 a) the principal axis values for the eit one obtains 

*?i = I Λ* Ί ~=~ ! ° ε2 0 | = — e t c · 
ει 

If we now express the ε{ in terms of the principal indices of refraction nit 

as in (6 a), then we obtain from (9 a) and (10) 
2 2 2 

(11) \ + \ + \ = const., const. = 2Wêe0. 
ni n2 n% 

Therefore, the lengths of the principal axes of our present ellipsoid are equal 
to the principal indices of refraction and not to their reciprocals as in the 
Fresnel ellipsoid. (11) is, therefore, called the index ellipsoid (also Fletcher's 
ellipsoid or "reciprocal ellipsoid"). 

The positions of the principal dielectric axes in the crystal change a little 
with temperature and also differ somewhat for different frequencies. 
Therefore, one speaks of a "dispersion of the principal axes". Only the 
symmetry of the crystal lattice, if it exists, which controls all physical 
phenomena, completely fixes the principal axes. We shall go further into 
this in Sec. 28. 

All these considerations have been concerned only with electrically 
anisotropic bodies. But there are also magnetic crystals. We mentioned the 
most important ferromagnetic ones in Vol. I l l at the beginning of Sec. 12. These 
are, however, of no interest in optics because the magnetization cannot follow 
the rapid optical oscillations, but dies out in the far infrared. For this reason 
we can henceforth set μ = μ0, that is, treat only magnetically isotropic media. 
Correspondingly, our earlier considerations in Sec. 3 C in which the distinction 
between μ and μ0 was important, referred not to optical but to centimeter 
waves. 
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25. The Structure of the Plane Wave and its Polarization 

As we know (Vol. I l l , Sec. 4), Maxwell's equations are valid in crystals as 
well as in isotropic media. Since we can set μ = μ0, these equations contain 
the three quantities E, D, and H where D and E are connected by eq. (24.1). 
Thus, if we assume the crystal to be non-conducting, we have 

"» *£- - '* £--Ή. 
From divcurl = 0, it follows that div H and div D are constant with 
respect to time. Both of these constants are to be set equal to zero ; the first 
one because the magnetic force lines are free of sources, the second because 
we can assume the crystal to be free of charges and because the charge density 
is generally to be defined by div D. Hence 
(2) div H = 0, div D = 0. 
The condition 

2 a div D = — 1 + - ^ + -z-5- = 0 
Βχλ dx2 dx3 

holds in every cartesian coordinate system, not merely in the principal axis 
system of the dielectric. If one were to replace D by E by means of (24.1), 
a rather unwieldy formula would result. Only in the coordinate system of the 
principal axes does this substitution have the relatively simple form 
/Ä i x d ΕΛ d E9 dE* 

< 2 b ) ^ + ε>Ί^ + ε*Ί>£ = 0-
We mention this mainly in order to show that 
/Ä v __ d ΕΛ d E9 d Ee. 2 c div E = — * + —-? + —* 

dxx dx2 dx3 

cannot vanish simultaneously with div D ; this occurs neither in the principal 
axis system nor in a general cartesian coordinate system. 

Limiting ourselves to the case of the plane wave, we will make the 
following consistent assumptions as to the forms of D and E: 
(3) D = A exp i {k · r - ω t}, E = B exp i {k · r - ω t). 

These are valid in any cartesian coordinate system. In this way we express 
the fact that the space and time dependences of both these vectors are 
the same, but that their amplitudes and directions will differ. As in the 
isotropic case of Sec. 2, these assumptions express an ideal state which is 
completely monochromatic (single frequency ω) and directed completely 
parallel (single wave vector k). We have already discussed in Sec. 2 how such 
a state can be approximated with natural light by using a monochromator 
and collimator. 
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The D-wave is transverse, i. e. the vector D is perpendicular to the wave 
vector k. This follows from (2 a). For, according to (3), 

(4) div D = i [ΑΛ kx + A2 k2 + As k3) exp i {k · r - ω i) = i k · D = 0. 

Hence, D has no component in the direction of k. As a result of the remarks 
accompanying (2 b, c), this is not true of the field vector E. 

We now inquire into the connection between ω, k, and the phase velocity u 
of our plane wave. In the isotropic case this connection was given by 

Î5Ï = — — —— 
k ]/εμ 

The first of these equalities is valid also for crystals. To prove this we need 
only differentiate the phase φ — k · r - ω t with respect to t and follow the 
progress of a certain phase value by setting a\p/dt equal to zero: 

(5a) § = k . i - » = 0 

here r is nothing else but the vector u which has the same direction as the 
wave vector k so that (k* r) = |k| u = k u and 

(5 b) ω = k u, u = — · 

The second equality in (5) for isotropic media resulted from the wave 
equation which, written in terms of D instead of E and for μ = μ0, reads 

d2D 
(6) εμ0-^=ΔΟ. 

We must now see what takes the place of this equation in the anisotropic 
case. For this purpose we eliminate H from the two eqs. (1) by applying the 
curl operator to the first and the operator μ0 djdt to the second. Thus 
we obtain 

d2D 
(6 a) ^0-^2" = - c u r l curl E, 

or using a well-known, actually only symbolic, vector relation (see Vol. I l l , 
eq. (6.2) 

a2D 
(6b) μο—2- = Α E-graddivE. 

This present wave equation is considerably more complicated than eq. (6). 
The last term on the right-hand side does not vanish, as was remarked in 
connection with (2 c) ; nor can A E be written in vector form as a sum of dériva-
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tives of D. Therefore, we shall not discuss (6 b) further but shall return to 
eq. (6 a). Performing the indicated differentiations on the expressions (3) 
we can write 

a2D 
- - = - ω2 D, curl E = i [k x E], curl curl E = - [k x [k x E]]. 

Equation (6 a) yields then 
(7) -u0eo2D = [ k x [ k x E]] = k(k · E)-£2E. 

Using (5 b) to express ω in terms of u and dividing by k2, this becomes 

(8) - M o « 2 D = p ( k - E ) - E . 

We now decompose this vector equation into its components along the three 
principal axis directions. In the principal axis system we get from (3) and 
the connection (24.5) between D and E 

Bj= ^ , / = 1 , 2 , 3 . 

Using the principal light velocities Uj defined in (24.6 b) and cancelling the 
common exponential factor, (8) can be rewritten 
(9) (u2-Uj2)Aj = kjK 

with the abbreviation 

(9a) tf = - l j £ V * M < . 
* 

Formula (9) is a system of homogeneous linear equations for the A's which is 
solvable only if its determinant vanishes. Instead of setting up this deter-

minant, it is simpler to do the following: we multiply (9) by — — 

and sum over /. This gives 

(9 b) 

The left-hand side of this equation vanishes because by (4) 

The factor K on the right-hand side of (9 b) generally does not vanish 
(the principal dielectric axes with their special values of Aj and kj form an 
exception). Therefore we conclude from (9 b) that 

(10) 
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This is a quadratic equation for u2, as can be seen by multiplying it by the 
product of the denominators. Therefore, to every direction k there correspond 
two, generally different, values of u2. The fact that each of these still yields 
the two u-values ± u means, of course, that the same value of \u\ 
corresponds to the two directions ± k. 

We denote the two roots belonging to any k by u'2 and u"2. We shall call 
the corresponding dielectric displacements D', D" and their amplitude 
coefficients A-', A/'. We now assert that D' and D" are mutually perpendicular, 
that is, that 

(11) D ' -D" = 0. 

This follows from the two equations 

A .' — K' kj A ·" — K" ^ 
U l-Uf U *-Uj* 

which are contained in (9). Multiplying these and summing gives 

Ola) ΣΑ{Α^Κ>Κ!·Σ^_^_^ = 
i i 

_ K'K" \ y kj2 y kj2 \ 
u"2-u'2 \ ^ u'2-Uj2 ~ u"2-Uj2\ 

Because of (10), the last two summations over / vanish so that ΣΑ/ A/' and 
i 

D' · D" also vanish. 
These calculations of «', u" and the resulting facts concerning D', D" 

can be illustrated and made more definite by means of the geometrical 
construction in fig. 33. We begin with the index ellipsoid (24.11). If we replace 
the η{ by the principal light velocities uif the equation of that ellipsoid reads 

2We (12) V V + u2 x2 + u2 xz
2 = C, C = 2 We ε0 c

2 = 
^o 

We place a plane perpendicular to k through the center of the ellipsoid. Its 
equation is 

(13) kx xx + k2 x2 + k3 xs = 0. 

We now construct the ellipse which forms the intersection between the plane 
and the ellipsoid. We assert that the principal axes of this ellipse are (aside 
from a common factor) equal to the reciprocal values of u', u"', and that their 
directions coincide with the directions of D', D". 
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We find these principal axes by computing the extrema of χλ
2 + x2

2 + x3
2, 

subject to the subsidiary conditions (12) and (13). Using the Lagrangian 
multipliers λχ and λ2, we write 

(14) à K 2 + x2
2 + V + K K 2 V + V *22 + V V ) + 
+ h (ki xi + hx2 + h xz)} = 0. 

After introducing λχ and A2, the variations bXj of the coordinates Xj belonging 
to the vertices can be considered as independent of one another. Hence, the 
coefficients of ÔXj resulting from (14) 
must individually be equal to zero. 
Thus we obtain three conditions for 
the Xj'. 

(14 a) 2 XJ (1 + λί u?) + λ2 kj = 0. 

To determine λχ
 χ we multiply (14 a) 

by Xj and sum over /. Applying the 
conditions (12) and (13), we obtain 

where Σχ? means a2 or b2 (a and b 
are the major and minor axes of the 
ellipse). If we introduce the noncom-
mittal abbreviation Cju2 to cover 
both of these possibilities, then 

(15) λ - - 1 

Fig. 33. 

Index ellipsoid and construction of the 
D-vectors belonging to the wave number 

vector k. 

Equation (14 a) reads then 

(15 a) ?£' (U2-UJ2) =---X2kj or 
*/ 2 Xj 

λ2Μ
2 

If we multiply the last equation by &; and sum over /, then the right-hand 
side vanishes because of (13), and we obtain as in (10) 

Here u has the same meaning as in (10), and our two velocities of propagation 
u', u" are y aside from the factor C as defined in (12), equal to the reciprocals 
of the two principal axes a and b as was claimed. 

1We shall not need the value of λ%. But we could determine it also from (14 a) by 
multiplying by kj and summing over ;". 

(16) 
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To determine the directions of the two principal axes, we form from (15 a) 
the ratios 

( 1 7 ) *x : *2 : *3 = ^ Γ ^ 2 : ^Γ^2 : ^2"Γ^2 · 

According to (9), these same ratios also hold for the coefficients A1:A2AZ 

of our D-vectors. Thus the directions of oscillation of the two D-vectors coincide 
with the directions of the principal axes of our inter sectional ellipse. 

The directions of oscillation of the H-vectors are now also fixed. As a 
result of the first eq. (1), H oscillates transversely, i. e., perpendicularly to the 
wave vector k. In addition, H is perpendicular to D as is easily proved from 
the second eq. (1). Hence, we always have 
(18) H - k - 0 , H - D - 0 . 

In particular this means, since we know the position of D, that H oscillates 
in the direction of b if D has the direction of a, and vice versa. 

We collect all of this information in the following two tables in which the 
second lines give the directions of oscillation and the third lines the velocities 
of propagation which are common to the pair of vectors D, H : 

(19) 

In connection with (19) we must still discuss the physical meaning of the 
principal light velocities 1 » 2» Un which were introduced only formally in 
(24.6 b). We consider, for example, a wave vector k in the direction of the 
first principal axis. To it belong two sets of vectors D, H whose respective 
velocities u', u" are, according to (19), the reciprocals of the principal axes 
of the intersection ellipse formed by the plane perpendicular to k. Hence 
uf, u" are equal to u

2

, u
3

, respectively. 
Therefore, the principal light velocities u2 and w3 are the velocities of the two 

waves which propagate in the direction of the first principal axis of the index 
ellipsoid. A corresponding statement holds, with cyclic interchange of the 
indices, for the other two principal axes. 

The most important result of this section is that all monochromatic plane 
waves propagating in a crystal are completely linearly polarized in directions 
which are determined by the crystalline structure. 

How does this result compare with the optical behavior of isotropic media ? 
To make a valid comparison we must, of course, recall the properties of 
monochromatic and parallel, i. e. perfectly collimated, light in an isotropic 
medium, and not those of completely unpolarized natural light. In Sec. 2 we 
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saw that such light must necessarily be elliptically polarized. Therefore the 
distinction between isotropic and anisotropic media does not lie in the fact 
of polarization as such ; the distinction lies in the type of polarization of the 
light. The crystal structure of an anisotropic medium permits two waves 
with different linear polarizations and different velocities to propagate in any 
given direction. In an isotropic medium this completely specified type of 
polarization is smeared out1 into the oscillatory pattern of an ellipse whose 
orientation and size of axes remain unspecified. This is quite understandable, 
because in an isotropic medium all waves have the same velocities and all 
directions are equivalent and, as we know, the elliptic polarization can be 
considered as a superposition of two perpendicular plane oscillations with 
different phases. In contrast to the waves in crystals, any two such 
oscillations propagate with equal velocities in isotropic media and are therefore 
indistinguishable. On the other hand, it is just the fact that these two 
oscillations are distinguishable in anisotropic media which gives crystals their 
importance as principal components of polarization apparatus (calcite, mica, 
etc., see Sec. 29). 

So far we have characterized the state of polarization of the light wave 
by the state of the excitation D, whereas previously we have usually considered 
the field strength as the actual light vector. But since D and E are connected 
by the unique linear relationship of Sec. 24, it is clear that if D is linearly 
polarized, so is E. The next section will deal with the directions of oscillation 
imposed on E by the crystal structure. 

26. Dual Relations 2, Ray Surface and Normal Surface, Optic Axes 

The calculations of Sec. 25 can immediately be transposed from the index 
ellipsoid to Fresnel's ellipsoid. They then yield information about the field 
vector E and the propagation of the ray 

S = E x H. 

1 Using an expression common in wave mechanics we could say: the two linearly 
polarized oscillations in a crystal degenerate into elliptically polarized oscillations in 
isotropic media. 

2 For a complete treatment of this dual relationship we refer to the excellent textbook 
by T. Liebisch, Physikalische Kristallographie, Leipzig 1891. What is involved here is 
the same duality which exists in projective geometry between the coordinate spaces of 
points and planes. If one considers the components of E as point coordinates, then the 
components of D are plane coordinates. From this point of view the Fresnel and index 
ellipsoids represent the same surface, one in point coordinates, the other in plane 
coordinates. The elementary-geometric method of exercises IV. 1 and IV.2 adheres 
closely to Liebisch's textbook. 
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In fig. 34 s = sv s2, s3 is the unit vector in the direction of S and F is the inter-
section of the plane of the drawing with Fresnel's ellipsoid. The plane of the 
drawing is perpendicular to H; hence H projects into the center 0 of the 
ellipse F. E is in the plane of the drawing and so is S by virtue of the last 
equation, but because of the conditions (25.18) D and k are also in the plane 

of the drawing. The diameter W W 
which is perpendicular to k indicates 
the trace of the plane of the wave or, 
in other words, the trace of the plane 
of the intersectional ellipse of Sec. 25. 
The diameter S 5 is the trace of the 
plane which passes through 0 and is 
perpendicular to S. The tangents drawn 
through the points S (traces of plane 
tangential to Fresnel's ellipsoid) are 
perpendicular to D, and hence parallel 
to k according to the polar construction 
of Sec. 24. 

In the upper right-hand portion of 
fig. 34 the plane of the wave W W 
(plane of constant phase) which is 
perpendicular to k is indicated by means 

of a double line. If the wave propagates in the direction of k through the 
distance OP with a velocity «, the ray S must, in order to stay in phase with 
the wave, cover the longer distance 0 Q at the larger velocity v. From the 
right triangle OPQ it follows that 

W 
Fig. 34. 

Intersection of Fresnel's ellipsoid with the 
plane of the drawing (J_ H). Construc-

tion of the wave and ray velocities. 

(i) cos a = 

As shown in fig. 34 the directions of D and E intersect at this same angle a. 
Hence, also 

( la) cos a = 
ED 
E D 

The coplanar position of D, E, and k has already been expressed in 
eq. (25.8). Introducing, in analogy to the unit vector s of the ray, the unit 
"wave normal" vector 

(2) k 
n = 

we rewrite eq. (25.8) as 

(3) μ0η
2Ο= Ε - ( η · E) n. 
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We want to derive the equation which is the dual of this one; that is, the 
equation which expresses the coplanar position of E, D and s. First we write, 
using two undetermined coefficients p and q, 

(4) pE = D-q$. 

Because s · E = 0 and s · s = 1, it follows that q = s · D and hence 
(4a) p E = D - ( s - D ) s . 

Now we form the scalar products of (3) with s and of (4 a) with n. Because 
s · E = 0 and n · D = 0, these result in 

/ i o w 2 ( s - D ) ^ - ( n · E)(s-n), 

* ( n - E ) = - ( s - D ) ( s - n ) . 

If we multiply the right- and left-hand sides of these two equations and 
remember that s · D and n · E do not vanish, then 

(5) μο**2Ρ = (s-n)2. 

According to fig. 34 and eq. (1) 

Hence, according to (5) 

(6) 

Thus eq. (4 a) becomes 

(7) 

u 
s · n = cos a = — 

V 

~μ0ν
2' 

- L E = D - ( S - D ) S 
μ0ν

2 

This equation has precisely the same form as eq. (3); it is its "dual". 
We now recall the plane wave expression (25.3) with the coefficients Aj 

and Bj. By writing this in the principal dielectric axis system and setting 
Bj = AjJEj, we were able to derive in eq. (25.9) a linear system of 
equations for the coefficients Aj. We shall now similarly compute the 
coefficients Bj from (7) by setting Aj = ε;· Bj. First, we get from (7) 

(8) -\-2Bi = ejBj-sJ2JsiStBi; 

then, multiplying by μ0 and rearranging, we obtain 
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Making use of the principal light velocities u^ — (SJ μ0) '-, we have 

2 

These equations correspond precisely to eq. (9) and (9 a) of Sec. 25. The same 
is true of the following equation which is derived from the two previous ones 
just as in Sec. 25: 

(9 b) Σ$'Β' = κ'Στ^-

The left-hand side is zero because s J_ E. Since Κ' φ 0, it follows, as in 
(25.10), that 

(10) — £ — + —''£— + — ^ — = 0. 
J 1_ J 1_ \ _ _ 1 _ 
v2 ux

2 v2 u2
2 v2 w3

2 

Equation (10) is quadratic in v2 just as eq. (25.10) was quadratic in u2. 
Therefore, to every ray direction s there correspond two values v' and v" 
(if we leave the ± sign out of consideration). From a construction on Fresnel's 
ellipsoid analogous to that of fig. 33, one sees that the corresponding field 
vectors E' and E" are mutually perpendicular. 

We now summarize the transformation from D, n, u to E, s, v which we 
have thus developed in the form of the useful "transformation rule": 

/ v r^ r- Ui U _ D C C 
(11) D, E, n, — , — ^ £ 0 E , - , s, — , - . 

c c v ε0 Vi v 

The reader may convince himself that this rule does indeed transform 
eqs. (3) and (7) into each other, both as far as their general form and their 
coefficients are concerned. The same is also true of the expressions (10) 
and (25.10). We have departed from the usual formulation of this rule 
only insofar as we have throughout related to each other only quantities 
with the same dimensions. 

A. DISCUSSION OF THE RAY SURFACE 

We shall now construct a complete picture of the distribution of the ray 
velocities ν', v" for all possible spatial directions of s. For this purpose we plot 
these velocities as radius vectors in the direction of s from the origin of an 
orthogonal coordinate system ξν ξ2, ξ3. In this way we obtain a two-sheeted 

(9 a) 

(9) 
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Because v2 = Σξ?, this equation appears to be of the sixth order in the ξ{; 
but upon multiplication by the product of the denominators, one finds that 
it reduces to the following fourth order equation: 

V V « - ^) (V - V2) + l2
2 V K2 - *>2) (V - »") + 

(13 a) + f.» «,« (V - v*) (V - ^2) = 0 
or, grouped according to powers of v: 

V4 (V f x« + «2
2 £2

2 + «3
2 £3

2) - l>2 {f ̂  V (V + «3
2) + £2

2 «2
2 («3

2 + Wl
2) + 

(13 b) + |3
2 «3

2 (V + «2
2)} + V V «,» fo« + f.« + £3*) = 0. 

Since the last term contains the factor v2 = Σξ?, a factor v2 can be 
cancelled, and the equation indeed represents a surface of only the fourth 
order. 

Fig. 35 a, b. 

Ray surface: a) upper half of the outer sheet, b) lower half of the inner sheet. The 
directions of the arrows indicate the two optic axes. 

We shall call this surface the ray surface. It used to be commonly called 
"Fresnel's wave surface". Our name indicates the origin of the surface from 
the ray velocity v. There are beautiful plaster models of the ray surface which 
can be taken apart and so reveal the way in which the two sheets are 
connected. Figure 35 represents the upper half of the outer sheet and the 

(13) 

Equation (10) can be written in terms of these as 

(12) 

surface in our ξν ξ2, ξ3 space, one sheet of which corresponds to v', the other 
one to v". The points on this surface have the coordinates 
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lower half of the inner sheet. The missing half of each surface is the mirror 
image of the half which is shown. We shall study only the principal sections 
of the ray surface in greater detail, that is, its traces in the planes ξ 1 = 0, 
ξ2 = o, ξ3 = 0. We may assume for this purpose that 

(14) ul>u2>us. 

For £x = 0, we obtain from (13), by multiplying by the product of the 
two remaining denominators and by cancelling the factor (£2

2 + f3
2), 

(15) 
t 2 
*2 

È 2 

»2 . £3_ 
U~2 U9

9 

= 1. 
*3 

This is an ellipse with the principal axes us and u2. There is, however, yet 
another solution of (13) which is obtained by setting both £x and the 

Fig. 36 a. 
Intersection of the ray surface and 

the plane ξ1 = 0. 

Fig. 36 b. 
Intersection of the ray surface and 

the plane ξ3 = 0. 

denominator u^-v2 equal to zero. The indeterminate expression 0/0 
which is thus introduced does indeed enable us to satisfy (13). Thus the 
second solution for ξχ = 0 becomes 

(15 a) l2
2 + h2 = <-

This is a circle of radius uv Because of (14) this circle encloses the ellipse (15), 
see fig. 36 a. 

These two solutions (15), (15 a) can obviously be obtained also from the 
complete expression (13 a) for the ray surface. For, if one sets ξ1 = 0, then 
each of the remaining terms contains the factor (u^-v2). If this factor is 
taken out, an expression equivalent to (15) remains. 
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Next we consider the principal section ξ3 = 0 which is in the plane 
perpendicular to the smallest axis of Fresnel's ellipsoid. Again the section 
consists of a circle and an ellipse, but now the circle lies inside the ellipse. 
For, from (13) we find 

(16) £x2 t 2 
^2 = 1 and | x

2 + ξ2
2 = «3

2, respectively ; 

(see fig. 36 b.) 
The principal section ξ2 = 0 is more interesting. 

It yields 

t 2 £ 2 
(Π) ^ + ^ = 1 , fia + fa2 = «i2·" 

(see fig. 36 c.) Now the radius u2 of the circle is 
smaller than the major axis ux but larger than the 
minor axis % of the ellipse. The circle, therefore, 
intersects the ellipse. At the points of intersection 
the two branches of the ray surface interpenetrate. 
What is the significance of the two axes which 
join the diametrically opposite points of inter-
section ? 

An-
/Tvi 
l 

N 

I4 / 
I A \ 

V^V^ 

VK3 1 1 

r^/v 

4 

Fig. 36 c. 
Intersection of the ray 

surface and the plane £2 = 0. 

B. THE OPTIC AXES 

In these axes the two ray velocities v' and v" are identical just as in 
isotropic media. They are, therefore, called the axes of isotropy or the optic 
axes. The latter name indicates that these axes are even more important in 
crystal optics than are the principal axes of the Fresnel, or index ellipsoid 
which were called "principal dielectric axes". 

As we have seen, the ray velocities v', v" may be determined from the 
principal axes of an elliptic section of Fresnel's ellipsoid, and in the special 
case v' = v" this elliptic section degenerates into a circle. Therefore, we see 
that the optic axes are perpendicular to the planes which intersect the 
ellipsoid in circles. There are well-known cardboard models of triaxial 
ellipsoids which consist of two sets of parallel circular discs which are fitted 
into each other and still have a certain degree of mobility. These models 
provide an interesting and complete representation of the surface of a triaxial 
ellipsoid. The points at which the normals to these circular discs intersect 
the surface of the ellipsoid are known as the umbilical points (German: 
"Nabelpunkte", hence the notation NN in fig. 36 c.) Fig. 36 d shows the 
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positions of both pairs of umbilical points on Fresnel's ellipsoid and their 
connecting lines which are the optic axes; the relation of these lines to the 
principal axes 1 and 3 is also shown. If we call the lengths of the principal 

axes of Fresnel's ellipsoid uv u2, u3, as before, 
and denote the angle between the two optic axes 
by 2 <5S, then 

(18) tan«.-*!®^. 

This expression agrees with the value of ξ$Ι ξχ 
which is obtained from the two eqs. (17) for the 
intersection points of the circle and ellipse. 

If we define the polarization of the ray by the 
direction of the E-vector (in Sec. 25 we corre-
spondingly defined the polarization of the wave by 
the direction of the D-vector), we can say: the 
polarization is linear for all ray directions. The 
planes of polarization of the two rays propagating 
in any one direction are perpendicular to one 

F. , another. The optic axes form the only exception. 
Construction of the optic Because of the circular shape of. the sections 
axes as perpendiculars to belonging to these axes, no direction of polarization 
the centers of the circular j s preferred over any other. This gives further 

sections of Fresnel's , · , . , , (( e · » , 
ellipsoid motivation to the name axes of isotropy . 

C. THE NORMAL SURFACE 

We generate this surface by plotting in every wave number direction k 
the two phase velocities u'', u" of the waves propagating in that direction. If 
we describe this locus again by means of the rectangular coordinates ξν ξ2, ξ3, 
then we must write in place of (12) 

(19) 

and instead of (13) 

(19 a) 

Ä = £«. Σ* 

Σ^^= 
^^ U2-Ui2 

because of eq. (25.10). Multiplying by the product of the denominators we 
obtain instead of (13 b) 
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(19 b) u*- u* [ξχ* {u2 + u2) + | 2
2 (u3

2 + u2) + £3
2 K 2 + V ) ] + 

+ ξ x
2 w2

2 w3
2 + £2

2 w3
2 wx

2 + | 3
2 ux

2 u2 = 0. 

Since the last set of terms does not contain a factor u2, this equation 
represents a sixth order surface. By (19 a) the principal section ξχ = 0 is 
found to consist of a circle 

h2 + h2 = V 
and an "oval" 

which is a fourth order curve (containing also its center ξ2 = | 3 = 0 as an 
isolated point of the curve). The other two principal sections consist of 
similar curves. These sections can again be illustrated 
by figs. 36 â, b, c, where, however, the ellipses must 
be replaced by slightly differently shaped ovals. 

As in fig. 36 c there are two pairs of intersection 
points in the principal section ξ2 = 0. They correspond 
to the umbilical points of the index ellipsoid and the 
lines connecting them define the "optic normal axes". ui ] 
The angle between these axes, which we shall call 
2 δη, is only slightly larger than the angle 2 ôs defined 
in (18). Its magnitude is determined by 

„ _ l / r w 2 ~ 2 - w 3
2 

V Ul2 ~ U22 ' 

In view of the connection of these axes with the 
circular sections of the index ellipsoid, they are the 
"isotropy axes" of the D-vector. This vector is not 
necessarily linearly polarized for propagation along 
these and only these axes. 

A simple geometrical connection exists between the normal surface and the 
ray surface: the normal surface is the pedal surface to the ray surface. The 
section in the 1 - 3 plane yields, for example, the picture shown in fig. 26 e. 
This figure also demonstrates that the oval of the normal surface section (dotted) 
differs only slightly from the ellipse of the ray surface section (full line). It has 
already been shown in fig. 34 that the ray surface is the envelope of the wave 
planes (planes of equal phase). 

v3 
Fig. 36 e. 

The normal surface as 
the pedal surface of the 
ray surface and the ray 
surface as the envelope 
of the normal surface. 

(20) 
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27. The Problem of Double Refraction 

If we place a slab of calcite over a sample of writing on a piece of paper, 
then on looking through the calcite the writing appears double. One image is 
displaced parallel with respect to the other. If we consider, for simplicity, a 
negative picture, that is white writing on a black background, then we can 
say the following: the waves emitted by the writing reach the eye by two 
paths which have different directions in the calcite and after the refraction 
have also different directions in the air. The eye extrapolates the perceived 
directions wrongly by projecting them in straight lines to the bottom of the 
calcite and therefore the impression is created that the writing is double. 

The beautiful construction based 
on Huygens' principle for the re-
fracted wave in an isotropic medium 
(see fig. 37) is well known. A plane 
wave propagating in the direction 
S; is incident upon another medium. 
At the instant that the wave front 
W{ reaches the point 0 on the 
boundary plane, all previous posi-
tions 0' of the wave have already 

Construction of the refracted wave by radiated waves (which are drawn 
Huygens' principle in the isotropic case. a s h e m i s p h e r e s in fig. 37) i n t o t h e 

second medium with the velocity 
of light in that medium. Upon drawing from 0 the envelope of this system of 
hemispheres, one obtains a straight line which is a wave front Wd of the 
refracted ray. The normal Ŝ  to Wd is the direction of propagation of the 
refracted light. 

A. DOUBLE REFRACTION ACCORDING TO HUYGENS' PRINCIPLE 

Huygens himself1 extended this construction with ingenious foresight to 
the case of the (optically uniaxial) calcite crystal. He assumed the surface of 
propagation of the light in the crystal to be not a sphere but a certain combina-
tion of a sphere and an oblate ellipsoid of rotation (compare with fig. 39 b 
below). Thus he obtained two envelopes and thereby two wave fronts, 
one for the system of spheres and another for the system of ellipsoids. Here 
we shall describe the general (optically biaxial) case by replacing the combina-

xThe complete title of Huygens' book is: Traité de la lumière, où sont expliquées 
les causes de ce qui lui arrive dans la réflexion et dans la réfraction et particulièrement 
dans l'étrange réfraction du cristal d'Islande. Leiden 1690. 
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- * * J C 

tion sphere + ellipsoid by our two-sheeted ray surface (26.13); see fig. 37 a. 
The envelopes of the two sheets again yield two wave surfaces Wd' and Wd" 
of the refracted light and the lines connecting the center 0' of the ray surface 
with the points of contact of the envelope give two ray directions S/ and Sd". 
The perpendiculars from 0' upon the two envelopes (in the figure these 

perpendiculars are erected at 0) 
represent the propagation vectors 
(the "wave normals") kd, kd". 

This construction illustrates 
well the origin of double refrac-
tion, and it is therefore widely 
used in the literature; however 
it gives an incomplete description 
in several respects. 

1. The construction pre-
supposes that a diverging bundle 
of rays which originates from a 
point source behaves in the same 
way as a system of mutually 
independent plane waves. It is 
the latter type of wave which 

we have considered in Sec. 26 and whose velocities of propagation we symbolized 
purely geometrically by means of our ray surface. Lamé1 was the first to recognize 
that this presents a mathematical problem which is by no means simple. 
He posed the problem of representing the complex of waves sent out by 
a concussion center (which is analogous to the spherical wave in an isotropic 
medium) in a precise mathematical manner by computing the three 
displacement components. He was, indeed, led (upon excluding the longitu-
dinal waves) to the form of the ray surface. These results were criticized 
and extended by V. Volterra2. 

2. Figure 37a as it stands gives no information about the polarization of 
either the D or the E wave. In this respect our description would have to be 
completed by means of the results obtained in Sees. 25 and 26. 

3. The construction leaves the question of the amplitude ratios between 
the different waves unanswered. 

Fig. 37 a. 
Construction of the two refracted waves by 

Huygens' principle in the anisotropic case. 

1ln his leçons sur la théorie mathématique de l'élasticité, Paris 1852. The differential 
equations integrated by Lamé agree with the differential equations for the magnetic 
field components in electromagnetic optics. 

2Acta Mathematica, Vol. 16, p . 153, 1892. 
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B. THE LAW OF REFRACTION AS A BOUNDARY VALUE PROBLEM 

The preceding remarks indicate that a complete and quantitative theory 
of double refraction can be obtained only by considering the boundary 
conditions, following the method of Chap. I. The reasoning remains the same; 
we operate again with infinitely extended plane waves as the only known 
strict solutions of the optical differential equations, and not with the limited 
rays which usually form the objects of experimentation. We can do without 
additional hypotheses, such as Huygens' principle or the construction of 
envelopes. Let us, however, first reconsider the origin of the ordinary law of 
refraction and reflection which was derived from the boundary conditions in 
Sec. 3. This time we will not specify the boundary conditions beyond the 
fact that they exist and do not contain the time explicitly. This will 
lead us to a reinterpretation of the oldest geometrical construction for the 
angles of reflection and refraction, that of Snell (before 1637). 

Fig. 38. Boundary condition for combination of plane waves, (a) Snell's cou&uuc-
tion; the surface of the body is indicated outside of the circles for propagation in 
free space (k0) and in the body (n k0). (b) The planes of equal phase are shown 
for the incident wave (dotted lines); the same construction applied to the reflected 

and refracted waves gives the same trace pattern along the surface. 

For any wave of frequency ω the wave vector has a prescribed length, 
namely \k0\ = k0 = ω/c in free space, and \k\ = oyju = n k0 in the body of 
refractive index n (assumed > 1 in the figures). This fact can be expressed 
geometrically by drawing two concentric spheres of radii k0 and n k0; any 
vector drawn from the surface of one of the spheres to its center is then a 
possible wave vector of a plane wave in the corresponding medium. Outside 
of the spheres we indicate in the figure the position of the body and its surface. 
We assume an incident wave to fall on the surface and show its wave vector kx 

of length k0 in fig. 38 a. In fig. 38 b the incident wave itself is drawn by 
indicating its planes of equal phase. These planes travel along the arrow with 
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velocity c; their trace forms a wave pattern on the surface which travels 
along the surface from left to right with velocity c/sin a to which corresponds 
a wave vector tangential to the surface and of length \kx\ sin a. 

We may then say that the surface wave obtained as the intersection of 
the incident wave with the surface is described by a wave vector which is the 
tangential component of kv The same will hold for any other wave, in free 
space or in the medium: the field produced at the surface is a surface wave 
the wave vector of which is the component of the spatial wave vector along 
the surface. 

Now a time-independent relation on the surface can exist only between 
waves which give surface traces of the same mode of propagation. Otherwise 
wave amplitudes fulfilling the boundary conditions at selected points or times 
would fall out of step between these points or times. 

Thus, going back to fig. 38 a, only three other wave vectors can be 
combined with kv namely those having the same tangential components as kv 

They are easily obtained by drawing the normal to the surface through the 
tail point of kv Of these vectors &/ is the wave vector of the reflected wave 
(in free space), k2 that of the refracted wave, and its mirror image k2 would 
be a second internal wave compatible with the boundary conditions. This 
last wave exists in a plate with parallel surfaces: it is the internally reflected 
refracted wave which is essential for obtaining the interference pattern of the 
Lummer-Gehrke plate and for calculating the corresponding optical field 
directly from the boundary conditions instead of by the method of summing 
repeated reflexions and refractions as in section 7 F. If we wish to deal 
with a single surface and a single wave incident on it — and this is the 
assumption which leads to the Fresnel formulae — we have to omit the wave 
of wave vector k2. It is easily seen from the construction that the directions 
of kv kx' and k2 give the geometrical laws of reflection and refraction, in fact 
fig. 38 a is Snell's construction. 

We can now generalize this construction to the case of a doubly refracting 
crystal. It was pointed out in the discussion following eq. (25.10) that to 
each direction of k belong two values of u, viz. u', u". Since ψ\ = coju there 
are thus in each direction (except those of the optic axes) two vectors k of 
different length. These correspond, according to fig. 33, to two linearly 
polarized waves of which the D-vectors are in fixed, mutually orthogonal 
directions. In Snell's construction this means that the outer sphere has to be 
replaced by a double surface. This surface is actually the dual counterpart 
of the ray-surface of paragraph 26 A and fig. 35, a, b and it can be obtained 
from it by the translation rule 26 (11). Without going into more detail, 
however, we see that Snell's construction now yields two refracted 
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waves progressing at different angles of refraction β' and β" and polarized 
at right angles to one another. Each of the directions satisfies the law of 
refraction 

sin a _ c sin a c 
sinyff' = w7 ' ϋϊΐ / F = uT ' 

It is worth noting, however, that this law gives the angles /?', β" implicitly 
only, because u't u" vary with these angles. 

C. THE AMPLITUDES OF REFLECTED AND REFRACTED RAYS 

Let us limit the calculation to the case that the incident ray lies in the 
plane containing the greatest and the smallest axis of the index ellipsoid 
(eq. (24.11)), i. e. that, as in Sec. 26 B, it also lies in the plane 
of the optic axes. Then we know, by symmetry, that either E and D both 
lie in the plane of incidence and H at right angles to it, or, for the other case 
of polarization, E and D are both normal to the plane (and thus parallel to 
one another) and H is in the plane. In the latter case the boundary conditions 
are simpler, and we restrict the derivation to it. 

a) Plane of Polarization Parallel to Plane of Incidence 

In medium I (air, y > 0), we assume, as in eq. (3.1), cf. fig. 3 a, 
(\\ E = Ez = A £*M* sin a - y cos a) _|_ Q eik0(xsina'+ ycosa') 

and in the crystal 
(2) Ε=^Εβ=Βε^''\ Bx=By = 0; Bz = B. 

Together with the (suppressed) time factor exp (- i cot), these terms represent 
the incident, reflected, and refracted waves, respectively. Snell's construc-
tion gives 
(3) a' = a and k sin ß = kQ sin a. 
Continuity of the tangential component of E at the surface y = 0 is expressed 
in the equation 
(4) A + C = B. 

Since differences of permeability are neglected, the second boundary condition 
may be expressed as : H continuous. Now in the first medium at the boundary 
(y = 0) 

1 dE k 
Hx = -- -1 = - — (- A cos a + C cos a') eik°xsina, 

i ω oy ω 
Hy = + -r— -τ-^ = — (A sin a + C sin a') e

ik»xuna
t t ω σχ ω 

(5) 
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and in the second medium 

Hx = - J - ^ i =-—(-Bcosß)eikx*W, 
/ r x t ω By ω 

Hy = + J-^ = — (Bsinß) eik*si»0. y % ω dx ω ν ' 

The boundary condition thus is, using (27.3), 

(7) W 

A + C = s ^ o B S ^ = B. sin ß sm a 

The second of these conditions is the same as that for E. In terms of the 
incident amplitude we obtain the refracted and reflected waves 

El A - 2 CIA - t a n ^ ~ t a n a 

' r~tän5' C M - tan/? + tana' 
(8) + t a n ^ 

2 sin yö cos a sin [ß - a) 
sin 09 + a ) ' sin (^ + a) " 

This result is, of course, the same as that obtained in Sec. 3 A for the 
reflected and refracted waves of the same polarization in the case of an 
isotropic body (3.12). 

b) Plane of Polarization Normal to Plane of Incidence 

In this case we cannot expect to obtain the same result as for an isotropic 
body, which is expressed in (3.16). Whereas in the isotropic body the field 
vectors E and D (electric force and dielectric displacement) have the same 
direction, shown by the amplitude vector B in fig. 3 b, their directions differ 
in an anisotropic body. The boundary conditions are: continuity of the 
tangential component of E and of the normal component of D, as well as 
continuity of the magnetic vector H. Now the decomposition of E and D 
into tangential and normal components means their decomposition according 
to the axial system of fig. 3 b (x parallel, y normal to surface), but the 
anisotropic relation between the two vectors finds its simple expression if 
they are decomposed according to the principal axes of the dielectric tensor 
or index ellipsoid (conf. Sec. 24). This double decomposition complicates the 
derivation and expression of the amplitude ratios for this case of polarization. 
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28. The Optical Symmetry of Crystals 

So far we have concerned ourselves only with the general form of the 
dielectric tensor eik. This tensor is defined by 6 parameters (because eik = eki). 
We can find the number of parameters not only from the tensor scheme but 
also from its geometrical interpretation, namely Fresnel's ellipsoid. The 
ellipsoid is defined by its 3 principal axes and by their positions in space which 
in turn are defined by 3 angle parameters. A crystal without symmetry 
properties is called triclinic. Such a crystal is described by the general (ex-
tensor. 

If the crystal has symmetry, the number of independent parameters is 
reduced. By symmetry direction let us understand either an axis of rotational 
symmetry or the direction normal to a mirror plane, as the case may be. Then 
if a crystal has a single symmetry direction it must coincide with one of the 
three symmetry directions of the Fresnel ellipsoid. If the crystal has two 
symmetry directions at right angles to one another, there exists a third one 
which is orthogonal to both, and the symmetry directions of the Fresnel 
ellipsoid must coincide with those of the crystal. Furthermore, the existence 
of a symmetry axis1 of higher order than 2 necessitates equal magnitude of 
the axes of the Fresnel ellipsoid at right angles to its direction; thus the 
ellipsoid will be one of revolution. Again, if there are, as in the cubic system, 
four threefold axes of symmetry (along the body diagonals of a cube), then 
the Fresnel ellipsoid degenerates into a sphere, and a single constant is left 
over from the eik scheme. 

Let us consider some cases in more detail. If a crystal has only one 
symmetry direction, it is called monoclinic. One of the principal axes of the 
Fresnel ellipsoid being fixed by this direction, there remain four parameters. 
These can be found from the scheme of the eik. Assume, for instance, that 
there is a mirror plane normal to the direction of symmetry (index 2), so that 
+ x2 and - x2 are symmetrically equivalent directions. If, for convenience, 
we write xif yi as the variables instead of Eit Dit the general scheme 

3Ί = ε11 Χ1 Η~ ε12 X2 + ε13 XS> 

(1) y2 = €21 Xl i" e22 X2 i" e23 X3> 

y S = ^31 Xl i e32 X2 1 £33 X3 

must remain unchanged if we substitute - x2 for x2 and simultaneously 
- y2 for y2. Thus we have also (reversing all signs in the second line), 

*A rotational symmetry axis of order n is one about which rotation of the 
crystal by 2π/η will bring it to the nearest covering position. 
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J\ = = «11 Xl ~ «12 X2 i~ «13 λ3> 

( l a ) 3/2 = — «21 ^1 ~r «22 ^2 — «23 ^3» 

V3 = «31 *1 ~~ «32 *2 "f~ «33 *3" 

Eqs. (1) and (1 a) are consistent only if ε12 = ε21 = 0 and e23 = ε32 = 0. The 
tensor scheme for this crystal therefore reduces to the four parameters 

( «11 0 «13 

0 s22 0 
«13 0 ε 3 3 

Next consider a crystal with two symmetry directions. There follows 
automatically a third such direction, but we assume that these three directions 
are not further related to one another. This is the case 

(i) in the orthorhombic crystal system where the directions are either twofold 
axes of rotation or normals of mirror planes, 

(ii) in the rhombohedral crystal system where one direction is that of threefold 
rotation symmetry, 

(iii) in the hexagonal system, where one direction is a sixfold axis. 
Since now three angular parameters of the ellipsoid are fixed, the number of 
free parameters is reduced to 3. Assume, for instance, that direction 3 is 
that of a twofold rotation axis, and direction 2, as before, corresponds to 
a mirror plane. The rotation about 3 means that no change is brought about 
by the simultaneous substitutions (xv x2) -> (- xv - x2), (yv y2) -► (- yv - y2). 
Applying this to the equations condensed in the scheme eq. (2), we see that 
the addition of the twofold axis to the mirror plane makes necessary the 
vanishing of ε13. The tensor scheme thus reduces to the terms of the principal 
diagonal. 

If we assume a fourfold rotation axis in direction 3 (together with the 
mirror plane normal to 2), then also a rotation by 90° should produce no 
change; this is given by the substitution 

(xv x2) -> ( -x2, *x), (yv y2) - (- y2, y±). 
Since the repetition of the 90° rotation produces a rotation by 180°, which 
is that of a twofold axis, we may use the previous simplified scheme for 
reducing it further by this substitution. In this way we obtain the following 
sets of relations 

y1 = e11x1 -y2 = -£nx2 

y2 = «22 X2 y\ = «22 xl 

y 3 = £53 # 3 y 3 = £33 # 3 . 

From these follows ε η — ε22, and this leaves only two constants undeter-
mined. 

(2) 
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Crystals which have three symmetry directions of which two are 
symmetrically equivalent are called tetragonal. If all three directions become 
equivalent, they are called cubic. If one of the symmetry directions contains 
a threefold or sixfold axis of rotation, then the Fresnel ellipsoid has full 
rotational symmetry. 

Summarizing we have the following optical properties in the seven crystal 
systems : 

Cubic crystals are optically isotropic, i. e. optically they do not differ from 
amorphous bodies, glasses or liquids. 

Tetragonal, hexagonal and rhombohedral crystals have an ellipsoid of 
rotation. This implies that they are optically uniaxial and have two principal 
indices of refraction. 

Orthorhombic, monoclinic, and triclinic crystals have three principal indices 
of refraction and are optically biaxial. The directions of the principal axes of 
refraction are fixed (for all wavelengths and temperatures) in the orthorhombic 
crystals, but the angle of the optic axes may vary, since it depends on the values 
of the principal refractive indices. In the monoclinic system only one, and in the 
triclinic system none, of the directions of principal index of refraction is fixed* 

The reason why optically only three groups, the biaxial, uniaxial and 
isotropic groups, are distinct lies in the fact that eqs. (1) relate two vector 
quantities (field strength and excitation) to one another. In the theory of 
elasticity two tensor quantities, stress and strain, are related, and this leads 
to the distinction of many more groups than by the crystal-optical behavior. 
Electrostriction and piezoelectricity connect a vector (field strength) with 
a tensor (deformation) and give again a different classification. 

The fact that in optics we are only concerned with the Fresnel or index 
ellipsoids, i. e. with surfaces of a very restricted type, makes it understandable 
that the more elaborate symmetry properties need not be discussed in this 
connection. They are systematically enumerated in the 32 crystal classes 
which are unequally distributed over the seven crystal systems. These classes 
contain a complete description of all geometrically possible symmetry relations 
between directions in space which pass through one point. According to the 
modern conception of crystal structure, crystals are bodies with an internal 
three-dimensional periodicity of atomic arrangement ; the complete enumera-
tion of the symmetry-types compatible with this periodicity led Barlow, 
Schoenflies and Fedorow to 230 different space groups. Crystal optics cannot 
probe into these; only X-ray analysis is able to do this (see Sec. 32). 

In the uniaxial case the familiar constructions which we have used in the 
biaxial case are considerably simplified. Letting ε1 = ε2 φ ε3, we introduce 
the notation 
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(3) 
ux = u2 = u0 ordinary wave velocity, 
u3 = ue extraordinary wave velocity, 

and correspondingly, v0 the ordinary and ve the extraordinary ray velocity. 
Then one of the principal axes a, b of the elliptic section in fig. 33 lies in the 
equatorial plane of the index ellipsoid; the other principal axis lies in the 
meridian plane through the optic axis. The planes of polarization of the 
respective waves are that meridian plane and the plane perpendicular to it 
which passes through the direction of propagation but not through the optic 
axis. The same is true for the construction of the ray directions from Fresnel's 
ellipsoid. 

Fig. 39. 

Ray surfaces of optically uniaxial crystals 
a) «o > ue uniaxial positive; example, quartz. 
b) u0 < ue uniaxial negative; example, calcite. 

The shape of the ray surface is now particularly simple. Not only can the 
factor v2 be removed in eq. (26.13 b) for this surface, but since u1 = u2 = uot 

also a factor u2 -v2 cancels out. Thus the equation becomes 

{Î!2 + £2
2 + ί3

2 - «o2} {(ίΐ2 + h2) "o2 + f.« V - Uo2 U2} = 0 

which separates into a sphere of radius u0 and an ellipsoid of revolution 

fx2 + ξ2
2 * 2 

(4) 
U0

à 

These two surfaces touch at the points ξ3 = ± u0- This verifies the form of 
the radiation surface which Huygens predicted for calcite. 

Depending on the way in which the sphere and ellipsoid touch, one 
distinguishes positive and negative optically uniaxial crystals, see fig. 39 a, b. 

The wave surface (normal surface) looks less simple. It separates 
into a sphere of radius u and a fourth order surface of revolution which is 
called an "ovaloid", namely 

(5) (Î!2 + f2
2 + f3

2) (£i2 + £a2 + 42-««2) = h2 («ο2-«Λ 
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In the limiting case of isotropy u0 = ue, (4) becomes a sphere of radius u0 

and hence the ray surface consists of this sphere, counted twice. At the same 
time (5) degenerates into a sphere of radius zero (isolated double point) and a 
sphere of radius u0. 

29. Optically Active Crystals and Fluids 

By means of the structure theory of crystals it is possible to confirm the 
purely phenomenological discussion of this chapter, beginning with the relation 
(24.1). For, in the summation over the lattice structure of elementary 
constituents, different directions in the crystal would give dielectrically 
different results. In the same way the theory of dispersion of Chap. I l l could 
be extended to the crystalline state. However, ' 'optical activity", i. e. the 
rotating power of certain crystal classes, seems to demand some use of 
structure theory, at least to the extent to which it is discussed in Sees. 75 and 84 
of the textbook by Max Born which we mentioned on p. 40. We will, however, 
show in parts A and B how a much shorter phenomenological discussion can 
describe even this phenomenon. Only occasionally shall we require structural 
considerations in order to illustrate our results. 

In subsection C we shall give only a very cursory presentation of optical 
activity in fluids and optically isotropic crystals even though this subject 
is of enormous theoretical importance for stereochemistry and of considerable 
practical importance in industry. A more precise t reatment would require 
a more profound discussion of molecular structure than is compatible with 
the scope of these lectures. For such treatments we refer the reader to Sees. 84 
and 99 of Born's book and to the articles by Born, C. W. Oseen, and W. Kuhn 
which are cited there. 

A. T H E GYRATION VECTOR OF SOLENOIDAL CRYSTAL STRUCTURES 

We can write our linear vector function (24.1) in the abbreviated form 

(1) Dj = ejhEh 

where the sjh form a real symmetric tensor. We now discard the reality 
condition for the ε and replace 

Sjk by ejh + iyjh. 

The additional terms y, which are supposed to be small, are not to have an 
ohmic, dissipative character as in the complex dielectric constant of metal 
optics. Rather, they shall be conservative, which means tha t the yjh must 
not contribute to the electric energy density We = 1/2 (D · E) as computed 
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from Maxwell's equations. This latter condition is fulfilled if they form an 
antisymmetric tensor as do the conservative gyroscopic terms in mechanics 
(see Vol. I, Sec. 30). 

In order to explain this in greater detail, we write instead of (1) 
(2) Dj = ejhEh + iyihEh 

and find 

D · E = ΣΣ €i* EJE* + * ΣΣ 7/A EiEh' 
j h j h 

In order that the contribution of the y term vanish for arbitrary values 
of the E components, every y need not be identically zero, but it suffices 
if the y fulfill the following conditions : 

y%% = 0, yjh + yhj = 0. 
These are precisely the conditions for the antisymmetry of the y-tensor. 
We see now also why the y-tensor must be purely imaginary1. For if it had 
a real part, this would add to the ε-tensor and disturb its symmetry, but 
we know that the ε-tensor must be symmetric for general reasons of energy. 

An antisymmetric tensor (yjh) can always be replaced by a vector γ with 
the components 

Vi = 723 = - y**> ?2 = 781 = - 7is> 7 3 = 7i2 = - 721· 

Thus we obtain 

Σ y^E* = 73Ε2~?2Ε3 = - [Y X E l l e t c · 
i 

Then (2) becomes 

(3) D/ = 2 T ^ - i [ ï X E ] / . 
h 

We call γ the gyration vector. It is not a polar but an axial vector like the 
angular velocity ω in Vol. I, Sec. 22. We quote from there: 

' 'Axial vectors are properly represented by an axis provided with a sense 
of rotation and a magnitude of rotation." "The signs of their components 
do not change under inversion of the coordinate system (interchange of 

Physically, the factor i is due to the fact that the value of D at any given point 
depends not only on the \'alue of E at that particular point but also on the behavior of E 
in the vicinity of this point ; that is to say, D depends also on the local derivatives of E. 
Owing to the wave character of E, these derivatives contain the factor i. From an atomistic 
viewpoint this is due to the influence of neighboring ions which are in a field differ-
ing from that at the point under consideration. In order that these effects shall not 
cancel one another, the lattice has to have a certain amount of asymmetry which will 
be determined presently. 
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x, y , z wi th - x, - y t - z)" ' T h e vector product of an axial and a polar vector 
is a polar vector ." "Under inversion a right-handed coordinate system becomes 
a left-handed coordinate sys tem." But thereby also the sense of rotation 
+ i of the complex plane is replaced by - i. 

Let us consider a crystal which has a symmet ry center. For such a 
crystal eq. (3) mus t be invar iant under inversion. Upon inversion the 
components of the polar vectors D and E change sign as do the components of 
γ X E. B u t since i also changes its sign, the sign of the last t e rm in (3) 
remains unchanged. Hence after an inversion (3) reads 

(3 a) - Dj = -J££jhEh-i [γ χ E],·. 
h 

This is consistent with (3) only if γ x E = 0. Therefore our invariance 
condition for a centrally symmetr ic crystal requires t h a t γ = 0. Only a 
crystal without a center of symmetry can possesss a gyration vector. There are 
examples of such acentric crystals among each of the seven crystal systems. 
The most common example is quartz (silicon dioxide, S i0 2 ) . 

Wri t ing eq. (3) in the principal axes of the dielectric, 1, 2, 3, we obtain 
D1 = ε1Ε1 + %γζE2 - iy2£3, 

(4) D2 = ε2Ε2- i y3 Ex + i y x E3> 

D* = HE3 + hiEi - hiE2-

We see here t h a t in general, in a triclinic acentric crystal , for instance, 
the γ-direction is b y no means determined by the principal dielectric axes. 
However, in the case of quar tz with its rotat ional dielectric symmetry , the 
gyrat ion vector mus t also submit to this symmet ry and mus t be parallel t o 
the principal axis. Hence γχ = γ2 = 0, y 3 = γ, and (4) becomes 

D1 = e1E1 + iyE2, 
(4a) D2 = e2E2 - iyEv 

B. T H E ROTATION OF T H E PLANE OF POLARIZATION IN QUARTZ. 

We proceed exactly as in Sec. 26 except t h a t the above eq. (4 a) is used in 
place of Z); = ε; 2Γ;·. As a result, a number of correction te rms which differ for 
the different directions / = 1, 2, 3 have to be added in eq. (26.8). For / = 1, 
we obtain in place of (26.8) 

<5) W~7,^i = ^B1 + iyB2-s1\2JSiBjBj + iy (s1B2-s2B1) | . 
rov I . J 
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Introducing the abbreviation, 

(5 a) K = J>JsjSj Bj + iy (sx B2-s2 BJ, 

multiplying (δ) by μ0, and introducing the ordinary and extraordinary 
principal light velocities u0 = (ειμ0)~

v* = (ε2μ0)~
ί/ζ, ue — (ε3 ̂ ο)-"^2» o n e 

obtains in place of (26.9) 

(6) \ ^ 2 " ^ 2 / Bl + 1 ^ Β * ^ o s i ^ · 

Correspondingly, we find for / = 2 and 3 

(7) 1^---ήΒ2-ΐμ0γΒ1 = μ 0
5 2 ^ 

Ue
2 V2 J 

We now multiply eqs. (6), (7), and (8) by the factors 
Si On So 

(i-;l (Λ-Λ) (ΛΛ) 
respectively, and add the three resulting equations, obtaining 

(9) 2 \ s*+*>o/lg°~s;ßl=/*<>* 
2 

+ V 2 ù
3 

J__J_ _1_ 
Wo2 V2 Ue

2 

The first term on the left-hand side vanishes because s i E. But the second 
term also vanishes to an order higher than the first, for the presence of the 
factor y allows us to approximate B1 and B2 by means of eq. (26.9). Since in 
this equation Βλ and B2 are proportional to sx and s2 respectively, sx B2 - s2 Bx 

is at least of the first order in y. Hence the right-hand side of (9) must vanish 
at least like y2. Since K φ 0, we find that to the same degree of accuracy 

(9a) ^ i 2 + V + _j3^_= ( ) 

\__}_ J J_ 
U0

2 V2 Ue
2 V2 

This is our former eq. (26.10) specialized to the case of an uniaxial crystal. 
Therefore, except for differences of the second order in y, the ray surface of an 
optically active crystal agrees with that of an inactive crystal. 

But this is true only "generally", namely only so long as the denominator 
of the second term on the left side of eq. (9) does not itself become as small 
as y ; but for a ray in the approximate direction of the optic axis one has v 2 ~ u0

2. 

(8) 
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For such a ray sL and s2 are small of the first order, and so is Z?3, because of 
the transversality condition. Therefore, according to (5), K also becomes 
small of the first order. This means that the right-hand sides of eqs. (6) and (7) 
are second order quantities in sx and s2 and can be neglected, while eq. (8) 
is automatically satisfied in the first order. Equations (6) and (7) thus become 

1 

±i 

Multiplication by the factors indicated on the right and addition gives rise 
to two equations which must be fulfilled simultaneously: 

(ID 
( i - i+Ay)(Bi + iB,)=0. 

If we satisfy the first equation by choosing v2 so as to make the first factor 
zero, then we must satisfy the second equation by setting its second factor 
equal to zero, and vice versa. Thus there are two solutions for v2 which 
correspond to the two branches of the ray surface. As before, we shall denote 
the two solutions by v' andt/ ' , and the corresponding values of B will also 
be distinguished by primes and double primes. Then our two solutions read 

< l l a ) ^ 2 - a + ^ o r = 0, Bl'-iBt' = 0, 

( l l b > ΖΊ-ρτ,-/*οΥ = °· B^' + iB^' = Q. 
Mo V 

These expressions represent two opposite circularly polarized waves which 
propagate with the respective velocities 

(12) ,̂, } = ^ ( ι τ | ) , g = ft,y^2 

and whose directions of rotation are determined by the two non-vanishing 
complex quantities B± + i B2' and Βλ" -i B2". 

This situation is illustrated in fig. 40. However, in contrast to fig. 39 a, 
this figure refers not to linearly but to circularly polarized waves. Where 
the optic axis passes through them, the two branches of the ray surface are 
now separated by the small distance 
(13) v" -v' = u0g 

(10) 
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instead of being tangent as before. For all other ray directions for which the 
two branches were separated anyway in fig. 39 a, the additional separation 
is a second order correction and can be neglected. In these other directions, 
in particular normally to the optic axis, ordinary double refraction of linearly 
polarized waves takes place. 

As in Sec. 20 we interpret the difference between v' and v" in terms of a 
rotation of the plane of polarization. Let us consider a linearly polarized wave 
which is normally incident on a quartz plate whose surfaces are cut perpen-
dicular to the optic axis. We decompose the linear polarization into two 
equal and oppositely directed circular polarizationsT 
In passing through the plate of thickness I the 
phase of one of these waves lags behind that of 
the other. When they emerge from the crystal, 
we again combine the two waves into one linearly 
polarized wave. Its plane of polarization differs 
from that of the incident wave. The plane of 
polarization has been turned through an angle χ 
which is proportional to the thickness / and to the 
difference k+-k_. Hence χ is also proportional 
to the difference v" - v' which along the optic 
axis is identical with the difference u" - u' between 
the wave velocities. The difference between 
magnetic and ''natural·' rotation of the plane of 
polarization, which we discussed at the end of 
Sec. 20, is due to the fact that if we reverse the 
direction of the ray, our present gyration vector, 
which depends on the structure of the quartz, does not change sign, while 
in Sec. 20 the magnetic field strength does change its sign under reversal of 
the direction of propagation. 

The absence of a center of symmetry as a "conditio sine qua noniy is 
indicated by the outward shape of quartz. There are ''right-handed and left-
handed quartzes" which are distinguished by the enantiomorphic trapezoidal 
faces which truncate their hexagonal prisms to the right or to the 
left. The rotating power of cinnabar HgS is several times stronger than 
that of quartz. Optical activity has also been found to exist in the axis 
directions of optically biaxial crystals (cane sugar, Rochelle salt) (Voigt, 
Pocklington). If cubic crystals, in which every direction is a principal axis 
and an optic axis, are optically active at all, they are optically active in every 
direction, e. g. NaC103. Optical activity is not due to the crystal lattice, i. e., 
to the mere internal periodicity of the crystal, but to its structure, that is, 

Fig. 40. 
Ray surface of an optically 
active uniaxial crystal. (In 
contrast to fig. 39 a, this 

refers to a circularly 
polarized wave.) 



164 CRYSTAL OPTICS 29. 

to the symmetry of arrangement of the elements of structure, the atoms, 
within the unit of periodic repeat. In molecular crystals, like cane sugar, the 
part of the rotatory power that resides in the molecule is retained when the 
crystal is dissolved in a liquid; in atomic crystals, like NaC103, rotation 
resides entirely in the crystal structure, and the solution, in which the molecule 
has dissociated into ions, is optically inactive. 

C. OPTICALLY ACTIVE FLUIDS. 

Here we are not concerned with a rigid structure as in crystals but rather 
with fluid molecules whose spatial positions and orientations are statistically 
distributed. If we average over all possible orientations of these molecules, 
the gyration vector γ which was introduced in the assumption (3) reduces 
to a ' 'gyration constant" y. The degree of asymmetry necessary for activity 
is now greater than for crystals. Not only must the molecule have no center 
of symmetry but also it must not have any plane of symmetry. These conditions 
are satisfied in molecules which contain an asymmetrical carbon atom, i. e. one 

R R, ij J.I2 +*2 "1 

α · ) Fig. 41 a, b. *·) 
The two enantiomorphic forms of an optically active molecule. These two forms cannot 

be brought into coincidence by any space rotation. 

whose four valences are attached to four different atoms or radicals. There 
exist two mutually enantiomorphic arrangements of these four substituents 
which are related to one another like image and mirror image or like right-
and left-handed screws. In fig. 41a the sequence Rx R2 R3 -> R± forms a right-
handed screw; in fig. 41b this sequence forms a left-handed screw. These 
two forms cannot be brought into coincidence by any motion in three-
dimensional space. Examples of this kind of molecule are the two sugar types, 
grape sugar, dextrose, and fruit sugar, lévulose. The rotating power of solutions 
and mixtures of these sugars can be determined with extreme accuracy. 
A balanced mixture of right-and left-rotating molecules is called a "racemic" 
state. We have already mentioned at the end of Sec. 20 the great import-
ance of activity measurements in the sugar industry. 
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Lindman1 devised a macroscopic model which serves to illustrate the 
molecular process responsible for optical activity. The arrangement is the 
following: a cardboard box contains several hundred wire spirals which are 
about 2 cm. in diameter and consist of about two windings, all having the same 
rotational sense. The spirals are wrapped individually in tissue paper and the 
box is shaken so that the spirals assume arbitrary positions. Linearly polarized 
electromagnetic dipole radiation of about 10 cm. wavelength falls on the box. 
This radiation can be thought of as decomposed into two waves, right-
and left-circularly polarized. One of these two waves is accelerated in its 
propagation by the metal spirals while the other wave is retarded. Behind 
the box the two circularly polarized waves again combine into one linearly 
polarized wave whose direction of oscillation is, however, rotated with respect 
to that of the incoming wave. This rotation of the plane of polarization can 
be detected by rotating a linear antenna which is tuned to the primary 
radiation and is connected to a receiver. The rotation of the plane of 
polarization can be cancelled by inserting a second box which is identical to 
the first and contains an equal number of spirals which are, however, twisted 
in the opposite rotational sense. The two boxes together constitute a 
racemic mixture. 

The description of this attractive model experiment will have to serve 
as a substitute for the treatment of the actual molecular theory of optical 
activity which, unfortunately, cannot be taken up here. 

30. Nicol's Prism, Quarter Wave Plate, Tourmaline Tongs, and Dichroism 

A. NICOL'S PRISM 

Looking at a model of the structure of calcite CaC03, one gains the 
impression that the constituents Ca + + and C03 would assume a cubic 
arrangement (as do the constituents Na+ and Cl~ of rock salt) if it were not 
for the fact that the plane triangular radical C03 (in contrast to the spherical 
Cl-ion) imposes special lateral conditions on the spatial arrangement. These 
requirements force the cubic structure which characterizes rock salt into a 
rhombohedral structure. The transition between these two types of structures 
can be imagined as a lateral stretching or, alternatively, as a longitudinal 
compression of the cubic model. In this process one of the threefold sym-
metry axes formed by the diagonals of the cubic structure becomes the 
threefold principal axis and at the same time the optic axis of the rhombo-

XK. F. Lindman, Ann. d. Phys. 63, p. 621, 1920 and 69, p . 270, 1922. 
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hedral crystal. The fundamental cell of such a lattice is a rhombohedron 
bounded by 3 + 3 rhombuses. This is easily confirmed because the crystals 
can be split along the face planes of the cells. The double refraction of the 
famous crystal clear "Iceland Spar" was discovered by Bartholinus and 
studied by Huygens. 

A Nicol prism (which is really not a prism but a parallelepipedon) is made 
from a cleavage rhombohedron which is about three times as long as it is wide. 
The end surfaces AB, CD are then cut so that they form an angle of 68° 
with the long edge; see fig. 42 (the natural surfaces AB', CD' which are 
drawn dotted in the figure make an angle of 70°52' with the long edges). 
Finally, the resulting parallelepiped is cut in two along a plane perpendicular 

to the end surfaces AB, CD, and the two halves I and 
II are glued together with Canada balsam. The index 
of refraction of Canada balsam is 1.55. The two principal 
indices of refraction of calcite are 

(1) n0= 1.66, fte.= 1.49. 

For the ordinary ray the Canada balsam is the rarer 
medium; for the extraordinary ray it is the denser 
medium. The ordinary ray can enter the balsam only 
if its angle of incidence is less than the limiting angle of 
total reflection. According to Sec. 5 the latter is given by 

(2) sin atot = 
1.55 
1.66' 

atot = 69°10'. 

Fig. 42. 
Section parallel to 

the longitudinal 
edges of a Nicol's 
prism. Geometrical 
description of the 

prism. 

If a ray parallel to the longitudinal edges is incident on 
one of the end surfaces, the ordinary ray is refracted at 
that surface so that it falls on the balsam at an angle of 
incidence of about 77°. This ray is therefore totally 
reflected at the balsam layer and does not enter the 
second half II of the crystal. It is deflected towards 
the side face BD. The same is also true for a certain 

easily calculated interval of neighboring directions of the incident ray. The 
face BD is blackened so that it will absorb these ordinary rays. 

The extraordinary ray for which the balsam is the denser medium cannot 
be totally reflected (see fig. 42a). Furthermore, because ne < n0, this ray is 
less strongly refracted toward the normal N upon entering the calcite. After 
passing through the balsam, the ray traverses the crystal II in a direction 
parallel to that in I and it emerges from the Nicol prism with a direction 
parallel to that of the incoming ray. In the figure this direction is parallel to 
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Fig. 42 a, b. 

a) Ray paths in the Nicol prism. The section is the same as that drawn 
in fig. 42. e is the extraordinary ray passing through the prism. 
o is the totally reflected ordinary ray. 

b) The Nicol prism viewed end on. The position of the plane of polari-
zation is indicated by pp. The direction of oscillation is shown by E. 

the longitudinal edges of the prism. Its plane of polarization 
is that of the extraordinary ray in calcite, namely, see Sec. 28, 
parallel to the optic axis. This plane of polarization is indicated 
by the longer diagonal of the end surface of the prism as 
shown in fig. 42 b. 

Therefore the Nicol prism produces linearly polarized light a.) 
whose direction of oscillation is known. Because the light p 
oscillating perpendicularly to that direction is suppressed by 
total reflection, the polarization is complete. 

When two Nicol prisms which can be rotated about their b.) 
longitudinal axes are placed one behind the other in the path 
of a light ray, then the first prism is called a polarizer and 
the second an analyzer. If the analyzer is oriented perpendicular 
to the polarizer and there is no biréfringent or optically active material 
between the two, then no light leaves the analyzer. If the analyzer is now 
rotated, a gradually increasing amount of light passes through it which 
attains its maximum intensity when the analyzer is oriented parallel to the 
polarizer. In Sec. 31 we shall discuss the interesting intensity and color 
patterns which result if a double refracting crystal plate is placed between 
the polarizer and the analyzer and if the incident light is parallel. We shall 
also treat the still more interesting patterns produced by converging light. 

B. THE QUARTER-WAVE PLATE AND THE BABINET COMPENSATOR 

Mica (alkali-aluminum silicate) is a monoclinic crystal with an extra-
ordinarily pronounced cleavage parallel to the base plane. For optical purposes 
the transparent potassium mica, KH2A13 (Si04)3, called muscovite is of parti-
cular interest. The twofold crystallographic symmetry axis is identical with 
our dielectric principal axis 2; the base plane is identical with the principal 
axis plane 12, see fig. 43. The plane perpendicular to 2 is the crystallographic 
symmetry plane. This plane contains the dielectric principal axis 3 and the 
two optic axes as well as the crystallographic1 axis 3' (which is drawn dotted 

xThe angle between the two crystallographic axes 1' and 3' is ß = 95°5' and hence 
differs little from nil. For this reason mica used to be thought of as orthorhombic or 
hexagonal because of the frequently occuring hexagonal shape of the base plane which 
is shown in fig. 43. 



168 CRYSTAL OPTICS 30. 3 

in the figure). The other two crystallographic axes 1' and 2' are identical 
with 1 and 2, respectively. The structural model2 of mica illustrates the 
stratified structure of the crystal and its prominent cleavage parallel to the 
base plane. 

Taking advantage of this cleavage property we make a very thin mica 
plate. A light ray which has been polarized by a Nicol prism is allowed to 
fall perpendicularly, that is in the direction 3, on this plate. The Nicol prism 

is oriented so that the trace of the 
polarization plane on the mica surface 
bisects the angle between the axes 1 and 
2 (drawn as a dot-dash line in the figure). 
For convenience the directions of these 
axes can be marked on the frame holding 
the mica plate. In the crystal the ray is 
decomposed into two linearly polarized 
waves of equal amplitude and direction 
of propagation (neither wave is refracted, 
see Sec. 27 B), which oscillate in the 
directions 2 and 1, respectively. These 
two waves propagate with the principal 

light velocities ux and u2. In the yellow part of the spectrum (D-line) the 
corresponding indices of refraction are 

Fig. 43. 
Crystallographic model of mica. 

(3) nx= 1.5941, n2 = 1.5997. 

Since one wave propagates faster than the other, a phase difference develops 
between them which at a depth x amounts to 

(4) 
2π 

{k2-kx) x = k (n2-ηχ) x = — (n2-%) *; 

k and λ are the wave number and wavelength in air. At the rear surface of 
the plate, x = d, the two waves emerge again without refraction, so that they 
still propagate in the same direction and are polarized in mutually perpen-
dicular directions. While originally their phases were the same, they now 
differ. Combination of the two waves yields elliptically polarized light. 

If we make the phase difference (4) for x — d equal to π/2, that is, if we set 

Ά__ A/4 
(5) 2=-y(n2-ni)d> 

2 This was first designed by Lawrence Bragg during an extended visit in Munich 
and was constructed by Karl Selmayr, the skillful mechanic of the Insti tute of 
Theoretical Physics. 
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then we obtain circular polarization. From (3) and (5) we find for 
A = 5.9 x 10~4 mm. 

(5 a) 
. 5.9 X 10"4 

» = z λ -^ττ mm. 
4 X 0.0056 

' 0.026 mm. 

0 

/ o 

i nn 

A 

The name ''quarter-wave plate" is somewhat misleading (especially for 
examination candidates!): its thickness is not A/4, but fortunately it is larger 
than λ/4 by a factor of one over the small quantity n2 - nv We could, of 
course, use any odd multiple of π/2 instead of π\2 in (5). Then à would be 
three times, five times, . . . as large as the thickness given by (5 a). However, 
because of their stronger dispersion, these 
thicker plates are optically less advantageous 
than the actual quarter-wave plate. 0' 

The same is true for every other biréfrin-
gent crystal. Mica is used only because of its 
extremely pronounced cleavage. Formula (4) 
for the phase difference can be applied to any 
arbitrary thickness. If we cut a crystal such 
as quartz in the shape of a wedge and view 
the light passing through the varying thickness 
of the wedge, we observe a whole range of 
phase differences emerging from the crystal. 
Since we are here interested in double refraction 
and not in rotation of the plane of polarization, the light must pass through 
the quartz wedge in a direction perpendicular to the optic axis. The horizontal 
hatched lines in the lower part of the front surface in fig. 44 indicate the 
position of the optic axis. The latter is therefore perpendicular to the edge 
of the wedge which passes through 0. 

We now cut a second quartz wedge which is outwardly congruent to the 
first one, but in which the optic axis is parallel to the edge 0' 0' of the wedge. 
We place the two wedges against each other so that together they form a 
plane parallel plate. The position of the optic axis in the upper wedge is 
indicated by the dots in fig. 44. Let us consider a point on the crystal where 
the upper wedge has a thickness x2 and the lower wedge a thickness xv Then 
by (4) phase differences for a ray passing through the two wedges at that 
point are 

Fig. 44. 
Babinet Compensator 

In (ne - n0) χλ and 2π 
(ne-n0) x2. 
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We have written here ne and n0 (since quartz is uniaxial) instead of nx and n2 

(as in the case of the biaxial mica). The negative sign is due to the reversed 
positions of the two wedges. The total phase difference is therefore 

(6) A = — (ne - n0) (xx - x2). 

This combination of quartz wedges when placed between crossed Nicol prisms 
is called a Babinet Compensator. (In the figure the polarizer will be below 
the plate and the analyzer above it. The polarization planes of the Niçois 
must be placed at an angle of 45° with respect to the wedge edges.) If such a 
compensator is illuminated with monochromatic light, then for x2 — xl a 
dark fringe appears because there A — 0. Thus in the center of the plate we 
observe complete extinction just as though no biréfringent medium were 
present between the crossed Niçois. The same is true for the points where 
A = ± 2π, ± 4π, . . . One obtains therefore a system of equidistant dark 
fringes. If one wedge is shifted with respect to the other by means of a 
micrometer screw, the system of fringes moves also. The same effect is achieved 
if any doubly refracting plate is inserted between the wedge plate and one of 
the Niçois in such a way that the new optic axis also makes an angle of 45° 
with the planes of the Niçois. The resulting shifted fringes can be returned to 
their original positions by displacing the wedges with respect to each other 
(hence the name compensator). From this shift, which is read on the micro-
meter, the amount of double refraction of the inserted sample (its ne - n0 or 
n1-n2) can be determined by means of (6). 

If the compensator is illuminated with white light, it again produces a 
dark center fringe at x2 = xv To the right and left of this line the Newtonian 
colors of thin plates appear. 

We need not go into the many existing modifications of this apparatus. 

C. TOURMALINE AND THE POLARIZATION FILTER 

Tourmalines are boron silicates of various chemical compositions. 
Their crystalline structure belongs to a class of the hexagonal system without 
symmetry center and with a ''polar principal axis". The latter is the reason 
for the pyroelectric property1 of tourmaline. A plate made from suitable 
material and cut parallel to the principal axis has a transparent green 
appearance, while a plate cut perpendicularly to the principal axis looks 

1See Vol. I l l , 11 E. The permanent electric moment of tourmaline, which is 
ordinarily compensated by a surface charge, becomes apparent if the temperature is 
changed. 
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almost black. This property of tourmaline is called dichroism. It is a special 
form of pleochroism (multicoloredness). 

Thus the absorptivity of tourmaline depends on direction, and this depen-
dence must, of course, conform to the symmetry of the crystal structure. This is 
true for all absorbing crystals. In tourmaline the ordinary ray is almost 
completely absorbed, while the extraordinary ray is absorbed only weakly. 
The light emerging from a plate which is cut parallel to the principal axis 
consists almost entirely of the extraordinary ray. Therefore this light is 
almost completely linearly polarized. The long familiar instrument known as 
the ''tourmaline tongs" is based on this fact. 

Modern commercial "polarization filters" are made from impregnated 
plastic materials which are subjected to a strong tension. The absorbing 
pigment is thereby given an anisotropic arrangement which causes complete 
polarization of any light passing through the material. The same effect can 
be obtained with strongly dichroic dyes (méthylène blue) which are crystallized 
on glass in thin layers like "frost flowers". 

In Sec. 6 we described the absorption in isotropic metals by adding to the 
dielectric constant the conduction term i ο\ω. In this way we obtained the 
complex dielectric constant of (6.1). For a crystal we are led to the complex 
tensor 

(7) e'jk = Sjk + % — 
ω 

which consists of the dielectric and the conductivity tensors. 

The nature of the imaginary part of (7) clearly differs from that in (29.2). 
The tensor y;Ä of Sec. 29 was non-dissipative and therefore had to be anti-
symmetric. Our present imaginary tensor, on the other hand, is dissipative, 
as in the case of metallic reflection, and it can therefore be assumed to be 
symmetric. Its principal axes need not agree with those of the ε;Λ tensor. 
However, the symmetry rule which we used in Sec. 29 still holds: if the principal 
axes of one of the tensors are completely determined by the crystallographic 
structure, then the axes of the other tensor must also be completely determined, 
and the two principal axes systems must be identical. By this rule which 
applies to tourmaline because of its hexagonal structure, the calculations of 
Sec. 24 ff. can be formally extended without change to the absorbing crystals. 
This leads to complex principal dielectric constants and therefore the 
principal light velocities defined in (24.6 b) also become complex. The wave 
velocities corresponding to a given direction of the wave number vector are 
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again defined by the quadratic equation (25.10). Since the roots w;, u" of 
this equation are now complex, the components of the corresponding electric 
vectors D', D" are also complex. This means that D', D" now describe not 
linearly, but elliptically polarized oscillations. Thus it is seen that the quanti-
tative theory of anisotropic absorption requires, at least for sufficiently 
symmetric crystals, no essentially new mathematical development. Since 
absorption, like double refraction, depends in general on the wavelength, we 
have thus obtained a general scheme for the explanation of the pleochroism 
of crystals. 

31. Interference Phenomena Due to Crystal Plates in Parallel 
and Converging Polarized Light 

Consider a thin crystal plate of the type customarily used in petrography 
which is placed between two, usually crossed, Nicol prisms. We shall assume 
the light to be monochromatic except where we expressly state it to be 
white. For observations with parallel light the rays shall fall perpendicularly 
on the plate. By "converging light*' we mean an arrangement of converging 
lenses in front of and behind the plate (see below) which enables us to observe 
simultaneously all bundles of parallel rays which pass through the plate in 
arbitrary directions which, however, do not differ very much from the normal 
to the plate. 

There are two "principal directions of oscillation" in the crystal plate. 
These are the principal axes of the ellipse formed by the intersection of the 
plate surface (which is also a wave surface) with Fresnel's ellipsoid (or the 
index ellipsoid). The plate is assumed to be in the "diagonal position" between 
the Niçois; this means that the two principal directions of oscillation are 
bisected by the plane of polarization of the polarizer (and also by that of the 
perpendicularly placed analyzer). In this position the amplitudes of the 
two components of the incident light along the principal directions are equal, 
and so are their phases, since they arise from one linearly polarized oscillation 
in the polarizer. Since we assume the crystal to be transparent (not dichroic), 
the amplitudes of these components of the light emerging from the plate are 
also equal. But, as we shall presently show, their phases differ. Therefore 
when the two components are recombined, the resultant emerging intensity 
differs from the incident intensity. The value of the former varies between 
maximum brightness and complete darkness as the crystal is rotated out of 
its diagonal position. We can neglect the small intensity changes which take 
place when the light enters and emerges from the crystal. 
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A. PARALLEL LIGHT 

The wave velocities u', u" of the two principal oscillations Hv H2 (fig. 45) 
determine the two indices of refraction nx = cju', n2 = c\u". These in turn 
determine the phase difference which arises between the two component 
waves as the light passes through 
a crystal plate of thickness d. As 
in (30.4) this phase difference is 
given by 

(1) A=2-^{n2-nx)d. 

If we call a the amplitude of 
the wave incident from the 
polarizer (whose polarization 
plane is indicated by PP in the 
figure), then the initial amplitudes 
of the principal components of this 
wave are a/|/2 if the crystal plate 
is in the diagonal position. After 
passage through the plate, these 
oscillations are represented by 

π' 
Ini -r-nxd 

a A 

2ni >e' 
•i(ot 

Fig. 45. 

Crystal plate in normally incident parallel light 
for different positions Hv H2 and H / , H2' of 
the principal oscillation directions. The plate 

is between crossed Niçois whose oscillation 
directions are PP and A A, respectively. 

which we shall write in the form 

(2) 
« i l l Ι2πί . \ 

n=l iexpl —7—n, d-i cot I 

We now project this oscillation onto the polarization plane of the analyzer 
(AA in fig. 45). The signs of these projections are determined from the solid 
lines in the figure, and the amplitude of the resultant oscillation behind 
the analyzer is found to be 

(3) f - | i -«" | . 
Now we use 

| 1 _ ^ | 2 = (\-eiA) (\-e~iA) = 2-2coszJ = 4 s i n 2 -

which gives for (3) simply 

(4) 
. Δ 

a sin —. 2 
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(5) 

If the plate is rotated into the position Hx', H2 making an angle ψ with 
the diagonal position (see the dotted lines in fig. 45), then the initial amplitudes 
are, instead of a/|/2 

αλ = a cos I j - ç J , Λ2 ~ a c o s I T + 9 Ί · 

The projections of al and a2 on the analyzer plane are given by a cos (π/4 -\-φ) 
and a cos (π/4 -φ), respectively. Therefore both projections are equal except 
for their signs. The magnitude of both is 

a cos ( j - Ç , ) C 0 S ( 7 + 9?) = T-(cos2ç>-sin2<p) = — cos2ç>. 

It follows that the resultant amplitude behind the analyzer is given by 

(6) a! = a |cos 2φ\ sin —■ 

instead of by (3) and (4). The observed intensity is therefore 

(7) / = / 0 cos2 2 y s i n « y 

where / 0 is the intensity of the light incident on the plate. 
According to (7), for one complete revolution of the plate the intensity 

observed behind the analyzer changes four times between maximum brightness 
at the diagonal positions 

(8) 

and complete darkness whenever H1, H2 coincide with P or A, that is, when 

(8 a) 

If the illumination is monochromatic, the plate appears of varying but 
uniform brightness in its entirety. 

If white light is used, the positions (8 a) again yield darkness. In the 
intermediate positions the entire plate is uniformly colored with a mixed color. 

Only for very thin or very thick plates does the color remain white. For very 
thin plates this is true because there is no wavelength for which Δ\2 attains 
the value π. For very thick plates there are very many points distributed over 
the whole spectrum for which Δ\2 is a multiple of π. In this case the spectrum 
(not to be confused with the appearance of the plate !) has a large number of 
dark lines but retains its white character. For moderately thin or moderately 
thick plates there are only one or a few such dark lines. The missing wavelengths 
and the intensity variations in the remaining portion of the spectrum cause 
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the deviation of the color from white and determine the character of the 
mixed color which is seen by the eye. If the observation is made with parallel 
instead of crossed Niçois, precisely the complementary mixed color is seen, 
and full illumination takes the place of darkness at the positions (8 a). 

The pattern becomes much more interesting Q 
if, instead of a single crystal, a mosaic of crystal 
fragments is used; for instance, granite which 
consists of feldspar, quartz, mica, hornblende, 
etc. In that case each constituent yields under 
white illumination a different color, which is 
determined by the material and its orientation 
with respect to the surface of the plate. The 
principal directions ΗΊ, Η2 belonging to the 
individual crystal fragments are distributed 
at random in the plate. Therefore, when a thin 
plate of this type is rotated, its various com-
ponents extinguish the light at different angular 
positions. By the same token the various 
pieces exhibit different intensities at different 
positions of the plate. Pétrographie investiga-
tions depend to a large extent upon such obser-
vations. 

We shall not investigate the appearance 
of the plate when the polarizer and analyzer 
are in an intermediate position, i. e. neither 
crossed nor parallel. 

B. CONVERGING LIGHT 

As was stated at the beginning of this 
section we are in fact again considering bundles 
of parallel rays, which now, however, in passing 
through the plate, assume all possible directions 
in the neighborhood of the normal to the 
plate; they are then simultaneously focused at 
the eye (at 0) by means of the converging 
lens L' in fig. 46, B' being the focal plane of L' on which the eye is 
focused (with the help of a lens or microscope). B is the focal plane of the 
converging lens L. The light source is an extended luminous surface which is 
placed below B. We need follow the rays originating from that surface only 

Fig. 46. 
Crystal plate illuminated by 
"converging" light, that is by 
parallel light bundles which 
form a finite solid angle around 

the normal to the plate. 
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Construction for the computa-
tion of the phase difference 
between the two rays ABD 
(angle ßx) and AC (angle ß%) 
which are produced by double 

refraction. 

after they have passed through B. L converts the originally divergent rays, 
e. g. the rays emerging from P , into parallel light. U converts the parallel 
rays emerging from the crystal plate K into converging light, e. g. into light 
focused at P ' . The polarizer is below B and the analyzer is between B' and 0. 

The rays drawn in fig. 46 which are parallel 
inside K cannot interfere because they originate 
from different points on the luminous surface. 
Therefore, the intensities of these rays add. The 
phenomena at P ' are made quantitatively 
observable by the fact that we have parallel 
ray bundles of considerable width, as is indicated 
in fig. 46. 

Interference takes place only between any 
two rays which are created by double refraction 
in K and originate from the same ray coming 
from P . Each such pair of interfering rays is 
parallel as it leaves the plate K. Figure 47 
indicates that the directions of the interfering 
ray pairs which have angles of refraction ßv ß2 

in the plate can (for ßv ß2 not too large) be 
approximated by one ray with the average direction ß. This ray is drawn 
dotted in the figure. It is easily verified, see exercise IV. 3, that the phase 
difference Δ between the two waves which propagate in this direction is 
given by an expression similar to eq. (1): 

(9) 

The ray ß is focused on the same point P' in the focal plane B' as the rays 
ßv ß2 (see figure), and this point is characterized by the value oîA given by (9). 
Therefore, the intensity observed from 0 at the point P' is, in analogy to (7), 

(10) / = / 0cos22<psin2-

where / 0 is the intensity incident at A and the angle φ depends on the orienta-
tions of the Niçois with respect to the principal oscillation directions of the 
plate and also on the ray direction β. 

According to (10) we have 
{11) 7 = 0, extinction, if Δ\2 = gn (g = integer). 
By (9) this condition means that 

d (12) cos β = ^(nz-nj. 

A=2nn1-^d 

A cos/? 

Fig. 47. 



Fig. 48. 

Calcite plate, cut perpendicularly to the optic axis, in sodium light 
between crossed Nicols. 

Fig. 49. 

Quartz plate, cut perpendicularly to the optic axis, in sodium light between 
crossed Nicols. Note the bright center. 



Fig. 50. 

Calcite plate, cut parallel to the optic axis, in white light. 
Diagonal position. 

Fig. 51. 

Cerussite, biaxial, cut perpendicularly to the bisector of the angle between the 
optic axes. Diagonal position. 
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Now 

_ c _ c 

where u', u" are the two wave velocities belonging to the direction ß. Therefore, 
we have also 

die c\ cdu'-u" (13 cos/? = — —— j ] = r — · 
Ag\u u J Ag u u" 

This formula suggests that we find those directions ß = ßg on the Fresnel 
wave surface for which the above equation is satisfied. In the uniaxial case 
in which one branch of the wave surface is the sphere u = u0 and the other the 
ovaloid of rotation about the optic axis (28.5), this becomes a relatively simple 
algebraic calculation which, however, we shall not carry out here. 

Rather, we shall immediately turn to the completely symmetric situation : 

crystal plate _L optic axis. 

In this case the angle of refraction lies in a meridian plane of the ovaloid, and 
every cone ß = constant intersects the ovaloid in a circle. Because of the 
condition (13) one obtains, therefore, in the focal plane B' a family of 
concentric circles 

(14) ß = ß v ß2,...ßgt... 

at which the intensity vanishes. By (13) their radii depend on the ratio d/λ. 
The difference between successive radii decreases steadily with increasing g. 

But according to eq. (10), we have extinction not only for sinzl/2 = 0 
which led to (14) but also for cos2<p = 0. The latter condition indicates 
extinction along the two mutually perpendicular directions 

(15) <P=±j-

The figures 48 to 51 are reproduced from the famous collection of 
photographic plates 'Tnterferenzerscheinungen im polarisierten Licht" by 
H. Hauswaldt, Magdeburg, 1902 and 1904. Figure 48 is obtained with calcite 
(1/2 mm thick) in sodium light between crossed Niçois. The system of 
concentric circles represents the ^-values (14). The dark cross which coincides 
with the polarization planes of the Niçois represents the φ-values (15). With 
white light illumination the pattern is colored and fewer interference circles 
are discernible. The curves Δ = constant are called isochromatics since each 
of them is characterized by its own mixed color. 



178 CRYSTAL OPTICS 31. 

Figure 49 is obtained with a quartz plate (7 mm thick because the double 
refraction of quartz is less than that of calcite) which is photographed in 
the same manner. The pattern differs from that in fig. 48 in that the center 
is bright. This indicates the rotation of the plane of polarization for rays 
parallel to the optic axis of quartz. The center bright spot illustrates the 
gap between the two branches of the ray surface shown in fig. 40. 

Figure 50 shows calcite which is cut parallel to the optic axis and is placed 
diagonally between the Nicols. The black cross is missing. The isochromatics 
are rectangular hyperbolas. It can be proved generally that for arbitrarily 
cut slabs of uniaxial crystals the circles in fig. 48 become conic sections. 
Indeed, these conic sections are formed by the intersections of the circular 
cones ß = constant with the plate surface. 

Figure 51 is obtained with a biaxial orthorhombic crystal, namely 
cerussite, PbC03, cut perpendicularly to the bisector of the angle between the 
two optic axes and placed in diagonal position. The cross of extinction of 
figures 48 and 49 is here pulled apart so that two branches meet at each of 
the optic axes. The isochromatics are not conic sections as for uniaxial 
crystals but are fourth degree curves (lemniscates). It is wonderful to observe 
with a polarization microscope how nature traces these varied patterns with 
geometric prescision and colors them so brilliantly. 



CHAPTER V 

THE THEORY OF DIFFRACTION 

Any deviation of light rays from rectilinear paths which cannot be inter-
preted as reflection or refraction is called diffraction. Reflection and refraction, 
clearly, occur only when the bodies causing the deviations of the rays from 
straight lines have surfaces whose radii of curvature are everywhere large 
compared to the wavelength of the light. 

The phenomenon of the shadow, which seemed to pose difficulties for the 
elementary wave theory, is explainable only by the theory of diffraction. 
According to the latter, the border of a shadow is shown to be diffuse and 
composed of diffraction bands. The conflict between geometrical and wave 
optics is resolved by the theory of diffraction. 

Geometrical optics is the limiting case of wave optics as λ -► 0. In this 
limiting case there is no diffraction. Hence, in contrast to ordinary refraction, 
rays of greater wavelength are diffracted more strongly than rays of shorter 
wavelength. Diffraction, then, generally deflects the red end of the spectrum 
more strongly away from the geometrical direction of the rays than the violet 
end, which is just the opposite of prismatic refraction. The coronae around 
the sun and the moon are diffraction phenomena which are caused by water 
droplets randomly distributed in a layer of haze and are especially strong 
when the droplets are of approximately uniform size. Their outer rims are 
colored red. The halos around the sun and the moon, on the other hand, are 
caused by refraction in the ice crystals of thin cirrus clouds. The sequence of 
colors, when visible, is the opposite in this phenomenon : red inside and violet 
outside. It is well known that Descartes had already explained the principal 
features of the rainbow by refraction and reflection in raindrops. The complete 
treatment of the rainbow, however, involves also a difficult diffraction problem. 

Because of their low intensities and small dimensions, diffraction phenomena 
are, in daily life, generally not noticeable to the naked eye, but there are 
exceptions. If we view a distant light source through a fine fabric (an opened 
umbrella, for instance) we see the beautiful colored figures of a Fraunhofer 
cross grating. When we squint with nearly closed eyes at a distant candle, 
the eyelashes act like a (very distorted) line grating and decompose the candle 
light into its natural spectrum. 

179 
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In Sees. 32 and 33 we shall treat those phenomena in which the 
difficulty of low intensity is overcome by the use of a large number of 
diffracting elements. Such devices are: the regular gratings in which the 
amplitudes of the oscillations add by interference, and random distributions 
of diffraction centers in which case the intensities add. In these devices the 
diffraction of single grating elements or particles plays as yet no essential role. 
This latter problem will be studied in various degrees of approximation in 
Sec. 34 ff. For the visual observation or photographic recording of this 
diffraction of single elements, a telescope or a lens is required. 

While up to this point it has been sufficient to operate with a plane 
wave, the spherical wave will now come into its own. Only in the two 
following paragraphs, and later on in the treatment of Fraunhofer diffraction, 
shall we continue to use plane waves. The classical theory of diffraction, which 
is based upon Huygens' principle, operates essentially with the scalar 
spherical wave. 

32. Theory of Gratings 

A. LINE GRATINGS 

The first diffraction gratings, made by Fraunhofer, consisted of parallel, 
stretched thin wires. Later, he used a glass plate covered with lampblack 
which he scored with a ruling engine in such a way that a system of 
equidistant transparent lines appeared on the glass. Fraunhofer's original 
gratings are preserved in the "Deutsches Museum" in Munich. 

Famous, and hardly excelled even today, are Rowland's reflection gratings. 
They consist of up to 1800 ruled lines per millimeter on a metallic mirror 
surface; altogether some 100,000 lines. Faultless uniformity of the spacing1 

of the lines over the whole length of the grating is important. 
We take the y-axis along the direction of the grating lines and assume 

that the lines are spaced at intervals of length d measured along the #-axis. 
Let the total number of lines be N. Let the plane of incidence be the xz-plame ; 
and let z = 0 be the plane of the grating. Let the incident light be white 
and its rays be made parallel by an ideal collimator. The vectorial wave 
numbers k of the monochromatic components of the white light have the 
direction cosine OQ with the positive #-axis. (OQ is now not the cosine of the angle 
of incidence, but rather the cosine of the so-called "glancing angle" which is 
the complement of the angle of incidence.) We now assume a cylindrical 

1 Periodically repeated irregularities of the ruling engine produce "ghosts", i. e. 
false lines in the diffraction spectrum. 
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wave sent out from each grating line. This process we call, as is commonly 
done, "diffraction", although we could instead use the more general term 
"scattering". The waves emerging from different grating lines are capable 
of interference because they originate from 
the same incident wave. 

We now look at fig. 52 and recall the 
similar figs. 9 and 47 in which we were also 
concerned with the phase differences between 
neighboring rays. The ray emerging from 0 
having direction cosine a with the #-axis 
covers a distance which exceeds that covered 
by the ray emerging from P by the path 
difference 

OQ-RP = oid-aL0d> 

d = 0 P = "grating constant". 

Fig. 52. 
Determination of the phase 

difference in a reflection grating 
O P = d = grating constant. 

The phase difference between these two rays is, therefore, 

(1) A = kd(a-a0), k = —r-< 
A 

This must be an even multiple of π in order that, sufficiently far from the 
grating and in the direction indicated by the rays, these two waves shall 
show maximum reinforcement owing to interference. The condition for this is 

λ 
(2) OC-OQ = h h = positive or negative integer. 

h — 0 corresponds to ordinary reflection a = oq,; h = ± 1 corresponds to 
the first order spectrum on the right or left of the regularly reflected light; 
h = d= 2 corresponds to the second order spectrum, etc. 

If we collect the cylindrical waves emerging from all the different grating 
lines with the same phase difference, we obtain, at a distance large compared 
to the grating constant, a plane wave. In the case given by (2) this wave has 
its maximum amplitude; its amplitude is zero when Δ is an odd multiple 
of π. For a given λ the dependence of the amplitude of this wave upon Δ is 
shown by the intensity curve in fig. 53 which will be calculated below. For its 
observation one employs, following Fraunhofer, a telescope focused at infinity. 

That the grating actually does produce spectra in this way, i. e. that it 
separates the colors, follows from the fact that, according to (2), a - OQ depends 
on the wavelength. Hence, the different colors are diffracted in different 
directions. Since OL-OLQ increases with λ, red is diffracted more strongly than 
violet, as mentioned in the introduction to this chapter. The dispersion, that 
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is, the separation of the various colors, is directly proportional to A. Thus, 
the grating yields a spectrum of the incident white light, whose scale of 
wavelengths is normal and quantitatively correct. Furthermore, the dispersion 
is directly proportional to the order number h. In the second order spectrum 
the dispersion is twice that in the first order spectrum. For this reason the 
second or third order spectra are preferred for exact wavelength measurements. 
Finally, according to (2), the dispersion is inversely proportional to d; hence, 
the close spacing of the lines of the Rowland gratings. An exception is the 
order h = 0, for which a - a0 is independent of color. The spectrum of zero 
order produces white light. 

There is a critical limiting value, not necessarily integer, h = hcr which 
corresponds to the value a = 1. If hcr happens to be integer the diffracted 
light ray is parallel to the plane of the grating, just like the reflected wave 
in the limiting case of total reflection1. In any case, even for h > hcr a 
diffracted wave runs parallel to the plane of the grating, however, not as 
a regular wave, but as an inhomogeneous wave. This is also analogous to 
total reflection. 

We now wish to show that the grating produces practically pure spectral 
colors. In order to do this, we must estimate the width of the maximum 
computed in (2). We do this by considering monochromatic light with a given λ 
instead of the white light employed until now. 

We define the radiation emitted by an arbitrary grating groove in the 
direction a by means of an amplitude factor / (a), which is the same for all 
grooves and can be considered as a function which varies slowly as a varies 
between the limits a = ± 1 (positive and negative #-axis). Consecutive 
grating grooves shall have the abscissas 

x0, . . . Xn, . . . XN—I. xn= x0 + nd. 

Omitting the time factor, we write for the oscillations emitted by the nth 

groove in the direction a the expression 
(3) un = / (a) exp {i k (a x + y z) + in A} 

regardless of whether we are concerned with the vectors E, D, or H. For the 
significance of / (a) and a systematic development of (3), we refer the reader 
to Sec. 36. Δ is the phase difference defined in (1). Superposition of the 
effects of all the lines gives 

(4) u = £'un = f (a) Sexp {ik (a x + y z)} 

iLord Rayleigh, Phil. Mag. 14, 60. 1907 and Proc. Roy. Soc. 79, 399, 1907; W. Voigt, 
Göttinger Nachr. 40 (1911); also U. Fano, Ann. d. Phys. 32. 393, 1938, Phys. Rev. 38, 
921, 1948. 
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with 

(4 a) 
Λ Γ - 1 

= 2Je<« 
.„. e 2 sin N — 

\-ε%ΝΔ 2 

l-e \Δ 4 · Δ 

e 2 sin — 
2 

(5) 

Changing from the amplitude to the intensity, we get 

sin22V^ 
2 

—ΊΑ' 
sinz — 

2 

J=\u\2 = f2M\S\2 = f2(0L) 

This expression is composed of two parts. The first factor corresponds to 
the intensity arising from a single groove and varies slowly with a. The 
second factor arises from the sequence of many grooves, and is a very rapidly 
varying function of a - a«,. 

N1 2Δ H 

Jûl 

Ni 
2 

l/Ww l/W .Λ^ΛΛΙ ^ - ~α a° 

Fig. 53. 

2λ 
d 

The function —. plotted against a - o^ = 
sin2 Δ\2 2 nd 

The incident primary intensity is contained in the first factor of (5). 
Figure 53 shows the dependence of the second factor on a - OCQ. Its principal 
maxima lie, in accordance with (1) and (2), at 

(6) 2 
These maxima are given by (5) as 0/0. The value in the limit, as computed 
in the well-known manner (de l'Hôpital's rule), is the same for all h, 
namely N2. 
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In addition, there are subsidiary maxima corresponding to the rapid 
fluctuations of the numerator. Since the denominator varies slowly, the 
positions of these maxima are given sufficiently accurately by the maxima of 
the numerator. Thus, in the vicinity of the hth principal maximum, the 
positions of the subsidiary maxima are given by 

(6a) 4 = „|A + ^ ) , r=(l).3,5. 

The value v = 1 is put in parentheses because the corresponding peak is 
masked by the flank of the principal maximum. The heights of the subsidiary 
maxima are 

1 4iV2 

. 0 νπ πΔ νΔ 

sin2 —-22V 
Hence, the first subsidiary maximum to be taken into account is 4/(9 π2) & 1/22 
times as small as the principal maximum, whose height was 2V2. The second 
subsidiary maximum is 4/(25 π2) & 1/62 times as small, etc. These maxima 
follow one another at the very small interval of λΙ(Ν d); between them the 
intensity always drops to zero. 

We shall now compute 2AH, the width of the principal maximum at half 
intensity, as illustrated on the left of fig. 53. This width is determined by 
the equation 

(6 b) 

where the right-hand side corresponds to half the maximum intensity. Since 
ΔΗ must certainly be very small, we may replace, in the denominator on the 
left-hand side, the sine function by its argument. Thereby, we get 

(6 c) 

The solution of the equation sin x = x/yl is found from the table of sines 
to be 

* ~ 80 =1.38, hence 

Since N is a very large number the width at half intensity which is 
twice this AH, namely 5.5/AT, is extremely small. It follows from this 
that the principal maxima belonging to distinct colors of our spectrum fall 
next to one another, so that no appreciable overlapping of colors occurs. 
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That does not, of course, exclude the possibility that the ends of spectra of 
different orders may overlap. Since the dispersion increases with h, mixed 
colors can be produced in this way. In fact, one sees immediately that the 
red end of the second order spectrum, for instance, will overlap the violet 
end of the third order spectrum since 

2 Ared > 3 Aviolet b e c a u s e Ared '—' 2 λ violet· 

Finally, we must multiply the second part of the intensity expression 
(5), as illustrated in fig. 53, by the factor /2. In general this factor will decrease 
steadily with increasing |a| and will, therefore, attenuate the spectra with 
larger values of h in comparison with those which have smaller h values. 
However, this is true only "in general". In each particular case the form of / 
depends entirely on the shape of the groove (i. e. on the shape of the diamond 
of the ruling machine). Nor need / be an even function of a. The spectra 
with h > 0 can, for instance, be enhanced over those with h < 0. It can even 
happen that most of the intensity is thrown into a single spectrum. Under 
certain circumstances this may be especially desirable. More details are given 
in Sec. 36 D. 

B. CROSS GRATINGS 

Two systems of grating lines which intersect at right (or oblique) 
angles are called a cross grating. We have, then, on the plane of the grating 
a set of dark rectangles (or parallelograms) extending in two directions. Or we 
could, instead, consider a two-dimensional system of bright rectangles (as 
in the above-mentioned example of the opened umbrella) or of arbitrarily 
shaped bright spots (circles for instance) on a dark background. These also 
will be called cross gratings. 

As in the case of the line grating, let the grating plane be the #y-plane. 
For convenience we will consider our cross grating to be oriented along the 
x- and y-axes, that is, to be rectangular. Here we must replace the summation 
over n in eq. (4) by a double sum over nx and n2: 

Nx-1 Nt-1 

(7) s = Σ Σ exp {* ηι Δ\ +i η2Δζ}> 
nt = 0 w, = 0 

A2 = 2nd2^ZÊà. 
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Performing the summation and computing the intensity, we obtain instead 
of (5) 

s in 2 iV 1 ^sin 2 2V 2
/ 

(8) 7 = /2 («,/?) -p- -p - . 
s m z - - sin^—-

2 2 

According to eqs. (1) and (2), principal maxima will now occur if 

(8 a) Al = 2nhl and simultaneously A2 = 2nh2 

where hx and h2 are arbitrary positive or negative integers. The directions α, β 
of the deflected rays corresponding to these principal maxima are given, 
according to (7), by 

λ λ 
(9) α - α 0 = Α1 —, ß-ß0 = h2—. 

The corresponding intensity is proportional to Nx
2 N2

2. If only one of 
the two conditions (8 a) is fulfilled, then the intensity is only proportional 
to iVj2, or N2

2, and is, therefore, imperceptibly small compared to 
the intensity of the principal maxima. Also the subsidiary maxima, described 
by (6), can be disregarded when compared to the principal maxima. Since, 
according to (9), a definite pair of values α, β is associated with every λ, each 
of the cases characterized by (9) constitutes a complete color spectrum. The 
spectra extend parallel to the direction of the #-axis when h2 = 0, and in 
the direction of the y-axis when \ = 0. In the general case hx φ 0 and 
h2 Φ 0, the spectra are directed radially, i. e. towards the central point OLQ, β0. 
Only at this latter point is the light not spectrally decomposed but white. 
Again, owing to the factor f2 (a, ß) in (8) the outer spectra of this manifold 
and colorful display are generally strongly attenuated. 

C. SPACE GRATINGS 

We ask next how a three-dimensional grating could be produced. Neither 
a ruling machine nor stacked layers of the sheerest fabric produce an optically 
useful grating. Max von Laue had the ingenious idea that nature herself 
offers us an ideal space grating in the form of a flawless, non-absorbing 
crystal. Though useless in the field of optics, such crystals find application 
in the much more interesting spectral range of X-rays. In this connection 
it is to be noted that this range was not even known in 1912 but was 
determined quantitatively only by means of Laue's discovery. For 
optical purposes the mesh of a crystal lattice is far too fine, but for the 
analysis of X-rays its order of magnitude is just right. In fact, the spacing 



32. 10 SPACE GRATINGS 187 

between atoms in a crystal is approximately the same as the wavelength of 
soft X-rays (several Â units, 1 Â = 10~8 cm), just as the spacing of the lines 
in the Rowland grating agrees approximately with the wavelength of red light 
(1/2/1, \μ = 10_4cm). 

In order to make the formulae as clear as possible, we shall restrict 
ourselves here to the special case of an orthorhombic crystal, but it is to be 
emphasized that if an oblique coordinate system is used, the general triclinic 
crystal presents no difficulties. Let the sides of the fundamental ortho-
rhombic cell have lengths a, b and c (this would correspond to dv d2 and d3 

in our previous notation). Rewriting eq. (9) in three dimensions, we obtain 
immediately Laue1 s Fundamental Equations: 

λ λ ? 
(10) α - θ ο ^ / * ! - , ß-ß^ = h-t y - y 0 = Ä3-k· 

The special cases of the tetragonal and cubic systems (b = a, c — b = a), 
are, of course, contained in (10). 

In Laue's experimental arrangement the rays are made to pass through 
thin crystal slabs. In particular, for the first photographs by Friedrich and 
Knipping, made in the spring of 1912, thin slabs of zinc blende, ZnS, sliced 
perpendicularly to the fourfold or threefold axis of symmetry, were used. 
The crystal acts here not as a reflection grating, but as a transmission grating. 
The rays emerging from the crystal produce the surprisingly beautiful 
"Laue Diagrams" on a photographic plate placed beyond the crystal. 
The original pictures are preserved in the "Deutsches Museum" in Munich and 
have been reproduced in countless textbooks. 

The intensity is computed by the properly extended formula (8). The 
number N of the contributing lattice elements is determined by the thickness 
of the crystal slab and by the cross-section of the incident X-ray beam. The 
"atomic form factor", much discussed in the theory of crystal analysis, 
takes the place of / (a, ß) in eq. (8). 

The difference between this theory and the theory of cross gratings arises 
from the fact that, because of the condition α2 + β2 + γ2 = 1, the three 
eqs. (10) are not compatible for any arbitrarily given values of λ. While the 
cross grating produces complete spectra containing all A, the space grating is 
selective. To every Laue spot corresponds a characteristic A. (However, for 
reasons of symmetry several spots may correspond to the same A; as, for 
instance, in the fourfold symmetrical picture of zinc blende in which each λ 
occurs, in general, in eight spots.) The polychromatic character of the cross 
grating spectra occurs again in the Laue diagram in the sense that every Laue 
spot selects its own special "color" from the incident "X-ray light". 
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We confirm this analytically by squaring and adding the values of 
α, β, y as determined by (10), and by taking into account the condition 
«o2 + Λ)2 + y<>2 = Î· Cancelling a common factor λ, we thus obtain: 

(11) λ = -2 2 

α2 ' δ2 ~*~ c2 

Therefore, once the order numbers hit h2, A3 of the interference are determined 
for every Laue spot, the wavelength producing each such spot is (for a known 
crystal lattice) also determined. At the same time we now see that in 
contrast to Bragg's method, Laue's arrangement uses the continuous X-ray 
spectrum (the so-called "white X-ray light" or "Bremsstrahlung''). 

Before discussing Bragg's experiment, we draw yet another conclusion 
from eq. (10). We form the sum of the squares of the left-hand sides of (10) 

(12) (a-a0)2+(^-yÖ0)2 + ( 7 - y 0 ) 2 = l - 2 ( a a 0 + ^ ^ 0 + r r o ) + l 
= 2 - 2 c o s 2 # = 4 sin2 #. 

2 # is here the angle between the incident ray OCQ, β0, γ0 and the diffracted ray 
α, β, y (see fig. 54). The plane E bisects the angle 2 # between these two rays. 
Next, we compute the sum of the squares of the right-hand sides of (10), 
namely, 

"{(*)M*),+(*)K 
where D is a length of the order of magnitude of the sides a, b, c. We can 
make the definition of D, which is implicit in (13), more precise if we rid 
the integers A of a possible common factor and write 
(14) \ = n hx*, h2 = n h2*, hz = n hz*, 

By equating (12) and (13) and applying (14) and (14 a), there results Bragg's 
equation : 

(15) 2dsmu = nX. 

We have encountered this equation before as eq. (8.6) in connection with 
Wiener's standing light waves. There the length d denoted the distance between 
two neighboring layers of the "screen" which is produced by standing light 
waves and is utilized in Lippmann's color photography. We must now 
investigate the significance of d in the case of the crystal lattice. 

(13) 

(14 a) 
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For this purpose we construct the equation of the plane E in fig. 54. We use 
a system of rectangular coordinates x, y, z whose axes are parallel to the 
crystal axes a, b, c and whose origin lies in the plane E at the lattice point 0. 
This is the same point which in fig. 54 was considered as the point of origin 
of the diffracted ray. From 0 we mark off the segments 0 P along the extension 
of the incoming ray direction and OQ along the 
direction of the diffracted ray and we let 

OP = OQ = 1. 
The coordinates of the points P and Q are then 

Oo>/Wo a n d a. Ay. 
respectively. We can now define the plane E as 
the locus of all points equidistant from P and Q : 

(*-ao)2 + (y-/y2 + (*->O)2 = 
= (χ-Λ)2+(γ-β)2+(ζ-γ)*. 

This simplifies to 
(α-α0) x + (β-β0) y + (γ-γ0) ζ = 0. 

Substituting (10) and (14) into this yields 

(16) 
a x + -j-y + — * = o. 

0 C Fîg. 54. 

Diffraction of X-rays in a 
space lattice (description in 

the text). 

This plane E is a lattice plane of the crystal, which 
means that in an unbounded crystal the plane E 
contains an infinite number of lattice points. (If the 
plane contains three lattice points, then because of the periodicity of the lattice 
it must contain an infinite number of lattice points.) The numbers h* are called 
the Miller indices of the lattice plane. (Their magnitudes determine the density 
of lattice points on the plane; small values of the Λ* imply a large density; 
large values of the h* imply a small density. Only planes with small h* values 
occur as natural boundary planes of a crystal.) A plane parallel to our lattice 
plane intersects the crystal axes a, b, c at coordinates which have the ratios 

(17) 
a b c 

V" V : V" 
This was the original definition of the Miller indices as used in macroscopic 
crystallography where one did not speak of lattice planes but only of the 
natural crystal faces. The a, b, c were then defined only as relative lengths 
(for instance, setting b = 1). Since we are here dealing with the microscopic 
theory of structure, we can introduce the lengths of the edges of the ortho-
rhombic unit cell as absolute values of a, b, c. Therefore the quantities given 
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in (17) also become the absolute lengths of the axis segments, and the lattice 
plane E which is parallel and nearest to (16) has the equation 

* « * h* ■ h* (18) 
a b c 

If we replace the 1 in (18) by any integer n, we obtain another lattice plane 
which is parallel to E. This will be the nth lattice plane En which intersects 
the axes at the coordinates n ajhf, n bjh2*, n c/h3*. Non-integer values of n 
do not give lattice planes; they are in contradiction to the periodicity of the 
crystal. 

In its so-called normal form eq. (18) reads 

(19) cosoc/,* + cosßpy + cosypz = p, 

COS OLp : 
h*P 

i a 
COSßP = ——t cos γρ = 

h*P 

m^mv 
As we know, p denotes the length of the perpendicular from 0 to Ex or, as 
we may also say, it equals the distance between the planes E and Ev The 
cup, βρ, γρ are the direction cosines of p (see fig. 54). But according to (19), p 

is identical with the length d which was 
introduced in (14 a). Hence our former 
quantity d is the spacing of that system 
of parallel lattice planes whose Miller 
indices are equal to our interference 
numbers h (divided by any common 
divisor which they may contain). 

Bragg's eq. (15) may be visualized 
as "reflection on the lattice planes", 
and not merely on a single such plane 
but on the entire system of parallel 

lattice planes. This is seen immediately and independently from Laue's 
theory by means of fig. 55. In order that the wave reflected at E0 be reinforced 
by the wave reflected at Ev that is, in order that the amplitude be doubled, 
the path difference of the two rays must be a multiple of A. This path difference 
is A Ox + 0± B. From the shaded triangle with the hypotenuse 0 01 = d 
in the figure it follows that 

A Ox = dsm& = OxB. 

Hence, the above condition becomes, in agreement with (15), 

2 d sin ft = n λ. 

Fig. 55. 

Direct derivation of Bragg's equation, 
Reflection at the lattice planes E. 
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This same condition also guarantees the enhancement of the reflections from 
the lattice planes E2, E3, . . . E_lf E_ 2 and leads to Laue's amplification factor 
2V2 for the intensities. 

This derivation shows that in the present case, only the regularity of the 
sequence of lattice planes E is important and not the periodic arrangement 
of the crystal atoms within the planes E. Even if these atoms were distributed 
completely at random, as are the silver grains in the Wiener layers, the inter-
ference effect would not be disturbed. In that case we would have, so to say, 
a one-dimensional crystal. The three-dimensional crystal lattice differs from it 
by producing simultaneous interference on many sets of parallel lattice planes. 

Immediately after Laue, William Bragg and his son, Lawrence Bragg, 
(successor of Rutherford at the Cavendish Laboratory) were the first to 
determine most of the now known simpler crystal structures (rock salt, 
diamond, fluorite, pyrite, etc.). Later they also determined the structures 
of some highly complicated organic and inorganic crystals (see, for instance, 
the remarks on mica on p. 167). They observed the "glancing angles" & for 
various crystal faces and from them determined the lattice plane spacings d 
by means of eq. (15). Instead of a continuous X-ray spectrum they used for 
this purpose a known characteristic line such as the Cu 7^-line λ = 1.537 Â. 
In addition to the directions of the reflected rays, their intensities were of 
essential importance in these structure determinations. Particularly significant 
were observations on the extinction of even or odd orders of possible reflections. 

Debye gave a general explanation of the extent to which thermal motion 
in crystals influences the intensities of reflections. C. G. Darwin studied the 
effect of disorientations found in most crystals (the so-called mosaic structure 
of crystals). P. P. Ewald in his "dynamic theory" of X-ray interference 
accomplished a profound extension of Laue's original theory. This theory 
takes into account the attenuation of the primary radiation during its passage 
through the lattice and the mutual radiation passing from lattice point to 
lattice point. The valuable notion of the "reciprocal lattice" is also due to 
Ewald. 

33. Diffraction Arising from Many Randomly Distributed Particles 

We shall here consider a glass plate which is covered with condensed fog 
droplets or has been dusted with lycopodium powder. The light source shall 
be as small as possible and very distant, and we shall observe this source 
through the glass plate with the eye focused at infinity. We shall assume 
that the droplets or spore grains are of uniform size and circular in shape. 
By means of a filter we select a small spectral range of wave number k from 
the source. 
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The glass plate shall lie in the #y-plane whose origin x = 0, y = 0 will 
be taken to lie on the straight line connecting the eye with the source. The 
centers of the small circular diffracting discs will be described by the 
coordinates xn, yn. We write the formula for the radiation reaching the eye 
from each particle and having the direction of propagation α, β, γ, in the form 

(1) un = f (a, β, γ) exp {i k [a (x - xn) + ß(y-yn) +γ ζ]}. 

The factor / (α, β, γ) will be further explained in Sec. 36. As in (32.4) we 
find for the total amplitude 

(2) 

(3) 

\Ση» = /(a,Ay)S, 

]£ exp [ - i k (a xH + ß yn)} 
n = l 

where N is the total number of particles. We have here put the factors 
containing x, y, and z in front of the summation sign and have taken into 
account the fact that they disappear when the absolute value is taken. 

Because the particle coordinates xn, yn are unknown, the summation 
cannot, of course, be performed algebraically as was done in Sec. 32. Therefore, 
we must apply a statistical procedure. The value of k in eq. (3) is given; 
α, β are arbitrary but are to be chosen and then held fixed ; the xn, yn in the 
summation assume completely random values. Equation (3) tells us to add N 
unit vectors of random directions in the complex plane and to determine 
the length of the resultant vector. A theorem in the theory of probability 
says: if all directions have equal probabilities, the length of the resultant vector 
is ]/N. This theorem is used, for instance, in the theory of Brownian motion 
where, as in our diffraction problem one is interested, in the addition of a 
large number of, on the average, equal impulses which the observed colloidal 
particles receive by collisions with the molecules of the surrounding fluid. 

To prove this theorem we set the exponents in (3) (reduced modulo 2π) 
equal to i <pn and obtain 

N 

s = JLJ - s* = Z> >Σ> 

We now find the statistical mean value 5 of S, which we define as the 
square root of the average value of S2: 

2π 2π 2π 

(4) s=]/i, s'-a/^/^-è/^5 ' · 
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Thus we average S with respect to each φη over its whole range of values 
from 0 to 2 π. The assumption of equal probabilities of all angles for each φη 

and the mutual independence of all φη which is implied* in (4) is motivated 
by our complete lack of knowledge of the values of xn and yn in eq. (3) which 
defines the <pn. 

First we compute only the integral with respect to φ1 occurring in (4) : 
2π N , N 

(4 a) JL f d(pi I e'K + Σ '*") ( «"'* + Σ e~ ίφλ· 
5 * n=2 ' * m=2 ' 

The product of the two parentheses in this integral gives 
N N 

i + ... + . . .+ν , ss = Σ p* Σ *~i9m -
n=2 w=2 

The two middle terms which have not been written down contain the factors 
exp (ίψχ) and e x p ^ i c ^ ) and therefore vanish on integrating over φν 

The two other terms are independent of φ± and therefore integrate to 
i + V. 

Next, we calculate 
N N 

(4b) ±- d<p2(\ + v ) = i +1 + v , v = Σ β ί Ψ η Σ e ' i < P m · 

Continuation of this procedure leads to 

(5) 5 « = 1 + 1 + 1 + . . . = Λ Γ , J=]/W. 

This proves our probability theorem. As was to be expected from the 
symmetry of the arrangement, 5 is independent of α, β. 

Returning now to eq. (2), we find for the intensity of the diffraction pattern 

(6) / = # / „ . /o = /2(«./*,y)· 

/ 0 is the intensity arising from one individual diffracting disc. For random 
distributions of the diffracting elements, the intensities add and not the amplitudes 
as was the case in the grating theory. Instead of the amplification factor N2 

of fig. 53, eq. (6) contains the factor N. 
In the case of our circular diffracting discs / 0 does not, of course, depend 

on a, jo and γ individually but only on the radial angular distance 
s = (α2 + β2Ϋ/% = (1 - 72)1/ζ· As we shall see in Sec. 36, / 0 has a flat maximum 
in the center of the diffraction pattern and vanishes for the first time at a 
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sharply defined position s = sv A considerably weaker maximum follows 
and then a less sharp zero, etc. According to Sec. 36, 5Χ is given by 

(7) Si = 0.61 -
1 a 

where a is the radius of the diffracting discs. Hence, the radial extension of 
the diffraction pattern increases as the ratio a over λ decreases. 

If we use white light instead of monochromatic light, then the center of 
the diffraction pattern appears white because all colors have a maximum 
there. The outer rim of this center disc is colored red because at the distance 

the blue component of the light is missing. At approximately twice this 
distance we expect a bluish tint because there the red component is extin-
guished. As we proceed outward from the center, the coloration and the 
intensity become progressively weaker. If the diffracting particles are not 
circular in shape, then of course the intensity / 0 depends on both a and β. 
However, the intensity / resulting from all N particles retains its circular 
symmetry so long as not only the positions but also the orientations of the 
particles are random, for then a summation over all possible orientations 
must be added to the summation over all positions in the expression (3) for S. 

If the particles are not of uniform size but are, for example, water droplets 
of various radii, then according to (7) the rings of zero amplitude become 
diffuse under monochromatic illumination. Under white light illumination 
the color pattern becomes less distinct, but the white coloration of the center 
portion of the pattern remains. The size of this white disc can be estimated 
from eq. (7 a) if a is replaced by an average radius ä. 

Our statement about the statistical average value of S is only approximately 
valid. Under monochromatic illumination with a carefully limited source 
the diffraction patterns exhibit a certain ''granulation", namely a radial fiber 
structure. This is due to fluctuations about the statistical average which are 
stronger in the radial direction than in the azimuthal direction perpendicular 
to it. These fluctuations have been investigated in detail by M. von Laue1 

both experimentally and theoretically. 
We now turn to the meteorological applications of this theory. Because of 

the sizes of the light sources involved (sun or moon), and because of the white 
nature of the light, the above-mentioned fluctuations obviously do not enter 
into consideration. The real coronae about the sun and the moon are due to 

Preußische Akademie 1914, p. 1144. 

(7 a) 
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diffraction at cloud particles, hence primarily at water droplets. Because of 
the different sizes of the droplets, the color phenomena are rather weak. The 
sun and the moon are surrounded by a white or bluish-white field. As was 
remarked in the introduction, a frequently observed reddish rim indicates 
the diffractive nature of this phenomenon. From the angular radius of this 
rim, which differs for different observations, the average droplet diameter 
2 ~ä is found by means of (7 a) to vary from 0.01 to 0.03 mm. After the 
eruption of Krakatoa, a much larger red-brown sun ring was observed. This 
was due to the volcano's dust particles which had drifted as far as Europe. 
The angular radius of this ring amounted to 20° to 25°, which corresponds 
to the much smaller particle diameter of 0.002 mm. 

The situation is different with the ice crystals of cirrus clouds. It can be 
assumed that they, too, contribute to the diffraction phenomenon of coronae, 
but the characteristic phenomena resulting from these crystals are the halos 
which are not due to diffraction but are caused by refraction. This fact is 
proved by the color arrangement in halos: violet outside, red inside. 
Moreover, the halos have definite radii which do not depend on the (varying) 
sizes of the particles but rather on the crystalline structure of these particles. 
The most frequently occuring angular radius is 22°, which corresponds to 
refraction of the light in the hexagonal cylinders of ice crystals (edge angle 60°). 
If because of gravity the ice crystals are oriented mostly vertically, then the 
light of the halo concentrates at the two points on its circumference which 
are at the same elevation as the sun. This is the origin of the two parhelia. 
In addition, a halo with about 45° angular radius occurs. 

34. Huygcns' Principle 

Huygens' principle may be visualized as follows: the future shape of 
any given wave surface can be determined by assuming that each point of 
this surface emits a spherical wave and by constructing the envelope of all 
these spherical waves. In a homogeneous medium this construction yields 
a surface which is parallel to the original wave surface (possible boundaries 
of the original surface form an exception). We have already seen in fig. 37 
that this procedure leads to the usual refraction at plane interfaces. The 
usual reflection is also obtained in this way. 

Kirchhoff proved that Huygens' principle is an exact consequence of the 
differential equations of optics. This principle constitutes the foundation of 
the classical theory of diffraction, which has proved its fruitfulness in countless 
problems. Nevertheless, this theory is only an approximation which is valid 
only for sufficiently small wavelengths. This is so because the boundary condi-
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tions which must be used in conjunction with Huygens' principle are not 
known precisely. The classical theory, moreover, does not take the vectorial 
character of the optical field into account. This deficiency will not be 
discussed until Sec. 38 et seq. 

A. THE SPHERICAL WAVE 

We are familiar with the scalar spherical wave of acoustics from Vol. II, 
Sec. 13. Like the plane wave representation, that of the spherical wave is 
a solution of the wave equation Δ u + k2 u = 0. If it is assumed that u 
depends only on the coordinate x, one obtains (disregarding a constant 
complex factor) 
(1) u = eikx. 

If, on the other hand, it is assumed that u is a function only of the distance r 
from the origin of the coordinate system, then one finds 

A 1 d2(ru) d2(ru) , L9 Λ , .. 
r dr2 dr* 

and hence 

(2) u = -eikr, 
Y 

where the time dependence is assumed to be of the form exp (- i ω t). (With 
a time factor of exp (+ i ω t) one would obtain an incoming rather than an 
outgoing wave.) 

The vectorial spherical wave of electrodynamics is not so simple. The 
expression for this wave assumes its most convenient form if the Hertz 
vector is introduced as the characteristic function u. In particular, the special 
case of the Hertz vector which represents the radiation emitted by a linearly 
oscillating dipole, see Vol. I l l , Sec. 19 B, is useful here. Though the analytic 
expression of this vector is again given by (2), that is, by a spherically symmetric 
expression, this is not true of the field which is derived from the Hertz vector. 
The magnetic field lines are circles about the direction of oscillation, while 
the electric field lines are in the meridian planes of that direction. Only the 
phase of the field is spherically symmetric. Its amplitude depends on direction. 
The electric amplitude, for instance, vanishes in the direction of oscillation 
of the dipole at distances large compared to the wavelength. 

A physical light source (point-like bulb or candle) contains all possible 
directions of oscillation. Such a source emits an average field in which no 
directions are preferred. The field intensity is therefore spherically symmetric. 
If we represent such a field by (2), we must realize that we thereby 
relinquish the possibility of representing the finer details of the light, such as 
its polarization. 
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B. GREEN'S THEOREM AND KIRCHHOFF'S FORMULATION OF HUYGENS' 
PRINCIPLE 

Green's theorem suffices for the integration of the scalar wave equation; 
the reader is referred to the first introduction of this theorem in Vol. II, 
eq. (3.15) and to its repeated use in Vols. I l l and VI : 

(3) / (uAv-vA u) άτ = Ι Ι ^ - — v — \do. 

Let u be the function (2) of the spherical wave and let v be the desired solution 
of the equation Δ v + k2 v = 0. The surface a separates space into two 
regions. One of these regions will be called the interior of a and the other 
region its exterior. If, as will usually be the 
case, a extends to infinity, then the point at 
infinity belongs both to the interior and to 
the exterior. For the region of integration 
on the left-hand side of (3) we choose the 
exterior of a. The source of the wave u is 
assumed to lie at the point P in the exterior 
and is to be excluded from the region of 
integration; this may be accomplished by 
means of a sphere K of arbitrarily small 
radius; see fig. 56. Then, because of the 
differential equation which u and v satisfy, 
the left-hand side of (3) vanishes. The inte-
gral on the right-hand side must be evaluated 
over the two boundary surfaces a and K x; 
dn is the normal to these surfaces directed 
into the interior. The same considerations as in Vol. II, Sec. 20, 1 a yield for 
the integral over K the value - 4πνρ, where vP is the value of v at the center 
of K. From eq. (3) it follows, therefore, that 

Fig. 56. 
Regions of integration for Green's 
theorem. The surfaces a and a 
together form a closed surface. 

(4) 4πνρ 
_ fldv ékf d eikr\ 

J \dn r dn r f 

1 Actually a third boundary surface should be added, namely a sphere of very large 
radius with its center at P which excludes the point a t infinity. Denoting the surface 
element by da = r2 dm and combining the r2 with the integrand, the integral over this 
surface becomes 

J Y\^-ihv) + v\ei kr do 

Because of the radiation condition, see Sec. 38, eq. (1 d), and because v vanishes as r-
the bracket { } vanishes. Hence, the integral also vanishes. 

•oo. 
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It should be emphasized that in this calculation, as in the previous 
applications of Green's theorem in potential theory, the spherical wave u 
plays the role of a mathematical auxiliary function. It is, so to speak, a 
"probe" which we use for investigating the optical field v. This 'Virtual·' 
spherical wave has nothing to do with the real spherical wave which we shall 
introduce in (4 b) as the source function of the optical field. In eq. (4) we have 
in a sense removed the probe from the field v under investigation by 
substituting for u and dujdn their values as given by (2). From now on we 
shall forget the origin of these quantities and shall rather regard them as 
describing spherical waves which are radiated by the surface elements da 
and which arrive at the point P at the distance r from da. Only with this 
interpretation of eq. (4) have we gained the basis of Huygens' principle. 

Formula (4) allows us to calculate v at every point P of the exterior if 
we know the boundary values of v and dv/dn on a (or more appropriately, if we 
knew these boundary values!). Let us assume that a consists of an opaque 
portion Fand an aperture which we shall henceforth call a. The latter is 
indicated by a dotted line in fig. 56. It is reasonable to assume that as we 
approach ~ä from the exterior, we shall find there the values 

dv 
(4a) , = 0, - = 0. 

Therefore, eq. (4) retains its validity even with our new definition of a. Again, 
it is reasonable to assume that v has the same values in the aperture as those 
it would have if F were absent. If, for instance, v were due to the radiation 
from a luminous point P' of strength A, then the boundary values in the 
aperture would be 

eihr* dv d eikr' 
( 4 b ) V=A — · Tn=ATn — 
where r' is defined in the figure. 

But strictly speaking the assumptions (4 a, b) are mathematically in-
admissible. A well-known theorem in Riemann's theory of functions says that 
if a two-dimensional potential v vanishes together with its normal derivative 
along a finite curve segment s, then v vanishes identically in the whole plane. 
This theorem can be extended to cover solutions of the two-dimensional wave 
equation1. It is also true that any solution of the three-dimensional potential 
or wave equation vanishes in the whole space if the condition (4 a) is satisfied 
on any finite surface element a. Therefore, (4 a) would seem to imply that 
v = 0 everywhere. 

1 Heinrich Weber, Mathem. Ann. Vol. 1, 1869, p. 1. 
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Applying this theorem, on the other hand, to the difference w = v - v' 
between any two analytic solutions v and v' of the three-dimensional wave 
equation, it follows that v and v' must be identical in the whole space if the 
conditions v = v' and dvldn = dv'/dn are satisfied on any finite surface 
element a. Therefore, the assumptions (4 a) and (4 b) not only contradict 
the known physical situation but also contradict one another. 

As a matter of fact, we would not even obtain the boundary values (4 a) 
or (4 b) if we calculated them from (4) by placing P on "a or a. Thus eq. (4) 
gives the correct values of vP only if we know the correct boundary conditions 
v and dvldn. 

C. GREEN'S FUNCTION, SIMPLIFIED FORMULATION OF HUYGENS' PRINCIPLE. 

This mathematical contradiction is avoided by substituting for the 
spherical wave u in the original eq. (3) the Green's function belonging to our 
surface. This function is defined by the following conditions1: 

(5 a) AG + k2G = 0 in τ, 

(5 b) G = 0 on <x, 

(5 c) G-+« as r-+0, 

(£-H-(5d) r\- ikG\ -►O as r->oo. 

As before, r is the distance from the point P and (5 d) is the so-called radiation 
condition of Vol. VI, Sec. 28. Equation (5 c) states that, like u, G shall have a 
singularity only at the point P and shall be continuous everywhere else in 
the exterior. G differs from u because of the additional condition (5 b). As a 
result of this condition the term containing dvjdn in eq. (4) disappears and 
that equation becomes2 

(6) 4πνρ = - I v— da. 
C dG 

xSee Vol. VI, Sees. 10 E and F. In the nomenclature used there the spherical wave u 
is not a Green's function but is the "principal solution" of the differential equation 
Δ u + Ä2w = 0. 

2 The spherical surface which excludes infinity (see footnote 1, p. 197) contributes now 

/ \G- O—-\r*da)= I r[^--ikv\i 

J \ d" dnl J \dn I 
j rGdto 

\ dn dn I J \dn S 

which again vanishes. 
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Now we need to prescribe only the boundary values of v itself. As in (4 a, b) 
it is reasonable to assume that 
(6 a) v = 0 on σ, 

ikr' 
(6 b) v = A exp on o. 

These assumptions are mathematically consistent. Furthermore, according 
to the theory of the Green's function, the boundary values (6 a, b) are actually 
assumed by the function vP as computed by (6) when the point P is placed 
on the screen or in the aperture. 

The question remains, are these assumptions 
also physically justifiable? The answer again is 
that they are only approximations for sufficiently 
small wavelengths1. The field does not vanish 
completely behind the screen, nor is the field in 
the aperture entirely unaffected by the presence 
of the screen, at least not within distances of the 
order of magnitude of a wavelength from the edge 
of the screen. 

The introduction of the Green's function 
therefore involves no final justification of the 
method but it has the practical advantage of 
leading to the simpler form of the integral (6) 
as compared to (4). However, the applicability 

of the Green's function method is restricted to the special case of the plane 
screen. This is the only case for which the Green's function can be conveniently 
expressed, namely by means of the elementary method of images. 

In fig. 57 we construct the mirror image 5 of the point P with respect to 
the plane of the screen z = 0. For an arbitrary point Q = ξ, η, ζ where ζ > 0, 
we form 

*x,y,z 
Fig. 57. 

Construction of the Green's 
function for a plane screen. 

(7) G = 
pi krl pikr% τΛ*=(ξ-χ)*+(η-γ)*+(ζ -*)» 

'22 = (f-*)2 + to-y)2 + (i + *)". 
x, y, z and ξ, η, ζ are measured from the same origin 0 which lies in the plane 
of the screen. This function of ξ, η, ζ satisfies all the conditions (5 a) to (5 d). 
It should be noted that the singularity of G at the image point S does not 
violate these conditions because S lies on the other side of the screen ζ = 0. 

xWe use here and in the following the word "wavelength" and the notation Λ even 
though these are really only defined for plane waves and lose their simple meaning for 
the more complicated wave types encountered in diffraction. However, we can always 
interpret λ as the length 2 n c/ω which is defined for all monochromatic radiation processes 
and which for plane waves is identical with the actual wavelength. 
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From (7) we calculate 

dG dG . a leikr\ 
dr\ r ) 

This can be further simplified for all positions of P which are not too close 
2 71 Y 

to the screen. For then we have k r = —τ— > 1 and therefore 

2ni eikr 

Substituting (8 a) in (8) and (8) in (6) we obtain 

/

e%kr 
cos (n, r) v da. 

a 

Thus we have gained an expression which is equivalent to Huygens' 
principle and which formulates it exactly. A light wave falling on the aperture a 
propagates as if every element da emitted a spherical wave the amplitude and 
phase of which are given by that of the incident wave v. The factor cos (n, r) 
which multiplies da is of interest. It corresponds to Lambert's law of surface 
brightness and was used earlier by Fresnel in his qualitative considerations. 
The factor λ on the left-hand side of (9) is understandable because of the 
dimensions of the right-hand side (da/r = length). 

If one substitutes for v the value given in (4 b) which corresponds to 
illumination by a point source, then (9) becomes 

(10) ιλνΡ = Α j eikl' + '')—^^da. 

D. FRAUNHOFER AND FRESNEL DIFFRACTION 

Let the dimensions of the diffraction aperture in the screen be small 
compared to the distances r and r' of observer and light source. Then the 
e cos (n, r) . , , . , . . , , factor / — vanes but little inside the opening. Hence we may 

r r 
place this factor in front of the integral sign, setting it equal to the value it 

and hence 

(8) 

(7 a) 

If we now place Q on the screen, see fig. 57, we have 

(8 a) 

(9) 
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assumes at the origin 0 of our integration variables f, η. Calling R and R't 
respectively, the values of r and r' at 0, we thus obtain instead of (10) 

(11) iXvp=^-g,cos(n,R) \ eik(' + '') άξάη. 

To simplify the remaining portion of the integrand, which because of the 
magnitude of k is a rapidly varying function, we first develop r in powers of 
ξ and η: 

r = ]/(χ-ξ)2 + (γ-η)2 + *2 = ]/R2-2(xi + yV) + (ï2 + V2) 

Ί? x t y ■ ξ2 + γι2 (*£ + yq)2 p t n , ξ2 + η2-(*ξ + βη)2 

s Ä"Äf-Ä' + T R a l ? — = Ä - e f - / , ' + 2Ä 

where a and /? are the direction cosines of the diffracted ray 0 -+ P with 
respect to the ξ- and 77-axes. If we call the direction cosines of the incident 
ray P' -*- 0 OQ and β0 (hence the direction cosines of 0 -* P' are - OQ and 
-β0), then we find correspondingly 

r =Κ + OCQ̂  + Ρ0η H ^ / p ' 

From this follows 
(12) ^(Γ+ιΌ — ^ΛίΚ + Α')^-**· 

with the abbreviation 

, («of + j80i?)2 

"*" 2 2?' 
and formula (11) becomes 

(14) t A VP = ^ 7 cos (», Ä) <?*'* <*+*'> j e~ik*di Λη. 
RR' 

The expansion (13) clearly presupposes that the linear dimensions of the 
diffraction opening are small compared to R and R'. 

The evaluation of the remaining integral in (14) is simplest to perform 
for the case of Fraunhofer diffraction 

(14 a) R —00, # ' - ^ 0 0 

which obtains for the meteorological phenomena and which can also be best 
realized experimentally. In this case only the linear terms in Φ remain, and 
we have only to deal with a superposition of plane waves. 

(14)
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If one or both of the conditions (14 a) are not satisfied, one speaks of 
Fresnel diffraction. By proper choice of the origin 0 (for details see Sec. 37) 
one can then make a = OQ and ß = ß0, so that the linear terms of Φ vanish. 
The integration of the quadratic terms (Fresnel's integrals) provides us with 
a complete picture of the entire diffraction field behind the screen, while in 
the Fraunhofer case we confine ourselves to the limit of the diffraction 
field at large distances from the screen. 

Fresnel and Fraunhofer diffraction are also called 
microscopic and telescopic diffraction, respectively. 
For, in the Fresnel case a magnifying glass may be 
used to project the field at a given point P onto an 
observation screen where the intensity can then be 
measured. In the Fraunhofer case insufficient 
intensity would reach the naked eye if it were placed 
at a very large distance from the screen (especially in 
the case of a single small diffraction opening). 
Therefore, all parallel ray bundles emerging from the 
diffraction opening are focused by means of a lens1 

L on a point P in the focal plane E of L. For 
similar reasons a point source P' at a finite distance 
from the screen is used, and its rays are sent through 
the opening as parallel ray bundles by means of a 
lens L' (collimator lens). P' must, of course, He in 
the focal plane E' of L'; see fig. 58. 

If 0 is the image of P' according to geometrical optics, then the 
coordinates of P in the plane E (with 0 as the origin of the coordinate system) 
are proportional to the quantities a - OQ and ß - ßQ. According to (14) and (13) 
the intensity at P depends only on these two quantities. (The factor in front 
of the integral in (14) is a constant since |exp {i k (R + ^ ' ) } | = 1 a n ^ since A 
must be thought of as tending to infinity like R R'.) L is the objective lens 
used in this "telescopic" observation; the eyepiece through which the 
diffraction pattern produced in E is viewed is not shown in fig. 58. The 
diffracted rays which are focused at P are represented in the figure by 
dotted lines which, in accordance with the notion of Huygens' principle, 
are drawn as if they originated in the diffraction opening2. 

xWe may disregard the diffraction phenomena caused by the rims of the lenses 
L and ΖΛ / 

2 Fresnel diffraction can also be observed with a telescope if the eyepiece is not focused 
on the focal plane E but on an arbitrary extrafocal plane. Instead of observing the 
patterns on these planes with the eye, one can of course record them by means of a 
photographic plate. 

P 0 
Fig. 58. 

The Fraunhofer arrange-
ment for diffraction 

observations. 
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When there is a very large number N of diffraction openings as in Sees. 32 
and 33, the telescopic arrangement becomes unnecessary. The amplification 
factor N2 in Sec. 32 and N in Sec. 33 make it possible to observe the 
diffraction patterns with the naked eye even at large distances. 

E. BABINET'S PRINCIPLE 

Two arrangements of diffraction openings 1 and 2 are called "comple-
mentary" if the opening of 1 is congruent to the screen of 2 and vice versa. 
Let us calculate vx and v2 for the same primary illumination and form their 
sum. We assert that "within the framework of Huygens' principle'' 
(15) v± + v2 = v, 

where v is the undisturbed primary illumination at the point of observation 
when both diffraction screens are absent. 

We shall prove this theorem for the general case of an arbitrary (possibly 
curved) screen by starting from eq. (4). When forming the desired sum, we 
have to replace vP on the left-hand side of that equation by 

{vx + V2)P. 

On the right-hand side of (4) v has the same meaning in both summands, 
namely the undisturbed primary illumination. In contrast to (4) the integra-
tion must now be carried out over the entire surface a because every point 
on a belongs to the diffraction opening of either 1 or 2. But we obtain 
precisely the same integral if we apply (4) to the primary illumination v with 
no screens present. In that case we have just this v on the left-hand side and 
the integration over the whole surface σ on the right-hand side with the 
meanings of the symbols v and dvjdn in the integrand the same as before. 
Equation (15) has thus been proved: vx + v2 and v are equal because both 

are equal to the same / . . .da. 

Equation (15) is valid for all points P of the exterior and therefore 
encompasses both Fresnel and Fraunhofer diffraction. It is called "Babinet's 
principle". The above proof was based on Huygens' principle. In Sec. 38 F we 
shall discuss how Babinet's principle must be modified when it is treated from 
the more precise viewpoint of the boundary value problem. 

In the older literature1 Babinet's principle occurs only in a much narrower 
form, which restricts its applicability to Fraunhofer diffraction. The reason 
is that the complete functional dependences of vv v2 (including their phases) 

See, for instance, Kirchhoff, Vorlesungen über Optik, p. 96. 
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are not accessible to observation, but only the amplitudes \νΊ\, \v2\ or, what 
is equivalent, only the intensities are observable. The latter, of course, do 
not satisfy the equation 
(15 a) Λ + J2 = / . 
Rather, when forming the absolute value of (15), the left-hand side of (15 a) 
is found to contain the additional terms 
(15 b) v1v2* + v2v1*. 

Only in the case of Fraunhofer diffraction can a simple statement be made 
about the intensities: the two complementary screens produce diffraction 
patterns of equal intensity. 
(16) Λ = / 2 . 
To prove this we consider the focal plane E in fig. 58. For ideal lenses the 
primary light v is concentrated at the point 0 and is zero everywhere else. 
Excluding the point 0, at which the singularity of the diffraction pattern 
renders observation impossible in any case, it follows from (15) that 

vx= - v2, |i/jj = \v2\, hence indeed Jx = J2. 
In Sees. 35 C and D we shall discuss a very elementary problem of Fresnel 

diffraction for which there exists no simple relationship at all between / x 

and / 2 , but we shall convince ourselves that our formulation (15) of Babinet's 
principle is valid. 

F. BLACK OR REFLECTING SCREEN 

In the theory of diffraction it is customary to speak of a black screen. 
However, in actual diffraction experiments one finds that the physical nature 
of the screen in general does not affect the results noticeably. Thus a piece 
of tin foil into which a narrow slit has been scratched yields the same 
diffraction pattern regardless of whether the foil has been left reflecting or 
whether it has been blackened. Therefore we need only describe the screen 
as opaque in order to specify that in spite of arbitrary thinness it shall transmit 
no light. In the Maxwell theory such a screen would have to be defined as a 
material possessing an infinite conductivity. Such a screen would not be black 
but would be perfectly reflecting ; its reflecting power would be r = 1. On the 
other hand, black, that is completely non-reflecting material, cannot even be 
de îfxjd j ~ t^e Maxwell theory; blackening is not a property of the material 
but is a property of the surface. We shall take this into account in Sec. 38 where 
we shall try to describe the property ''black*' mathematically. Our presenta-
tion of Huygens' principle shows that this property is not essential to the 
theory of diffraction. Only very refined experiments can reveal the nature 
of the material of which the diffracting screen is composed. 
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The material composition of the screen, of course, affects the light field 
only in the immediate vicinity of the edge of the opening, that is, only within 
a distance of a few wavelengths from the edge. If the opening is fairly large, 
this edge zone is negligible compared to the rest of the aperture. This explains 
why the crude assumptions (4 a, b) or (6 a, b), which can of course be valid 
only outside the edge zone, have been so eminently successful. Deviations 
from Huygens' principle are to be expected with the usual methods of 
observation only for extremely small openings which are of the order of 
magnitude of a wavelength in size (or for experimental arrangements which 
correspond to such small openings in accordance with the similarity law of 
Sec. 35 E). 

G. TWO GENERALIZATIONS 

So far we have restricted ourselves to those consequences of Huygens' 
principle which are directly applicable to the problems under discussion in 
this chapter. We shall now present two closely allied results which will be 
useful later. 

1. Instead of the Green's function (7) which satisfies the boundary 
condition G = 0 at z = 0, we now form 

gkrx eikrt 

(17) G = + . 
rx r2 

This is a function which satisfies the boundary condition dGjdz — 0 at z = 0. 
Substituting it for u in eq. (3) we obtain in place of (6) 

=+/£< (18) 4 π ν ρ = + / j-Gda. 

However, this vP is identical with the vP of eq. (6) only if the integral in (18) 
is taken not merely over σ but also over the entire screen which contains the 
aperture σ [in eq. (6) this was not necessary because we assumed v = 0 on 
the opaque screen]. With this understanding of the integration in (18), and 
given the exact boundary values of v and dvjdn in the opening and of dvjdn 
on the screen, we have 

where G+ is the Green's function defined in eq. (17), G_ is that defined in 
eq. (7). If we substitute for these Green's functions their values on the 
plane z = 0, we obtain 

(20) 
/

dv àkr , Çd <*kr _ 

(18)
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2. If the screen is not a plane but a curved (e. g. spherical) surface and has 
an aperture σ, then doubtless there are again two functions G_ and G+ which 
satisfy the conditions G_ = 0 and dG+ldn = 0 on cr. Every continuous 
solution v of the wave equation can be represented in two ways by means of 
these functions. Therefore, the remarkable identity (19) is valid in the sense 
described above also for curved surfaces σ. 

However, even for the simplest case of the sphere, the analytic representa-
tions of G± lead to infinite series containing the eigenfunctions of the sphere. 
Therefore, the simplification which resulted from the introduction of the 
Green's function in the case of the plane screen becomes illusory for curved 
screens, not to mention the fact that the requirement concerning the knowledge 
of the exact boundary values is not fulfilled in either case. 

35. The Problem of the Shadow in Geometrical and in Wave Optics 

Geometrical optics constitutes our day-to-day guide to the outside world; 
it is the basis for the construction of the image-forming devices (spectacles, 
telescopes, photographic lenses). We shall here treat geometrical optics as 
the limiting case of wave optics as λ -*(); see also the introduction to Sec. 34. 

A. THE EIKONAL 

As in Sec. 34 we start with the scalar wave equation 

(1) Au + k2u = 0, £ = ] / ^ ω = = ^ , 
A 

but now we do not assume ε to be constant but rather to be a (continuously 
or discontinuously varying) function of position. As A-^O, and hence k -> oo, 
this differential equation degenerates. In order nevertheless to be able to 
draw quantitative conclusions from the equation, we make the following 
assumption1 as to the form of the solution: 

(2) u = A eiJt*s , k0 = ]/ε0μ0 ω = -£■. 

A is an amplitude factor. We call 5 the eikonal, an expression introduced 
by H. Bruns. While « is a rapidly varying function of position (because 
k0 -* oo), we consider A and S as slowly varying functions of the coordinates 
x, y, z which do not go to infinity with k0. By differentiating (2) we get 

1 After P. Debye, in a paper Ann. d. Phys. 35 (1911) by Sommerfeld and Iris Runge. 
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du . , dS d log A 

-= , * , „ -+« -^ . 

+ 2 ik^ u\ — Δ S + grad log A · grad S\+ · 

where the terms indicated by do not become infinite as k0 -»- oo. 
Hence eq. (1) is satisfied approximately if S and A satisfy the differential 

equations 

(3) D (S) = n*, n = A , 

(4) grad log A · grad S = — AS. 

D is the notation for the "first differential parameter" 

which has already been used in Vol. II, eq. (3.9 c); n is the usual index of 
refraction ; Eq. (3) which is the differential equation of the eikonal, is an inhomo-
geneous equation of first order and second degree. Once (3) has been integrated, 
(4) yields the component of the gradient of log A in the direction of the gradient 
of 5. Equation (4) makes no statement about the gradient of A in a direction 
perpendicular to the gradient of S. Therefore (4) permits discontinuities 
of A in these directions. 

According to the definition (2) the surfaces S = constant are surfaces 
of constant phase of u. Hence they represent wave surfaces. The normals 
to these surfaces are given by the gradient of S and represent the ray directions. 
In general, if n varies in space, the rays are curved. In an optically 
inhomogeneous medium the integration of (3) is the simplest method for 
determining the wave surfaces and the ray directions. 

In an optically homogeneous medium with n = constant, one obtains as 
the simplest solution of (3) the linear function 

(5) S = n(aLX + ßy + γζ) where α2 + β2 + γ2 = 1. 
This function contains two arbitrary constants, e. g. a and β. The wave 
surfaces determined by this solution are planes, the rays are parallel straight 
lines in the direction οα'.β'.γ, since, indicating the three components, 
(5 a) gradS = «(a,/î,y). 
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For constant n the simplest solution with one singular point is the spherical 
wave 

x2 + y2 + z2, grad S = — (x, y, z). 

The simplest solution with one singular straight line corresponds to the 
cylindrical wave 

(7) S = np, ρ=]/χ2 + γ2, grad S = — (x, v). 
P 

In both these cases, and quite generally in homogeneous media, the rays are 
straight lines. 

The general solution is obtained by starting with any arbitrary surface 
and constructing a family of parallel surfaces to it (surfaces of constant 
infinitesimal spacing). 

We have thus obtained the simplest mathematical scheme for the under-
standing of the formation of shadows. We consider the light source as given. 
From it there emerge rectilinear rays. A screen shall be called opaque if it 
absorbs all rays falling on it and does not itself emit any rays. Then the 
shadow behind the screen is bounded by straight ray directions which emerge 
from the light source. In the direction perpendicular to the limit of the 
shadow A decreases discontinuously to zero which, as we have seen, is 
compatible with eq. (4). In the limiting case as λ -> 0 there is no diffraction. 
The rays which do not meet the screen continue unobstructed along straight 
lines. If several light sources are present, then there are, of course, half-
shadow regions. 

Geometrical optics has become second nature with us to such an extent 
that we suppose it to be valid even in cases where we know the rays to be 
curved. Thus we see the sun over the horizon for about 5 minutes after it 
has actually set. For we project the sun's rays, which because of the 
inhomogeneity of the earth's atmosphere are curved, along straight lines 
tangential to the directions of the rays as they meet the eye. The situation 
is similar in the case of certain diffraction phenomena; see Sec. 38 D. The edge 
of a screen appears to us as a luminous line because we extrapolate rectilinearly 
backwards the rays of the cylindrical wave which meet our eye; but in 
reality the field in the vicinity of the edge of the screen is continuous. 

With eqs. (1) to (7) we have made the transition from wave optics to 
geometrical optics. Schrödinger proceeded in the opposite direction when, 
guided by the comprehensive ideas of Hamilton, he accomplished the transi-

(18)
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tion from classical mechanics to wave mechanics. As described in Vol. I, Sec. 44, 
Hamilton started with the theory of optical instruments and several years 
later applied it to general dynamics. The differential equation (3) of the eikonal 

is a very simple case of 
Hamilton's partial differen-
tial equations of dynamics. 
In the same sense our eq. 
(5 a) is a very simple 
specialization of Hamilton's 
momentum equation pk = 
= dSjdqk. Of course the 
way was cleared for 
Schrödinger's theory only 
after the discovery of the 
quantum of action by 
Planck. It should also be 
noted that the useful 
W.K.B. method (Wentzel-
Kramers-Brillouin approx-
imation) in which the 
same hypothesis as in (2) is 
made, also corresponds to 

Fig> 59# the transition from wave 
Construction of surfaces of constant phase. opt ics to geometrical o p t k s . 

B. THE ORIGIN OF THE SHADOW ACCORDING TO WAVE OPTICS 

We must now seek a solution of the problem of the shadow by means of 
wave optics instead of, as before, by its asymptotic form, namely ray optics. 
For this purpose we turn again to Huygens* principle. 

Let us consider the expression under the integral sign in eq. (34.10). We 
construct the surfaces of constant phase 
(8) r + r' = const. 
These are ellipsoids of rotation with the common focal points P (point of 
observation) and P' (light source). We shall call the focal distance p + ρ' 
where, see fig. 59, 

p = PD, p=P'D9 

and where D is the point where the focal line intersects the plane of the screen. 
Let x be the radius of that circular section of the ellipsoid under consideration 
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which passes through D ; the distances of a point on this circle from P and P' 
shall be rx and rx\ respectively. Provided P and P' are sufficiently far 
away, it is seen from the figure that 

(9) r* = p2 + x\ YX'2 = />'» + x\ 

(9a) ^ p ( l + ~ + . . j r/ = p ' ( l+i^+ . . | 

From this and (8) it follows that 

(10) r + r' = rx + rx' = p + p' + p 

where 

(10 a) p = ̂  + L^+..., dp = {L+^xdXi 

and where p is the parameter of the system of ellipses formed by the inter-
section of the system of ellipsoids of rotation and the plane of the screen. 
To the circular rings 
(10 b) dök = 2nxdx 

there correspond in the plane of the screen the elliptical rings dae, whose areas 
are proportional to dp. We write 
(11) dae = fdp. 

These dae are the proper area elements to be used in the integration with 
respect to do in eq. (34.10). 

We call φ (p) the fraction of the elliptical ring dae which falls inside the 
aperture and distinguish the two cases illustrated in fig. 60 a and b : 

a) D lies in the screen, 

b) D lies in the aperture. 

In case a) the integration over p extends from p± to p2. For px and p2, <p (p) = 0. 
In case b) the integration starts at p = 0. Between p = 0 and p = pv 

Ψ (ft) = 1· From px to p2, φ (p) decreases from 1 to 0. 
COS (ft Y) 

We combine the factor φ and the factor/in (11) with the factor ^ — -
in (34.10) and call their product F (p). Then, using (10) and (11), (34.10) 
becomes for the case a) 

(12) iXvp=Aeihl'+'>') l F (p) eikP dp. 
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Integration by parts1 gives 
Pt Pt Pi 

(12 a) F (p) eikP dp = ^ F (p) eikP - ^ / F' (p) eikP dp. 

Pi Pi Px 

For the case illustrated in fig. 60 a the first term on the right-hand side 
of (12 a) vanishes because F contains the factor φ and <p (p^j =<p (p2) = 0. 
As k goes to infinity, the integral in the second term likewise goes to zero. 
Therefore the right-hand side of (12) vanishes even after division by i λ = 2 π i\k 
and from (12), 
(13) vP ->0, shadow. 
The shadow is brought about by interference of the waves originating at the 
surface elements dae. 

In case b) we obtain in place of (12) 
Pt 

= A eik(p+p'î I 1 (14) ikvp = Aeik(p+p'î I F (p) eikP dp. 
o 

Integration by parts yields instead of (12 a) 
P% P% Pt 

(14 a) F (p) eikP dp = -}-F (p) eikP - ^ - / F' {p) eikP dp. 

0 0 0 

The second term on the right-hand side again vanishes for the case illustrated 
in fig. 60 b as k -* oo. The first term vanishes at its upper limit because 
φ (ρ2) = o. At the lower limit we have, according to fig. 59 

. , / c o s (n>r) ( c o s n> p) 

dae = ; r = / dp, cos (n, p) 

and according to eqs. (10 a, b) 

il·?)« dp = {— + -^7) xdx = --———j-dok> 
2 71 pp 

(14 b) / ^ 1 * * - 2 π ΡΡ' 
cos (n, p) dp cos (w, p) p + p 

Hence 

F ( 0 ) = , ( 0 ) / ^ ^ = - ^ . 
PP P + P 

1 Although the derivative F' (p) which occurs in (12 a) can under certain circumstances 
become infinite a t the limits of integration, a closer investigation in Sec. 36 D will show 
that the convergence of the integral is nevertheless preserved. 
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This lower limit therefore yields for the value of the right-hand side of (14 a) 
2π 1 ιλ 
ik /> + />' 

Dividing (14) by i λ we obtain therefore 
P + P'' 

(15) vp = A 
eik(p+p') 

P + P · 
This is the incident spherical wave at the distance p + p' from the light source. 

Equations (15) and (13) contain the 
Fresnel theory of the phenomenon of "light 
and shadow"; they make it understandable 
from the optical point of view that light 
"in general*' propagates along straight lines. 

"In general·' means that there are excep-
tions, as we shall see below under C and D, 
and in particular in Sec. 36 D, where 
we shall investigate Fraunhofer diffraction 
caused by screens with straight edges. 

C. DIFFRACTION BEHIND A CIRCULAR DISC 

The result derived in (13) suffers an 
exception if a finite portion of the edge of 
the screen coincides with one of the two 
bounding ellipses px = constant or p2 = con-
stant. For then <p (pj or φ (p2) is not zero 
and the first term on the right-hand side of 
eq. (12 a) does not vanish. Therefore (13) is 
no longer valid. There is no shadow; we 
may speak of diffraction at the elliptically 
curved portion of the edge of the screen. 

A particular example of this situation 
is a screen which consists of a circular 
disc with the points P and P ' lying on the 
perpendicular through the disc's center. 

Fig. 60 a, b . 
Intersection of the surfaces of 
constant phase with the plane of 

the screen. 
a) The point D defined in fig. 59 

lies in the screen ; upper figure. 
b) D lies in the opening, lower 

figure. 
In each case the irregular curve 
represents the edge of the diffrac-
tion opening; Px and P 2 are, 
respectively, the parameters of the 
smallest and largest ellipses which 
touch the edge of the opening. 

Then the point D is at the center of the 
disc. The ellipses p = constant become the circles x = constant (notation 
the same as in fig. 59). The diffraction opening consists of the whole 
exterior of the circular disc a < x < oo (a = radius of the disc). Equa-
tion (34.10) becomes then 
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(16) 

00 

Λ I J./ , /*cos (n,r) 
J rr 

For purposes of a later application we let p = p and r' = r, which will 
also simplify the evaluation of (16). We must emphasize, however, that this 
specialization does not affect the result. It would be just as convenient to 

choose p = oo, that is, to have an incident plane 
μ. wave instead of a spherical wave; cf. footnote * on 

p. 125. 
If p = p, we find (see fig. 61) 

(n,r) 

en 

e 

/ / 

r2 = p2 1 -(- x2 = r'2, xdx = r dr, cos (n, r) = — ; 
Y 

hence according to (16) 

(16 a) 

00 

ζλνΡ = 2πΑρ I e2ikr-^. 

k 

Fig. 61. 
Diffraction behind a ( 1 6 b ) i λνρ 

circular disc. 

Integrating by parts one obtains 

2~ϊΈ~\~ή 

oo oo 

* + a* ]/p* + a* 

If the second term in the bracket { } is again integrated by parts, it will contain 

the factor , which shows that this term is almost completely eliminated 
L· % /v T 

by interference. Disregarding, therefore, the second term, we obtain from (16 a) 

2 π A p e2^*^7* 
(16 c) i λ vp = ■ 

2ik p2 + a2 

If we introduce the following notation for the primary excitation at the edge 
of the disc 

pikr' ik]/p* + c 
vp' =■- A —— = A - . — , 

r' ]/p2 + a2 

then we can simplify (16 c), after cancelling the factor i λ> as follows 

1 
2 ]/p2 + a2 e

l k]/p* +a» Vp> 
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Writing this in terms of the intensities J =\vP\2 and/ 0 = \vp, |2, we obtain 

(17) J = T 4 p2 4 a 2 Jo· 

This paradoxical result is represented graphically in fig. 62. There is no 
darkness anywhere along the central perpendicular behind an opaque circular disc 
(except immediately behind the disc). The relative intensity increases with 
increasing distance between the light source and the point of observation. 
For very large distances the intensity at the point of observation approaches 
one-fourth of the intensity at the edge of the disc1. The primary light waves pass 
around the edge of the disc along its whole 
circumference, and because of the symmetry of the 
arrangement, they meet along the central perpen-
dicular with equal phases. The result is in striking 
contradiction with the rectilinear ray paths postu-
lated by geometrical optics and with the shadow 
boundary to be expected according to the latter. 
We must note, however, that the intensity given 
by (17) is to be expected only in the immediate 
vicinity of the central perpendicular, because only 
there do the lines p = constant coincide with the 
edge of the disc. At a small distance from this 
central line the complete shadow predicted by 
(13) will be observed. 

Poisson predicted the brightness along the 
axis as a consequence of Fresnel's theory of 
the shadow and cited it as an objection to that 
theory2. Therefore, or perhaps nevertheless, this 
phenomenon is called Poisson diffraction. It takes 
place behind an opaque sphere as well as behind a circular disc. In the 
case of radio waves it has been possible to detect an increase in the strength 
of the signal at the point of the earth which is antipodal to the primary 
antenna. 

Fig. 62. 

Relative light intensity JIJ0 

along the axis behind a 
circular disc. 

xIf we illuminate the disc with a plane wave [/>'—* oo in eq. (16)] instead of with a 
spherical wave, then the factor 1/4 in (17) disappears. Therefore / -> J0 as p —► oo. 
At a sufficiently large distance the disc cannot be seen; the primary light wave appears 
undisturbed. 

2The crucial experiment was performed by Arago and Fresnel. One therefore often 
speaks of an Arago spot instead of a Poisson spot. The reader is also referred to the 
experiment of W. Kossel who obtained stronger intensities and whose experimental 
arrangement had a deeper significance, Z. f. Naturforschung, Vol. 3a, p. 496 (1948). 



216 THE THEORY OF DIFFRACTION 35. 18 

"A photographic objective can be replaced by a steel sphere." This 
conclusion was drawn by R. W. Pohl in his Einführung in die Optik and proved 
by means of his illustration 185. We are fortunate in being able to show in 
fig. 63 a photograph taken by our colleague E. von Angerer. A sheet metal 
disc 50 mm. in diameter served as a "lens". The distance of the object and 

the plate from the disc was 35 m. each. 
The object used is considerably more 
complex and rich in detail than the 
simple monogram which had been used 
by Pohl. Though contrasts are considerably 
weakened in the picture, it is surprisingly 
true to the original; v. Angerer found 
that in order to obtain a sharp picture 
it was essential that the edge of the disc 
should be a precise circle (theoretically 
even to within the order of magnitude of 

a wavelength!). It is surprising that the circular disc should perform as well 
as Pohl's sphere, since the disc can depict only the central ray precisely 
while the sphere presents a circular cross section to all rays. 

Fig. 63. 
"Photograph" by means of a circular 

sheet metal disc. 

D. THE CIRCULAR OPENING AND FRESNEL ZONES 

We shall now consider the complementary arrangement, namely the 
circular opening. Retaining all of the above assumptions and notations and 
changing only the limits of integration in eq. (16) from x = a and x = oo to 
x = 0 and x = a, we obtain in place of eq. (16 a) 

M7~fa 

iXvp=2o (18) InAp j *«"'£. 

If we integrate this by parts and retain only the first order term, we get 
MP% + a» 

(18a) iXvP = 2JL±L*!!l ' 
V 2ik r2 

^_2πΑ 2ikp\ i P eiik(V7T*-p)\ 
likp \ p2 + a2 y 

In order to put this expression into a more convenient form, we shall neglect 
P2 

a2 in comparison with p2 in the factor —37—2 · The exponent, however, 
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which contains the factor k must of course be evaluated more precisely. 
Accordingly, we put in the exponent 

v?+*-^{y^-.}-if 
After dividing, as before, by the factor i λ, (18 a) becomes 

(18 b) A vP = — e 2 i k p 

2p 

A „.. ik£- f . . ka' 
2p [ 2p 

Introducing again the primary intensity calculated 
A2 A2 

at the edge of the screen / 0 = — ^ ~ — ,̂ 
we find the intensity / = \vP\2 to be 

(19) 
ka2 

/ = / 0 s in 2 — 
2p 

Fig. 64. 
Relative intensity behind a 

circular opening. 

The relative intensity / / / 0 is plotted in fig. 64. 
This quantity has an infinite number of maxima 
and minima which have their limit in the vicinity 
of the screen. All maxima have the magnitude 
unity, and all minima are zero. Thus the paradox 
represented by fig. 62 has been aggravated . 
While the central axis behind a circular screen is 
nowhere dark, the central axis behind a circular 
opening has an infinite number of dark places. 

This last statement is of course only valid when the illumination is 
monochromatic. If white light is used, the central axis appears colored, the 
color alternating along its length. 

The fundamental difference between the formulae (17) and (19) immediately 
shows that there exists no simple relation between the intensities of the two 
complementary cases of the disc, / x eq. (17), the opening, / 2 eq. (19), and 
the primary intensity / 0 . However, the general relation (34.15) between the 
amplitudes vv v2, and v0 which we called the "Babinet principle" is valid even 
on the very singular central axis of our diffraction problem. For, when forming 
the sum of vx as given by eq. (16 a) and vx as given by (18), we obtain 

i λ (νχ + ν2) = 2πΑρ /«■"*£· 
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On the other hand, for our special arrangement (// = p) the primary amplitude 
at the point P is given by 

e2ikp 
v0 = A—-. 

2p 

Hence, according to eq. (34.15) the following equality should hold: 

00 

/ 
e2ikr^L— i i r 

4 π />2 

That this is indeed true can be shown by differentiating with respect to p, 
which yields 

c2ikp 2hXe2ikp 

4π + 
The coefficient of the first term on the right-hand side is equal to 1. The dots 

indicate a second term which vanishes as l/k compared to the first term. 
We would have obtained the precise equality demanded by (34.15) if we had 
not already neglected the corresponding higher order terms in eqs. (16 a) 
and (18). 

The construction of the Fresnel zones provides us with a pictorial, though 
only qualitative, understanding of these results. About the light source P' 
as a center we construct a set of spheres which intersect the plane of the 
screen in a set of circles ΚΛ, K2, . . . , Kn, . . . We choose the radii of the 
spheres in such a way that the light paths from P' via Kn to the point of 
observation P and from P' via Kn+1 to P differ by λ/2. The distances of P' 
and P from the plane of the screen (which we called p' and p before) shall 
be a and b, respectively ; rn' and rn shall be the light paths P' Kn and Kn P, 
respectively. The straight line of length a + b which connects P' with P 
intersects the plane of the screen in a point K0 (circle of radius 0), which is 
also the common center of the family of circles Kn. According to Fresnel's 
procedure the following equalities characterize the circles Kv K2, . . . : 

λ λ 
τχ' + r1 = a + b + - , r2' + r2 = rx' + rx + - , . . . 

By adding the first n of these equations we have for Kn: 

λ 
(20) rn' + rn-a-b = n-. 
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The radius xn of this wtb circle is calculated as in (9), (9 a) in the following way: 
r„2 = δ2 + *„2, rK'2 = a* + x„ 

a + 
1 Xn 

2 a 

rn' + rn-

Hence, according to (20) 

(21) xn = V»Ä7 

= 0 + 2 - Γ + · · 

->=\{ΙΦ + 

where — = —I- — 
f a b 

This expression / (which agrees with the definition of the / used in (14 b) 
except for the factor 2 n) reminds us of the well-known formula for the focal 
length / of a lens. For the present, however, 
we shall consider / only as a convenient 
abbreviation. 

Figure 65 shows a system of Fresnel 
zones which consist of the sequence of circu-
lar rings Kn, K^ η+1· These rings are 
alternately denoted with the signs + and - . 
If we consider the phase in the central zone 
to be positive, then because of the path 
difference λ\2 the phase in the second zone 
is negative, and so on. All waves falling on 
the central zone reinforce one another ; they 
are attenuated by the waves falling on the 
second zone, reinforced by the third zone, 
and so on. 

We now compare this process with our formula (19) where we replace 
a by xn. This formula yields a maximum for 

2πχη
2 

Fig. 65. 

The Fresnel zones. 

hence for 

(21a) 

π 
= n — 

λ 2ρ 2 for odd n, 

λίηλρ 
*n=]/-2-

This result agrees with (21) because in (19) we had assumed that p = p', 
and therefore in our present notation a = b = p and hence / = p\2. The 
same result is obtained for the minima if n is even. The fact that all the maxima 
have the same value and that all the minima are zero can also be checked, 
though not without some arbitrariness, by summing the contributions of 
successive zones. 
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The following consequence was considered particularly surprising in 
Fresnel's time: a diaphragm which consists only of the central zone yields 
the same intensity as a very large opening; that is, it gives the full intensity 
of the incident light. If the opening does not coincide with any of the circles 
Kn, or if its shape is not circular, then the contributions from partial zones 
must, of course, be taken into account. 

Figure 65 also shows that a "zone plate'' (J. L. Suret, 1875) acts like a 
lens. In order to illustrate this the negative zones have been shaded. If these 
negative zones are covered up or blackened, then all the remaining positive 
zones act to reinforce one another and produce an intensity which is four 
times as large as the incident intensity. This resulting zone plate has the 
focal length /. Since /, like the zones themselves, depends on the wavelength, 
our "lens" has a strong "chromatic aberration". The submultiples f\n of / 
are also focal lengths. 

E. THE SIMILARITY LAW OF DIFFRACTION 

Let us compare two objects (openings or screens) which can be mapped 
into each other by a similarity transformation. We arrange the source and 
point of observation so that both objects contain the same number of zones 
and possible fractional zones. Then the diffraction patterns caused by the 
two objects will also be geometrically similar. According to eq. (21) the 
necessary and sufficient condition for this is that the dimensionless quantity 

x 
(22) y= (x = an arbitrary linear dimension of the object) 

shall have the same numerical value for both arrangements. This will be called 
the similarity law of diffraction. 

It is often said that diffraction phenomena are noticeable only for very 
small objects. However, the similarity law says: the same diffraction 
phenomena observed with a small object are also observed with an object 
magnified by a similarity transformation, provided only that the distances 
of the source and the point of observation from the object are correspondingly 
magnified. To a magnification factor q of the linear dimensions of the object 
there corresponds a magnification factor q2 of these distances. Conversely, 
if one wishes to observe the diffraction phenomena due to a large object 
at large distances in the laboratory where the distances are reduced by 
a factor q, then the dimensions of the object need be reduced only by a 
factor ]/#. On the basis of this law W. Arkadiew1 performed a set of very 

iPhysikal. ZS. Vol. 14, 1913, p. 832. 
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interesting model experiments. As an example let us consider the following 
macroscopic object: a dinner plate of ordinary size held by a hand. In a 
laboratory at Moscow a distance a + b = 40 m. between the light source 
and the photographic plate was available. At that distance the picture of 
the shadow (suitably reduced to the dimensions of the photographic plate) 
shows, of course, no diffraction pattern but corresponds to the shadow of 
geometrical optics. 

Fig. 66 a, b, c. 

Illustration of the similarity law of diffraction. Photographs by Arkadiew. 
a) a + b = 7 km, b) a + b = 29 km, c) a + b = 235 km. 

We now inquire about the appearance of the shadow at a distance 
a + b = 7 km. In order to discover this pattern in the laboratory, we must 
use the reduction factor 

9 7000' ' ? ~ 1 3 ' 
where q applies to the distances a, b and hence also to / ; ]/ q applies to all linear 
dimensions of the object. Arkadiew cut a model of the macroscopic object 
reduced by 1/13 out of thin sheet metal. The photographic plate showed the 
image pictured in fig. 66 a : the plate has received a hole (Poisson spot) and 
a white edge; the wrist contains bright fringes; the sleeve below the wrist 
is fringed. 

Pictures of the shadow for a + b = 29 km. and 235 km. are produced 
by models with the reduction factors 

Ϋ*=ΊΉΜ~ΊΪ' V* = )/^öö~Tf· resPectively· 
In fig. 66 b the whole arm contains diffraction fringes. Figure 66 c shows 
only slight similarity to the original: the Poisson spot in the center of the 
plate has become enlarged and a second bright spot has appeared in the sleeve. 
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36. Fraunhofer Diffraction by Rectangles and Circles 

To observe Fraunhofer diffraction (fig. 58) one looks through a diffracting 
aperture at an infinitely far removed light source with the aid of a telescope 
which is focused at infinity. As shown in fig. 58 such a source can be realized by 
placing a point source or an illuminated slit in the focal plane of a collimator 
lens. The position of the diffraction opening with respect to lens and telescope 
is in principle immaterial. However, in practice the opening is placed directly 
in front of the objective of the telescope so that waves which are diffracted 
at large angles will also enter the telescope. The eyepiece is focused on the 
focal plane of the objective (E in fig. 58). Every point P on this plane corre-
sponds to a plane wave emerging from the diffraction opening. A corre-
sponding plane wave enters the eye through the eye piece. (As was remarked 
in connection with fig. 58, the visual observer may be replaced by a photo-
graphic plate in the focal plane E.) 

Because all ray bundles entering and leaving the opening are parallel, 
we must set R = R' = oo in eq. (34.13). As has already been noted in 
connection with (34.14 a), the phase Φ then reduces to the linear expression 
(1) Φ = αξ + οη, Λ = α-α0, b = ß-ß0 

and the evaluation of the integral in (34.14) becomes elementary. 
Let ξ, η be the cartesian coordinates of an arbitrary point in the diffraction 

opening (which we shall assume to be plane as before) ; α, β, y are the direction 
cosines of a diffracted bundle of rays; OQ, β0, γ0 are the direction cosines of 
the incoming rays which are all parallel because of the collimator lens. If, in 
particular, the light source lies in the direction normal to the plane of the 
opening, then OCQ = β0 = 0, y0 = 1. 

A. DIFFRACTION BY A RECTANGLE 

Let the sides of the rectangle be 2 A and 2 B in length. The coordinates 
of the center shall be ξ = 0, η = 0. Then we can write for (34.14) 

+ A +B 

(2) v = Ck I e-ika*d$ I erikb*fy, 
-A -B 

where C is a complex constant which is proportional to the amplitude of the 
incident light and is independent of the angle between the central ray and the 
direction of observation. The factor k outside the integral corresponds to 
the factor λ on the left-hand side of (34.14), which has now been transferred 
to the right. Performing the integrations we obtain 

sin # sin y J A =·- 4 A B = Area of the rectangle, L v f A =- 4A 
(3) v = CkA- , , 

1 - ^ιΑ, y = koB. 
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From this we obtain for the intensity / = \v\2 

(3 a) 
/ _ /sin *\2 /sin y\2 

7Ö~\~x~) \TJm 

As is evident from (3), J0 = (C k A)2 is the intensity at the center a = 0, 
b = 0 of the diffraction pattern. At that point also x = 0, y = 0. 

The behavior of the func-
!* tion 

(4) (^r 
is well known: its principal 
maximum lies at x = 0 and 
has the value 1. The minima 
of magnitude X = 0 are 
located equidistantly at the 
points x = ± π, ± 2 % , 
± 3 π , . . . There are sub-
sidiary maxima at the points 
where tan x = xy that is, at 
points which approach ±3/2π, 
± 5/2 π, . . . more and more 
closely as x increases. The 
values of the subsidiary 
maxima are in the same order 

Fig. 67. 
Distribution of light resulting from diffraction by 
a rectangle. The maxima lying between the lines 
of minimum intensity are symbolized by black 
circles. Actually they would look more like 
rectangles than like circles. The shape and 
orientation of the diffraction opening is shown at 
the left (not to the same scale, because the dimen-
sions of the diffraction pattern and the opening 

are not commensurable). X = 0.047, 0.017, 0.008, . . . 
(4 a) 

Measured in terms of x the distance between the principal maximum and 
the first minimum is equal to π. We shall now express this distance in terms 
of the angular measure a = a - OCQ. From eq. (3) we obtain 

λ 
(5) π = kaA, hence a = -■ 

2A 

The smaller the side 2 A of the rectangle is, the larger does the angular distance 
a become. The same is, of course, true for b and B. 

At the left of fig. 67 we have drawn a diffraction opening in the shape 
of an upright rectangle, 2 A < 2 B. The diffraction pattern on the right 
is subdivided into rectangles which are geometrically similar to the above 
but which are in an oblong position. Four of these elementary rectangles 
make up the rectangular field of the central principal maximum, which is 
bounded by lines of zero intensity; two each belong to the fields which are 
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bisected by the axes a and b (these axes are shown dotted because they do 
not form part of the system of lines of zero intensity). A single such 
rectangle is also indicated in the upper left-hand corner bounded by the 
two systems of equidistant minimum lines whose spacings are π in the scales 
both along the x and y directions. In accordance with the equation tan %=% 
the subsidiary maxima lie approximately in the centers of their respective 
fields. 

The principal maximum exceeds by far all subsidiary maxima in intensity. 
It forms an extended intensity maximum in the center of the diffraction 
pattern. The ratios of the intensities of the subsidiary maxima on the axes 
a and b to the principal maximum are given by the sequence (4 a). The re-
maining subsidiary maxima are usually barely visible because the ratios of 
their intensities to that of the principal maximum are given by products of 
the already small numbers in (4 a). 

B. DIFFRACTION BY A SLIT 

Our rectangle 2 A, 2 B becomes a slit if we increase B until it is very much 
larger than A. As we increase B, the diffraction pattern parallel to the 6-axis 
will contract more and more. We shall assume that the light source is a distant 
luminous line whose separate line elements emit incoherent light. Therefore, 
we shall have to add the intensities resulting from different line elements. 
Since the direction of the incoming rays is given by OQ, β0, we shall have to 
perform an integration with respect to b = β - β0 between certain limits ± bx 

which correspond to the length of the collimator slit. Hence, according to (3), 
we must write 

-h -Vi 

Because of the large value of k, the limits of integration ± yx may be treated 
as very large numbers, even though the values of B and b are experimentally 
limited. Therefore, except for terms which vanish as 1/νχ, the above integral 
can be replaced by1 

— 00 

1This value is most easily obtained by the method of complex integration; see Vol. VI, 

exercise 1.5, where Dirichlet's discontinuous factor I (sin y\y) dy is treated by this 

method. 
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We see, therefore, that the intensity of the diffraction pattern is only a 
function of x = k a A and is identical with the expression X in (4) except 
for a constant factor. Thus the slit likewise produces a principal maximum at 
x = 0 and almost equidistant subsidiary maxima, the intensities of which are 
scarcely noticable in comparison with the intensity of the principal maximum. 

We shall now use this result to fill in a gap in Sec. 32. In eq. (5) of that 
paragraph we separated the intensity of the grating spectrum into two factors, 
the* second of which was calculated from the sequence of grating lines. The 
first factor /2 (a) which resulted from the width and shape of each individual 
grating line was left undetermined. At least in certain very simple cases this 
factor is given just by our expression X in (4) ; by definition of x, X is clearly 
a function of a = a - OQ. We shall now investigate the influence of this factor 
on the intensity distribution of a grating (we may now set the intensity of 
the incident light equal to 1). 

For this purpose we write down the more complete form of eq. (32.5): 

2παΑ 
» = —λ-

2nad 

The quantity 2 A, which above was the width of the slit, is now the width of 
each individual grating line ; d is again the spacing of the grating lines. In the 
gratings which Fraunhofer originally made, d was very large compared to 
2 A. If this is so, then according to (6) x increases only by the small 
quantity Ajd while Δ changes by 1, and the first factor on the right-hand 
side of eq. (6) varies slowly compared to the second factor. As was mentioned 
at the end of Sec. 32 A, this first factor has the effect of weakening the 
grating spectra of higher orders in comparison with the first order spectrum. 
The intensity pattern given by the second factor in (6) as represented in 
fig. 53 remains qualitatively unchanged. 

Just as the results on diffraction of a slit serve to complete our previous 
theory of the line grating, so the results on diffraction of a rectangle as given 
by eq. (3) yield the function / (α, β) which was left undetermined in the 
theory of the cross grating, eq. (32.8). 

C. THE CIRCULAR APERTURE 

The circular opening is obviously of tremendous importance to the theory 
of the telescope, the microscope, and the photographic lens, as well as to the 
process of vision. 

Δ 

(6) / = 
. 2 sin2iV smJ x 2 

sin' 
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Clearly, we must introduce polar coordinates to replace the rectangular 
coordinates £, η and a, b of (1). We set 

ξ == r cosçj, a = s cos ψ, 

η = r sin φ, b = s sin ψ. 

r is the distance from the center of the opening; s is the sine of the deflection 
angle between the diffracted ray and the perpendicularly incident ray. 
Denoting the radius of the aperture by the, again available, letter a, we 
we obtain instead of (2) 

V =-- C k j rdr I e-ikrscos(<p-y>) (7) v = Ck I rdr I erikf*«"&-*) dtp. 
Ô - π 

The φ integral cannot be evaluated by elementary methods, but it is well 
known to us from Vol. II, Sec. 27 and Vol. I l l , Sec. 22 as the Bessel 
function / 0 . For further details see Vol. VI, Chap. IV. We recall here the 
formulae 

(8) Jo (P) - 1 ( 1 ,)2 \2) + (2!)2 ^2/ " (3ψ \2) + ' · * 

_-Lf 
2π J 

e±ipcosafaf 

<»a, /,W=f(.-^(f)*+^(ff-...)=-^7.W 
and the differential equation 

from which the following relation is obtained: 

p 

(8 c) J p'h{p')dp' = pjy{p). 
0 

We are also acquainted with the asymptotic representations for large p 
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Using these results, eq. (7) can be written simply as 
a ksa 

2nCk 
(9) v = 2nCk ih 

(krs)rdr ·■ 
k2s* fjoiplp9 dp' 

2nCa 
Jy(ksa). 

For s = 0 (center of the diffraction pattern, α = ο ,̂ β = ß0) (8 a) yields 
(10) v = π a2 C k. 

The zeros of v are given by the zeros of v \ Amplitude 
Jx (p). The first of these is at 

(11) Pl == 3.95 = 0.61 X 2π, s± 0.61 - · 
a 

This zero and all the more so the following 
zeros p2, p3, . . . are given with sufficient 
precision by the asymptotic formula (8 d) : 

sin|p-jj = 0f />. = (» + IJ*f 

(lia) *=(n + \)fa. 
The corresponding graph of v is shown 

in fig. 68. The resulting intensity pattern \v\2 

has again a towering maximum at the center 
which is surrounded by almost equidistant 
dark rings. Between the dark rings are weaker 
maxima which rapidly decrease in intensity. 

This central intensity maximum which is bounded by the first zero-ring 
determines the size ôf the central field produced by the droplets of Sec. 33. 
Indeed, we used the above expression (11) to calculate the sizes of the coronae 
about the sun and moon. Because of their weak intensities, the outer maxima 
indicated by fig. 68 generally do not affect these results. 

In Chap. VI we shall discuss the fundamental importance of eq. (11) for 
the theory of the microscope. 

In principle it is not difficult to predict the diffraction patterns of other, 
particularly polygonally bounded, openings. This was first done by Schwerd1 

in an exemplary fashion. 

Fig. 68. 
The amplitude v behind a circular 

opening as a function of ksa. 

1 F. M. Schwerd, Die Beugungserscheinungen aus den Fundamentalgesetzen der 
Undulationstheorie analytisch entwickelt, Mannheim 1835. Schwerd was a high school 
teacher in Speyer. He painstakingly colored all the figures in the whole edition of his 
book by hand. 
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D. PHASE GRATINGS 

In formula (32.3) we assumed the grating lines to be linear light sources 
which radiated in all directions when excited by an incident wave. The 
nonuniform distribution of this radiation for the various directions a was taken 
into account by the function / (a) which remained undetermined there. 
Huygens' principle has now enabled us to calculate this function [eq. (6)] 
for slit openings of arbitrary widths by setting the field excitation in 

the opening equal to the unperturbed 
incident wave. In this way it has been 
possible to determine the diffraction 
field of wire gratings or of gratings 
which are ruled on a silver layer deposited 
on a glass plate. Fraunhofer produced 
such gratings which shall be called 
"amplitude gratings", because for perpen-
dicular incidence the phase is constant 
over the plane of the grating — the 
plane over which the integration is to 
be extended, according to Huygens' 
principle. On this plane only the amplitude 
varies between zero at points which are 
on the metal and some constant value 
at points on the glass. The situation is 
different with the modern very closely 

ruled gratings. In these, groove follows upon groove in such a way that one 
cannot speak of a plane surface. These gratings are illuminated fairly uniformly, 
that is, with essentially constant amplitude, over their whole extent. But 
the phase varies because the points of the grating surface penetrate to varying 
depths into the optical field in the medium of different index of refraction. 
A plane wave-surface which is perpendicularly incident on the grating 
meets these different points at different times. Therefore, different points on 
the grating surface radiate their elementary Huygens' waves with different 
phases. Devices of this type are called "phase gratings". The general grating 
properties derived in Sec. 32 remain unchanged for phase gratings, but the 
directional distribution of the radiation from any one grating element, that 
is, the function / (a), can be affected in many different ways. It is, for 
instance, possible to divert the major part of the incident energy into a single 
spectrum of a given order on one side and to suppress almost completely all 
other spectra, in particular that of zeroth order. 

Fig. 69. — 
Step or echelette grating which has 
been ruled on the lower side of a plane 
glass plate. The figure shows the ray 
incident on the upper surface 00, 
the refracted ray in the glass plate, 
and the wave which has been diffracted 
a t the angle φ with respect to E E. 
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We shall now calculate the function / (a) for several shapes of grating 
surfaces. Since the surfaces are no longer plane, and we therefore do not know 
their Green's functions, we are forced to use Huygens' principle in the old 
Kirchhoff formulation of Sec. 34 B. 

Kirchhoff s assumption that the incident wave proceeds unperturbed up 
to the surface of the grating limits our calculations to large grating constants 
d ^> A, to grating elements which are not too deeply cut, and to moderate 
angles of incidence and diffraction. Otherwise the radiation proceeding from 
one part of each grating element to another would affect the results of the 
calculation. In order to be able to apply previous results, we shall also limit 
ourselves to grating elements which are bounded by plane surfaces. 

First we consider a step profile P P which has been cut into the lower 
surface of a plane glass plate ; see fig. 69. 0 0 shall be the upper surface of 
the glass plate ; E E is the grating element under consideration. We 
illuminate the plate from above and observe the light below the plate. Just 
as Kirchhoff used the unperturbed unbounded wave as an approximation for 
the wave in the bounded diffraction opening, so we must use an unperturbed 
plane wave emerging from an unbounded glass plane to approximate the 
wave originating from our closely bounded plane surface E E (of width d'). 
As a result we shall use in the Kirchhoff formula (34.4) the values v and dvjdn 
of the refracted wave emerging from the glass plate. The ray which is refracted 
upon incidence on the upper surface 0 0 of the glass plate determines the 
angle of incidence φ0 on the step E E. The angle of diffraction with respect to 
the step surface shall be φ. We call the direction cosines of the incident and 
diffracted waves 

a0 = cos<p0, a = cos<p, 

and φχ the angle at which the refracted ray (not drawn in the figure) 
would emerge if the plane E E were infinite : cos φί = n a0. 

Referring to our very first treatment of the problem of refraction in Sec. 3, we 
cos sin 

rewrite eq. (3.1a) in our present notation . φ, in place of ß ; because s in
r ±

 cos 
the ray emerges into air, we write k instead of k2\ the #-axis lies now in the 
plane E E ; hence y = 0 on E E : 

E = ß e*k(xcosq>l-ysin(pl)t 

Identifying v and dvjdn with E and dE/dy, we obtain at y = 0 

dv 
v = B elkna°x and —-=-sinœ.ikv. 

dn ψ1 
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The other wave function u which occurs in Green's theorem as a ''probe*' 
can be written for the Fraunhofer mode of observation [limit as r -> oo in 
(34.1)] as 

du 
= + sin φ ι k u. u — e 

-ikax and 
dn 

Substituting this in (34.4), one obtains for the relative amplitude distribution 
at infinity 

/ (#) = 4πνρ = -ik B (sinφχ + sinφ) I eik{na0-a] )* dx 

sin 
— ikd'B (sinç?! + sinç?) S, S = 

\k{na0-a) — \ 

k (na0 
d' 

The factor in front of the sine quotient 5 is slowly varying and causes a 
moderate attenuation for large angles of diffraction ; we can disregard this 

h= \f2bt) 
-4-3-2-1 3 4 5 

z^. 
a=C0S φ 

Fig. 69 a. 
Intensity distribution for the step 
grating shown in fig. 69. The curve 
represents the diffraction pattern due 
to of a single step. The ordinate at 
h = 1 also gives the intensity of the 
first order grating spectrum which is 
the only spectrum emitted by the 

step grating. 

a = cos ψ — cos (φ- ô) 

"factor. The function / (a) is, therefore, 
essentially given by 5. The curve for 5 
is similar to that of diffraction by a slit 
(36.6). Its principal maximum is at 
a = n a0 or, what is the same, at φ = φν 

which is precisely the direction of the 
refracted ray as determined by geomet-
rical optics. The zeros are arranged 
symmetrically around the principal max-
imum at 

a — na0±v— v = integer. 

On the other hand, let us now consider 
the grating spectrum which is produced 
according to (32.4) by the regular sequence 
of such grating elements at a spacing d. 
With the definition of d given in fig. 69 we 
must write in (32.1) 

and a0 = cos ψ0 = n cos (φ{} - ô). 
The grating maxima (which, because of the large number N of grating elements, 
are very sharp) are at the positions Δ/2 = 0 ± hn, thus at a = OCQ ± h λ/d. 
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Their amplitudes are given by the function / (a), which differs from / (a) 
only because the origin of the angles φ, φ0 is shifted by δ with respect to the 
origin of ψ and ψ0. First we see that for d ~ d', that is, for small angles ψ0, 
tp, and δ, the spacing of these spectra is the same as the spacing of the zeros 
of / (a). Therefore, if by suitable choice of δ (or if δ is given by suitable choice 
of ψ0), one causes the first order maximum, h = + 1, for instance, to coincide 
with the principal maximum of / (a), then all other grating spectra coincide 
with zeros of / (a) and are completely suppressed^ including the zero order 
spectrum. This is illustrated in fig. 69 a 
where the intensity of the spectra, 
that is, the square of / (a), is plotted. 

A reflection grating which is ruled 
on metal can also be treated by means 
of the above formulae if we formally set F-
n = - 1. Then the principal maximum A so-called "laminary profile" with 
lies, independently of wavelength, grating constant d and depth of slits g. 
in the direction of the geometrically 
reflected ray. Such gratings were used for the analysis of long infrared waves 
for which no suitable refracting material is available. Their grating constants 
amount to fractions of a millimeter. With these spacings the desired step 
profile is quite easily attainable; these are the so-called echelette gratings. 
Even in gratings suitable for visible light it is possible to favor one order 
quite strongly over all others by using a cutting diamond of suitable shape. 

As a second example we choose the rectangular laminary profile, fig. 70. This 
profile is produced by evaporating a transparent substance on a plane plate 
and ruling regular slits into the layer, so that the deposited substance 
is removed along equidistantly spaced lines. Let us call the thickness of the 
layer g and its index of refraction n. Then for small angles of incidence the 
wave falling on half of the grating element d is retarded by 2 Θ = (n - 1) g k. 
At a large distance the amplitude distribution / (a) arising from a grating 
element extending from - dj2 to + d\2 is given by 

d 

0 +1Γ C c sin 0 - + 6>)-sin6> 
a)=j I <■'<**-«» dx + j I β·'(·*+β) ix = !L_i 1-

_L ô Φ~ 
2 Δ 

where Φ = k (n at,, - a), and where all nonessential terms have been omitted. 
This is the diffraction pattern of a single step element. Because the step 
elements are parallel, see fig. 70, the distinction between a, a0 and a, OQ 
becomes meaningless. Therefore we shall henceforth write / (a) in place of the 
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-5-4 

above / (a). The asymmetry of this function with respect to the direction 
φ z= o averages out in the spectrum produced by the whole grating; for, 
with perpendicular incidence, the directions Φ dj2 = ±hn which go with 
the two spectra of equal order (± h) always produce the same contribution 

/ ( a ± * ) = - ± r [ ( - l ) » - l ] s i n < 9 . 
n n 

(For h = 0 the limit as Φ-* 0 must 
be taken which yields / (a) = cos Θ.) 
The curve /2 (a) is shown in fig. 70 a, 
and from it the intensities of the 
grating spectra of different orders can 
be determined. 

Because of its application to the 
microscope, a similarly designed ampli-
tude grating is also of interest. Such a 
grating is obtained if, instead of a 
transparent material, an absorbing 
metallic layer is applied to the plane 
base. Mathematically this means that 
we must set Θ = i Θ' (Θ' is real). The 
ratio of the transmissivities of the two 
halves of a grating element is then eAG\ 
and Θ' is directly proportional to the 
thickness of the absorbing layer. Thus 
we obtain for the zeroth order spectrum 
/ (a) — cosh & t and for the higher 
order spectra / (a±Ä) = [(- 1)Ä - 1] · 

. —- sinh Θ'. The factor i in this equa-
n h 

tion means that the light in the higher 
order spectra differs in phase by π/2 
from the zeroth order spectrum. 
Therefore, the diffraction pattern of a 
phase grating can be changed into that 
of an amplitude grating simply by 

increasing or decreasing the phase difference between the zeroth order spectrum 
and all higher order spectra by π/2. 

This method can be used to replace the formerly very important staining 
process which used to be necessary in the microscopic observation of trans-

Φ =K(na0-

Fig. 70 a. 

Intensity distribution for the laminary 
grating shown in fig. 70. The curve 
represents the diffraction pattern due to 
a single grating element. The heavily 
drawn ordinates indicate the intensities 
of the grating spectra of orders h which 
are emitted by the entire array of 

grating elements. 



36. 12 LIGHT FANS ARISING FROM APERTURES 233 

parent tissues whose constituents differ by very little in index of refraction 
but absorb, owing to their chemical difference, different amounts of dye. 
It is seen that actually the staining method also amounts to changing a 
phase grating into an amplitude grating, 

E. SUPPLEMENT TO SECTION 35 B. LIGHT FANS ARISING FROM POLYGONALLY 
BOUNDED APERTURES 

What is the relationship between the special results derived in A and B 
of this section and the general theory of the shadow which was discussed in 
Sec. 35 B? In order to answer this question we must first of all specialize 
eq. (35.12) to the present case of Fraunhofer observation with perpendicular 
incidence. In that case the point D in fig. 60a lies infinitely far away (if we 
disregard the center point a = ß = 0). The former surfaces of constant 
phase are now planes, and the former intersection ellipses have become a 
family of parallel straight lines. The former parameter p of the system of 
ellipses is now proportional to the spacing of these straight lines as measured 
from one of them, for instance, the one passing through the center of the diffrac-
tion opening. 

Let us first consider a rectangular opening and determine the shadow 
boundary in the direction perpendicular to one of the sides of the rectangle. 
The straight lines p — constant are parallel to this side, and therefore the 
segments cut out of these lines by the rectangle are all equal. Hence the 
fraction φ (p) which was introduced in fig. 60 a becomes independent of p. 
The same is true of the function F (p) occurring in (35.12). Thus F' (p) = 0 
and the second term on the right-hand side of (35,12 a) vanishes. If, for 
convenience, we normalize p so that p2 = -p1 = pf then the first term yields 

(12) £=■ (eikP- e~ikP) = — sin kp. 

Eq. (35.12) (the factor A on both sides cancels) leads to the result that 
in the direction defined above a light fan of finite intensity is radiated and no 
shadow appears. It should be emphasized that the sinusoidal variations in 
the amplitude which are indicated by (12) are blurred out if the light source 
is extended and not monochromatic. Our name "light fan" is descriptive of 
this fact. The same is obviously true for the light fans in the directions perpen-
dicular to the other sides of the rectangle; it is not true, however, in any 
other direction which is inclined with respect to these sides. For such direc-
tions the values of px and p2 in (32.12 a) correspond to the corners of the 
rectangle at which the fraction φ (p) continuously decreases to zero. Now the 
first term on the right-hand side of (32.12 a) vanishes; the second term has 
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a finite but small value. This is illustrated in our (very schematic) fig. 71 a 
by the quadrants which are left unhatched; these quadrants indicate shadows. 
In the singly hatched strips a finite part of the boundary of the diffraction 
opening coincides with an effective wave zone, and therefore a noticeable 
intensity of diffracted light is present. This situation is similar to that of the 
circular opening in fig. 68. Figure 71a should be compared with fig. 67 where 
the same results are expressed more precisely for monochromatic light. 

Fig. 71. 
Light fans for polygonal apertures (indicated as shaded regions). In each case 

the apertures themselves are indicated underneath. 
a) rectangle, b) triangle, c) curvilinear triangle. 

These results are independent of wavelength; this is true in particular 
for the intensities along the axes a, b in our figure. This seems to be in 
contradiction to geometrical optics, i. e. the limiting case as λ -* 0, according 
to which only the central field should be illuminated. The apparent contradic-
tion is resolved by the fact that in this limiting case our light fans become 
infinitely narrow. This is indicated by the widths λ\Α and λ\Β which are 
taken from eq. (5) and are shown in the figure. Therefore in the limit also 
the energy taken from the central field and radiated in these directions becomes 
infinitely small. The situation is here the same as in the case of the Poisson 
spot which also remains present in the limiting case of geometrical optics 
but is reduced in size to a geometrical point. 
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If the opening is a parallelogram, then the two bright strips are not perpen-
dicular to each other but are perpendicular to the sides of the parallelogram. 
In the case of a triangular opening there are three strips which are perpen-
dicular to the three sides of the triangle, thus there are six light fans 
altogether, as shown in fig. 71b. A rectilinear polygonal opening with n 
sides has in general 2 n such ray directions. 

If one looks at a light source through a small hole shaped like a 
parallelogram, and if the eye is not focused on the source (or the source is not 
sufficiently small), then the source appears as a star with four rays. Under 
the same conditions, a triangular opening yields a six-cornered star. An 
irregular opening usually yields a many-cornered star. It is to be noted that 
the diffraction pattern is very sensitive to small irregularities in the shape 
of the opening. It is because of small irregularities in the iris of the eye 
that a star seen in the night sky does not appear to be surrounded by circular 
rings, which would be the case with an ideal circular aperture; rather, the 
stars appear to us stellate and thus they have traditionally been represented 
in the art of all ages. The five-cornered star which is preferred in heraldry 
and in depicting the Christmas star is, incidentally, wave-optically impossible 
because the light fans must, necessarily, occur in pairs. 

So far we have limited ourselves to diffraction openings which are bounded 
by straight lines. What happens with curved boundaries ? To treat these we 
must again return to fig. 60a, but for Fraunhofer diffraction we must replace 
the elliptic arcs in that figure by a system of parallel straight lines. For 
every position of the (infinitely distant) point D, there are two straight lines 
Pv P2 °f t n e system which are tangent to the edge of the diffraction opening. 
Thus there are now no finite line segments along which the edge and a wave 
front coincide, as there were in the case of rectilinear edges. With curved 
openings there are only infinitesimal points of coincidence, i. e. points of 
tangency. For this reason the intensities of the light fans are of a smaller 
order of magnitude than those produced by piecewise rectilinear edges. Let 
us estimate this order of magnitude. 

As was noted following eq. (35.12) φ (pt) = <p (p2) = 0 at the points of 
tangency; therefore the first term on the right-hand side of (35.12 a) 
vanishes. In order to estimate the second term we replace the boundary 
curve at the point of tangency by its circle of curvature (radius p). We denote 
by 2ψ the central angles of the arcs cut out of this circle by the system of 
p-\ines. We can choose the parameter p so that it measures the distance from 
the center of the circle ; then p = p cos ψ. The length of each chord is then 

(13) ψ (p) = 2 p sin ψ = 2 ]/p2-p2 
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and therefore 
1 

(13 a) φ'(Ρ)=-2Ρ(Ρ*-ρ2)~τ. 

At the point of tangency (p = p) φ' (p) and therefore also F' (p) become 
infinite, but slowly enough so that the integral in question remains finite. 
An approximate evaluation shows that the intensity is proportional 
to λ p and thus vanishes in the limiting case of geometrical optics. On 
the other hand, we saw in (12) that for rectilinear edges the diffracted 
intensity is of the same order of magnitude as the intensity of the incident 
light. Though an opening with a curved edge also radiates diffracted light in a 
direction perpendicular to the tangent of the edge, its intensity is of a smaller 
order of magnitude than that of the diffracted light from a rectilinear opening. 
The diffracted intensity decreases as the curvature \jp of the edge at the 
point in question increases. If we consider a curvilinear polygon1, see fig. 71c, 
then each corner E of the polygon has an adjoining shadow region; the inten-
sities radiated in directions which are within these shadows are of the same 
order of magnitude as the intensities in the shadow regions of rectilinear 
polygons, and they decrease to zero with decreasing wavelength. 

Summarizing and completing the quantitative relationships we can say: 
every diffracting aperture produces a diffraction pattern which fans out from 
the central image; this pattern consists of light fans separated by shadows. 
If the angular separation from the central image is denoted by the (dimen-
sionless) number a, and if A is used to denote the length of one side of the 
diffraction opening in the case of a rectilinearly bounded opening, and the 
same letter A denotes the radius of curvature (formerly p) in the case of a 
curvilinear edge, then the diffracted intensity is 

in the light fans I A2 

of rectilinear edges a2 

in the light fans of ^ λ 
curvilinear edges a3 

in the shadow regions 
of rectilinear or — 
curvilinear edges 

xThe diffraction opening in fig. 71c is a curvilinear triangle formed by three circular 
arcs. The three centers (centers of curvature) are indicated in the figure. The tangents 
which are drawn at the three corners are used to construct the boundaries of the light 
fans which appear in the upper drawing. 

a2 A* 

A3 

a3 A3 

a* A* 



37. FRESNEL DIFFRACTION BY A SLIT 237 

The expressions in the first column are the intensities expressed as frac-
tions of the light energy incident per unit area of the opening; they have, 
therefore, the dimensions of a length squared. The expressions in the second 
column are the intensities relative to the intensity in the middle of the central 
image; they are, therefore, dimensionless. 

We have neglected the interference fringes which traverse the diffraction 
image. As we have said before, these fringes are blurred if the light source 
is not a point or is not monochromatic. 

37. Fresnel Diffraction by a Slit 

The course to be followed in deriving the theory of pure Fresnel diffraction 
has already been indicated in Sec. 34 D. The procedure is somewhat cumbersome 
and does not always lead to its intended goal. The points in the opening are 
described by coordinates ξ, η, 
the origin of which lies at the 
point D at which the straight 
line connecting the light source 
P ' to the point of observation 
P intersects the plane of the 
screen S; see fig. 72. Then 
a = OQ, β = β0> y = γ0 (o^, ß 0 , 

γ0 = direction Ρ' D; a, β, 
y = direction D P), and the 
linear terms in the expression 
(34.13) for the phase Φ vanish. 
This results, however, in the 
following difficulty: or very 
eccentric positions of the 
point P [indicated by (P) in 
fig. 72], D will lie outside the opening, which must be assumed to be 
small, and then the coordinates ξ, η are no longer small as required in the 
series expansion of Φ. We must therefore restrict the position of P to a region 
(indicated by the curly bracket in fig. 72) which does not extend too far into 
the geometrical shadow. Outside that region it is impossible to represent Φ 
by the quadratic terms alone. The pattern produced by the quadratic terms 
must then be supplemented by a diffraction pattern to be calculated in the 
Fraunhofer manner. A further inconvenience is that, even with this restric-
tion on P, the position of D varies with that of P so that every separate 
position of P requires its separate coordinate system ξ, η. 

Fig. 72. 

Fresnel diffraction of a slit. 
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The particular problem to be treated now is the diffraction pattern of a 
narrow rectangle (called a slit in the heading of this section). The plane of 
fig. 72 passes through the center of the rectangle and is parallel to its short 
side 2 d; the long side 2 h is perpendicular to the plane of the drawing. The 
coordinates ξ and η are measured parallel to the sides of the rectangle. The 
observation screen which receives the diffraction pattern is parallel to the 
diffraction screen S; both are perpendicular to the plane of the drawing. We 
shall limit ourselves to points of observation P which are in the plane of 
the drawing. The light source P' will be assumed to lie directly in front of 
the center of the rectangle. Then the line P' P lies in the plane of the 
drawing, and since the y-axis and also the 17-axis are perpendicular to that 
plane, we have 

(1) ß-ßo = 0, x2 = α,,2 = 1 

as indicated in the figure, γ is equal to cos (w, R), a fact which will be used 
in eq. (4). By means of (1), the expression (34.13) reduces to 

(2) * = -l(R- + P)V2 + v>-«*P} = -l(R- + i)(r°t> + v>). 

Using the abbreviations 

(3) ΗΦ = -Φξξ*-Φηη
2, 

eq. (34.14) becomes 

+ <*-*/> + h 

(4) iXVp==A.L.eik(R + R^) / &ζρ(ΐφξξ*)ίξ Ι&φ{ίΦηη*)άη. 
-α-ξη -h 

Let us remember the meanings of R and R': R = distance DP, R' = 
distance D P', where D, being the point where P' P pierces the plane S, 
itself depends on the position of P ; according to (3) the abbreviations Φξ, Φη 

therefore also depend on the position of P . This dependence also affects the 
limits of integration given in (4). Since ξ is to be measured not from the center 
of the slit but from the point D which has the coordinate ξΌ, these limits 
are not ± d but ± d - ξΌ. Because of symmetry this dependence on P does 
not affect the ^-integral in (4). 
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A. FRESNEL'S INTEGRALS 

In order to conform to the historically established notation we consider 
the integral 

(5) F (w) - / > * 

We call it Fresnel's integral. Ordinarily this name is reserved for the two 
real integrals 

w w 

(5 a) C (w) = I cos I—τ2 J dr, S (w) = j sin I —τ2 I άτ 

0 0 

which evidently form the real and imaginary parts of F: 

(5 b) F = C + iS. 

We wish to emphasize, however, that the separation of F into real and 
imaginary parts is absolutely of no advantage [we did not separate the plane 
wave exp (i k x) into a cosine and a sine either!]. The two integrals in (4) 
can be reduced to F by simple substitutions. One obtains 

+ α-ξ 

fexp (ιΦξ f») dS=Y^[F (w2) -F K ) ] , £ } = | / ^ (± * -&) 
-d-tD 

+ h 

Jexp (iΦη tf) àn == ψ^-Έ (W), W^ " [ / ^ h. 
-h 

For a slit h^> d and W ^> W2, i- We shall now convince ourselves that W may 
be set equal to infinity \ To show this it is convenient to introduce the quasi-
focal length / which was introduced in connection with the similarity law, 
Sec. 35 E. Thus, in our case we set 

(6) 7-Ϊ+7- *-rr "=l/f/*»V?/· 
In accordance with the similarity law, if the magnitude of d is just barely 
suitable for diffraction experiments, then W is so large that it does not produce 

1In the beginning of Subsection C we shall return to the question of the admissibility 
of such limit processes. 
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an appreciable diffraction effect of its own, and we can therefore go to the 
limit λ-+0, W->oo as in geometrical optics. Introducing at the same time the 
value of Φη from (6). we thus set 

+ h 

ίβίΦ^άη = ]/2 (6 a) I e ^ άη= ]/2ÀfF(oc> 
-h 

Correspondingly, we find 

+d-çD 

(6 b) jexp(i0^^dt = ^^{F(w2)-F(zv1)}, 1*} = ?**'*° 

Hence, according to (4) 
yv 

eik(R + R') 
ivp = fA ~YR7~ {F (W'2) ~F {Wl)}F (oo)-

1 + i This expression simplifies if we immediately introduce the value F (oo) = > 

a result which will be derived later, and return to the original definition (6) of /. 
For then 

1 V eik{R+R') 

(7) Vp=~2~A -R^W {F K ) " F K ) } ' 
where 

eik{R+ R') 

is the optical field amplitude which would be observed at the point P if the 
intervening screen were removed entirely. Thus we can write for (7) 

\ - i 
(7 a) v = -— v0 {F (w2) - F (ze )̂}. 

If we disregard the first factor which is of no interest for the present, we 
can say: 

The pattern produced on the screen B differs from the primary undiffracted 
field by a factor which is equal to the difference between the Fresnel integrals 
F (ιν2) and F (wj. 

We can be brief in our description of the analytic properties of the func-
tion F (w). They correspond entirely to those of the Gaussian error integral 

F(x) 

X 
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a) F (w) is an entire transcendental function of w\ by its definition (5), 
F (w) can therefore be expanded in the following series which converges 
everywhere in the finite plane 

(8) F (w) = w\\ i *' π 2 l I71 2Ϋ ί i71 2^ , \ 
^ 1 ! 3 2 2 ! 5 \ 2 / 3 !7 \2 / ^ / 

This expansion follows directly from the exponential series. From it one 
obtains the respective series for C (w) and S (w). 

b) Of greater importance is the divergent (so-called asymptotic) series 
development of F (w) which yields a sufficiently exact approximation of the 
function for large values of w, provided that only a limited number of the 
terms of this series are summed. We obtain this development by setting 

OC 00 

w w 

Upon integrating by parts this becomes 
in β oo 

F(w)=F(oo)+e: e2 T ^ - J 
w 

in oo 

W 

and continuing the process of integrating by parts we get 

in 

\nw\ ιπκ 
(8a) F ( z * ) = F ( < x , ) + ^ — - l i + ^ _ + _ i ^ r +

 1 - 3 ' 5 

inw\ inw2 (inw2)2 (inw2)3 ---j-

From this follow the respective asymptotic series for C(w) and S(w). 

c) In order to calculate F (oo) we recall the well-known Laplace integral 
00 

/ 
0 

*-«·* = 11/2. 

I Jl 

We need only set a = - —- to find 

/o M „ , , 1 l / T " 1 1 1 + * 
(8b) F ( o o ) = - | / - 7 = ^ = _ = - _ . 

This result can be checked by considering the integral in the complex plane 
of the variable τ which we shall, however, omit here. 
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B. DISCUSSION OF THE DIFFRACTION PATTERN 

We now investigate the intensity extrema (maxima and minima) in the 
diffraction pattern. That is, we seek those points on the observation screen 
which under monochromatic illumination will correspond to bright and 

d \v\2 

dark fringes. These points are defined by the condition —~- = 0, where x is the 
&% 

distance of a point on the observation screen from the center of the screen. 
According to fig. 72, x is related to the coordinate ξΌ which measures distance 

d\v\2 

from the center on the diffraction screen 5. Therefore we may discuss -y~- — 0 
»CD 

d\v\2 

instead of -j1- = 0. Since ξD occurs only in the limits of integration w2 
(IX 

and wx in eq. (6 b), and since - j ^ = ^ 1 = 

for the extrema1 results: 

(9) ^-{F K) -F K)} = - yjL= {F' K) -F' K)} = 0, 

so that 

— = -=jr· = -y l-r-l , the following condition 
D dçD \ 2 J 

exp ( y wA = exp ( y wA , 

(10) - (w2
2-w±

2) = - 2 π g , (w2-Wj) (w2 + wj = - 4 g 

where g is a (positive or negative) integer. Now, according to (6 b) we have 

(l0a) n=Wm' Wz+Wl = lW-
From (10) and (10 a) follows 

2rHDd n Xfg 
CD ~ Xf *' *υ 2γ2α' 

and the distance between two successive extrema is 
if (10 b) Δξβ = 

2γ2α' 

1Using temporarily the abbreviation f (x) = F (w2) -F (w-^j, then 

H»-c//·. c-Ifci». ±\«\> ('£-'·?,) 
where /* is the complex conjugate of /. In eq. (9) we have satisfied the condition dfjdx = 0, 
but at the same time also the condition df*jdx = 0 is fulfilled (interchange of -f i with 
- i and - g with + g). Therefore the condition d\v\2/dx = 0 is fulfilled as well. Hence 
eq. (9) is not only the extremal condition for the amplitude v but also for the intensity \v\2. 
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The separation between extrema decreases with increasing d and increases 
with increasing A and /. The same is true of the separation Δ x of the fringes 
on the observation screen. 

The discussion of the diffraction pattern can be well illustrated by means 
of Cornu's spiral which is constructed by the following mapping process: 

We interpret F = C + i S as a point on the complex F-plane, that is, 
as the point with the cartesian coordinates C and 5. In addition we consider 
a complex w-plane in which, however, only the real axis is of interest. The 
equation F = F (w) represents a conformai (angle-preserving) mapping of 
the w-plame onto the F'-plane. The real axis of the w-plane, which is the only 
part of that plane which will enter into consideration, is mapped onto a certain 
curve in the .F-plane. We claim that this mapping is length-preserving. 
For we have 

dF -=-w% 

(11) — =e2 , hence 
dw 

Hence the w-axis and the F^-curve are mapped on each other without 
stretching. We already know three points of this map, see eqs. (8) and (8 b) : 

w = 0, w = oo, w = - oo, 

f ( 0 ) = 0 , F(oo) = l ± î , F ( - o o ) = - l ^ . 

The length of the F-curve between the two end points F ( ± oo) is infinite 
as is the length of the ζέ'-axis. The curve is symmetrical with respect to the 
origin of the .F-plane ; for by eq. (8) 

F (- w) =-F (w). 

The tangent at the origin is horizontal; the curve has an inflection point 
there; for according to (8), we have at w = 0 

dF_ <*2F 
dw * dw2 

For w = i oo the direction of the tangent is indeterminate, according to (8 a). 
Asymptotically the curve approaches these points as a spiral. The entire 
curve is plotted in fig. 73. 

Not only does this curve illustrate the whole range of values which F 
assumes (for real w), but at the same time it also represents all of the 
amplitude ratios |v|/|v0| m t n e diffraction pattern. For from (7 a) 

dF 
dw = 1, \dF\ = \dw[ 

(12) V2H/K| = |F(«-t)-F(B>1)|, 
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that is, the amplitude ratio (times j/2 ) equals the length of the chord which 
connects the two points representing w2 and wx on Cornu's spiral. By (10 a) 
the difference between the two ^-values is 

2γά 

1/A//2 
: const. 

hence it is independent of both ξΒ and of the coordinate x of the point of 
observation. w2 - wx is a certain segment on the real w-axis. The arc of 
Cornu's spiral between the endpoints of our chord has this same constant 
length. 

w = l 

+1.0 

Fig. 73. 
Cornu's Spiral. 

In fig. 73 we have drawn the chord which corresponds to the point x = 0 
on the diffraction pattern. This chord passes through the origin of the F-plane 
and ends at two diametrically opposite points on the spiral which belong to 

the arguments w9 = ,, f w, = - ττ=. If we shift the starting point 
\Xf/2 1/A//2 

of the chord by a certain distance, then we must shift the end point by so 
much that the arc of the spiral has the same length as before. In this way the 
length of the chord is changed. This change implies a changed amplitude \v\ 
at the new point of observation x which corresponds to the new position of 
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the chord. If we approach the upper limit point of the spiral with the starting 
point of the chord, then the end point of the chord will also approach this 
limit; the chord becomes progressively smaller, and so does the amplitude \v\ 
which, in the process, goes through an infinite number of extrema of con-
tinually decreasing magnitudes. 

C. DIFFRACTION BY A STRAIGHT EDGE 

If we make the slit infinitely wide (d -> oo) by keeping one of the edges, 
e. g. the right-hand one, fixed and moving the left-hand edge off to infinity, 
then we have the simpler problem of the straight edge. To begin with it is 
to be noted that the various limiting processes pile up and seem to exclude 
one another ; in the series development (34.13) we had assumed the opening 
to be "small". In treating the slit we assumed h ^> d and put h = oo. Now 
we also let d -> oo. In order to be mathematically precise, we would have 
to conduct a careful appraisal of these limit processes. However we shall 
omit this here, because the problem of the half-plane will be treated again 
with all desirable accuracy in Sec. 38. 

We further simplify the problem by letting the incident wave be plane 
instead of spherical; that is, we move P' to infinity. We are, however, still 
dealing with Fresnel diffraction (see p. 206) if we observe the pattern on an 
observation screen B which is placed at a finite distance a from the diffraction 
screen. In this case f = a (because b = oo and 1// = \\a + \\b). If the 
light is perpendicularly incident the coordinates ξ on 5 equal the coordinates 
x on B and y = 1. If we place the origin of x on the boundary of the geo-
metrical shadow, then 

x 
(13) d-ÇD = Ç=X, W2 = , 10! = - 0 0 . 

]/ λ a/2 

Setting w2 = w, we obtain instead of (7 a) 

(13 a) = -L\F(w)-F(-œ)\. 
j /2 

In the Cornu spiral construction the starting point of the chord is now 
fixed at the lower limit point of the spiral. Only the end point of the chord 
changes with x. In the region of the geometrical shadow (- oo < x < 0) the 
length of the chord increases steadily, as indicated by the sequence of chords 
ending at the points a, b, c, d, e in fig. 74. The point d corresponds to the 
boundary of the geometric shadow. At that point w = 0 and F (w) = 0 and 

(13 b) 
1 lew M 1 I 1 + * = —, according to eq. (8 b). 
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From there on the length of the chord keeps increasing up to the first maximum 
which is attained at the point / in the figure. Then the chord decreases to 
the first minimum at the point g, and after that the chord oscillates between 
alternating extrema of decreasing heights. The asymptotic value of \v/v0\ 
for w = oo is twice its value (13 b) on the boundary of the geometric shadow; 
it is given by 

(13 c) ±=\F(+ao)-F(-co)\ = \, 

which corresponds to the full intensity of the incident light. The intensity at 
the shadow boundary is one-fourth of the incident intensity. The variations 
in the amplitude are shown in fig. 75. 

Fig. 74. 

Determination of the diffraction pattern of the straight edge by means of Cornu 's spiral. 

We have assumed the diffraction screen to be infinitely thin and at the 
same time opaque. Therefore these results cannot be realized experimentally. 
Under a microscope even the edge of a razor looks more like a parabolic 
cylinder than like a sharp half-plane. However, it is very remarkable that 
the patterns on precise diffraction photographs (see for instance, Arkadiew 
loc. cit. p. 225) exhibit almost no dependence on the material and shape of 
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the diffraction edge. Even a bent glass plate whose radius of curvature is 
several meters and which may or may not be blackened yields essentially 
the same diffraction fringes as the edge of a razor. In each case the pattern 
is that shown in fig. 75. 

^ ^ \ ί Μ - ^ ο ο ) \ 

S -2 -1 
geom. shadow 

+ 1 2 3 
-boundary of shadow 

w=5 

Fig. 75. 
Amplitude |v| behind a straight edge. 

38. Rigorous Solutions of Certain Diffraction Problems 

We shall call a solution of a diffraction problem exact only if it satisfies 
Maxwell's equations both outside and inside the diffracting object and if 
it satisfies the proper boundary conditions on the surface of that object. 
The solution must, furthermore, correspond to a given type of excitation 
(plane wave or point source). Such a solution can be found only for special 
shapes of diffracting objects, and certainly only if the wave equation can be 
"separated" in a coordinate system which is suited to the shape of the object. 

The simplest example of such an object is a sphere. The field outside a 
sphere can be represented by series of spherical harmonics and Bessel func-
tions of half-integer indices. These series have been discussed by G. Mie1 

for colloidal particles of arbitrary compositions. But even there a mathematical 
difficulty develops which quite generally is a drawback of this "method of series 

iAnn. d. Phys. 25, p. 377. 1908. 
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development": for fairly large particles (k a > 1, a = radius, k = 2π/λ) 
the series converge so slowly that they become practically useless. Except 
for this difficulty we could in this way obtain a complete solution of the 
problem of the rainbow1, the difficulty of which was pointed out on p. 179. 

What is true for the sphere is also true for a cylindrical wire of circular 
cross section. In that case the field can be represented by series of trigonometric 
functions and Bessel functions of integer indices. These series are entirely 
satisfactory in the domains of acoustic waves and Hertz waves2 but they 
fail in the domain of optics. Debye overcame this difficulty by means of 
his famous asymptotic representation of the Bessel functions. Epstein3 

reduced the problem of the parabolic cylinder to Hermite's functions. 
The problem which includes all of these cases and which is in principle 

still separable is that of diffraction by a triaxial ellipsoid. This problem in 
its most general form leads to Lamé functions. The special case of the ellipsoid 
of rotation leads to products of a trigonometric function of the cylinder angle 
and two "spheroidal functions" which can be considered specialized Lamé 
functions or generalized spherical or Bessel functions. 

The circular disc and the complementary plane screen with a circular 
opening are special degenerate cases of the oblate ellipsoid of revolution. In 
order that it be at all possible for a disc or screen of vanishing thickness to 
influence the light field, the material must, of course, be assumed to be opaque 
(perfectly conducting). The general Maxwell boundary conditions reduce then 
to the requirement that £tangential = 0 and consequently that p̂erpendicular = 0. 
With these boundary conditions the treatment of the problem can still be 
made mathematically rigorous, but it is no longer rigorous in the physical 
sense as defined above, for the diffracting material is no longer physically 
realizable. The solution to such a problem can be considered physically 
rigorous only in the case of acoustic waves4 or Hertz waves5 (wavelengths 
large compared to the thickness of the diffracting object). 

The series of spheroidal functions which appear in these solutions again 
converge sufficiently well only if the radius a of the disc or opening is not too 
large compared to the wavelength. Even the case k a ~ 1 can be computed 

χΤ1ιβ two papers which come closest to solving this problem are those by B. van der Pol 
and H. Bremmer, Phil. Mag. 24, p. 191 and 825, 1937 and by H. Bucerius, Optik, Vol. I, 
p. 181, 1946. Debye had previously treated the two-dimensional rainbow (diffraction 
by a glass rod), Phys. Zeitschr. 8, p. 775, 1908. 

2 Schaefer-Grossmann, Ann. d. Phys. (Leipzig) 81, p. 454, 1910. Experimental 
verification with undamped waves: Schaefer-Merzkirch, Z. f. Phys. 13, p. 166, 1922 
and Schaef er-Wilmsen, ibid. 24, p. 345, 1924. 

3 P. S. Epstein, Dissertation, Munich, 1914. 
4 0 . J. Bouwkamp, Proefschrift, Groningen, 1941. 
*J. Meixner, ZS. f. Naturf. Vol. 3a, p. 506, 1948. 
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numerically only with the aid of tables; here again asymptotic formulae 
of the type of Debye's formula for the Bessel functions are needed for an 
approximative evaluation of the result. 

The problem of the slit and the complementary problem of the strip leads 
to Mathieu functions and has been solved numerically by Morse and 
Rubenstein1 with the aid of tables of Mathieu functions. 

It is impossible to discuss these function-theoretical details here; they 
belong to the chapter "Eigenvalues and Eigenfunctions" of Vol. VI. 

A. THE PROBLEM OF THE STRAIGHT EDGE 

This problem also is physically not rigorous because we shall assume the 
screening half-plane to be infinitely thin but nevertheless opaque. We shall 
obtain a mathematically rigorous solution of the problem which will even 
be in closed form and easily applicable to all wavelength domains. With this 
problem it was first demonstrated2 that Fresnel diffraction constitutes a 
well-defined mathematical boundary value problem. (Fraunhofer diffraction 
cannot be treated directly by this method but only as a limiting case of 
Fresnel diffraction.) 

We let the edge of the screen be the 2-axis of a cylindrical coordinate 
system r, <p, z; the front and rear surfaces of the screen shall be the surfaces 
φ = 0 and φ = 2 π, respectively. We assume that in the r, ç>-plane a mono-
chromatic plane wave is incident on the front surface of the screen at an angle 
a (the angle of incidence measured against the normal to the screen is then 
π/2 - a). The wave shall be linearly polarized in such a way that the electric 
field is directed parallel to the z-axis. Then the diffracted electric field will 
also be parallel to the 2-axis and the problem becomes two-dimensional ; only 
processes in the r, 99-plane are involved. Therefore we can use a scalar 
function u ; the part of this function which describes the incident wave will be 
(1) u0 = A erikr**&-*). 

The negative sign in the exponent is due to the fact that we think of the time 
dependence as given by exp (- i ω t) as usual, and that the wave propagates 
in the direction of the half-ray φ = π + α ; see fig. 76 (the arrows originating 
from 0 pertain to the discussion in the later section D). The field u as modified 
by the presence of the screen must satisfy the following conditions: 

a2 1 a 1 a2 

(1 a) the wave equation Au + k2u = 0, ^ =^ --- + -— +-^y-;, 

^ h y s . Rev. 54, p. 895, 1938. 
2A. Sommerfeld, Mathem. Ann., Vol. 47, p. 317, 1896. A simplified presentation is 

to be found in chapter 20 of Vol. II of "Differentialgleichungen der Physik", edited by 
Frank and von Mises, second edition 1934, first edition 1927 (Vieweg, Braunschweig). 
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ν-χΐ*'1 (1 b) the boundary conditions u = 0 for φ = \ , (corresponds to £tan=0), 
[ Δ71 

(1 c) the condition u is finite and continuous everywhere, including the edge 
of the screen. 

To these must be added the radiation condition1 at infinity. Specialized 
to our case this condition must be formulated differently for the "illuminated" 
region I -\- II and for the "shaded" region 777 of the r, φ plane (the 
words "illuminated" and "shaded" refer to the geometrical optics point 
of view). These conditions are 

ΙΛ A\ τ · ldv ·*> \ A \u-u0 for 0<φ<π + σ. 
(Id)

 Limr — -tkv ] =-- 0, v = \ x r-^oo \dr I [ u for π + <χ<φ<2π\ 

or expressed in words : in the illuminated region the incident portion of the 
field is given precisely by u0 and the difference u - u0 (reflected + diffracted 

wave) has the radiative character as required 
by (1 d); in the shaded region u itself is the 
radiative field. 

Finally, we must complete our requirement 
(1 c) with a statement about the behavior of 
r grad u at the edge of the screen, namely that 

(le) rgi3.au -+0 as r - * 0 . 

^ a"J ' Accordingly, grad u can become infinite at 
Fig. 76. γ = o but only "weakly" so. In the limit, 

The diffraction screen S with γ d u m u s t v a n i s h # W e s h a l l s e e i n s e c t i o n C 
the shadow boundary G{ of the 
incident ray and Gr of the below that when this condition is satisfied, the 

reflected ray. edge of the screen neither radiates nor absorbs 
energy. Therefore we can characterize the 

requirements (1 d) and (1 e) as additional energy conditions which suffice 
to make the problem physically unique2. 

1This condition is fully discussed in Vol. VI, Sec. 28. The requirement is 
equivalent to demanding that if all light sources are situated in the finite regions of 
space, then the field at infinity must behave like an outgoing spherical wave, 
exp (ikr)jr. This expression fulfills (1 d) everywhere when v = u0. Separate formulations 
have to be given in (Id) for the two regions because the incident wave is a plane 
wave originating at infinity. 

a J . Meixner, ZS. f. Naturforsch., Vol. 3, p. 506 established a more general condition 
(that the energy density at the edge of the screen shall be integrable with respect to 
space). In our case this condition becomes equivalent to (1 e). In three-dimensional 
cases where our condition (1 c) on the finiteness of u cannot be imposed, Meixner's "edge 
condition" is not only necessary but also sufficient. 
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+ oc/2 

The problem obviously cannot be solved by means of the usual method of 
images. For, if we were to add to the incident wave (1) a reflected wave 

UQ = - A e~ikr cos (a+ <p) 

(direction of incidence φ = 2 π - α ) , our condition (1 d) would be violated. 
Furthermore, the resulting solution would vanish not only on the half-ray 

w — \ but on the whole ray φ = \ , which would certainly be wrong. 
I 2 n \n 

However, the method of images can be retained if one uses, instead of 
the ordinary plane wave u0 (r, ψ) of period 2π (where ψ stands for ψ-οή, 
a function U (r, ψ) which has the period 4π in the variable ψ and which 
satisfies the conditions (1 a) and (1 c) for all 

- 2 π < γ > < 2 π and the condition (1 d) with + ? r / 2 
v = U -u0 for \ψ\ < π and with v = U for 
\ψ\ >π. In the language introduced by 
Riemann for algebraic functions this means 
the following: U is a solution of our wave 
equation on a two-sheeted Riemann surface 
which has simple branch points at r = 0 and 
r = oo. U is uniquely determined by its 
behavior at infinity (incident wave only in 
the sheet | ^ | < π , no incident wave in the 
sheet \ψ\ > π) and by the requirement that it 
shall be everywhere continuous. 

The usual model of this Riemann surface is 
familiar. It consists of two flat sheets which lie 
one on top of the other and are joined along the 
half-rays ψ = ± π, for instance. Instead, we shall represent the surface by a 
single plane defined by the angle ψ\2\ see fig. 77. Every quadrant of this 
plane is, of course, a half-plane in the variable φ. The arrow1 drawn as coming 
from the direction + a/2 corresponds to the incident plane wave U (r,ç>-a). 
The image-wave U (r, φ + α) is represented by the half-ray - a/2 in the 
fourth quadrant. Since these two waves are symmetric with respect to a, 
they cancel one another on the symmetry lines φ/2 = 0 and <p[2 = ± π which 

+ 7Γ 

- 7 Γ / 2 

Fig. 77. 
Symbolic representation of the 
method of images applied to 

the half-plane. 

xIn connection with fig. 77 it should be noted that the two straight arrows drawn 
there represent only the rays passing through the origin correctly; rays parallel to these 
would in the figure have to be drawn as parabolic curves (coordinates r, q>\2 instead of 
r, φ). Further, it should be noted that the arrows refer only to the incident waves at 
infinity; our schematic figure does not represent the diffraction produced by the screen 
at all. 
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represent the two surfaces of our diffraction screen φ = 0 and φ = 2 π. 
Therefore the solution of our diffraction problem is given by the formula 

(2) « = tf(r,ç>-a)-E7(r,ç> + «). 
We now turn to the diffraction problem for the other polarization, 

that is, for light whose electric field is not parallel but perpendicular to the 
edge of the diffraction screen. All other geometrical conditions will be kept 
the same. In this case the magnetic vector H is parallel to the edge of the 
screen not only for the incident component but also for the reflected and 
diffracted components of the field. We now denote the magnetic vector by u 
and ask for the correct boundary condition which again follows from the 
requirement that t̂angential = 0· If we introduce, temporarily, the cartesian 
coordinates x, y in place of r, φ, then we must require that in going from 
air into the screen 

Ex = 0 and Ez = 0. 
The latter condition is automatically satisfied because of the given polarization 
of the ^-component. The first condition requires, according to Maxwell, 
that on both sides of the screen 

dz 
and hence, 

For this we 

(3) 

because Hy 

curl* H 

= 0, 
du 
dy 

i can write also 

Hz = 

= 0 

_dHz 

dy 
■ u: 

for 

du 
dn 

φ=\1*. 

where n stands for the normals on both sides of the screen. We can satisfy 
this condition immediately by means of the sum 
(4) u= U (ν,φ-ν) + U(r,<p + a) 

which is analogous to (2). We wish to recall here that the two Green's func-
tions G_ and G+ of Sec. 34 G were formed by a method of images quite anal-
ogous to (2) and (4). 

Fundamentally, our method has an even wider applicability. It can be 
extended without difficulty to the problem of the slit. In that case a Riemann 
surface with two branch points at the traces of the two slit edges would 
have to be used in place of the surface with a single branch point in the 
finite plane and another at infinity; besides, the ordinary polar coordinates 
would have to be replaced by bipolar coordinates. The method could even 
be extended, at least in the scalar (acoustic) case, to cover the problem of 
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an arbitrarily bounded plane screen or a complementary opening. Here the 
two-sheeted Riemann surface would be replaced by a "Riemann double-
space", the two "sheets" of which would have a common "branch line" 
on the bounding curve of the screen or opening. The difficulty with these 
generalizations lies in the mathematical construction of the branched solu-
tions. It has been possible to construct these solutions only for the simplest 
case of the half-plane. As we shall see presently, even here very special 
mathematical devices are required. 

B. CONSTRUCTION OF BRANCHED SOLUTIONS 

The factor A in eq. (1) can be considered as an arbitrary function of the 
angle of incidence a. Replacing this a by a variable of integration ß and 
integrating the expression with respect to ß, we obtain the "wave bundle" 

(5) " = / A (ß)e-ikrcos(v-ß)dßm 

This expression is a solution of the 
differential equation (1 a) for any 
arbitrary, possibly complex, path 
of integration. If the integration 
path is complex, then u represents 
an "inhomogeneous" wave of the 
type, for instance, which we have 
encountered in total reflection. Let 
us first choose a closed path in the 
complex ß -plane which encloses 
the point β = α. If we see to it 
that A (ß) has a pole of the first 
order with the residue 1/2 π i at a, 
then by Cauchy's residue theorem (5) becomes the solution u0 given by (1), nor-
malized so that A = 1. (Let u0 henceforth denote this normalized solution!) 
In particular, we shall chose A (β) to be a periodic function of β with the 
period 2 π, namely 

1 eiß 

(6) A ( ß ) = l 

jö-plane 

Fig. 78. 
Path of integration in the yö-plane used in 

the representation of u0. 

2πε*0-οίΛ' 
Thus we obtain 

(7) 

where Φ 
- l £ eiß 

e-ikr cos (φ-ß) dß 

indicates contour integration around a closed path. 
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(7a) ß = 

We can deform the path around the pole β = α in an arbitrary manner 
as long as it does not cross any other singularities of the integrand (that is, 
none of the points β = α ± 2π,. a ± 4π, . . . ) . If we wish to deform the 
path so that it goes to infinity, then we must make sure that the integrand 
vanishes in the limit along the path. In fig. 78 the regions in which cos (φ - β) 
has a negative imaginary part have been shaded. These regions are bounded 
by straight lines. For positive values of kr the real part of - ikr cos (<p - β) 
goes to - oo as β goes to infinity inside the shaded regions ; therefore the 
integrand in (7) becomes vanishingly small. At the corners At B and M of 
the resulting pattern we have 

φ - π A 
<p +π . . . . B. 

φ M 

The path of integration which has been drawn in fig. 78 consists of the two 
loops C and the connecting paths D1 and D2. The latter two have been chosen 
so that they are brought into congruence by a displacement of 2π. Because 
of this and because the directions of integration are opposite for these two 
paths, their contributions to the integral cancel. Thus we need only integrate 
(7) along the two loops C; the path of integration will still be equivalent 
to the original circuit around <p = a and the integral (7) will still be identical 
to the plane wave u0. 

With this preparation we can immediately find the desired function U 
on the Riemann surface. To do this we give the arbitrary function A the 
period 4π (instead of 2π) but still insist that it possess a pole with residue 
\\2ni at the point β ■= a. Thus instead of (6) we set 

1 e^l* 
(8) A{ß) = ^jmzj^-
Then we obtain in place of (7) 

(9) JJ = — I I e-ikr cos (β-φ) ύβ 

c 
where the path of integration is to be taken along the loops C (without the 
connecting paths D). This function is obviously also a solution of the wave 
equation because, like (7), it consists of a superposition of ordinary plane 
waves. 

The shaded pattern in fig. 78 depends on the value of the angle φ, as is 
evident from (7 a). The whole pattern together with the integration 
paths shifts when φ is varied. This is inconvenient in the calculations to follow 
and can be avoided by replacing the integration variable β with 
(10) γ = β-φ. 



38. 12a CONSTRUCTION OF BRANCHED SOLUTIONS 255 

which is advisable because the angles φ and a can then be combined as before : 
(10 a) ψ=φ-<χ.. 

Writing (9) in terms of y and ψ, we obtain 

(Π) 
1 Γ eiy/2 

TJ — ____ I p-ikrcosy J*. 

4 J T J e^-e-ivl* Y' 

This representation of U immediately shows us that U has the period 4π 
in ψ and is therefore double-valued on the simple r, ψ plane ; but U is single-
valued on our Riemann surface. U also satisfies the wave equation because 
it is, after all, only the function (9) written in a different form. 

We shall now explain fig. 79. The 
points marked 

y = +π,-π, and 0 
correspond, according to the eqs. (10) 
and (7 a), to the points A, B, and M 
in fig. 78. The branches Dv D2 of the 
path of integration drawn in fig. 79 
should be disregarded for the present. 
The pole β = α in fig. 78 lies now at 
y = OL-φ =*= -ψ. It has not been drawn 
in fig. 79 because we shall begin by 
considering the case \ψ\ >π for which 
the pole lies outside the segment 
-π <γ < +π. Since the loops C go 
to infinity inside the shaded regions, 
U is certainly finite and continuous for all r > 0. Only the point r = 0 requires 
special consideration. For here the factor exp (-i kr cos y) which insures 
convergence of the integral becomes equal to 1. Nevertheless, the integral 
converges because for r = 0 it becomes, except for a finite factor - 2 i, 

Fig. 79. 
Path of integration in the y-plane 

used in the representation of U. 

(12) 
J z~C~ log(*-C) = log 

c, 
■f 

where z = e% v/2 £ = έΓ*>/2. Cx and C2 indicate the end points at infinity 
of the (upper and lower) loops C; zx and z2 are the values of z at those 
points. But since z = el y/2, their values are zx = z2 = 0 for the upper loop 
and 1̂ 1 = oo, \z2\ = oo for the lower loop. Therefore on the lower loop we 
can neglect ζ in comparison to z. Thus we obtain 

log 1 = 0 on the upper loop, 
(12 a) log 

\ogz2/z1 = in on the lower loop. 
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The last value follows from the fact that according to fig. 79 the y-values 
of Cx and C2 differ by In. Thus (12) and (12 a) constitute the proof for the 
convergence of the integral (11) at r — 0. 

Next, we must investigate the behavior of U as r -> oo. As r -► oo, the 
integrand of (11) vanishes everywhere in the shaded regions and not merely 
in their infinitely distant portions. In the case \φ\ >π, which is represented 
by fig. 79, the two loops C can be deformed so that they lie entirely in the 
shaded regions. For instance, the upper loop can be made to coincide with 
the two previously used by paths Dx and D2 plus the segment of the 
real axis between -n and + π ; the lower loop can be made to coincide with 
the lower portions of Dx and D2 and the same segment + π to - π of the real 
axis traversed in the opposite direction. Then the sum of the integrals 
over the two loops reduces to the sum of the integrals along the connecting 
paths Dx and D2, with the direction of integration indicated by the arrows in 
the figure (opposite to that in fig. 78). The integrals along these two paths 
no longer cancel as they did before because the period of y is 4 π and not 
2 π. However, the integrals along both paths are individually zero and 
therefore 
(13) 17 = 0 for /'-►oo and \xp\ >π. 

If, however, \ψ\ < π , then the pole of the integrand of (11) at γ = - ψ, lies 
on the segment between - π and + π in fig. 79. Therefore, if the loops C are 
again deformed so as to lie in the shaded regions, a positive circulation of 
the pole must be added. Because the residue is 1 at this pole the integral 
now becomes 
(13 a) u ^e-ikrcosy, f o r r_>oo and \ψ\ <π 

instead of (13). 
Expressed in the language of the two-sheeted Riemann surface, we have 

an ''upper sheet1 ' \ψ\ < π which is illuminated by the plane wave u0 and a 
"lower sheet" \ψ\ > π which lies in the shadow. These sheets are connected 
along the "shadow boundary" ^ ι = ± π . The contradistinction of "light 
and shadow" here finds its simplest mathematical formulation. For 
finite values of r the transition of U from one sheet to the other is continuous, 
and this transition constitutes the diffraction phenomenon. Actually the 
transition is also continuous for r -> oo in spite of the apparent discontinuity 
expressed by (13) and (13 a) ; (the transition region shrinks to zero only when 
measured in terms of the angular scale ψ). 

However, we are not finished with our investigation of the infinitely 
distant point. We must carry our analysis a step further and show that not only 
the conditions (13), (13 a), but also the more stringent condition (Id) is 
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fulfilled. This condition must be satisfied by v = U - u0 in the illuminated 
sheet and by v = U in the shadow sheet. Only then can we be sure that the 
function U which we have constructed is actually the unique solution of the 
diffraction problem demanded by nature. 

Hence, we must find an asymptotic approximation of the integral (11) 
for large r. In the shadow sheet we obtain from the difference between 
D2 and ΌΛ 

(14) \nU = I e-ikrcosy0(Y)dy> 

giyl2 f>}y\2 

(14 a) Φ(γ) = g i y / 2 _ β—ίψ!2 ßiy\2 _|_ g—iytl2 ' 

In the second fraction which is due to Dv the sign of exp (i γ/2) is reversed 
because y is shifted by In with respect to its value in the first numerator. 
This has the effect of changing the sign of exp (- i xpjl). The negative 
sign in front of the second fraction corresponds to the opposite directions of 
integration on Dx and D2 in fig. 79. The general method of evaluating (14) 
is the method of saddle-points, see Vol. VI, Sec. 19 E. We do not need to carry 
this out here, because we shall immediately develop a more convenient and 
even more precise method of evaluating this integral. We shall only make 
the following remark on the saddle-point method: from fig. 79 we see that 
in our case the critical saddle-point lies at y = π, because at that point the 
path D2 passes closely by two unshaded regions. For y = π the first factor 
of the integrand of (14) becomes exp (i kr); this factor can be taken out 
of the integral. The remaining integral which is to be computed only in the 

vicinity of the saddle-point yields the factor ΤΊ= , aside from a constant 
y kr 

which does not interest us at present. Therefore, one finds that 

(15) £7 = =£=*■*'. 
ykr 

This expression does indeed satisfy our radiation condition (Id). For, 

dr ykr\ 2tkr ) 

and this vanishes, even when multiplied by r, in the limit as r -> oo. The 
difference U -u0 in the illuminated sheet behaves in the same manner. 

We shall postpone the verification of the condition (le) as well as the 
complete proof of (15) until the end of the next section. 
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C. REPRESENTATION OF U BY A FRESNEL INTEGRAL 

Our purpose in this section is to bring the above formulae into a form 
which is comparable to the expressions derived in Sec. 37 C. Unfortunately 
this transformation is of a somewhat lengthy and largely formal character. 

The expression (14 a) can be rewritten 

2e1/.*'(y-v) 
Φ (γ) = —. _ . 

We introduce the new variable of integration rj by setting 
y = π + η and γ = π - η 

on the upper and lower half of D2, respectively. The sum of the values of Φ 
at points with equal \η\ is found to be 

4 ι cos -£- cos — 
Φ{π + η) +Φ(π-η) = 

cos ψ + cos η 

If we substitute this in (14), the latter becomes 

V 

/

c°S2 
eikr cos η d 

COS ψ + COS η 

where the range of integration is to be taken from η = 0 to a value i oo - η' 
and η' can be any arbitrary real number <π (see fig. 79). 

The expression (16) suggests that, instead of U, the quantity 

(16 a) V = -
u0 

be considered and that the factor l/w0 = exp (+ ik r cos ψ) be placed under 
the integral, for then the denominator of (16) disappears after differentiation 
with respect to r. Performing this differentiation, one obtains 

( 1 7 ) π — = ÂÎCOS^ / ^ ' ( c o s y + cosrç) C Q S V_ 
v ' dr 2J 2 
Now it is possible to perform the integration with respect to η. Since 
cos η = 1 - 2 sin2 η/2, the integral to be evaluated is 

(17 a) / e 2 c o s ^ · ^ , 

which, because cos ψ = 2 cos2 y/2 - 1, is still to be multiplied by the factor 

άη. 

(17 b) e x p l 2 i ^ r c o s 2 4 

(16) 
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which is independent of η. Upon making the substitution 

. η 1/ π 
Sin2=m-7T 

(17 a) becomes an integral of the Fresnel type. For, introducing the above 
limits of integration, (17 a) is equal to 

00 

] A p F * (oo), F* (oo) = / c"**dr = - ^ , see (37.8 b). 
o 

Multiplying now by the factor (17 b), we obtain for the value of (17) 

dV 1 - i l / T ψ /_ . , 2ψ\ 
—— = —— / — cos-£-exp \2ikr cos*2■— I. dr 2 ]/ nr 2 r \ 2 / 

The right-hand side can be written as the differential quotient with respect 
to Y of an expression which we can again write in the form of a Fresnel integral1. 
That is, (18) is equivalent to 

P 

(18a) -* = -2-TrJe dT- p = 2|/ircosy· 
— 00 

This becomes, by integrating with respect to r, 
p 

(18 b) V = ^Je^T'dT, 
— 00 

and because of (16 a) p 

i _ * Γ — « 
(19) U = u0^Je^dr. 

— oo 

Because of the definition of p in (18 a), this representation of U is an analytic 
f miction of ψ with the period 4π. Therefore, it is valid not only on the 
shadowed sheet, for which (19) was derived, but also on the illuminated 
sheet of our two-sheeted Riemann surface. On the latter we obtain for r -► oo 

oo oo 

U = u0 —— je2 dr = u0(\-i) J e2 di 

■ % (!-*') F (°°) = uo -—^ = uo> 

as required. 
1 If we were toy choose the lower limit of the integral as zero, the ordinary Fresnel 

integral F (p) would result. But then an (easily evaluated) integration constant would 
have to be added to the right-hand side of (18 b). With our choice of — o o as the 
lower limit this constant becomes zero. 

(18) 
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We can discuss the representation (19) conveniently for both large and 
small values of \p\ with the help of the approximation formulae for Fresnel's 
integral which were derived in Sec. 37. 

a) For large |/o| in the region of the geometrical shadow (p < 0) we write 
p 0 0 

f = j - f = F(œ)-F(\P\), 
— oo — oo — }p| 

and hence, according to (37.8 a) 
iü « 

2 ιπρ\ ιπpà J 

Introducing the expressions for u0 and p we find 

w0 e 2 = exp \-ikr cos ψ + 2 ik r cos2 -̂ - [ = exp (i k r), 

and obtain 

(20 a) U = λ-±- *" ·7 1 + Τ Ι_ + .. Y 
AV—JT V \ Ι π ρ I 
4l· nkrcos— x 

r
 2 

If the correction terms inside the parentheses are neglected, this is of the 
same form as the asymptotic behavior which we predicted in (15); the 
factor C, which was there undetermined, now turns out to be a function of ψ. 

b) For large p in the illuminated region (p > 0) we substitute in (19) 
p o p 

J = J + J = F (co) + F (p) = IF (oo) - [F (co) -F (/,)], 
— oo - oo 0 

and consider that 

Using the same expansion as in a), we obtain from (19) 

(20 b) U = u \±1 e<*r/1+ 1 + .. V 
4 y π ^ r co« — r 2 

This asymptotic expression is also in agreement with the remarks made 
following formula (15). 
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c) For small p (illuminated or shaded sheet) we set 
p o p 

J+J=F(co)+F(p) 
— oo — oo 0 

and by means of (37.8) we obtain from (19) 

(20c) ϋ = 5{ ΐ+(1- . · )ρ( ΐ+^ν+. . )}· 

At the branch point itself p = 0, «0 = 1 and therefore 

(20 4 tf = 2 and - = — - | = — | / _ cos | . 

Thus dt//3r 8 o e s to oo as r -^ 0 but only so weakly that the product of r and 
the gradient remains finite as required by ( l e ) : 
(20 e) r grad U -> 0 as r — 0. 
Thus we have finally shown that our branched solution U satisfies all the 
conditions as postulated in section A. 

D. THE DIFFRACTION FIELD OF THE STRAIGHT-EDGE 

Returning now to fig. 76 and the representations (2) and (4), we shall 
describe the field in the region of observation 0 < φ < 2 π. The plane is 
divided into three sectors I, II, III by the screen S, the shadow boundary G 
of the reflected wave and the shadow boundary G{ of the incident wave. 
These three sectors have the central angles π - a, 2 a, π + a, respectively. 
I is illuminated by the incident wave U (τ,φ - a) and by the reflected wave 
U (r, φ + a), II belongs to the illuminated sheet of the incident wave and to 
the shaded sheet of the reflected wave, while III is in the shadow of both 
the incident and reflected waves. The direction of incidence of the reflected 
wave does not lie in the region of observation. We must think of this 
direction as lying on a Riemann sheet which is connected to the region of 
observation along 5. 

Let us first consider sector III. Since we are only interested in 
distances r ^> λ, we need to consider only large values of k r and large values 
of p (except in the immediate vicinity of the shadow boundary G{ where 
cos ψ/2 = 0). Therefore, we may use the approximation formula (20 a) and 
thus obtain by (2) and (4) 

/ 

(21) 
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The upper sign corresponds to the case where E oscillates parallel to the edge 
of the screen; the lower sign corresponds to the case where E oscillates 
perpendicular and H parallel to the edge of the screen (in this latter case u 
represents not E but H). The second term in the parentheses takes on 
appreciable values only at the shadow boundary Gr and can therefore be 
neglected1 in comparison to the first term. 

Since the value of the expression in the parentheses decreases slowly with 
increasing φ, we conclude that the light is diffracted far into the region of the 
geometrical shadow. The infinitely large value which this expression assumes 
on the shadow boundary is, of course, illusory and is due to the fact that 
our asymptotic approximation is not valid there. In this region the exact 
representation (19) should be used instead of the approximation (21) ; see below. 

Even more interesting than the ^-dependence of eq. (21) is its r-dependence 
eikr 

-y=- which has the character of a cylindrical wave emitted by the edge of the screen. 
]/r 

We have indicated this by the arrows emerging from 0 in fig. 76. A. Kala-
schnikow2 showed that these ray directions can be photographed. He inserted 
pins into a photographic plate which he then placed at an angle to the ray 
directions. After a sufficiently long exposure, radially directed shadows of 
these pins appeared on the plate. 

If one focuses the eye on the edge of the screen, this edge appears as a 
thin luminous line. This effect was described very early by Grimaldi, the father 
of all diffraction discoveries. The explanation is that the eye performs an 
inadmissible extrapolation. It infers from the asymptotic field, which is 
correctly represented by (21), that the field becomes infinite at r = 0, which 
is not true. In fact, the energy radiated into an angular region δφ per unit 
length of the edge per unit time is, depending on whether E is parallel or 
perpendicular to the edge, 

(22) ÔS=Srrô<p = rô<p[-EzHv \ = 
[ + Εφ Hz J 

Ezr-—ö<p, 
ωμ0 or 

H z r —— δφ. 
ω 8η or 

In the upper line (E = Ez) we have used the equation B = - curl E, and in 
the lower line (H = Hz) we have used D = curl H. The factors djdr in both 
lines become infinite for r — 0 but only so slowly that öS — 0; see (20 e). 
Hence the ' 'luminous edge" is not real. 

1 Retention of this term would yield a small difference between the cases E|| and 
Ej_ ; and hence a small polarization effect. 

2 Journal of the Russ. Phys. Soc. 44, p. 133, 1912. 
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The factor 

(23) l + i = V2VT 

in (21) is also of some interest. It shows that the phases of the diffracted and 
incident waves, the former extrapolated to r = 0, do not agree. The phase 
of uQ is 

-ikrcosψ-icot, hence equal to - i ω t at r = 0, 

while that of (21) is 

— -\-ikr-iœtt hence equal to - 4 - - i ω t at r = 0. 
4 4 

Such a "phase jump" always takes place when light passes through a 
focal point (or focal line in the case of our cylinder wave) ; see Sec. 45. But as 
in the case of the luminous edge, the phase jump is only a result of the 
extrapolation and is not real. Actually the phase, like the amplitude, is 
continuous at the origin, as far as it is at all permissible to talk of a phase of 
the complicated oscillations in that vicinity. 

Let us now turn to sector II. At some distance from the shadow 
boundaries G{ and Gr we can set 

U (r, φ - a) ~ u0, U (r, φ + a) ~ 0 : 

that is, we can disregard diffraction and obtain the pure field u = u0 of the 
incident wave. 

We must proceed differently in the vicinity of G{. Here we set 

(24) φ-οϋ=π-ο, cos1——=sin—> 

and call δ the "diffraction angle" which shall be reckoned positive in the 
direction towards II and negative in the direction towards III. Then 

(24 a) i l / * r · δ 

is finite even for large k r, provided δ is correspondingly small. Therefore 
U (r, φ - a) also has a finite value in comparison to which we can neglect 
U(r,<p + oL). Using the exact representation (19) for U(r,<p-<x), we obtain 

(25) U = Uolzl{F(cc)+F(p)} 

for both cases (2) and (4). Calculating the ratio i//«0 we obtain 

U 
(25 a) j=\F(co)+F(p)\. 
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Formally, this agrees exactly with (37.13). For, since Cornu's spiral is 
symmetrical about the origin, F (oo) = -F (- oo). There is, however, a 
difference in meaning between our present variable p and the previous variable 

(26) W = : 
]/λα!2' 

as defined in (37.6 b). There, x was the distance of the point of observation 
from the shadow boundary, which we must now denote by r sin δ ; a was the 
distance between the observation screen and the diffraction screen for 
perpendicular incidence; this we may now denote by r. Thus we obtain 
from (26) 

isc \ ]/rsmô l/kr 
(26 a) w = r

 Ί/ = 1/ — sin o. 
VA/2 V π 

A comparison with (24 a) shows that (26 a) contains the factor sin δ in place 
of our previous factor 2 sin <5/2. For small values of <5, which are the only 
ones of interest in the vicinity of the shadow boundary, this represents only 
a difference of the third order. Therefore we can still use fig. 75 to represent 
the results of our present more rigorous theory. This figure correctly exhibits 
the positions and amplitudes of the diffraction maxima and minima on the 
illuminated side of the shadow boundary, as well as the monotonically de-
creasing intensity in the region of the geometrical shadow. The intensity 
value 1/4 on the shadow boundary itself is also in agreement with the present 
theory. Leaving all numerical considerations aside, we nevertheless wish 
to point out that the occurrence of sin <$/2 in (24 a) reflects a typical feature 
of our theory, namely that the diffraction angle has the period 4 π. 

We add one critical remark regarding the use of Huygens' principle. Let 
us consider in greater detail the half-plane <p = π which is left open by the 
screen and plays the role of the "diffraction opening'' in Huygens* principle. 
According to our prescription of Sec. 34 C the "boundary values" are 
chosen as the values u0 given by the unperturbed incident wave; if, for 
simplicity, we assume perpendicular incidence (α = π/2), then u0 = 1. In 
contrast to this assumption eqs. (19) and (18 a) yield for φ = π and α = π / 2 

*-¥./>*. >-]/ψ-
This expression varies from the value £7=1/2 at r = 0 to U = 1 at r = oo 
and osculates in between. These values are in greatest contrast to the assumed 
boundary value u0 = 1 which was used in applying Huygens' principle. 
A corresponding result holds for the reflected wave U, in which case a must 
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be replaced by-nj2 and p hy-^(2kr)jn, and therefore the contradiction 
applies also to the superposition of the two waves. Thus we can say that the 
boundary values used in Huygens' principle differ from the (in our case) 
exact boundary values not only in the vicinity of the edge of the screen but 
even at large numerical distances k r from that edge. It is amazing that the 
classical diffraction theory nevertheless yields for all practical purposes 
satisfactory results. 

The sector I belongs, as we know, to the illuminated regions of both the 
incident and reflected waves. At the boundary Gr of the latter region there 
occur, of course, diffraction phenomena which can be calculated in the same 
manner as those at the boundary G{. But these diffraction fringes are masked 
by the full intensity of the incident wave in that region; they have been 
investigated experimentally only in the case of "Fresnel's mirror*' (two half-
planes inclined at a very shallow angle with respect to each other) and have 
been introduced in the calculations as very small perturbations added to the 
ordinary interference of the two reflected waves. 

E. GENERALIZATION 

It is easy to make the transition from the two-sheeted to an w-sheeted 
Riemann surface. It is only necessary to generalize eq. (8) to 

1 eißl» 
~ 'ϊπ'η eißln - eialn ' 

Analogously to (9) this leads to a function U of period 2 π η with the help 
of which image problems in a sectorial space of central angle 2 π njm 
(m = integer) can be solved. Among these problems is, of course, that of the 
exterior of a rectangular wedge for which n = 3, m = 4. The representation 
in terms of Fresnel's integral which we treated in C is limited to the case 
where n = 2. W. Pauli1 has shown that for arbitrary (even non-integer) 
values of n, Fresnel's integral is replaced by a confluent hypergeometric 
function. 

The limiting case n = oo is of particular interest. It leads to the infinitely 
many-valued function 

(27 a) U = —. I e-ik'«*y —Y- , 
2m J W~~y 

which is here expressed in terms of the integration variable y of eq. (11). 
We regard this function as the best possible representation for the case of 
the conventional "black screen": the wave which is incident at an angleç> = oc 

iPhys. Rev. 54, p. 924, 1938. 

(27) 
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on the front of the screen φ = 0 enters the screen and loses itself among 
the infinitely many sheets φ < 0. None of its energy is returned to the physical 
space via the infinite number of sheets φ>2π through the back side of the 
screen φ = 2π. To understand this one should recall the experimental 
realization of a black body used in heat radiation measurements, that is, a 
cavity which is kept at a constant temperature and has a small hole. All 
radiation entering the hole from the outside is reflected back and forth inside 
the cavity without ever again leaving it. The hole absorbs completely and 
acts, therefore, like a black surface. But the property ''black*' cannot be 
defined by boundary conditions within the realm of Maxwell's theory. Therefore 
diffraction by a black screen cannot be formulated as a boundary value 
problem. Our formulation (27 a) is by no means unique or devoid of arbi-
trariness. 

We shall indicate only briefly other possible generalizations of our method. 
First, there is the case of the cylindrical wave (luminous line in the finite region 
and parallel to the edge of the screen) for which our method also yields a 
complete solution of the diffraction problem in closed form1. The generalization 
to three dimensions is directly possible only for scalar (acoustic) problems. 
For these the diffraction of a spherical wave or a plane wave which is incident 
not perpendicularly but at an angle with respect to the edge of the screen 
can be treated by our method. 

F. BASIC REMARKS ON BRANCHED SOLUTIONS 

In electrodynamics there are two general types of problems: the summa-
tion problems and the boundary value problems ; see Vol. I l l , Sec. 7 and Sec. 9. 
When the distribution of charges throughout space was given, then we only 
needed to sum over all these charges in the proper way in order to obtain 
the complete electrostatic field. The same was true in the magnetostatic 
case when the magnetisation was everywhere known. However, when material 
bodies, such as conductors, dielectrics, or magnetizable matter with unknown 
charges and magnetizations were present, certain boundary conditions had 
to be fulfilled. We were then faced with the mathematically much more 
complicated boundary value problems. An obvious requirement on the correct 
formulation of these boundary value problems was that of uniqueness. 

Huygens' principle attempts to solve diffraction problems by the 
summation method. Since the boundary values to be prescribed in the diffrac-
tion opening are fundamentally unknown, and a certain plausible yet arbitrary 

χΈοτ details see Frank-Mises, loc. cit., p. 826. 
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choice must be made regarding them, the correctness and uniqueness of the 
solutions obtained in this way may properly be doubted. In the case of the 
rigorously solvable diffraction problems which we formulated at the 
beginning of this section, the boundary conditions were clear on the basis 
of Maxwell's theory. Supplemented by the radiation condition at infinity, 
these boundary conditions insured the uniqueness of our problem. In the 
conventional case of an infinitely thin screen one must go to the limit of 
infinite conductivity and use the corresponding limiting form of the boundary 
conditions. We have already seen that the black screen which is preferred 
in theory and in experiment cannot be described in terms of boundary condi-
tions, and therefore the diffraction caused by it cannot be described by a 
uniquely defined boundary value problem. 

For a perfectly reflecting plane screen of arbitrary shape the method of 
images leads to the problem of constructing branched solutions of the wave 
equation such that the edge of the screen is the branch line. In two-dimensional 
problems (slit, parallel strip, half-plane) the range of values of the solutions 
is represented on a two-sheeted Riemann surface. In three-dimensional 
problems the solution is defined on a Riemann double space. The mathematical 
construction of the branched solutions is possible only for the case of the 
half-plane. Nevertheless, our method of the Riemann double space leads to 
quantitative results also for the problem of an arbitrary plane screen. In 
order to see this we need further preparation. 

It has been known since Euler that functions which are symmetric in the 
n roots of any nth degree algebraic equation are rational functions of the 
coefficients of that equation. The same is true for the branches of an algebraic 
function, i. e. for the roots of an nth degree equation whose coefficients are 
entire functions of a complex variable z. Such an algebraic function is defined 
on an w-sheeted Riemann surface. If we denote an algebraic function by w (z) 
and its n branches by wv w2, . . . , wn> then all symmetric functions of the 
wv w2, . . . , wn are single-valued in z and are rational functions of the 
coefficients of the defining equation. 

This theorem is used repeatedly in two-dimensional potential theory, as 
for instance in the mapping problems of hydrodynamics. If the velocity 
potential u (x, y) and the stream function v (x, y) are combined in the form 
w = u + i v, one obtains a function of the complex variable z = x + i y 

whose real and imaginary parts satisfy Laplace's equation Δ \ 1 = 0. If w 
\v\ 

is multiple-valued, then the symmetric functions of its branches wv . . . , wn 

are single-valued in z just as in the case of algebraic functions. From these 
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single-valued functions w, and therefore also u and v, can be calculated 
algebraically. 

Here we are interested in two-valued solutions U of the wave equation 
where, in contrast to the solutions of Laplace's equation, there is no function 
conjugate to U. Of the symmetric functions only the linear combination 
U1 + U2 needs to be considered. This sum is a single-valued solution of the 
same differential equation and can therefore be regarded as known. (The 
symmetric product U1 U2 is not a solution of the wave equation; otherwise 
the two branches U1 and U2 could each be calculated algebraically, and the 
construction of the branched solution would be simple.) Limiting ourselves 
to scalar problems, we consider in particular a plane wave in the Riemann 
double space, the branch line of which coincides with the edge of the screen. 
U^ (P) shall refer to the first branch, U2 (P) to the second branch of this 
space; the two branches are connected in the plane of the screen. We form 
(28) U,(P) + Ut{F) = u0(P). 

Then u0 (P) is a single-valued solution of the wave equation in the simple 
space and is identical with our previous function u0 which represented 
a plane wave with no screen present. This result is rigorous because the 
solutions of the wave equation are uniquely determined by the continuity 
conditions which must always be imposed and by the condition imposed 
on the behavior of the solution at infinity. (The same eq. (28) is obviously 
valid for an incident spherical or cylindrical wave as well as for a plane 
wave.) 

We shall first'confirm eq. (28) by applying it to the explicit formulae for 
our double space with a straight branch line. It is convenient to start with 
eq. (19). Denoting by p the quantity (18 a) which is positive on the illuminated 
sheet, and hence denoting by - p the corresponding quantity on the shaded 
sheet, we obtain 

(29) 

P - P 

Ul(P) + U2(P) = u0~^J + J J^ T V 

We see immediately that by changing the sign of τ in the second integral both 
integrals can be combined into 

00 00 

Je2 dr = 2 I e2 ch = 2 F (oo) == 1 + i, 
— oo 0 

and (29) becomes identical with (28). It should be emphasized that this proof 
depends in no way on the transformed form (19) but can be performed 
equally well using the original form (9). In this latter formulation the path 
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of integration for U2 is obtained by displacing the integration path for Ux 

by 2π. The two paths, see fig. 78, combine then into two loops C which 
span a distance 4π instead of 2n. Because of the periodicity of the integrand, 
the two loops can be transformed into a circuit around the pole φ = a, so 
that the integral again yields u0. In the same way it can also be seen that 
for the generalization embodied in (27) (n arbitrary instead of n = 2), the 
statement (28) is generalized to 

U1(P) + U2(P) + ...+Un(P) = u0(P). 

Let us now compare (28) with our earlier formulation of Babinet's principle 
(34.15). The formal similarity between these two expressions suggests that 
Ux and U2 be associated with the diffraction patterns of two complementary 
screens I and II1. This is however permissible only 
for the case of black screens which, like the branch cut 
of our Riemann surface, can absorb light but cannot 
reflect it. In addition, this association is subject to the 
same lack of uniqueness which the definition of the 
black body suffers. Therefore we seek a formulation 
of Babinet's principle which is valid for the well-defined 
reflecting screen and which can be considered as a p . 
more precise formulation of the principle. By way of „ , . ^, . . . r ' r r J J Babmet s principle: 
preparation we again consider the simple case of the directions to be used 
half-plane. for measuring the 

We compare the diffraction by the original half-plane f1ng e s φ *n,, ψ .ΟΓ 
r J σ r the cases of the ongi-

(30) U[ = U {r,(p - a ) =F U (τ,φ + a) , 0 < <p < In nal screen O I and 
the complementary 

with that by the complementary half-plane which, in screen O II. 
the corresponding notation, reads 
(31) « / / = U(r,<p'-oL') =F U(r,<p' + aL'), 0<φ'<2η. 
If the direction of incidence of the plane wave is the same for both screens, 
then we must make 
(31 a) α' = π - α . 
The relationship between φ' and φ can be inferred from fig. 80. It leads to 
the following compilation: 

Front surface of the complementary screen φ' = 0 , <p= n 1 
Front surface of the original screen φ' = η, φ = 0 J ~ 
Rear surface of the original screen 9/ =n, φ ==2η 1 
Rear surface of the complementary screen φ' = 2η, φ—η\ 

1 Compare with the presentation by the author in Frank-Mises, Vol. II, Chap. XX, 
Sec. 1, eq. (15). 
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Equation (31 b) is the desired relation for the front surface of both screens; 
eq. (31 c) is the relation which applies to the rear surface. 
Substituting (31 a, b) in (31) we obtain for the front surface 

(32) un = U (r,-<p + a) =F U (rt 2π-φ-α). 

Because of the property (28) of our branched solution 
(32 a) U (r, 2 π -φ - α) = u0 (-<p - a) - U (r, -<p - a) 
and because of the right-left symmetry of t^th the branched and unbranched 
waves 
(32 b) U (τ,-φ-Λ) = U (ψ,φ + a), U [r,-<p + a) - U (r,<p - a ) , 

wo(~^-a) = %(<? +a). 
Substituting (32 a, b) in (32) it follows that 

(33) un = U {τ,φ-α) ± U (r,<p + α) Τ % (φ + a). 
It should be noted that the sign of U (r, φ + α) is now opposite to that in (30). 
Since, as we know, this sign is determined by the polarization of the incident 
wave (=F indicates that E is parallel or perpendicular to the edge of the screen, 
respectively), (33) tells us that we must compare the diffraction pattern of the 
complimentary screen illuminated by parallel polarized incident light (E|j) 
with the diffraction pattern of the original screen illuminated by perpendicular 
polarized light (E±). Furthermore, the term =F u0 (φ + α) shows that for the 
complementary screen we must omit the reflected light wherever it is present 
for the original screen and that we have to add reflected light where it is 
missing for the original screen. This is understandable from the viewpoint 
of geometrical optics. 

A corresponding calculation using (31 a, c) and (31) yields for the rear 
surface 

un = U (r, 2π-φ + a) ψ U (τ,4π+φ + α), 
and applying the correspondingly modified eqs. (32 a, b) we obtain 
(34) - « / / = U(r,(p-<x) ± U{r,<p + a)-u0(<p-aL). 

Thus we have the same interchange of polarizations as in (33) ; in addition, 
the incident wave must now be omitted for the complementary screen where 
it was originally present, i. e. behind the screen, and the incident wave must 
be added where it was missing with the original screen, i. e. in the shadow 
of the latter which by geometrical optics is the illuminated region of the 
complementary screen. 

The problem of the half-plane shares with other two-dimensional problems 
(slit, grating, . . . ) the feature that it can be treated as a scalar problem. This 
is not the case for the three-dimensional problems of optics (e. g. circular disc 
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or circular opening). To solve these problems vector calculations are necessary 
(or suitably defined potentials may be used). This is not so in acoustics where the 
scalar pressure (or the velocity potential) is treated. In the dissertation which 
was referred to on p. 248, Bouwkamp set up the rigorous form of Babinet's 
principle for the scalar three-dimensional problem of an arbitrarily bounded 
rigid plane screen and its coplanar complementary screen. The statement of 
the principle is the same as in our two-dimensional problems, and the proof 
again relies upon the relation (28) for branched functions. The above method 
can be extended to the three-dimensional scalar case by considering the straight 
screen edge and the cylindrical surfaces surrounding it to be deformed in the 
manner of topology into the given arbitrarily shaped edge curve and the 
corresponding toroidal surfaces surrounding it. These surfaces can be dis-
tinguished by assigning to them a parameter φ which can be chosen so as to 
increase by 2 π as it passes from one sheet of the double space to the other. 
If this is done, eqs. (30) to (34) can be interpreted directly as the expression 
of Babinet's principle for the scalar three-dimensional case. 

The completely general, rigorous formulation of Babinet's principle for 
the three-dimensional optical case has been given by J. Meixner1. Since in 
the incident wave E± implies H.| and (retaining a right-handed system) 
Eij implies - H± , we can replace our sign inversion =F -► ± in going from the 
original to the complementary screen by the following interchange rule: 

( E . H ) - ( H . - E ) . 

Therefore, according to Meixner, one obtains the diffraction field E, H of the 
complementary screen from the diffraction field H, - E of the original screen 
(provided the incident or reflected wave is cancelled or added at the front or 
rear of the screens in a precisely specified manner). The proof holds for 
arbitrary distributions of light sources, not merely for a wave coming from 
infinity. It is based solely on the symmetry properties of Maxwell's equations. 
We wish to note in this connection that fundamentally our representation in 
terms of branched solutions also implies a symmetry property of Maxwell's 
equations. 

Finally, we shall establish the connection between our energy condition 
(1 e) and the theory of functions of a complex variable z. We shall again limit 
ourselves to the scalar case. Specifically, (le) is related to the Puiseux ex-
pansion of a function about a branch point which replaces the otherwise 
valid Taylor expansion. If the number of sheets connected in the branch 
point z = 0 is n, and if this branch point is not at the same time a pole of the 
function w (z), then 

1Z. f. Naturforschung, Vol. 3 a, p. 508, 1948. 
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OC 00 

m m . m w(z) = Σ C*»Zn = Σ Cmrn e% Η Ψ· 
m=0 m=0 

The corresponding expansions of solutions u of the wave equation are in terms 
of Bessel functions with fractional indices 

00 

. m 

(35) u(r,<p)= 2Jc»>Jm(kr)e%^\ 
m = 0 w 

m 

Since/»» (p) is proportional to pn for small values of p, this expansion 
n 

yields at the branch point r = 0 

w—1 

(36) u — C0= finite value, but —— = k Y7CmJm
f(kr)ei~^(p

 # 

m = l ^ 

dujdr becomes infinite at r = 0 but only weakly, so that 

(36 a) Lim r grad u = 0. 
r->0 

This condition was verified explicitly for n = 2 in eq. (20 e). It is reasonable 
to postulate this same condition also for the case of a spatial branch line1, 
in which case r would mean the shortest distance from the branch line. As a 
result our condition (1 e) turns out to be a mathematical consequence of the 
condition that u be everywhere continuous (also at the edge of the screen) 
and therefore (1 e) can be omitted as a special requirement. 

1 Compare A. Sommerfeld, Proc. London Math. Soc, Vol. 28, particularly p. 405, 1897. 
"Branched Potentials in Space" are treated there. 



CHAPTER VI 

ADDENDA, CHIEFLY TO THE THEORY OF DIFFRACTION 

39. Diffraction By a Very Narrow Slit 

When the dimensions of the diffracting aperture become small compared 
to the wavelength or even only a few times larger, Huygens' principle 
becomes meaningless. For in our applications of this principle (Sec. 34) we 
used only the unperturbed wave incident on the opening and neglected the 
effect of the edge zones entirely. Therefore our present problem in which the 
aperture consists, so to speak, mainly of edge zones belongs definitely to the 
category of boundary value problems] it is now necessary to determine the 
state of the field in the opening from the continuity conditions imposed on 
the total solution. Thus the distinction between the incident and diffracted 
wave breaks down. 

Lord Rayleigh1 was the first to tackle this problem. With masterful 
brevity and clarity he reduced the problem to known solutions of hydrodynamic 
or electrostatic problems; he did this in particular for the case of a circular 
opening of radius a <C λ or for a sufficiently narrow slit. 

Bethe2 treated the problem of the small circular aperture independently 
from Rayleigh from an electromagnetic point of view and obtained substantially 
the same result. The work of Le vine and Schwinger3 is aimed at the more 
difficult goal of bridging the gap between the limiting cases a <C λ (Lord 
Rayleigh) and a ^> λ (Huygens-Kirchhoff) by means of a variational principle. 
For the time being this work is restricted to the scalar acoustic case. 

We shall treat the experimentally important problem of the slit in which 
we may operate with scalar equations (see p. 277) by considering separately 
the two cases E and H parallel to the slit edges. 

xOn the Passage of Waves through Apertures in Plane Screens and Allied Problems, 
Phil. Mag. 43, p. 259, 1897. Scientific Papers, Vol. IV, p. 283. 

2H. A. Bethe, Phys. Rev. 66, p. 163, 1944. 
8 H. Levine and J. Schwinger, Phys. Rev. 74, p. 958, 1948, 75, 1423, 1949. 
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A. THE BOUNDARY VALUE PROBLEM OF THE SLIT 

Let the slit lie in the #y-plane and let the slit edges be parallel to the 
y-axis. The screen shall be thought of as infinitely thin and perfectly 
conducting. The width of the slit shall be 2 a, and the edges are to be given by 
x = ± a, z = 0. A plane wave coming from the negative z direction is incident 
perpendicular to the plane of the slit. The problem is entirely independent 
of y and is therefore two-dimensional. 

The incident wave will be represented by A exp (i k z). We shall assume 
first that E oscillates parallel to the edges of the slit, i. e. E -► Ey. If there 
were no slit in the screen, the field would be given by 

I: A (eikz-e~ikz) for z<0, 
' -· —0 for z>0. 

Because of the presence of the slit, (1) must be changed to 

v = A (eikz-e~ikz) + u- for z < 0, 
v = w+ for z > 0. 

We denote the value of v in the slit opening by Έ. Because of the continuity 
of the field v 

(3) «+ = u- = H for z = 0. 

We call the ^-coordinate of a point in the slit ξ and write therefore ~u =H (ξ). 
If ~ü (ξ) were known, then we could compute u+ and u_ rigorously for all 
points z 3^ 0 by the general method of Green's function introduced in 
Sec. 34 C. However, in the Green's function (34.7) 

(A\ r=—-l— ( ft = (*-*)* +to-y)*+ (£-*)*> 
W r r' ' \ Τ'*=(ξ-χ)* + (η-γ)*+(ζ + ζ)*, 

we must now replace the spherical wave etkrlr by the cylindrical wave H (kr), 
where H = H0

{1) is the Hankel function of the first kind of index zero. We 
must also interpret r in the two-dimensional sense (because of the nature 
of our light source, the integration over the coordinate y has, so to speak, 
already been performed implicitly in H {kr)). Thus we obtain in place of (4) 

G = Y(H(kr)-H(kr)), J ^ = (ξ_%γ + ( f + ^ 

Equation (34.6) yields then 
+ « 

(5) 2nu±=- ΰ(ξ)^-αξ. 

(1) 

(2) 

(4 a) 
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The factor 2 π replaces the 4π of (34.6) because in the two-dimensional Green's 
theorem the left-hand side of (5) arises from the integration over a circle 
of vanishingly small radius instead of over the surface of a sphere as in the 
three-dimensional theorem. dGjdn means the derivative with respect to the 
outward normal, as before; in our case dn = - 3ζ for u+t dn = + Βζ 
for u_ and by (4 a) 

In the slit ζ = 0 and hence r = r' and 

(5 a) *L=±i„I-H(krJ, r0»=(f-*)» + *«. 

Equation (5) becomes 
+ a 

(6) u± = Ti~JHtf)H(kr0)dt. 
— a 

Since ΰ (ξ) is actually not known, eq. (6) contains no information. 
This equation must be supplemented by the requirement that dvjdz be 
continuous at the slit; the continuity of v is already guaranteed by (3). This 
continuity condition of dvjdz now takes the place of our original boundary 
value problem which has so far been solved only incompletely. 

According to eq. (2) 
dv . τ , du-
— =r2ikA + - — as z -> 0 from z < 0, 
dz dz 
dv du+ — = —— as z -> 0 from z > 0. 
dz dz 

Therefore we must require that 
ζ-,ν du+ du- Λ . f . . 7) —±--—— = 2ikA for z = 0. v ' dz dz 
From this together with eq. (6) it follows that 

(8) ~Jû(S)H(kr0)dï=kA. 
dz2 

This condition must be fulfilled for z = 0 and for all values - a < x < + a. 
It is to be noted here that according to (5 a), r0 depends on z and 
therefore the limit value 
(8 a) O = | f - * l 
may be substituted only after the twofold differentiation indicated in (8) 
has been performed. 
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We can simplify the mathematical situation if we take into account1 the 
fact that the cylindrical wave H (k r0) satisfies the two-dimensional wave 
equation Δ H + k2 H = 0. Therefore also the integral in (8) satisfies this 
equation and we have 

where we are now permitted to go to the limit (8 a) on the right-hand side 
and may also write d2ldx2 in place of d2jdx2. Thus we obtain from (8) 

(9) \T7i + k')X = kA 

with the abbreviation 
(£H*-

-I- « 

(9 a) X= j ΰ{ξ)Η{Η\ξ-χ\)άξ. 
— a 

We integrate (9) using the rule for the integration of inhomogeneous 
differential equations. A particular integral of (9) is X = A\k\ because of 
the symmetry of the problem, only that part of the general solution of the 
homogeneous equation which is even in x, that is B cos k x, is to be used. 
Hence 
(9 b) X = Ajk + Bcoskx. 

In order to determine the constant of integration B we set x = 0 and find 
using (9 a, b), that 

+ a 

B = -A/k+ I u(£)H(k\S\)dl 

Substituting this value on the right-hand side of (9 b) and using on the left-
hand side for X its value (9 a), one obtains 

-fa 

(10) / u (f) {H (k ^-x\)-coskxH{k |f |)} άξ = j (1 -cos * x). 

— a 

This is a linear integral equation for the unknown function ~ü (ξ) which must 
be satisfied for all values - a < x < + a. The "Kernel" of the integral 
equation is the expression inside the curly brackets in (10). A general rule 
is thus confirmed: the solution of a boundary value problem can be reduced 
to the solution of an integral equation. The solution of the latter can always 
be obtained numerically, but of course only for special values of the 

1 After the manner of Levine and Schwinger, loc. cit. eq. (A 3) for the analogous 
case of the circular hole. 

(8 b) 
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parameters occurring in the equation (in this case the values of k a and k x). 
This is of no help to us. In order to obtain a general solution one must in 
each case invent suitable approximation methods. In our case these have 
to arise from the assumption k < l . Furthermore, we note that the kernel 
in (10) is unsymmetric in x and ξ while mathematical theory commonly 
deals with symmetric kernels. 

Before we proceed to solve the integral equation, we must briefly consider 
the other case of polarization. We now denote by v the magnetic vector H 
which, because Έχ = 0, must satisfy dvjdz = 0 on the screen. Calling the 
magnetic amplitude of the incident wave A' *, we set in place of (2) 

v = A'(eikz +e~ikz) + u for z < 0, 
v = u+ for z > 0. 

and obtain in place of (3) 
du+ du-
dz dz 

where ω = ω (ξ) is now the unknown function to be determined. As the 
Green's function we have to take 

(11) G = %-£{H(kr)+H{kr')}. 

From it one finds, in contrast to (5) (compare with Sec. 34 G): 
+ a +a 

(11a) 2nu± = =F / cotf)GdS= Tin \ ω (ξ) H (k r0) άξ ; 
— a -a 

hence in the slit opening 
+ α 

( l ib ) 2 π « ± = =Μπ / ω (ξ) H (k \ξ - χ\) άξ. 
— α 

Because of the continuity of v at the slit 
~ü+ -~û- = 2A'\ 

from this and ( l i b ) it follows that 
-t- Û 

/ 
(12) / ω(ξ)Η(Η\ξ-χ\)άξ = ίΑ'. 

— a 

The derivation and form of this integral equation is somewhat simpler than 
in the preceding case; also the "Kernel" H (k \ξ - x\) of (12) is symmetric2. 

1 The notation is the same as in Sec. 2; A and A' have different dimensions and differ 
by the "wave resistance". 

2This integral equation was first obtained by G. Jaffé, Phys. Zeitschr. 22, p. 578, 1921. 
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B. SOLUTION OF THE INTEGRAL EQUATIONS (10) AND (12) 

It will be necessary to make a hypothesis as to the form of the function 
ΰ (ξ) in (10) such that it contains an infinite number of undetermined coeffi-
cients and then to attempt to determine these coefficients from (10). The 
choice of form is limited by the following considerations: 

1. H (ξ) must vanish at ξ = ± a because the solution must approach 
continuously the value v = 0 prescribed on the screen. 

2. Because of the symmetry of the problem, H (ξ) must be an even 
function of ξ. 

3. In view of our treatment of branched wave functions and their 
representation at the end of Sec. 38, u (x, z) must change its sign for every 
complete circuit around one of the two branch points x = ± a. Together 
with the requirements 1. and 2., this leads to the form 

00 

(13) «(^) = 2 7 c » ( l - ^ ) " /2· 

The Cn are infinitely many available complex coefficients. 
In an earlier acoustic work b}' the author1, which was also used as a starting 

point by Levine and Schwinger (see p. 273), a result analogous to (13) was 
obtained by a protracted calculation. This calculation at the same time 
provided the values of the Cn in the form of numerically definite power series 
in the parameter ka, which is the only characteristic parameter. It turned out 
that the series for Cn+1 starts with a power of a k which is greater by one than 
the power of the first term in the series for Cn. Here we have been able to 
write down the form of the solution (13) directly on the basis of function 
theory so that it is valid for a slit of arbitrary width. For a very narrow slit 
a k <C 1, the above-mentioned result shows that C1 is larger by one order of 
magnitude than all the other CM. Therefore we shall specialize (13) to 

(13 a) «(f) = C 1 ( l -g ) . 

Then the integral equation (10) reads 

(13b) Cx / ( l -§) 2Κ(χ,ξ)αξ= j(\-coskx)~Akx2j2. 

1Die frei schwingende Kolbenmembran, Ann. d. Phys. (Lpz.) 42, 389, 1943. 
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In contrast to (10) the interval of integration has here been restricted to 
0 < ξ < a ; the interval - a < ξ < 0 must be taken into account by the 
following modification of the kernel in which x may be assumed to be 
positive : 
(13 c) K (x, f ) = JÏ (* |f - x\) +H{k^ + x))-2coskxH (k ξ). 

We decompose this kernel into two parts 
(13 d) Kj = H (k (ξ + x))+H (k \ξ-χ\)-2Η (k | ) . 
(13 e) Kn = 2(\-coskx)H (k ξ)~& x2H(k ξ). 

Since k a <^\, the arguments of all the //-functions are small in the whole 
interval of integration, and therefore we can use everywhere the approximate 
formula from Vol. I l l , eq. (22.5) : 

2 i y p (13 f) #n (p) = —log^-V ; logy = 0.5772 = Euler-Mascheroni constant. 
it 2i 

Then 

(13 g) Ki - — l o g ' n ' , Kn = — *«*Mog ^ — . 

The logarithm in Kl must be expanded differently depending upon 
whether ξ < x or ξ > x: 

_ [*2-£2l 
x2 it2 1 £4 \ 

/* 2 , 1 * 4 , \ , t 
-\Τ> + 2ξϊ + ···)ί0τξ>Χ· 

I2 

Correspondingly, the integral (13 b) must be decomposed into two parts: 
a x a 

(») / . . - / . . + / . . - Λ + Λ. 
0 0 x 

x 

(14a, Λ _^{ 1 ο δ | · - ( ί ; + ^ + ...)}«, 

/ . -7 ( -S Î"ÊÎ + Ï? + · · ) · 
Since Cx is independent of Λ;, it is permissible to choose x so small compared 
to a that the factor (1 - ξ2/a2)lla in Jx may be replaced by 1. This has 
already been done in (14 a). 

By elementary integration one obtains 

(15) ^ ^ - ' ( T V ^ + S V · · ) · 

(14 b) 
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Thus 7i is proportional to x, while the right-hand side of our integral equation 
(13 b) was proportional to x2. In Appendix 1 yWe shall show that Jx is cancelled 
by the contribution from the lower limit of the integral / 2 . It will also be 
shown there that the contribution from the upper limit of / 2 yields, except 
for terms of higher power in xja, 

<■■■> -Λ-
According to (13 g) and (14) the entire value of Kj on the left-hand side 

of (13 b) becomes now 
M£\ n 2i nx2 . n x2 

16 C1— · - — = iC1— . v ; L π 2 a x a 

The contribution of Ku to (13 b) follows from (13 g): 

o 
If we introduce the substitution (25) from Appendix 1 and put 

π/2 

4 r 
(16 b) q = — I cos29?logsinç?^, 71J o 
we obtain in place of (16 a) 

(17) ^C^^ax^logka + log^-.+g 

The sum of (16) and (17) is 

— C1ik
2ax2 \h 

(17) is 

Because k a <^i \, the second term in the curly brackets can be neglected ; 
thereupon the integral equation (10) yields 

2 2 

(18) iC1
X— = Ak°^-, C1 = -iAkal2. 

We now turn to the integral eq. (12). As at the end of section A, v and u± 

are magnetic vector components parallel to the y-axis, and ω is the value 
of du±\dz at z = 0 inside the slit. First we seek the form of ω which is 
analogous to (13). We assert that ω is again given by (13), except that the 
lower limit in the summation must be replaced by n = 0. Thus in the first 
approximation 

(19) ω (ξ) -*Μ* 

(16 a) 
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To justify this statement it is only necessary to remark that near the 
branch points x = ± a the vector H behaves like the square root of the 
distance from the branch points, and therefore the gradient of H behaves 
like the inverse square root of that distance. We shall indeed see that (19) 
leads to the unique solution of our problem. The factor a in the denominator 
of (19) has been included in order that C0 (as Cx before) have the same 
dimension as our present u. ω (ξ) is, as ~ü (ξ) was before, an even 
function of ξ. 

We now rewrite the integral eq. (12) in the form 

(20) 

a 

J ω (f) {H (k |f -x\)+H (k \ξ + χ\)} άξ = iA*. 

The {...} is again called the kernel of the integral equation. In order to be 
able to use the above calculations we again separate this kernel into two parts 

(20 a) Kj = H (k |f + x\)+H (k \ξ-x\) -2H(k f), 
(20 b) Kn= 2H{k(). 

The first part is identical with KI in (13 d). Therefore eqs. (14 a, b) are mutatis 
mutandis again valid; these yield now only terms proportional to x, the sum 
of which is zero; see appendix 2. Equation (20) therefore simplifies to 

(21) J ω(ξ)Κηαξ = ^ΙΙΐ-Ά 2Η(άξ)αξ = ίΑ' 
o o 

and one obtains, see appendix 2: 

(22) C0 = )rA'lp\ p = log^--.- = logfca-0.81 - / π / 2 . 
2 41 

C. DISCUSSION 

In figures 81 a, b the distributions of H (x) and ω (χ) are shown in 
comparison to the amplitudes of the incident waves A and A', respectively. 
From (13 a) and (18) or (19) and (22), respectively, one obtains for ξ = 0: 

ü (0) _ C1 _ i # ω (0) _ C0 __ 1 
~A~ ~ A ~ 2 a'' A' ~J7~2p' 

\~u (x) | is a very flat ellipse. \ω (x) | is the corresponding reciprocal curve 
which has a much larger value than \u (x)\ at the center of the slit and goes 
to infinity at the edges. 
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From u and ω one can compute u+ (x,z) by means of formulae (6) and 
(11a), and thereby one obtains for the diffraction field v: 

and 

with 

+a 

-a 

τ0
2=(χ-ξ)2 + ζ*. 

u(x) 

Fig. 81 a. 

Electric vector E parallel to the slit edges. 
Graph of the amplitude of E = M (X) 

in the slit opening; k a = 1/10, 

Ü (x) = I- k a A ]/V-x2la*. 

1 

~t 

\ω(χ) 

\ 

V 
z 

^s 

1 Jl 1 / v\ r A'fa 

\ 1 
+a 

Fig. 81 b. 

Magnetic vector H parallel to the slit 
edges. Graph of the amplitude of 

dHjdz = |ω (z)\ in the slit; k a = 1/10 

! A'la 
ω (x) = ; 2 ^ l / l - ^ 2 / « 2 ' 

Since the point of observation x, z is at a distance of many wavelengths 
from the slit, we may use for H its asymptotic formula [see, for instance, 
Vol. I l l , eq. (22.7)], and we may take r0 = r =]/x2 + z2 independent of ξ 
in the integration. In this way we obtain 

+ a 

and 

*- -TVA-/"-*·' J'i'-^)"** 
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Making the substitution ξ = a sin Φ, as in the appendix, one obtains for the 
values of the above integrals an\2 and an, respectively. Then, if the 
differentiation with respect to z is performed only in the exponent, one finds 

z 1 
ty%\ v = -iakCx- T 7 = ^(*'-*/4>, 
l 2 5 ) 1r]/2nkr 
and 

(23 a) v =-C{ 1/ 2 g*'(*'-tt/4) . 

Thus we have obtained two cylindrical waves of different amplitudes which 
originate from the slit (or rather from its center line). The amplitude of the 
first of these waves contains the cosine factor 

z 
cos δ = — , (δ = angle of diffraction). 

In order to make eq. (23 a) dimensionally commensurate with (23) (the former 
represents Hy and not Ey as does the latter), we compute the electric com-
ponents Ex, Eg belonging to Hy. We use Maxwell's equation Û = curl H 

-ίωε0Εχ = - ^ = -ikZ-Hy, Ex = ]/^--Hy, 
υ dz r \ ε0 r 

_ dHy . _ X rr -ιωε0Εζ= +-Τ— = +ik-Hy υ dx r 
from which 

;- = -V?7"> 
Ej_=yE,*+E.* = y!±Hy. 

With this wave resistance factor (μ0/εο)/2 *n e amplitude A' occurring in C0 

has the same dimensions as the A occurring in Cv Therefore equal intensity 
of illumination for both cases implies not A' = A, but rather Α' (μ0/ε0)/2 = A. 

We are now able to calculate the expected polarization of the diffracted 
light if the incident light is composed of equal intensities of the two modes 
of polarization. The polarization of the diffracted light is characterized by 
the quotient of (23) and (23 a) which, taking (18) and (22) into account, is 

(24) lak cos δ = — (a k)2 \p\ cos δ ]/μ0/ε0. 

Therefore for small values of k a much less light with En passes through the 
slit than light with E±. The oscillations En are suppressed by the slit because 
of the boundary condition Ey = 0. The oscillations E± induce charges on 
the slit edges, and these charges travel along the screen in the manner of 
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Hertz waves in wires; in this way they are able to overcome the curvature 
of the slit edges. This polarization effect is well known from Hertz's 
experiments with gratings. 

The intensities for the two states of polarization exhibit notably different 
dependences on wavelength. For, according to (23) and (18) 

/ „ is proportional to ( ^ = ( ^ J a-, 

while according to (23 a) and (22) 

JX is proportional to ( y ^ f = ^ 7 [log Λ / Λ . . . Γ 

In both cases the behavior is different from Rayleigh's λ~4 law for the blue 
of the sky. The latter is based on openings which are small in all their 
dimensions (or on correspondingly small discs). Our slit which is narrow in 
only one dimension yields also a totally different behavior for different 
directions of polarization of the incident light. 

Our expressions (23) and (23 a) for the diffraction field are in complete 
agreement with eqs. (53) and (47) of Lord Rayleigh, loc. cit. Rayleigh also 
remarked that for the complementary case of the metallic strip eqs. (53) 
and (47) interchange their roles. This, as we know, is the precise statement 
of Babinet's principle; see Sec. 38 F. 

Despite its complexity our solution of the problem has the following 
advantages : 

1. Unlike Rayleigh's method it does not require any previous knowledge 
of electrostatics or hydrodynamics. 

2. Our method is capable of being generalized. 
One only needs to extend our one-term expressions (13 a) and (19) by 

adding terms with C2, C3, or Cv C2, respectively, in order to extend the 
results to wider and wider slits. How this may be done will be shown in 
appendix 3. 

Appendix 1 

To evaluate the integral / 2 in (14 b) the following substitution is made. 

/ ξψ (25) f = asin<&, l 1 - " ^ ) = cos(P, αξ = acos<Pd<P. 

If, at the same time, we put 
x (25 a) # = asin^>; y > ^ - < ! 
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in the lower limit of the integral, we are led to the following auxiliary 
expressions 

■"* 

cos2 Φ 
^^άΦ for « = 1 , 2 , 3 . . . sin2w Φ 

Calling the corresponding indefinite integrals j 2 n , it is easily verified by 
differentiation that 

(26 a) j2 = Φ + cot Φ, /4 = - cot Φ; /e = - cot5 Φ + - cot3 Φ, . . . 
3 5 3 

From this and a recursion formula for the j 2 n , one concludes that all j2n vanish 
at the upper limit of the integral (26) with the exception of j2 which there 
assumes the value π\2. Except for higher powers of the arbitrarily small 
quantity ψ, the j2n assume the following values at the lower limit : 

c o t 2 n _ 1 w ~ w~2n + 1= I —I 
2n-\ ψ 2η-\ψ 2n-\\xJ 

Hence 
1 / \ 2 n - l 

π a l la\ 
h = 2~x' l2n = -2^-l\x] ' n = 2-

Rewriting eq. (14 b) in terms of the j2n and substituting the above values, we 
obtain 

. x2 \i 1 . x2 n π x2 \i 
J2 = h~+ Z - ^ n - 2 - — i = T ~ - ^ ^ ; 

1 
a ' ^ Μ ^ " α 2 η - ι 2 a ^ n ( 2 w - l ) 

n = 2 n = l x ' 

The first term agrees with (15 a) while the second term combines with (15) 
to give 

X[2 ^n\2n + l + 2n-lj\' 

The { } can be rewritten in the form 

( 2 6 b ) 2-4iT(2n-l)1(2W+l)=4(^-F3-315-517--)=0-
n = l 

see, for instance, Vol. VI, solution to exercise 1.3. Thus our statements 
following eq. (15) have been proved. 

(26) 
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Appendix 2 

In the second (magnetic) case eqs. (14 a) and (15) for Jx are unchanged 
because the kernel Kj remains unchanged, and the difference between the 
assumed forms for ω and ~u is insignificant in the interval 0 < ξ < x. The 
equations lor / 2 simplify because upon making the substitutions (25) and 
(25 a), one finds that 

[ΐ-^Ίξ = ααΦ. 

Hence in terms of Φ eq. (14 b) becomes: 
π/2 

Since 

= - f( 1 *2 l ** l X* \j<D 
J* J \sin2 Φ a + 2 s i n 4 0 a 3 + 3 sin6<2> a5 + * " ' / 

V 

J s in 2 0 COt ' J sin*0 3 \»η»Φ + Τ 

J s i n « 0 5 \ s i n 4 0 ^ 3 s i n 2 0 ^ 3 / ' · " 

all terms in / 2 vanish at the upper limit Φ = π/2. In the approximation 
y < l , * « a the lower limit contributes 

- ^ ( 1 + 2 1 3 + 3 1 5 + 4 1 7 + · · · ) 

which combines with Jx in (15) to give zero; see (26b). 
Hence, only Ku contributes significantly to the integral equation which, 

according to (20) and using the approximation (13 f) for H, now reads 

π/2 π/2 

(27) -cA \\o%'^d0+\\ogsm0d0\ = A'. 

0 0 

The second of these integrals has the value 

- 2 log 2-

This combines with the value of the first integral to give 

^P; p = l o g ^ as in eq. (22). 

Hence, according to (27) 
(27 a) 2iCQp=-nA'. 
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Numerically, one obtains 

(27b) ^ - l o g * a = l o g j - y = 0 .577-1 .386- i^ = - . 8 1 - i i . 

Our assertion (22) is thus verified by (27 a, b). 

Appendix 3 

In order to demonstrate how our method may be generalized, we shall 
first consider the simpler case discussed in appendix 2. We extend (19) to 

(28, •«ΐ4(,-Γ+ϊ('-Γ· 
We must also use a more exact approximation of the kernel K = K1 + Ku 

of (20 a, b) by retaining the terms in k2 x2 and k2 ξ2. The integration is again 
elementary and may be carried out in the manner of Appendix 2. By equating 
the coefficients of x° and the coefficients of x2 on the left- and right-hand 
sides, one obtains the two conditions 

Solving these [in the second equation the approximation (27 a) for C0 may be 
used], one finds 

(29) 

which obviously agrees with the result of Appendix 2 when k2 a2 is neglected. 
In the case treated in Appendix 1, (13 a) must be extended to 

<») «(«-^(l-g^ + cjl-g)^ 
In (13 b) and in the expansion of the kernel (13 c), not only k2 x2 but also 
k* xA must be retained. Equating the resulting coefficients of x2 and x* on 
the right- and left-hand sides of eq. (13 b), one obtains the two conditions 

-Cxk
2a2

 +cA\2-^k2a2\ = + i A k3a*. 
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In the second equation Cx may again be replaced by its first approximation (18), 
and the second order approximation of Cx is found from the first equation. 
Thus one obtains 

(31) 
2 24 

C, = —; A k a \\ 1 2% [ 

k2a2 

8 ( 3 - 2 # 

as the improved eq. (18). For the calculations leading to these results the 
author is indebted to Dr. E. Ruch. 

Figure 82 illustrates the so-called transmission 
factor T in the first and second order approxima-
tions for the polarization H=H . The transmission 
factor is defined as the ratio of the energy which 
light of finite wavelength actually carries through 
the slit to the energy which would pass through 
the slit in the limiting case of geometrical optics 
(λ -► 0). In both cases T is measured by the 
energy flow across a half-cylinder of infinite radius 
centered at the center line of the slit. One 
obtains in the first and second order approxima-
tions [corresponding to eq. (22) for C0, eq. (29) 
for Cj and C0, respectively] Fig. 82. 

The transmission factor T 
as a function of the ratio of 
slit width to wavelength in 
the first and second order 

approximations. 
7\ = 

(31a) 

1 
4ka\fi\2 T,= 

1 
4ka\p\ î(l+J-(*«)»)· 

Curve 1 is valid only for extremely narrow slits (k a < 1/4). For larger values 
of k a curve 2 separates from 1 and exhibits a tendency to approach the value 
of geometrical optics (T = 1); curve 2 can be checked by comparing it with 
the work of P. M. Morse and J. Rubenstein1 in which the problem of the slit 
is treated numerically and graphically by the theory of Mathieu functions 
with the help of tables of these functions. Our curve 2 agrees with the 
corresponding curve of the above authors sufficiently well for k a < 2. 
J. W. Miles2 obtained about the same results as Morse and Rubenstein by 
means of a variational method. K. Schwarzschild3 devised an approximation 
starting from the opposite limiting case, that of our solution for the half-

1 Phys . Rev. 54, p. 895, 1938; see in particular the top curve denoted by 90° in fig. 4. 
2Phys. Rev. 75, p. 695, 1949. 
3Mathem. Ann. 55, p. 177, 1902. 
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plane, by a method of alternating successive approximations. Despite repeated 
a t tempts , the author has been unable to apply the method of Sec. 38 
directly to the problem of the slit. But it should be noted again tha t the 
basic hypothesis (13) as to the form of the boundary values (which was also 
used by Le vine-Schwinger) was prescribed by the method of Sec. 38. 

40. The Resolving Power of Optical Instruments 

The purpose of all spectroscopic apparatus is to obtain an increased 
resolving power. In spectroscopy "resolution" means the separation of two 
closely neighboring spectral lines. In the case of the microscope one is 
interested in distinct images of the structure of v e ^ fine tissues, while with 
a telescope one wishes to separate double stars, star clusters, discover new 
satellites, etc. 

A. T H E RESOLVING POWER OF LINE GRATINGS 

According to Lord Rayleigh two spectral lines 1 and 2 can be considered 
resolved if the principal maximum of the diffraction pat tern of 2 (wavelength 
λ + δλ) coincides with the first zero of the diffraction pat tern of 1 (wavelength 
X). The density of blackened grains on the photographic plate corresponds 
to a superposition of the intensity contours of 1 and 2. This sum of the two 
intensities has a depression between the two principal maxima which is 
sufficient to enable the eye to see the separate lines 1 and 2; see fig. 83 (we 
shall discuss fig. 83a later on). We shall now show tha t the ratio δλ/λ 

measured in this way has a fixed value depending only on the nature and 
method of use of the grating. The resolving power is defined as the reciprocal 
of this ratio. Two lines are considered resolved if their λ/δλ is less than the 
resolving power as defined. 

We refer back to eq. (32.5). The zeros of the diffraction pat tern are 
obtained by setting the numerator equal to zero. Hence, the value of N A/2 

at the first zero exceeds the value of N A/2 at the principal maximum by π . 
At the principal maximum 

A=2nh, hence NAl2 = Nnh, 

where h is the order of the grating spectrum in which the observation is being 
made. Therefore the value of N A/2 at the first zero is 

d 
(1) Nnh +π = Νπ γ (OL-OLQ). 
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The right-hand side of this equation follows from (32.1) and determines the 
angular deflection α - α 0 of the point in the spectrum under consideration 
which is the first zero of the diffraction pattern of the line 1. Now it is required 
that the principal maximum of the line 2 shall fall in the same direction 
a - a0, which means that 

d 
(2) Nnh = Νπ- (α-α0). 

λ+ δλ' 

Dividing the left- and right-hand sides of (1) and (2) by each other one obtains 

and hence 

(3) 

Nh+\ _λ + δλ 
Nh ~ λ 

Tx=Nh-
A / / 

1/ 

1 
1 

\j_ 

1 
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V 

4/ 

l/j \ 

4yJ4y 

\ 
\ 

I 
4 
2 \ 

Fig. 83 and 83 a. 
Rayleigh's criterion for the resolution of two spectral lines. 

almost equivalent criterion. 
Fig. 83 a illustrates an 

In the second order spectrum, h = 2, the resolving power is twice that in 
the first order spectrum, a result which is used a great deal by spectroscopists. 
The resolving power depends only on the total number of grating lines N and 
not on the line spacing d. The close spacing of lines in the Rowland gratings 
is needed in order to put a sufficient number of lines within the width of 
the incident light bundle. A closer spacing of lines also increases the dispersion, 
that is, the angular separation of different spectral lines, but the spacing ha? 
nothing to do with the sharpness of the lines, i. e. with the resolving power. 
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This is the usual formulation of the theory of resolution for gratings. It is, 
however, valid only for spectra of low orders such as those which are used 
with Rowland gratings. The greatest possible resolution is attained in the 
spectrum of the highest possible order hmax, that is, when one observes at a 
very small grazing angle with respect to the grating surface. This order was 
denoted by hcr on p. 182. For it a ~ 1, and according to eq. (32.2) hmax ~ d/λ 
for perpendicular incidence. From (3) follows therefore 

,Λ\
 λ i ΛΤ

 N d 

(4) _ = * _ * - _ - . 
Hence, the maximum resolving power of the grating depends on the total 
width Nd and not on the number of lines N or, more precisely, it depends on 
the path difference NdjX between the rays coming from the first and last 
grating lines. In what follows we shall recognize this fact to contain the 
most general formulation of resolving power, a formulation which is valid 
for all spectral apparatus. 

When observed at a grazing angle, a grating with 10 lines spaced 1 cm 
apart resolves just as well as a Rowland grating with 100,000 lines which 
are 1 μ apart. While in the case of the latter one might observe in the second 
order spectrum, with the former the twenty-thousandth order would have 
to be observed. 

But observations of spectra of high orders have the serious disadvantage 
that with increasing order, spectra of neighboring orders overlap more and 
more. To show this we express the wavelength domain which can be observed 
without overlapping, say Όλ, in terms of the wavelength, the order number h, 
and the angle of deflection, or rather of its cosine, a: 

(a-a0) d = Xh=(X + DX)(h-\). 
From this follows 

Ρλ_ 1 1 
λ ~ h-\~ h' 

This Ώλ is also the wavelength interval δλ between neighboring lines which 
is just measurable without overlapping. Hence in the twenty-thousandth 
order it is just barely possible to observe the structure of one narrow multiplet, 
and all other light must be removed by pre-decomposition in a prism spectrograph. 

The grating with few lines has another and more serious disadvantage; 
the amplitudes produced by the 10 line and 100,000 line gratings are in the 
ratio of 1 : 104; hence the intensity obtained from the former is only one 108 th 
of that produced by the latter. Moreover, the ruling of the 10 line grating 
would have to be just as precise as that of the 100,000 line grating and 
would therefore be no simpler to manufacture. 
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B. ECHELON GRATINGS AND INTERFERENCE SPECTROSCOPY 

In our method of treatment the grating lines play the role of secondary 
light sources which are excited by the incident light wave and which, owing 
to their positions, have fixed phase differences with respect to one another. 
It is possible to obtain the same intensity with a smaller number of secondary 
light sources, provided that these sources act as directional radiators which 
send most of their energy into a spectrum of high order. In other words, the 
function / (a) in eq. (32.3) must have a pronounced maximum in the direction 
of the desired high order spectrum. A very narrow slit or a finely ruled line 
will not do this. Instead, one must use a sequence of narrow parallel mirrors 
or narrow prisms which are placed so that by geometrical optics they reflect 
or refract the light in the desired direction. The almost insurmountable 
difficulties of the manufacture of such a grating were overcome by Michelson 
in an elegant manner. He stacked glass plates on top of one another so as 
to form a series of steps, see Fig. 84a. In making a grating of this type the 

Fig. 84a. Ten-element echelon consisting of glass plates 1 cm thick, offset by 2 mm steps. 

plates are cut from a single plane parallel plate, the thickness of which is 
everywhere constant to within a fraction of a wavelength. The steps are 
about 2 mm wide and perhaps 1 cm high ; they are the grating elements of a 
"phase grating". With the help of a slit and collimator lens the grating is 
illuminated in a direction perpendicular to the surfaces of the glass plates, 
and the spectrum is observed through a telescope in the same direction. 
Thus the light rays form a very small angle with the surface of the step grating. 
If all grating elements except one are covered, one observes the very bright 
image of the slit which is, however, widened by diffraction and looks like 
the diffraction pattern of a slit 2 mm wide. When all the grating elements 
are uncovered, the image of the slit contracts to the image of the spectral 
line in one or two orders. As with all gratings, the resolving power of this 
"echelon grating" is given by the difference between the phase of the first 
and last ray, which is 

n = index of refraction of the glass 
N = number of steps. (5) (n-\)Ndß; 
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In an echelon strips of the wave surface lying side by side interfere 
with one another. Therefore the wave surface must be made coherent 
throughout the entire extent of the grating by means of a collimator. As in 
the case of the line grating, the positions of the spectral lines depend on the 
direction of the incident light. If this direction is changed, then the phase 
differences between our secondary sources are changed; thus the positions 
of the sharp interference fringes are shifted. A wide collimator slit acts like 
the sum of many adjacent narrow slits; hence a wide slit causes the spectral 
lines to spread out to the width of the slit's image. This is the qualitative 
geometrical interpretation of the blurring of interference lines caused by 
insufficient coherence (see, for 
example, fig. 2). 

This effect does not exist in 
"interference spectroscopy", 
by which we mean the spec-
troscopes oi Perot-Fabry and 
Lummer. With these spectro-
scopes the positions of the 
interference fringes depend ■ 
only on the wavelength and 
the thickness of the plate. 
The phase difference between 
interfering waves (though not 
their intensity) is independent 
of the position of the light 
source; in other words, the 
source may be extended 
without disturbing the inter- Fig. 84b. 
ference, p r o v i d e d o n l y t h a t Section from the field of view of a Perot-Fabry 
the source is sufficiently a i r p l a t e · 
intense. 

As in the case of gratings the phase difference produced by interference 
spectroscopes changes as the angle of observation varies. To each angle 
between the wave normal and the plate surface corresponds a definite phase 
difference and therefore a definite wavelength. Thus, in the case of the 
Perot-Fabry interferometer the wave normals of a given spectral line lie on 
a narrow cone about the normal to the plate surface. This cone projects as a 
circle in the camera or on the retina. The different orders form concentric 
circles which are, however, visible only within the image of the extended 
source (all other wave normals are not excited). A prism spectroscope may 
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be used for the necessary pre-decomposition. The interference spectroscope is 
placed between the prism and the telescope. The system of rings is bounded 
by the image of the slit which is made as wide as possible without causing 
disturbances due to neighboring spectral lines ; see fig. 84b which is a schematic 
drawing of a Perot-Fabry spectrogram. In the case of the Lummer plate the 
wave normals of the spectral lines lie on a set of very wide cones about the 
normal to the plate and therefore appear on the photographic plate as a set 
of very flat hyperbolas which are almost straight lines. 

While in gratings the amplitudes of the various interfering rays are equal, 
the amplitudes of the interfering rays of an interference spectroscope decrease 
exponentially. Hence the intensity distribution is no longer given by (32.5), 
but rather by (7.33). The small periodicity belonging to NA in eq. (32.5) 
disappears, and only the long period which is determined by thezl of eq. (32.1) 
remains because the number N of interfering rays is, so to speak, infinite. 
Yet, because of the exponential decrease in amplitude, only a finite number 
of rays is "effective", the remaining rays being too weak; therefore the 
resolving power remains finite. 

Since no zero intensities occur in the fringe system of an interference 
spectroscope, see fig. 11, we define the resolving power in terms of the half, 
width 2AH of the interference fringe; that is, the resolving power is that 
wavelength interval within which the intensity is greater than half the inten-
sity at the maximum. A comparison of figures 83 and 83a shows that this 
definition is practically equivalent to Lord Rayleigh's definition of the 
resolving power of gratings. 

The half-width for the Lummer plate was computed in (7.28 a). In order 
to convert the 99-scale used there to the scale of wavelengths X, we note that 
according to the definition (7.18a) φ is proportional to k, hence inversely 
proportional to X. Therefore 

άφ dX 
φ X 

If we substitute for dX the wavelength difference ÔX between the two spectral 
lines 1 and 2, then according to fig. 83a we must use for dq) the half-width 
2 \Δ φ\ = 2 (1 - r) [eq. (7.28 a)], and we must substitute for φ the phase 2 π ζ 
at the intensity maximum (see Sec. 7). Thus we obtain from (6) (the nega-
tive sign is immaterial) 

z represents the very high order of the interference fringe and corresponds 
to the order number h — 1, 2, 3, . . . of gratings. A comparison of (6 a) 

(6 a) 

(6) 
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and (3) shows that the number of lines N of a grating is to be compared with 
the expression π/(1 -r). The orders of magnitude of the two factors contri-
buting to the resolving power are thus interchanged for the two types of 
spectroscopes : 

for a grating: N is very large, h is moderately large 
for a plate: n\{\-r) is moderately large, z is very large. 

In order to complete the numerical comparison we recall the meaning of z 
in (7.28 a) and (7.18 a). If we disregard all insignificant factors in these formu-
lae, then z is twice the plate thickness divided by the wavelength ; hence for a 
1 cm plate z ^ 4 X 104. If r ~ 0.9, then π/(1 - r) ~ 30. According to (6 a) 
the resolving power of such a Lummer plate is then about 30 X 4 X 104 '—' 106. 
According to (3) this is the number of lines N in a grating with the same 
resolving power in the first order (h = 1). This means that if such a grating 
had 1000 lines per mm it would have to be 1 meter wide! 

For the Perot-Fabry étalon one obtains similarly from the half-width 
(7.34) the resolving power 

(7) Ä - l · 1 - ^ * · 
z is again the order number of the interference fringe and is therefore 
a very large number. The first factor, on the other hand, is only a 
moderately large number since the required light intensity limits the amount 
of silvering that can be applied to the surfaces. If we estimate g to be 9, 
then the first factor becomes 5. z being twice the spacing of the plates divided 
by the wavelength becomes 2 x 105 if we assume the plates to be 5 cm apart. 
The product of these two factors is 106, the same as for the Lummer plate 
considered above. The resolving power of both plates exceeds that of the Rowland 
grating. Because of its greater simplicity of operation, the Perot-Fabry étalon 
seems superior to the Lummer plate. 

41. The Prism. Basic Theory of Resolving Power 

We shall assume that the collimator lens provides completely parallel 
and monochromatic light. The telescope and collimator lenses will be assumed 
to be larger than the projections of the prism in the directions of the incident 
and refracted rays. Then the size of the ray bundle is limited by the size of 
the face of the prism through which the light emerges, see fig. 85. This surface 
is a rectangle which is perpendicular to the plane of the drawing and makes 
an oblique angle with the direction of the emerging ray. Using the notation 
of Sec. 36 A, the height of the rectangle is IB and its width 2^4. This width 
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equals the side 2-3 of our prism cross section and is also equal to 1-3. The 
height IB of the rectangle cannot be shown in the figure and is also immaterial 
to the following considerations. The Fraunhofer diffraction pattern of this 
rectangle appears in the focal plane of the telescope. If the prism is illuminated 
through a slit which is parallel to the refracting edge, then the intensities of 
the patterns due to the elements of the slit add up along the direction of the 
height of the rectangle 2B. The intensity distribution in the direction of the 

Fig. 85. Cross section of an isosceles prism, parallel 
to its base, with symmetrical light path. The 
emerging rays are drawn in the sense of geometrical 
optics without consideration for the diffraction a t 
the edges of the prism, [OCQ] means c o s - 1 ^ for 

both the incident and emerging rays. 

6-/&λ 

width 2A of the rectangle is given in Sec. 36 by eqs. (1), (2), (3). We note 
that this distribution almost agrees with that of a grating of width Nd = 2A, 
because in the vicinity of the principal maximum the factor sinzl/2 in the 
grating formula (32.5) can be replaced by /d/2. The remaining calculations are 
similar to those in Sec. 40 for gratings. The positions of the first zeros to 
the right and left of the principal maximum are given by 

(1) 2πΑ (α1 , 2 -α0) /λ= ± π . 

O0 is now the direction cosine of the emerging ray with respect to the surface 
of emergence of the prism \ ocj 2 ^re the direction cosines for the first zeros 
to the right and left of the ray OQ. 

Let us now consider a second ray whose wavelength differs by δλ from 
that of the previous ray. Because of dispersion this new ray will have a 
different index of refraction n' and a different direction of emergence OQ'. 
We want to know the value of δλ for which the principal maximum of the 
second ray (direction OQ') will coincide with one of the two zeros oclf o^. 
OQ and a0' are determined by the law of refraction.1 From exercise (III.2) 
we know that for symmetric path in a prism of refracting angle 2ψ 

(2) OÎQ = n sin ψ. 

This relation holds for both refracting surfaces 1-3 and 2-3. The ray with 
wavelength λ + δλ and with the same incident direction is no longer refracted 

xNote the changed notation: The refracting angle which previously was φ is now 2 y>; 
previously α, β, α', β' were the angles of incidence and refraction, now OCQ, OQ', a are the 
direction cosines of the emerging (or diffracted) rays. 
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exactly symmetrically. It forms a small angle ε with the symmetry line so 
that on the surface 1-3 
(2 a) α0 = η' sin (ψ + ε) 

and at the surface 2-3 
(2 b) a0' = n' sin (ψ - ε). 
From (2 a) and (2 b) one finds 

a0 + a0' = 2 w' sin ^ cos ε ; 
subtracting from this equation twice the expression (2) for OLQ and calling 

dn the change in the index of refraction resulting from dispersion -pr δλ, 
UÀ 

we obtain, neglecting terms of order ε2 

a0 - a0 = 2 (n cos ε - w) sin ^ ~ 2 -ry <M sin ^. 
ClA 

According to Rayleigh's criterion for the resolving power, this difference must 
now agree with the value of CLX 2 - a0 as given by (1). It follows that 

λ dn . 
ϊΑ = 2ΰδλ5ϊηψ 

or 
λ dn dn 

(3) Μ = 4ΑΊλ™ψ = 01λ· 
G = 4A sin ψ (see figure) is the base line of our prism cross section. Only 
this base line and the dispersion of the glass dn\dX affect the resolving power. 
The larger the refracting angle 2 ψ, the smaller may we make the height of the 
triangle and the diameter of the lenses without decreasing the resolving power. 
As we approach the limiting angle of total reflection sin ψ = \jn, the resolving 
power becomes 
m \ λ ^ .2 dn 
(3a) δλ~2Ατΰ· 
The contribution 2A of the width of the prism surface is analogous to the 
contribution Nd of the width of a grating. The length / = w/2 dXjdn now takes 
the place of the wavelength λ occurring in eq .(40.4) for gratings. For green 
light (A = 0.5//) and heavy flint glass one has n = 1.77, dnjdX = 0 .23μ'1 , 
I = 3.84//. Thus / is about eight times the corresponding wavelength λ = 0.5 μ. 
Therefore, with equal surfaces of emergence a prism attains only 1/8 the 
resolution attained by a comparable grating; but the prism is free of the 
superposition of the spectra of higher orders. This superposition, as well as 
the zeroth order spectrum, causes a considerable intensity loss in gratings. 
Therefore a prism spectrograph produces greater intensities than a comparable 
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grating. Theoretically a prism could even have better resolution than a 
grating if it were possible to approach a characteristic frequency of the 
prismatic material sufficiently closely; for in the vicinity of such a frequency 
dnjdX becomes very large. Unfortunately, the strong absorption in the vicinity 
of a characteristic frequency prevents the utilization of such a region. An 
indication of this increased resolving power is already apparent in the violet 
(X = 0.41 μ) where for the above-mentioned glass / = 1.8//; the resolution 
is here almost twice as good as in the green. If, instead of glass, quartz or rock 
salt is used, / is diminished still more, until in the far ultraviolet a rock salt 
prism becomes as good as a grating. 

A. GENERAL CONSIDERATIONS REGARDING RESOLVING POWER 

Let us compare the two following limiting light rays: one ray which 
when going from slit to crosshairs of the spectrograph passes through the 
vertex 3, and on the other hand, one which goes along the base 1 -2 . It 
suffices to measure the light path lengths from the wave surface 11' which 
passes through the front edge of the prism to the wave surface 22' which 
passes through the rear edge. We may limit our considerations to these por-
tions of the rays because all rays from the slit to 11' have the same path 
lengths and the same is true for all rays from 22' to the cross hairs and therefore 
these portions of the paths do not contribute to the path difference between 
the rays. The extreme ray paths between the wave surfaces 11 ' and 22' are 
denoted by F and G in fig. 85. Their lengths measured in wavelengths shall 
be Hx and H2, respectively, and their difference shall be H. For the rays 
drawn in the figure which belong to the wavelength X the value of H is, of 
course, zero because all rays have the same optical path length between two 
wave surfaces: 

(4) *=4-Ϊ-°· 
The same holds true for the ray paths belonging to the wavelength X + ολ 
(not drawn in the figure) which terminate on another wave surface which is 
inclined with respect to 22'. But if we consider the path difference H for the 
changed wavelength along the original ray paths instead of along the changed 
paths (the geometrical paths F and G are kept fixed), then by varying X we 
obtain from (4): 

iA \ ZZJ [an G nG F\ dn δΧ 
(4a) δΗ-\Ίλ-λ-^ + τήολ=ΐλ°Ύ· 
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Hence the above expression (3) for the resolving power is equivalent to the 
statement 

(5) A f f = l . 

These considerations, first of all, explain the presence of the factor G in 
eq. (3) which may have seemed surprising at first glance: the larger G is, 
the easier it becomes for the dispersive power of the glass to produce the 
optical path difference between neighboring wavelengths which is necessary 
for resolution. Furthermore, the reasoning which led us to the criterion (5) 
can now be visualized and also generalized in the following way: δΗ = 1 
means that the two extreme rays F and G, which arrive simultaneously at 
2 and 2' if they have the wavelength A, have an optical path difference of 
exactly one wavelength if their wavelength is λ + δλ ; and this path difference 
is a linear function of position along the original wave surface 22'. This means 
that in the focal plane of the telescope the rays with wavelength λ + δλ 
are extinguished where the rays with 
wavelength λ which have equal phases along 
22' produce their diffraction maximum and 
vice versa. In other words, the criterion (5) 
is equivalent to Rayleigh's criterion. 

B. APPLICATIONS TO GRATINGS AND 
INTERFERENCE SPECTROSCOPES 

The applicability of the above criterion 
to line gratings will be tested by means of 
fig. 86. 12 represents the trace of the 
grating on the plane of the drawing. For a 
plane wave incident from the left, 1 is the 
extreme left grating line and 2 is the extreme 
right grating line. 11'is again the plane of 
constant phase for the incident wave and 22' 
the plane of constant phase for the diffracted 
wave under consideration, [OQ] and [a] are the direction cosines of these 
planes with respect to the plane of the grating. The optical path lengths of 
the extreme left- and right-light paths between the two phase planes are 

F = 12' = a Nd, G = 1'2 = a0 Nd 

where Nd is the width of the grating. From this it follows that 

H = H2 - Hx = —— = —y- (OCQ - a) 

MX \ \ \ 

Fig. 86. 
Cross section through a line grating 
(heavy line). The figure shows the 
wave incident from the left at the 
angle [OQ] and its phase plane 11' . 
The wave is diffracted into the 
angle [a] ; the phase plane of the 

diffracted wave is 22'. 
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and (the directions a, a,, are being kept fixed!) 

dH .. Nd 
Ίλδλ==Ί ÔH = — δλ = —g- (α - α0) δλ. 

But according to the basic grating formula (32.2) : a - a0 = h λ\ά (h — order 
of the spectrum) and therefore 

λ 

From this and our criterion (5) follows indeed the resolving power of the grating 

λ 
(6) XI = Nh a s i n (40·3)* 

Regarding interference spectroscopy a few words about the Perot-Fabry 
plate will suffice. We shall consider the ray which passes only once through 
the plate and then emerges as the "first ray". It follows the path F. We call 
the ray which traverses the plate 2 p + 1 times, p + 1 times in the forward 
direction and p times in the reverse direction, the "last ray" and the 
path it follows we call G. The number p depends on the amount of 
silvering and the weakening of the light caused by it. With our former 
notation of ζλ for the length of one forward and back path through the 
plate one obtains 

Kl· Έ=λ-ζλ, G = \p + ~)zk, H = pz 

and for fixed F and G 

£ — « . \OH\ = P\OZ\ = PZÔA. 

From this, and according to (5), the resolving power becomes: 

(7) ± = P, 

This result is to be compared with eq. (40.7) where the quantity g + 1 
takes the place of our present 2p. According to the discussion following 
eq. (7.29), g is a measure of the conductivity and the thickness of the silver 
layer, hence g is a measure of the reflecting power of the surface. On the 
other hand 2p is the number of reflections which can be observed without 
excessive weakening of the light [the notation is the same as in eqs. (7.20) 
and (7.21)]. Thus g and 2p mean qualitatively the same thing. Therefore, 
our present statement (7) agrees qualitatively with the statement (7) in Sec. 40. 
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42. The Telescope and the Eye. Michelson's Measurements of the Sizes of 
Fixed Stars 

Let us assume that a telescope is directed at a pair of stars 1, 2 in such 
a way that the axis of the telescope points to 1. Then 1 produces in the focal 
plane a diffraction pattern of the type shown in fig. 68. According to eq. (36.11) 
the position of the first diffraction minimum is given by 

(1) s l = 0 . 6 1 - , 
a 

where a is the radius of the objective, λ is a mean wavelength of the star's 
light, and s is defined as in (36.7) as the angle between the ray under observa-
tion and the direction of the principal maximum. The number 0.61 corresponds 
to the first root of the Bessel function ]λ and is approximately equal to 5/8; 
see (36.11 a). 

If we agree that star 2 is clearly distinguishable from star 1 (either visually 
or on the photographic plate) only if its principal maximum is further away 
from the principal maximum of 1 than the first minimum of 1, then we s^e 
that the formula (1) also contains a measure of the resolving power of the telescope. 
The smaller sl is, the larger is the resolving power. Therefore we shall define 
the resolving power of the telescope as the reciprocal of the smallest resolved 
angular distance between 1 and 2 as determined by (1); that is, as the 
dimensionless number 

1 a (2) - = . V ; sx 0.61 λ 

From this we conclude: the resolving power is proportional to the size of 
the objective. This fact is the reason for the giant telescopes on Mt. Wilson and 
for the large mirror at the Palomar observatory; in the case of the latter, 
2 a = 200 in. -—' 5 meters! We note further that the resolution is somewhat 
better at the short wavelength end of the spectrum than at the long 
wavelength end. 

In the eye the pupil takes the place of the rim of the objective; its diameter 
2 a varies between 1 mm and 8 mm depending on the brightness. It follows 
that for a medium value of λ equal to 5 X 10~4 mm 

1 0 - 3 > — > 1.2 X 10-4 , 
a 

thus 
6 · 1 0 - 4 > 5 1 > 0 . 7 Χ 1 0 - 4 

or in degrees instead of radians 
2' > sx > 15". 
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Therefore, quite aside from the cellular structure of the retina, diffraction 
imposes an upper limit on the resolving power of the eye. With strong 
illumination (small pupil) only differences in direction that are of the order 

of magnitude of one minute or 
more of arc can be perceived. 

Equation (2) can also be 
understood from the general 
point of view of optical path 
differences as formulated in eq. 
(4i.5). Returning to the telescope 
we consider the two "limiting 
rays' ' which pass through diame-
trically opposite points at the 
rim of the objective. In fig. 87 
these rays are drawn as full 
lines for star 1 and as dotted 
lines for star 2. P is the image 
of 1 in the focal plane; P' is the 
image of 2. The significant path 
lengths of the limiting rays from 
star 1 are 
G = WP, F = YX + XP, 

where, of course, F =G because, 
being the image of 1, P is that 
point where all the light from 1 
arrives with the same phase. 
Therefore 
(3) YX + XP-WP = 0. 

But we are interested in the light paths of the rays from the star 2 to P 
which are 

G = WP, F=ZX+XP 

and so taking (3) into account 
(3 a) F-G = ZX + XP-WP 

= ZX-YX + (YX + XP-WP)=ZX-YX. 
The right triangles WZX and WYX show that 

Z X = 2 a sin ex.; YX = 2asmoiQ. 

Therefore, by (3 a) 
(3 b) F-G = 2a (sin a - sin On) 

Fig. 87. 
Diffraction of the light from a binary star 1,2 
when Rayleigh's criterion is fulfilled. Construc-
tion for the calculation of the difference F-G 

between limiting rays. 
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and 
F-G 2a 

) sin a0 > 

(3 c) H = —r— = — (sin a - sin a0). 

This #-value must now be varied by varying the position of the object, that 
is by varying OCQ and not by varying λ as was done in the case of spectroscopic 
apparatus. This variation yields 

(3 d) \ôH\ = -y- ô sin α0. 
Λ 

According to our condition \ôH\ = 1 two objects would be resolved or not 
resolved depending on whether 

2a' 

The resolving power is therefore 

(4) _L_=!f. 
ô sin α0 λ 

The difference between this and our definition (2) for the resolving power is 
trivial because it consists only of a numerical factor of 2 X 0.61 = 1.22. 
(The same trivial factor would appear in the resolving powers of spectro-
scopic devices such as gratings, prisms, etc. if the diffraction opening were 
bounded by a circle instead of by a rectangle. As an alternative we could 
replace the condition δΗ = 1 by δΗ — 1.22.) The intensity curve for the 
light of star 1 drawn at the bottom of fig. 87 indicates that our construction 
using limiting rays is equivalent to Rayleigh's condition : the image of star 2 
coincides with the first minimum of the diffraction pattern of star 1. 

The situation is different when "resolution" does not require (almost 
separate) images of the two stars but only some indication of whether or not 
a binary star is under observation at all. In that case it is possible to attain 
a much larger path difference of the limiting rays without having to require 
precision to within a wavelength for all rays over the entire surface of an 
objective. This leads to an arrangement of mirrors which had already been 
proposed by Fizeau but was first constructed successfully by Michelson; 
see fig. 88. 

The two outer mirrors S, S' are a distance b + b' of several meters apart; 
the spacing of the two inner mirrors lies within the diameter 2 a of an ordi-
nary telescopic objective, i. e. is of the order of a few inches. 

Let us first consider only the component 1 of the twin stars and the light 
reaching the telescope from that star by way of S, s. The resulting diffraction 
pattern is determined by the cross section of the light bundle (which, in turn, 
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is determined by the sizes of the mirrors S, s and by the diameter 2 a of the 
objective). This diffraction pattern consists of a system of rings of the type 
described in Sec. 36 C. The same is true for the light reaching the telescope 
from the component 1 by way of S', s'. Since this light originates from the 
same source 1 as the previously considered light, the amplitudes of both 
the central spot and the system of rings would be doubled provided the 

arrangement of mirrors were per-
fectly symmetrical. Actually, the 
two mirrors S, S' are never exactly 
symmetrical with respect to the axis 
of the telescope and are never 
inclined at precisely 45° to that 
axis. Therefore there is also present 
a system of equidistant rectilinear 
interference fringes of the type 
which is already known to us from 
the Michelson experiment of Sec. 14 
(these fringes are lines of equal 
optical path difference). Because 
of the lack of symmetry of the 
arrangement, we have denoted the 
distance S' s' in the figure by b' 
to distinguish it from S s = b. The 
position of the system of fringes 
depends on the quantity Fig. 88. 

Michelson's Mirror Experiment. 
(b-b')ß. 

Depending on whether this ratio (for a given λ and for a given position in the 
ray bundle between 5 5 and S' s') is an integer or half-integer, we have a 
bright or a dark fringe. 

Let us now turn to component 2 of the binary star. It yields a diffraction 
pattern of the same type as that produced by component 1. There are again 
a central spot, diffraction rings, and linear interference fringes. The central 
spots and rings of the two component stars coincide because it is assumed that 
the cross section of the ray bundle, or the diameter 2 a of the objective, is 
not sufficiently large to resolve the double star. The central spot and diffraction 
rings of 2 are superimposed on those of 1 (of course they add intensity-wise 
because of the difference of the light sources). But the position of the system 
of rectilinear fringes from component 2 differs from that due to 1. The path 
difference responsible for these fringes is affected not only by the positions of 
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the mirrors but also by the direction of the incident light. As in (3 d) the 
difference in the directions of incidence of the light of components 1 and 2 
produces a path difference of 

(5) —«— o sin a0. 

Hence in general the two systems of fringes do not coincide but are displaced 
from one another by the amount given in (5). The mirrors 5, S' are mounted 
on a rigid support and can be moved parallel to themselves so that the total 
distance B = b + b' between the mirrors can be changed. In this way the 
shift between the fringe systems is also changed. Let us assume that at a 
given value of B = Bn corresponding to a path difference of n wavelengths, 
the two systems of fringes coincide. Then 

(5 a) -£ à sin a0 = n. 
À 

If the mirrors are now shifted until the next coincidence of fringes is observed 
at B = Bn+V then 

(5 b) —— ô sin a0 = n + 1. 

Subtracting these two equations and letting A B = Bn+1- Bn, one obtains 

— o sin a0 = 1 

and thus 
(6) δ sin α0 = λ\Α Β. 

A B can be measured precisely; a mean wavelength must, of course, be 
substituted for A. Owing to the enlarged scale B of the interference phenomenon, 
the existence of a binary star can be ascertained and the angular distance between 
the two components can be measured even if the resolving power of the telescope 
being used is insufficient. 

The same method can be applied to measure the size of a single fixed star 
of exceptional size which in the mirror arrangement behaves no longer like a 
point source but rather like a small disc. The stars which can be measured 
by this method are the so-called red giants (low temperature, hence the red 
color, but nevertheless great brightness because of the enormous luminous 
surface) ; see examples below. Such a small disc can be thought of as divided 
into a left, a right and a middle third, and the two outer thirds can be treated 
like a binary system ; the light from the middle third will weaken the contrasts 
of the interference fringes belonging to the left and right thirds, but they will 
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not be extinguished. A study of the fringe coincidences as described by eq. (6) 
leads to an estimate of the angular distance between the edges of the star. 
Michelson obtained the following values in seconds of arc: 

Betelgeuse 
Antares 
Arcturus 

0.047", 
0.040", 
0.022". 

Since the distances of these stars from the solar system (their parallaxes) are 
known from other measurements, their linear diameters can be calculated. 
These diameters turn out to be of the order of 108 km, which is about one 
hundred times the diameter of our sun and about equal to the diameter of 
the earth's orbit. . 

43. The Microscope 

Helmholtz1 treated the resolution of the microscope in the same way as 
that of the telescope. For an object let us take two luminous points a distance 
d apart and located in the lower focal plane Fx of the objective; see fig. 89. 

The objective produces an image of these points 
at infinity because the spherical waves emitted 
by the two points leave the objective as plane 
waves forming two bundles of parallel rays, the 
directions of which differ by an angle a. If the 
medium on both sides of the objective is air, then 
this angle is the same as the angle between the 
two central rays from the objects to the optical 
center of the objective. The value of this angle 
is djf, where / is the lower focal length of the 
objective. If a medium of greater index of 
refraction n > 1 occupies the space between the 
object and the objective (immersion in oil), then for 
small angles of incidence the law of refraction gives 

a = n djf. 

We assume that the objective is, from the point of view of geometrical 
optics, a perfectly corrected system of lenses. The rim of the objective and 
all other diaphragms are projected as geometrical images (real or virtual) 
by the succeeding lenses. The smallest of these images is called the "exit pupil" 

Fig. 89. 

Paths of rays in a micro-
scope. Fx and F2 are the 
front and rear focal planes. 

(i) 

1Die theoretische Grenze für die Leistungsfähigkeit der Mikroskope, Ann. d. Physik, 
1874. Fraunhofer stated much earlier (Bayerische Akademie June 14, 1823) tha t the 
limit of effectiveness of a microscope depends on diffraction. 
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of the lens system and it limits the size of our ray bundles. In general the 
exit pupil is the virtual image of the rim of the front lens. Let the radius 
of the exit pupil be a. 

(2) A=«-f 

is called the ''numerical aperture"; from the elementary geometrical optics 
of lens systems (sine condition, Sec. 48) it follows that a = f sin u, where 2 u 
is the angle of opening of the object ray cone. Hence, the definition (2) of A 
becomes 
(2 a) A = n sin u. 

Each of our two ray bundles produces at infinity the Fraunhofer diffrac-
tion image of the exit pupil as described by eq. (36.9). Hence the microscope 
reproduces each of our luminous points in the form of a diffraction pattern 
(central field plus diffraction rings). In order to render these patterns obser-
vable at a finite distance, the eyepiece contains a converging lens on whose 
focal plane the diffraction patterns are reproduced. This image is observed 
through the eyepiece which acts as a magnifying glass. 

This projection of the image upon a finite plane is of no concern to the 
theoretical investigation of resolution. Instead, the original diffraction pattern 
at infinity can be treated directly. As in the case of the telescope, eq. (42.1), 
we are then led to the result n d\f = 0.61 λ/α, which, according to the 
definition (2) of A, we can also write in the form 

(3) i = 0 .61- j . 

Two luminous points are resolved only if the distance between them is greater 
than that given by (3). 

Recalling the meaning (2 a) oiA, we note that while the resolving power 
of the telescope depends on the size of the objective, the resolving power of the 
microscope depends on the angle u subtended by the objective at the specimen. 

A. ABBE'S THEORY OF THE MICROSCOPE 

With Helmholtz's theory the question of the resolving power of the 
microscope is essentially settled. What remains to be explained is the 
remarkable effect which the manner of illumination (bright or dark field) 
has on the resolution of different tissue structures even though it does not 
influence the resolution of two-point objects. This is where Abbe's theory is 
of importance. Abbe regarded the object as a diffraction grating (amplitude 
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or phase grating). Because of the thinness of the specimens observed and the 
low depth of focus of powerful objectives, these gratings can be considered 
plane and their extent as to depth can be neglected. If we illuminate the 
object with coherent light parallel to the axis of the microscope, then plane 
waves emerge from the object in the directions of the grating spectra of various 
orders. Those orders which are emitted inside the angle of opening u are 
collected in the form of a Fraunhofer diffraction pattern on the upper focal 
plane F2 of the objective which is located above the objective and very close 
to it. This pattern is easily observed with the eye piece removed. But the 
rays continue, and at infinity or on the focal plane of the collector lens they 
combine into a more or less faithful image of the object grating. 

If the spectra on the upper focal plane of the objective are stopped down 
even further than this is done by the exit pupil, or if an objective of smaller 
aperture is used, the image becomes less distinct. If with oblique incidence, 
for instance, at least two spectra are present, then one only sees a sinusoidal 
structure without other details. If only one spectrum is admitted, the image 
disappears in a uniformly illuminated surface. It is also possible to simulate 
a structure that does not exist. If, for instance, the first order spectrum is stopped 
but the second order spectrum is allowed to pass, a grating" with twice the 
actual number of lines appears. For the correct grating period to be just 
visible, at least both first order spectra must appear at the edge of the exit 
pupil of the objective; this means that the first order spectra may emerge 
from the objective at angles of at most ± u. From the formula for the grating 
spectrum (32.2) we obtain for air and perpendicular incidence1 

(4) sin u ^ a = — · 

If, on the other hand, the object and the first lens of the objective are 
embedded in a medium of index of refraction n (immersion), then λ must be 
replaced by the smaller wavelength λ' = λ\η ; the grating spectra then crowd 
closer together, which explains the significance of immersion from the point 
of view of Abbe's theory. The condition (4) becomes now 

(4 a) 

By (2 a) this means 

(5) 

. ^ λ' λ sin u ^ a = — · = —-, · 
a n a 

A = n sin u ^r. — · 
' a 

ct and oc0 continue to stand for direction cosines; see footnote 1, p. 303. 



43. 6a ABBE'S THEORY OF THE MICROSCOPE 309 

We can now explain the advantage of oblique illumination. Let us assume, 
for instance, that the zeroth order spectrum falls on one edge of the exit pupil 
and that the first order spectrum falls on the opposite edge; this situation 
still suffices to show the existence of a structure and to reproduce its correct 
grating constant but no other details. The angle between the two spectra 
can now be twice as large as before or the spacing of grating lines can be half 
that of before. In place of eqs. (4 a) and (5) we obtain 

λ' λ (6) 2 sin u = a - a0 = — = —- > v ' a n d 

1 λ λ (6 a) A = n sin u = — — > hence d = 0.5 — » 
2 (t A 

which involves only the small improvement in the ratio 0.5 : 0.61 over (3). 
If, instead of the spectra of zeroth and first order, the first and second order 
spectra or spectra of two still higher orders are used, then one speaks of 
"dark field illuminât ion ". The direct light (zeroth order spectrum) does not 
enter the objective and with no object in place the field of vision remains 
dark. For n ~ 1.6, sin u ~ 1, A ~ 1.6 a numerical estimate yields according 
to eq. (6 a) 

r, λ 

a r^■■ — . 
3 

Smaller spacings can be resolved only by the use of shorter wavelengths: 
an ultraviolet microscope equipped with quartz and fluorite lenses which is 
effective down to λ = 0.2// or an electron microscope. In the case of the 
latter the use of hard cathode rays makes the resolving power theoretically 
almost infinite. 

These considerations are valid not only for the one-dimensional gratings 
which we have had in mind so far, but also for arbitrary plane structures 
which, according to the Fourier theorem for two dimensions, can always be 
considered as a superposition of cross gratings. The structure of the object 
and the structure of the diffraction image in the objective focal plane are 
''reciprocally*' related to one another; one is the "Fourier-transform" of the 
other; see Vol. VI, eq. (4.13). This ''reciprocity'' means that the diffraction 
image of the second of the above structures again yields the structure of the 
original object. Also in the case of two-dimensional structures any loss of 
diffraction spectra resulting from stopping down reduces the similarity between 
the final image and the structure of the object. 
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B. SIGNIFICANCE OF PHASE GRATINGS IN MICROSCOPY 

As an example, we shall consider the "laminary profile' ' of fig. 70. Like 
any pure phase grating, it is completely invisible if the image is perfect, for 
neither the retina nor the photographic plate can perceive phase differences. 
We would like to be able to see this grating as a set of bright and dark 
fringes, that is, as an amplitude grating. To accomplish this it suffices, according 
to the concluding remarks in Sec. 36 D, to shift the phase of the zeroth order 
spectrum by π\2 with respect to the phases of the spectra of higher orders. 
F. Zernicke1 produced this phase shift in the following way: a glass plate 
is placed in the focal plane of the objective. A thin layer of transparent 
material is attached to the center of this plate where for axis-parallel illumina-
tion the spectrum of zeroth order appears. While the spectra of higher orders 
are unaffected, the phase of the zeroth order spectrum is changed by an 
amount which depends on the thickness of the thin layer and its index of 
refraction relative to the surrounding medium. In order for the phase change 
to be π/2, the path difference must be A/4 and the thickness 

This is a real ''quarter wave plate" ; the layer is less than 1 μ thick in contrast 
to the "quarter wave plate" of crystal optics, see Sec. 30 B, where the thickness 
was determined by the small difference n2 - nx between the indices of refraction 
in the two principal directions of oscillation rather than by the much larger 
difference n - 1 between the indices of refraction of the plate and its 
surroundings. 

This phase contrast method of Zernicke is perhaps the most sensitive 
way of making very weak phase structures visible. Previously microscopists 
had been obliged to use more or less oblique illumination. The resulting loss 
of several spectra caused blurred images of the object. The Zernicke method, 
on the other hand, fully utilizes the tissue structure and makes it visible to 
the eye in the same way as an ideal staining method would do. 

C. LUMINOUS AND ILLUMINATED OBJECTS 

Because of the great successes of Abbe's theory, it was thought for a long 
time that Helmholtz's theory applied only to luminous sources, while in the 
treatment of illuminated objects only Abbe's theory was believed to hold2. 

XZ. f. techn. Physik, Vol. 11, 1935. 
2Such as in the review article by O. Lummer and F . Reiche: Die Lehre von der 

Bildentstehung im Mikroskop von Ernst Abbe, 1910. 
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However, Laue1 proved by means of a simple hypothetical experiment that 
the image of any small luminous object, for instance a glowing Wollaston wire, 
is perfectly complementary to the image of the same object when illuminated 
by an external source. If the wire is in a cavity of constant temperature, then 
according to the laws of radiation it is entirely invisible. The radiation 
emitted by the wire and that originating from the walls of the cavity and 
absorbed and re-emitted by the wire combine to produce the same radiation 
density as that of the background. The same holds for observations with a 
microscope: the images resulting from self-luminous objects and those resul-
ting from homogeneous illumination of equal brightness of the same objects 
must structurally complement one another entirely. The resolution of neigh-
boring objects must be the same in both cases. 

To be sure, the illumination is not homogeneous in the case of a microscope. 
With the usual arrangement of a lower illuminating mirror, the illumination 
is merely as uniform as possible within the aperture. However, the illumina-
tion from above is missing, but this cannot make much difference as long 
as the object is not (or only slightly) reflecting. We may think of this illumina-
tion from above as added or we may just omit it. The rays which do not 
enter the aperture are equally insignificant. Therefore Laue was justified 
in applying the law of black-body radiation to the microscope. 

The superiority of Abbe's point of view becomes apparent only with 
oblique illumination of the type used in dark field observations. For, 
Helmholtz's theory assumes that all points of the object radiate uniformly 
in all directions, and this is generally not true for the elements of a tissue 
structure. 

44. On Young's Interpretation of Diffraction 

Even before Fresnel, Thomas Young2 attempted to find a wave-theoretical 
explanation for the diffraction phenomena which had been discovered by 
Grimaldi. Young assumed that the incident light undergoes "a kind of 
reflection' ' at the edges of the diffraction opening and he explained the 
diffraction fringes in terms of the principle of interference which he had 
discovered as caused by the interaction between these edge rays and the 
incident light rays. In this way he achieved a qualitative understanding of 
the diffraction pattern of the slit in particular. However, Fresnel in his prize 

1M. von Laue, Zur Theorie der optischen Abbildung, Ann. d. Phys. Lpz. 43, 1914. 
*Phil. Trans. Roy. Soc. London 20, 1802. 
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essay of 1818 showed that Young's assumption did not suffice for a quanti-
tative explanation, and as a result Young's theory was forgotten for a long 
time. 

In this connection we wish to recall our treatment of the half-plane in 
Sec. 38. The light entering the geometrical shadow is a cylindrical wave which 
appears to originate on the edge of the screen; the diffraction fringes in the 
illuminated region were calculated from the interaction of this cylindrical wave 
with the incident light. The cylindrical wave does not, of course, radiate 
uniformly in all directions; rather its intensity depends in a definite way on 
the angle of diffraction. Furthermore, the edge of the screen is not an actual 
light source with infinite amplitude but only appears as such to a sufficiently 
distant observer because of a representation of the light field which is 
valid only asymptotically at large distances. From this we see the following : 
if we wish to talk of a reflection of the incident light as Thomas Young did, 
then the "kind of reflection" is very specialized and must be defined precisely. 

The question arises whether and in what way Young's interpretation may 
be extended to arbitrary diffraction screens. This question was answered 
conclusively by A. Rubinowicz1. 

A. REFORMULATION OF KIRCHHOFF'S SOLUTION OF THE PROBLEM OF 
DIFFRACTION 

We shall make the following assumptions: 

1. The screen shall be arbitrarily bounded. We apply the Kirchhoff 
formula (34.4); we cannot use the simplified representation (34.6) in terms 
of the Green's function of the half-space because (even in the case of a plane 
screen) we will have to integrate not only over the diffraction opening but 
also over the surface of a cone. 

2. Let the light source be a luminous point at a finite distance as in (34.4 b). 
We shall change the notation from r' (distance of a point on the surface of 
integration from the light source) to p. We shall not carry out the specialization 
to an incident plane wave (p -► oo) because this would complicate rather than 
simplify the presentation. 

3. We shall regard the light field as scalar, just as Kirchhoff did. Thus 
we shall actually discuss the diffraction problem of acoustics rather than the 
vectorial problem of optics. However, this will suffice to point out the essential 
features of Young's interpretation. 

U n n . d. Phys. Lpz. 53, 1917 and 73, 1924. 
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4. Upon applying eqs. (34.4 b) in which we can set A = 1, the integrand 
in Kirchhoff's formula (34.4) becomes 

pikr a pikp pikp 2 pikr 

( 1 ) J==^-L?. i-i-i., 
r dn p p dn r 

where r is the distance of the point of integration from the point of observa-
tion P. First we perform the integration in the manner of Kirchhoff over a 
surface a which in some way spans the diffraction opening. This surface 
together with the diffraction screen S will separate a region of space con-
taining the light source P' from a portion which contains P. Equation (34.4) 
then reads 

nv'=L (2) 4 π ! ) ρ = Jda. 
a 

The following calculations serve only to transform this Kirchhoff formula 
and will not improve it or change its essence. 

We adopt the following point of view: the surface σ over which (2) is 
to be integrated is entirely arbitrary; its choice is limited only by the 
requirement that σ shall pass through the curve s which forms the boundary 
of the diffraction opening. Hence (2) depends only on s and not on a. Therefore 
it must be possible to transform the surface integral jda into a line integral jds. 
To accomplish this we construct the cone formed by the rays emitted by P' 
and passing through the boundary of the diffraction aperture, see fig. 90. 
We call the surface of this cone / and its surface elements df. We now consider 
the space bounded by a and / and apply Kirchhoff's eq. (34.4) to this region. 
The boundary values to be used on / are 

pikp fa $ eikp 

v = and —- = — = 0, 
p on on p 

the latter because dn is perpendicular to dp and elkpjp is only a function of p. 
The integrand of (1) simplifies to 

pikp a pikr 

(3) /' = — f~· 
p dn r 

For this region bounded by a and / we obtain in place of eq. (2) a value 
differing from vP: 

(<i 4«r /= I Jda+ I J'df. 
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However, we know the exact value of vP'. If P lies inside our truncated ray 
cone, then 

(4 a) V = —; 

if P lies outside this region and also outside the region which is directly 
illuminated by P' , then 

(4 b) vp' = 0. 

Indeed we have incorporated into (4) the 
exact boundary values on both a and / 
of the solution u = ethpjp of the wave 
equation Δ u+k2 u=0. Since by Green's 
theorem Kirchhofes equation follows 
rigorously from this wave equation when 
the exact boundary values are known, 
Vp agrees exactly with the solution 
u = elkf>lp inside the truncated cone and 
vanishes outside it. If we substitute (4 a, b) 
and (2) in (4), then for interior points 

pikp i Γ 

(5 a; 

and for exterior points 

(5 b) vP—±fr df. Fig. 90. 
Concerning Thomas Young's theory / 
of diffraction. Transformation of the 
surface integral into a Une integral T n i s Completes the first step in trans-
by the method of A. Rubinowicz. forming the Kirchhoff integral (2). 

B. REDUCTION OF THE SURFACE INTEGRAL OVER THE CONE TO A LINE INTEGRAL 
OVER THE BOUNDARY OF THE DIFFRACTION OPENING. SHARPENING OF 

YOUNG'S THEORY 

In fig. 90 we have drawn two neighboring generators of the cone / which 
enclose an angle dq>. In the lower part of the figure we have drawn the 
intersections of the spheres p = constant and p + dp = constant with the 
cone surface. The shaded surface element df in the figure is then 

df = pdp d(p. 
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We now replace άφ by the element of arc ds' which the sphere p = ps intercepts 
at the point Q' on the diffraction edge. Next we express ds' in terms of the 
line element ds of the boundary curve : 

ds' = psdq) = ds cos (ds', ds) = ds sin (ps, ds). 

Thus we obtain 
p 

(6) df = — sin (p6, ds) dp ds. 

We then evaluate the differential quotient occurring in (3) at the point Q on df 

d eikr d eikr ii k \ \ .u 

(7) == cos (n,r) = ^]etkr cos (n, r), 
dn r dr r \ r r I 

where n is the direction perpendicular to df at the point Q and r is again the 
distance of the element of integration from the point of observation P. 
Besides this distance r, we have also indicated in the figure the distance rs 

of the point of observation from Q', that is, from the vicinity of the boundary 
element ds. It is seen then that 
(8) r cos (n, r) = rs cos (n, rs) ; 

indeed, the left- and right-hand sides of this equation are both equal to 
the shortest distance from the point of observation to the surface of the 
cone; it should be noted here that the normal n to the cone surface at Q is 
parallel to the normal to the cone at Q'. 

From (3), (6), (7) and (8) we finally obtain 

<9> 4 
l-jj'd/=^ jds sin (Ps,ds)cos(n,rs)^je'^ + ')\^-l^ dp. 

1 S ps 

The integrand of the first integral on the right-hand side consists of factors 
which depend only on the boundary curve s. The second integrand contains 
all the factors which are functions of the element df and of p\ among these 
is also r because of the following relation which is derived from the triangle 
QPQ': 

(10) r2 = rs
2 + (p- ps)

2 + 2rs(p- ps) cos (rs, ps). 

From this there follows by differentiation with respect to />, keeping ps and rs 

fixed (shifting Q with unchanged positions of P and Q') 

dr 
r — = p-ps + rscos (rSt ps). 
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Hence also 

(10 a) ^Μ + Τ") =r + p~ ps + rs cos {rs>ps). K) = 
We now claim that the integrand of the />-integral in (9) is a perfect 

differential quotient, specifically, that 

(») eik{p+r)^-T^Tp[
mp+r)/n}}, 

where [ ] symbolizes the right-hand side of (10 a). For, upon carrying out 
the differentiation with respect to p on the right-hand side of (11), one obtains 
the following three terms, which can immediately be simplified by applying 
eq. (10 a): 

(a) ikl\ + £Λ0»<Ρ + 'ψ [] = ^ * C + '>, 

(b) .eik(P+r)r-2^LI Γ1 =_.Leik(P+r)_drldP 
[) dp'U r* 1 dp' LJ r* \+drldP 

( c> -Wr*{* + ,)/„. = - ^ ^ _ ] _ . 
The sum (a) + (b) + (c) indeed equals the left-hand side of (11). Thus the 
value of the p-integral in eq. (9) becomes 

ί l 0 0 e^^s + 's) 
\éik(p + r) y-ΙΓ Ί - l l = : f 

1 U h rs*(\+cos (rs>Ps)) 
As a result the right-hand side of (9) becomes a single integral over the 

edge of the diffraction opening: 

(ΛΧ\ l fj eikPseikfs cos(n,ri) . , .v 
13 —- / ifs -— sin(/ps>^s). 4 π J ps rs 1 + cos (fs, ps) 

s 

The first factor in the integrand represents the phase and amplitude of the 
wave incident on the edge; the second factor corresponds to the phase at 
the point of observation of the spherical wave reflected by the edge; the 
third factor determines the rather complicated angular dependence of the 
reflected wave. (rs, ps) is the angle of reflection at the edge ; (n, rs) is, so to 
speak, the angle of reflection at the surface of the cone ; (ps, ds) is the angle 
of incidence at the curve element of the edge. 

Returning to eqs. (5 a, b), we can say in agreement with Thomas Young: 
according to eq. (5 a) the diffraction fringes in the illuminated region result 
from the interference of the incident light with a wave which is reflected by 
the edge ; according to eq. (5 b) only this edge wave is present in the shadow 

(12) 
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region. We have improved Young's qualitative statement by defining the 
kind of reflection at the edge quantitatively in such a way that in both regions 
the resulting excitation vP agrees exactly with that found by means of the 
Kirchhoff-Huygens theory. We have not, however, gone beyond the limits 
of validity of the Kirchhoff theory. Therefore the new formulae which have 
been adapted to Young's point of view are valid only if the wavelength is 
small compared to the diffraction opening and if the vectorial character of the 
electromagnetic problem does not come into play; see Sec. 46. 

C. DISCUSSION OF THE CONTOUR INTEGRAL 

Rubinowicz approximates the contour integral (13) by the method of 
stationary phase (the saddle-point method, simplified and adapted to a 
real domain) : only those points on the boundary curve yield a substantial 
contribution to the integral at which the phase is stationary with respect to 
translation along the curve; the contributions of all other portions of the curve 
are small of higher order because of interference with the contributions of 
neighboring line elements. According to (13) the phase of the integrand on 
the boundary curve is 

ik(ps + rs). 

This remains constant under translation along the contour when 

(14) ^ = -Ρ> 
as as 

or, what is the same, when the ''reflection condition" 

(14 a) cos (ps, ds) = - cos (rs, ds) 

is satisfied. There are in general a finite number of points 5 = sv s2, . . . 
on the curve which satisfy this condition. Each of these points radiates a 
substantial intensity to the point of observation P, and the line integral may 
be evaluated with sufficient accuracy as the sum of these radiations. The 
locus of points P which receive radiation from any one point sv on the edge 
is a circular half-cone with the apex at sv and with the axis ds. This has 
been proved experimentally by E. Maey1 for the simple case of the half-
plane, for which there exists only one such point sv 

Thus Young's point of view, when analytically formulated, also leads to 
a quantitative explanation of diffraction phenomena — however, only within 
the same limits of applicability which already restrict Kirchhoff's method. 

iAnn. d. Phys. (Lpz.) 49, p . 93, 1893. 
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It is to be noted that the discontinuity of the diffraction field at the shadow 
boundary, which a comparison of (5 a) and (5b) seems to indicate, does not 
in fact exist. This apparent discontinuity is exactly compensated by a jump 
in the value of our line integral, which is due to the fact that the denominator 
1 + cos (rs, ps) in eq. (13) vanishes as one passes through the shadow boundary. 

Finally, we recall our consideration of "light fans" in Sec. 36 E, where these 
were explained from the point of view of Fresnet's zones. We now see that 
this phenomenon can be understood particularly well in terms of Young-
Rubinowicz reflections. Each point sv on the diffraction edge radiates a 
conical light fan; when there are not merely discrete points sv but continuous 
sequences of such points, the light fans become particularly strong. This is 
the case for rectangles and more generally for polygonally bounded diffraction 
apertures, for then our cone surface / consists of plane portions which satisfy 
the reflection condition (14 a) along finite line segments. The specific inten-
sity in these light fans is of the same order of magnitude as that of the inci-
dent light; the phenomenon of shadow formation thus disappears. 

45. Diffraction Near Focal Points 

From daily life we are well acquainted with the variously shaped caustics 
(focal lines) which appear within a teacup illuminated by a point source. 
These curves can be constructed by geometrical optics as the envelopes of 
pencils of rays. A more exact investigation of the vicinities of such lines leads 
to diffraction problems which have been treated particularly by Airy. 

According to geometrical optics a focal point is an infinite concentration 
of rays. Wave optics resolves this (physically obviously inadmissible) 
singularity into a strong light concentration of finite amplitude and finite 
extent. In passing through a focal point a phase jump of magnitude π occurs. 
This jump has been studied experimentally by Gouy a d Sagnac, among 
others. In the case of a focal line of the type which results, for instance, from 
the convergence of the rays of a cylindrical wave, the phase j mp is π/2 
instead of π. Rubinowicz1 used his line integral (Sec. 44) as a starting point for 
the theoretical explanation of these phase jumps. He considered a ray bundle 
selected from a converging spherical or cylindrical wave by means of a dia-
phragm and treated its further course as a diffraction problem. 

*A. Rubinowicz, Phys. Rev. 54, 931, 1938; see also C. J . Bouwkamp, Physica 7, 
485. 1940. 
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We shall adopt a simpler method which is due to Debye2. He removed 
the diaphragm to infinity and in that way obtained a solution of the differ-
ential equation of optics which is valid in the whole space and exactly 
describes not only the phase jump but also the diffraction patterns in the vici-
nity of the focal point (or line). Debye's method is not limited to Kirchhofes 
approximation but is based on the fundamentals of wave optics. His solution 
can claim the same degree of exactness as, for instance, our treatment of the 
problem of the straight edge in Sec. 38. There we had assumed as given the 
incident light at infinity in one half-space (plane wave) and had required 
that in the other half-space the radiation condition be fulfilled (hence no 
incident light). Correspondingly, Debye prescribes incident light (as a con-
verging spherical wave) in one portion of infinity and requires that every-
where else at infinity no light shall be incident but shall only emerge. 

A. THE HYPOTHESIS OF DEBYE 

The expression 
(1) u = e-ikrcos9, cos Θ = cos & cos #0 + sin & sin ϋ0 cos (φ -<ρ0) 
represents a plane wave coming from infinity, which is incident from the 
direction & = #0, φ = φ0 and which, after passing through the point r = 0, 
radiates toward infinity in the direction # = #0 + π, φ = φ0. As always, 
the time factor exp (- i ω t) is to be thought of as added, r cos Θ is a linear 
function of the coordinates 

x = rsin#cosç>, y = rsin#sinç>, z = rcos& 
having the coefficients 

a = sin #0 cos φ0, β = sin #0 sin <p0, γ = cos &0, 
the sum of the squares of which equals 1. Hence u satisfies the wave equation 
A u + k2 u = 0 in the whole x, y, z space including the point r = 0 which is 
not a singular point of u. 

The same is true for the wave packet 

(2) U= I I e-ikrcosedQ, dil = sin<&0d&0d<p0, 

which represents incident waves only within the (arbitrarily defined) solid 
angle Ω. However this same expression (2) yields divergent waves for all 
il·, φ outside the solid angle Ω (and not merely in the solid angle which is 
diametrically opposite to Ω). This is due to the manner in which (2) was 
constructed as a superposition of the waves (1). Since it is an exact solution 
of the wave equation, U contains the answer to all questions regarding the 
behavior of the wave bundle in the vicinity of the focal point r = 0. 

2 Das Verhalten von Lichtwellen in der Nähe eines Brennpunktes oder einer Brenn-
linie. Ann. d. Phys. (Lpz.) 30, 755, 1909. 
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It should be noted that no boundary conditions of any kind need to be 
satisfied. It is just this requirement, that boundary conditions be satisfied, 
which in other problems makes solutions in closed form impossible. Thus 
in contrast to other diffraction problems, Debye's formulation of the problem 
of focal point diffraction involves a simple summation method, as is brought 
out clearly by the form of (2). To be sure, we have performed only a scalar 
summation in (2) and not a vector summation as required by the directional 
character of the electromagnetic light field. But Debye has shown that his 
expression can be applied without change to describe the rectangular com-
ponents of the Hertz vector from which the vectorial optical field can be 
derived. 

B. THE DIFFRACTION FIELD IN THE NEIGHBORHOOD OF THE FOCAL POINT 

First we shall show that the singularity of the light field at the focus which 
results from geometrical optics does not really exist, that according to wave 
optics the field is entirely regular. For the sake of brevity we shall make 
reference to several formulae from Vol. VI. According to eq. (VI. 22.35) 

oo 

(3) e-iPcos& = 2J (2 n + 1) (- i)n ψη (p) Pn (cos Θ). 
w=0 

where p = kr. The Pn are the Legendre polynomials 

(4) P0(x) = \t pi(x) = Xt p2(*) = l ( 3 * 2 _ i ) , . . . , * = cos©; 

according to Vol. VI, eq. (21.11) the ψη are the modified Bessel functions 

y)n(P)=WpJn + yAP) = ^5..Pl2n+l)y-2{2^+--j 
sin p . . sin p - p cos p 

Wo (p) = > Ψι (p) = "a 
P P 

If we neglect in (3) all powers of p higher than the second and perform the 
integration with respect to Ω indicated in (2), then we obtain, by using 
(4) and (5) 

(6) C 7 = ( l - ^ j / dil-ip l cos&dQ-Ç P2(cos0)dQ. 

For convenience we define the solid angle Ω as the interior of a circular 
cone with its apex at the focus. Thus the integration is to be extended over 

0 < # 0 < α , -π<φ0< +π. 

(5) 
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Then 

sin ϋ0 d&0 = In (1 - cos α) = Ω, 

a 

/ dû = In l s 

o 
and recalling the meaning of cos Θ from eq. (1) [the term containing cos (<p-<p0) 
vanishes in the integration with respect to φ] 

a 

I cos Θ dil = In cos ϋ I cos #0 sin #0 du0 — n cos ϋ (1 - cos2 a) 

o 

= — cos # (1 + cos a) Ω ; 

furthermore, using the addition theorem for spherical harmonics [Vol. VI, 
eq. (22.36)] 

a 

I P 2 (cos 0)dü = 2nP2 (cos#) / P 2 (cos#0) sin&0dê0 

o 
a 

— nP.2 (cos #) 1 (3 cos2 #0 - 1) sin #0 ^ 0 = π P 2 (cos d) cos a (1 - cos2 a) 
o 

= — P 2 (cos ??) cos a (1 + cos a) Ω. 

Substituting this in (6) one obtains 
U p 2 p p 2 

(7) — = l - ^ - - ^ c o s ^ ( l +cosoc)- ^P 2 (cos i? )cosa ( l + cos a). 
12 o 2 o 

For p = 0, the finite value 
(8) U = Ω 
is obtained (for our particular normalization of the incident amplitude). 
Hence, in contrast to geometrical optics there is no singularity. Going on from U 
to determine \U\2, one finds, consistently disregarding higher powers of p 
than the second, 

(9) \U\2IQ2= l-alP
2 +a2p

2 cos2u, 

ax = — - — cos a (1 + cos a), a2 = ·- (1 -cos2 a), ax-a2 = —- (1-cosa)2. 
3 6 4 12 

We are interested in the region of large amplitude surrounding the origin 
which represents the wave-optical spreading of the focal point of geometrical 
optics. We consider the first surface of extinction U = 0 as the outer limit 
of this region. Calculating it from the approximation (9) and setting 

p2 = k2 (x2 + y2 + z2), pcos$ = kz, 
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we obtain 

(10) k*ax (x2 + y2) + k2 K - a 2 ) z2 = 1. 

This is the equation of an ellipsoid of revolution which is elongated in the 
direction of incidence. The smaller a is, the larger are the principal axes 
1 lk^alt 1 /&]/#! - a2. This means that the focal region becomes more extended 
as the incident bundle of rays becomes narrower. It decreases in size with 
decreasing wavelength (increasing k). 

C. AMPLITUDE AND PHASE ALONG AND NEAR THE AXIS OF THE LIGHT CONE 

On the axis of the light cone # = 0 in front of the focus and # = π beyond 
the focus. Hence on the axis cos Θ = ± cos #0. For these values the integra-
tion in (2) can be carried out by elementary methods and yields for & = 0 

a 

(11a) — = I e-ikrco*»* sin #0 dê0 = 
-ikr 

o 
and for & = π 

a 
TJ Γ g+ ikr _ g+ ikr cos a 

( l ib ) — = / *+·'*'«**· sin 0 o i0 o = —rr . 
2 7i J + ι k r 

o 
Both expressions agree for r = 0 with the value of U given by (8). They 
remind us of the elementary representation of the diffraction pattern along 
the central axis of a circular disc or opening which was derived in Sec. 35 C 
and D. Like the latter expressions, eqs. (11 a, b) are valid only on the axis of 
symmetry of the light bundle. We know from Sec. 35 C that the "Poisson 
spot" disappears only a short distance off the axis. The same is true of the 
interference patterns given by (11a, b). 

We shall prove this in a somewhat indirect way by differentiating eq. (2) 
with respect to the angle a. In the case of a circular light cone which we are 
now considering, a appears in (2) as an upper limit of integration. Thus the 
integration with respect to #0 is to be omitted and the integral with respect 
to φ0 can be written in terms of the Bessel function / 0 : 

2π 

du 
— e~ 

-t'Arcosdcos 
BOL 

0 

· / ■ 
e-ikr sin & sin a cos (φ-<p9) s j n a ^ 

= In sin a e~ikrco^cosa JQ (k r sin# sin a). 
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In both cases the interferences have disappeared; at large distances in front 
of and behind the focal point the light propagates as a spherical wave just 
as in geometrical optics. 

We are mainly interested in the phase factors in eqs. (12 a, b), namely 

-l =β+ίπ-12 in (12 a) and + - = e~inl2 in (12 b). 
ι ι 

The phase jumps by π at the focal point as stated at the beginning of this 
paragraph. Since this phase change is in no way connected with the amplitude 
pattern at the focus but refers to the state of the spherical wave at large 
distances from the focus, we are justified in considering it as a property of 
geometrical optics; see Rubinowicz, loc. cit. 

D. THE CYLINDRICAL WAVE AND ITS PHASE JUMP 

The two-dimensional analogue of the above phenomenon concerns a ray 
bundle propagating in the r} 99-plane 

+ a 

(13) £ 7 = / e-ikrcosto-*Jd<p0, 

— a 

which, coming from infinity within the range - a < <p0 < + a, proceeds 
toward the origin. In the language of three dimensions this origin is a 
geometrical focal line which is perpendicular to the r, 99-plane. We shall see 
again that wave-optically no singularity appears. For the proof we use 
formula (21.2 b) of Vol. VI: 

00 

(14) i-'"»» = J0 (p) + 2 Σ (- i')n Jn (P) c o s » V· 
M = l 

(12 b) 

(12 a) 

Except on these two half-rays U is, at infinity, independent of the angle a. 
From this we conclude that on the right-hand sides of (11a) and ( l i b ) the 
second term in each of the numerators is to be neglected. Thus we obtain 

For all values of r which are physically of interest the argument of J0 is a 
very large number except when ΰ = 0 or π (or also when a = 0 or π). We 
know, however, that J0 vanishes for large real arguments; see, for instance 
Vol. VI, eq. (20.57). Therefore 
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The / are ordinary Bessel functions with integer indices. Neglecting higher 
powers of p, we approximate these Bessel functions by 

and obtain from (13) and (14) 

/,,-v U . p2 sin a p2 „ sin 2 a (15) -— = 1 -^-r -i pcosw r— cos2a>-——. v ' 2 a 4 r Y a 4 r 2a 
At /> = 0, C7 has (in contrast to geometrical optics) the finite value 

(15 a) 17 = 2a. 
In order to find the intensity distribution for small p, we calculate |f/|2, 

limiting ourselves consistently to quadratic terms in p. Using k x = p cos 99, 
£ y = p sin 99, we find 
(16) \U\2l4oL2=l-k2a1x

2-k2a2y
2, 

1 / , sin 2 a A sin2 a\ 1 / s in2a\ 

Setting |C7| = 0 we obtain a measure of the size of the focal spot in the 
x, y-plane. According to (16), |C7| = 0 on an ellipse whose major axis \ k^αχ 

lies in the direction of incidence. 
While in the three-dimensional case we obtained incident and radiating 

spherical waves (12 a, b) at large distances in front of and behind the focus, 
we now obtain for k r ^> 1 unperturbed convergent and divergent cylindrical 
waves in the region of the light bundles. These are represented by Hankel 
functions of the second and first kind, respectively, 

(17 a) HJ (kr) s j/-2-*-«*'-«/«> 

and 

(17 b) HQ1 (kr) s 1 / - ? - *+«*'-*W. 

Here we have restricted ourselves to the asymptotic representations of Vol. VI, 
eqs. (19.55) and (19.56), which are the only ones of interest to us. From these 
we conclude that in passing through the focus the phase jumps from 
exp (+ ίπ/4) in eq. (17 a) to exp (- ίπ/4) in eq. (17 b). The phase jump in 
a cylindrical wave amounts to π/2. 

Actually the phase, like the amplitude, varies continuously in the vicinity 
of the focus; the "phase jump" appears only because in (12 a, b) and (17 a, b) 
we have compared the phases at points very far in front of and behind the 
focus. 
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46. The Huygens' Principle of the Electromagnetic Vector Problem 

We have at various times pointed out the difference between the scalar 
acoustic and the vectorial optical problems. By limiting ourselves to a two-
dimensional case in deriving the exact solutions of Sec. 38 and 39, we were able 
to reduce the vector problem to that of two scalar problems which described 
two different polarizations of the incident light. Huygens' principle is entirely 
scalar from the very beginning, so is the Fresnel-Kirchhoff application of 
Huygens' principle. We shall here, very briefly, discuss the vectorial formula-
tion of this principle. 

The problem is to calculate the vector fields E, H behind a diffraction 
opening a in an opaque screen when the tangential components of E and H 
in the opening are given. We shall denote the latter, considered as vectors, by 
E0 and H0. If these were known exactly, then it would be possible to calculate 
E and H exactly. If, instead of the exact values, the unperturbed E, H-values 
of the incident wave are used, one obtains only a first approximation which 
is valid for small wavelengths, just as in the Fresnel-Kirchhoff treatment. 

First, we shall state the formulation of the vectorial Huygens' principle 
which is due to W. Franz1: 

(1) 

(2) 

ei'k R | Γ eikR 

a a /
eikR ] Γ eikR [da X H

0

] —- (- - curl curl / [da X E0] ——. 

K ι ω ε

 J K 

The following will explain the notation : 

a) da is an element of area with which is associated the direction perpen-
dicular to the surface σ ; the vector product of da and E0 is therefore a vector 
lying in the tangential plane of σ. The normal component of E0 does not enter 
into the calculation of this vector product. The same holds for the vector 
product of da and H. 

b) R is the distance from the point of observation x, y, z to the point of 
integration ξ, η, ζ. E, H are functions of x, y, z\ E0, H0 are functions 
of ξ, η, ζ. 

1 ZS . f. Naturforschung, Vol. 3a, 500, 1948; we cannot here discuss the resulting 
corrections to the Kirchhoff diffraction calculations. See also Stratton and Chu, Phys. 
Rev. Vol. 56, 99, 1939, as well as the book by J. A. Stratton, Electromagnetic Theory, 
Internat. Series in Pure and Appl. Physics, New York, 1941. 
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c) The eqs. (1) and (2) therefore represent superpositions of spherical waves 
radiating from the points ξ, η, ζ just as in the elementary Huygens' principle; 
these waves interact at the point x, y, z, but now they combine vectorially. 

d) The operation curl is everywhere to be performed with respect to the 
coordinates of the point of observation x, yt z. If cartesian coordinates are 
chosen, the identity 

(3) curl curl = grad div - Δ 

may be used, as is done in the following. 

e) In Franz's work the arrow of da points toward the back of a, that is, 
into the region where E and H are to be determined. 

f) The values of ε, μ are everywhere constant and can be identified with 
the values in vacuum. 

We now show that the E and H as defined in (1) and (2) satisfy Maxwell's 
equations. We write the latter for a purely periodic state of frequency ω: 

(4) curl E = i ωμ H, curl H = - i ω ε Ε. 

Next we form curl E from eq. (1). Then the first term on the right-hand side 
becomes identical with the second term of eq. (2) multiplied by i ω μ. Using 
cartesian coordinates temporarily and applying (3), the second term of curl E 
becomes 

- curl (grad div - Δ) 
t ωε /

eikR 
[ Ä i x H , ] — . 

Curl grad vanishes and there remains 

(5) 
1 Γ eikR k2 Γ eikE 

-. curl I [da X H0] Δ -=■- = - , curl / [do x H0] — 
i ωε J υ R ι ωε J v R 

since u = etkRjR satisfies the wave equation Δ u + k2u = 0. Moreover 
k2 = ω2\ο2 — εμ ω2, hence - k2\i ωε = ί ωμ. 

Accordingly, (5) is identical with the first term on the right side of (2) multiplied 
by i ωμ. Thus we have proved that eqs. (1) and (2) satisfy the first Maxwell 
e(l· (4)· Quite analogously it can be verified that the second eq. (4) is also 
fulfilled. 

But as Franz points out, this representation satisfies the boundary 
conditions 
(6) E -» E0, H -> H0 as x, yt z -+σ 

only approximately. 
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In contrast to this we now show that the integral representation 

2πΗ = curl I [da x H0] — (8) In H = curl / [da x H0] -~ 

satisfies the boundary conditions (6) but not the differential eqs. (4). 

We shall merely make this statement plausible by assuming that E0, H0 are 
differentiable functions of position everywhere in the opening (including its 
boundary!) and by restricting ourselves to the case of a plane screen and 
hence a plane opening σ. We choose as the origin of a cartesian ξ, r\, ζ-
coordinate system the point 0 on or, which is the point that P is to approach. 
The £-axis is to be perpendicular to da, and its positive direction is to coincide 
with the direction of da. The x, y, z-system in which the point of observation P 
is defined shall be parallel to the ξ, η, f-system. With this choice of coordinate 
system the three components of the vector product [da X E0] have the values 

(9) (-Eoy, Εοχ,0)αξάη. 

We now form 

(9 a) curlJ[AF X E0] ̂ i = \[da x E 0 ] , ^ - [da x E0]y^l · 
R 

According to (9) this is equal to 

= -άξαηΕ0Χ--, 

where, in this last expression, we have set etkR ~ 1 in the neighborhood of 0. 
We now calculate the right-hand side of the ^-component of (7) and obtain: 

z d^dr\ 
~R~W' (to) -ΠαξαηΕ°*ΤζΊΪ=ΙΙΕ<>> 

On the right, zjR is the cosine of the angle between the directions z and R; 
hence άξ άη z/R is the projection of άξ dr\ onto the sphere of radius R centered 
at P. Divided by R2 this yields the solid angle which άξ άη subtends at P. 
As P -+0 this solid angle approaches 2π in the vicinity of 0; in the more 
distant parts of the ξ, rç-plane it goes to zero. Hence (10) becomes equal to 
2π Ε0χ. In the same way the y-component of (7) may be checked. 

The same calculation, applied to (8) shows that the boundary condition (6) 
is satisfied also for H. If one substitutes the expressions (7) and (8) into the 
differential eqs. (4), and if one performs suitable integrations by parts and 

(7) 
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applies eq. (34.20), the resulting surface integrals on both sides are found to 
be equal. But there also appear line integrals over the boundary of a 
("magnetic currents" as Stratton calls them, loc. cit.) which do not compensate 
one another. 

The above remarks do not, of course, solve the problem posed in this 
paragraph; they only describe its general aspects. In any case, an exact 
solution of the diffraction problem could be obtained only if the exact boundary 
values E0 and H0 (or more correctly E0 or H0) were known. This is, of course, 
not the case. Rather, these boundary values can only be found simultaneously 
with the solution of the diffraction problem. Even in the case of the circular 
opening, the two auxiliary functions (potentials) which must be introduced 
to solve the problem are coupled in a complicated manner1. The vectorial 
Huygens' principle is no magic wand for the solution of boundary value problems, 
but it is of interest as a generalization of the time-honored idea of Christian 
Huygens. 

47. Cerenkov Radiation 

According to the theory of relativity a material body cannot possibly move 
with a velocity v greater then the speed of light c. However, we know that 
in a medium of index of refraction n, light propagates with the phase velocity 
u = cjn < c\ see Sec. 2. Hard cathode rays and Compton electrons produced 
by very hard y-rays can attain velocities in the range 

u < v < c. 

What happens in this velocity range? 
We might expect to find phenomena which are known to us from the 

field of ballistics; see Vol. II, fig. 45 a, b : The projectile overtakes the 
pressure wave which it produces and thus causes a Mach cone with the 
characteristic angle sinfî = c/v (c = velocity of sound). While this 
phenomenon can be derived only with some difficulty from the non-linear 
equations of aerodynamics, the corresponding electro-optical phenomenon 
follows simply and rigorously from Maxwell's equations. 

The following discussion will adhere closely to an early paper by the author 
which was communicated to the Amsterdam Academy2 by H. A. Lorentz; 
the only difference being that where that paper (which preceded the theory 
of relativity!) deals with velocities below and above that of light, v < c and 
v > c, we must now substitute v < u and u < v < c, respectively. For 
velocities below that of light the electron carries its own field with it and no 

1J. Meixner, ZS. f. Naturforschung, Vol. 3a, 506, 1948. 
2Proc. Nov. 26, 1904, particularly p. 359 where older papers by Heaviside and 

Des Coudres are referred to; see also Göttinger Nachrichten 1905, p. 201. 
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energy is radiated; see Vol. I l l , Sec. 30 A. However for velocities above that of 
light the electron leaves its field behind in the shape of a Mach cone, The 
field radiates in directions perpendicular to the surface of the cone, and be-
cause of the nature of dispersion, this radiation consists mainly of visible light. 
Since the electron looses energy in the form of radiation, its velocity 
decreases rapidly to the value of the light velocity v = u. The radiated light 
is polarized so that the 
electric vector lies in the 
plane passing through the 
trajectory of the electron. 

This radiation, then an 
unheard-of optical pheno-
menon, was first observed 
in 1934 by P. A. Cerenkov1. 
At first he used Compton 
electrons and later many 
different types of cathode 
rays. These observations were 
soon thereafter explained by 
Frank and Tamm2 in the 
manner here indicated and 

Fig. 9i . were compared quantitatively I _, , , , , ,, ~ . . . , ., 
r ^- J I The Mach cone of the Cerenkov electron and its with the theory. radiation vector S. 

A. THE FIELD OF THE CERENKOV ELECTRON 

Let us assume that an electron moves with a velocity v (to be thought of 
as constant) through a medium of refractive index n > 1 such that 
(1) u < v < c, u = c/n. 

At the time t = 0 let the electron be at the point 0, and let Q be the position 
of the electron at the earlier time τ < 0. We are to find the field of the electron 
at an arbitrary point P at the time t = 0. Let 
(2) r = distance OP, & = angle QOP 

(see fig. 91). Choosing the #-axis in the direction of motion of the electron, 
we denote the space-time coordinates of P by 
(3) #1 = - r c o s # , x2 = rsin#cosç?, xs = rsinfîsirup, xA = ict = 0 

^ c . Sei. USSR., 2, 451, 1934, 3, 414, 1936, 20 et seq. Phys. Rev. 52, 378, 1937. 
2C. R. Ac. Sei. USSR. 14, 109, 1937; Tamm, Journ. of Sei. USSR. 1, 409, 1939. 
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and those of Q by 
(3a) | 1 = = 2 ; r < 0 , ξ2 = f3 = 0, | 4 = *cr. 

As we saw in Sec. 2, in a medium of refractive index n the light velocity c 
occurring in the wave equations for E and H is to be replaced by the phase 
velocity u = cjn. The same substitution must be made in the differential 
equations for the retarded potentials in Vol. I l l , Sec. 19. Since the velocities v 
in question are close to c, it is natural to use the four-dimensional potential Ω 
of Vol. I l l , Sec. 29 instead of the three-dimensional retarded potentials. 
The symbol □ which was introduced there must now be amended to mean 

_ a2 a2 a2
 2 a2 

D " "äv + "äv + äv + n äv ; 

for, indeed, the fourth term in this expression is 

2 a2 _ n2 a2 __ i a2 

n Yx^~~c2dt2~~ü2W2' 

as it should be according to our present differential equations for the retarded 
potentials. 

Correspondingly, we must continue to replace c wherever it occurs by 
u = c\n. Thus the "current density four-vector Γ" introduced in Vol. I l l , 
eq. (28.16) is now defined as 
(4a) Γ= (pv,iup) = (ρν,Ο,Ο,ίηρ), 

where p is the charge density of the electron. The connection between Ω and 
the retarded potentials A and ψ which in vacuum was Ω = (A, * ψ/c) by eq. 
(26.4), Vol. I l l is now to be changed to 
(4 b) Ω = (A, »>/«). 

With these changes in the definitions, the differential equation of our problem 
reads exactly as in Vol. I l l , Sec. 26: 
(4 c) □ Ω = -μ0 Γ. 

In order to integrate (4 c) we require, as in Vol. I l l , Sec. 29, a solution of the 
differential equation □ U — 0 which is infinite at P = Q. This solution is 
now 'defined by 

±-2, R* = &-*,)» + (|2-*2)2 + (ξΆ-χ3)* + 1 (5) U = —2, ϋ*=(ξι-χ1)
2+(ξ2-χ2)

2+Ιξ3-Χ3)
2 + -2(ξ*-**)* 

The reader may convince himself that this function satisfies the differential 
equation □ U = 0 in both sets of quadruple variables except at P = Q. 

(4) 
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Applying Green's theorem, one obtains an expression identical with 
eq. (29.6), Vol. I l l except that the factor c occurring in £4 must again be 
replaced by u = c\n. This results in the occurrence of the denominator n 
in the following equation: 

4TT !0/„ _ f r^l^h^h^L· 

If the electron is considered to be a point and the integration with respect to 
ξν ξ2, f3 is carried out, one obtains 

(6) 4*%ajto = e-£f%· Ω2 = Ω3 = 0, 

As shown in the text accompanying fig. 41, Vol. I l l , the integration with 
respect to ξ4 must be performed by evaluating the contour integral around the 
negative-imaginary f4-axis because the position of the electron is given only 
for τ < 0. This integral is non-vanishing only if there are points on this 
semi-axis at which the denominator R2 vanishes. According to (3), (3 a) 
and (5) the condition for this is 
(7) R2 = (v2-u2) x2 + 2vrxcos& + r2 = 0. 
The roots x± of this quadratic equation are given by 

(7 a) (v2-u2)x± = -vrlcosê±y1^-sm2iï\. 

We see, therefore, that for 
u 

(8) ê > UM, where UM = Mach angle, sin #M = — » 
no real roots of (7) exist. Therefore, in this region the integrals in (6) vanish 
and hence not only Ω2 == Ω3 = 0 but also Ωχ = Ω4 = 0. The field is zero 
everywhere outside the Mach cone. 

On the other hand, for all points P within the Mach cone, (7 a) has two 
real negative solutions (also x_ is negative because v > u) ; both points for 
which R = 0 lie on the negative imaginary f4-axis and hence contribute to 
the integral. These contributions are, moreover, equal when the integration 
is performed in opposite directions around the two points1. An electromagnetic 
field exists everywhere in the interior of the Mach cone. 

x\i the directions of integration were the same, the sum of the two contributions 
would be zero. Thus we would not obtain an actual solution of the differential eq. (1). 
Therefore the path must be defined as a lemniscoid loop about the two points τ± ; this 
is certainly permissible. 



332 ADDENDA, CHIEFLY TO THE THEORY OF DIFFRACTION 47 . 8a 

Before determining this field, we shall consider the connection between the 
times τ± calculated in (7 a) and the so-called relaxation time of the retarded 
potentials, the ''retardation'' time of Vol. I l l , eq. (19.13 c) 
(8 a) τ = rpQlc. 

Here we have used TPQ instead of the letter r of Vol. I l l in order to emphasize 
that what is meant is the distance between the position Q of the electron at 
time t = τ and the point P at which the field is being observed at the time 
t = 0. Using the notation of fig. 91 this distance is, according to the theorem 
of Pythagoras (r means here the distance PO): 

rpo ~ vy2 τ 2 + γ2 + 2 v r τ cos &. 
This, substituted in (8 a), where however c is replaced by u, yields indeed 
eq. (7). We note in this connection that both light points L and L' of fig. 41 
of Vol. I l l are given by one and the same quadratic equation, namely our 
eq. (7); the only difference is that while the two points had different signs 
in Vol. I l l , they are now both negative. We also note that for u = c the 
Mach angle (8) becomes imaginary and that is why there was no Mach cone 
in the problems in Vol. III. 

We return now to the representation (6) of the four-vector potential. In 
order to evaluate the integrals involved we rewrite the expression (7) for R 
in the form 

Α * = ( ν * - « * ) ( τ - τ + ) ( τ - τ - ) . 
In evaluating the loop integral around T = τ + we can replace the factor x - τ_ 
by τ + - τ_. If we also write αξΑ = i c dr, we obtain 

(Q) (f)^= iC (f) J?— = ~2π° 
W y R* (V« - u*) (T+ - T-) y r - r + (v* - u*) (τ+ - r_) " 
According to (7 a) the denominator of this fraction is equal to 

and therefore (9) becomes 

A*2 Y 
2vr l -g - s in 2 ^ ! 

If we carry out the same calculation for the zero τ = T_, then τ_ - τ+ takes 
the place of τ+-τ_ in the denominator of (9). Therefore, with opposite 
directions of integration the two contributions are equal as stated above. 
One obtains therefore from (6) 

1 /w2 \~/2 

(10) 2πΩ1/μ0βην = 2πΩΑΙμ0ιβη2 = — l - ^ - s i n 2 # l 
= (u2 r2 - v2 r2 sin2 ϋ)~1/2, 
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or written in terms of the coordinates xv x2, #3 of the point of observation 

(10 a) 2πΩ.λΙμ0βΜν = 2πΩ^Ιμ0ίeu2 = {u2 xx
2- (v2-u2) (x2

2 + *3
2)}~H-

The equipotential surfaces are hyperboloids ; they take the place of the 
Heaviside ellipsoids of Vol. I l l , Sec. 242, footnote 1. The field is finite and 
continuous everywhere inside the Mach cone; the reason why according 
to (10) the field becomes infinite on the surface of the cone (sin# = u\v) is 
that we have assumed the electron to be a point charge; for an electron of 
finite radius a the field would attain only a maximum of the order of 
magnitude \\a 1. 

We have derived the existence of the Mach cone from the phenomenological 
theory of a continuum. Physically, the cone, like the refractive index is 
caused by the molecular structure of matter. We need only consider that 
the electron moving with the velocity v > u arrives at the molecules in its 
path sooner than the radiation emitted by the previously excited molecules. 
If dispersion is taken into account (see below), then the difference between 
the phase and group velocity affects the size of the Mach cone in an interesting 
way: The velocity of the wave fronts emitted by the previously excited 
molecules is not equal to the phase velocity u, but according to Sec. 22, it equals 
the group velocity g < u. Therefore the Mach angle is somewhat smaller 
than the value given by (8) because u must be replaced by g. A precise 
measurement of the angle of the Cerenkov waves (see fig. 92 below) should 
show this2. 

B. THE RADIATION OF THE CERENKOV ELECTRON 

So far we have considered only the instantaneous picture of the field 
produced by the electron which we were able to characterize arbitrarily by 
the time coordinate t = 0. Therefore the field has apparently been independent 
of t. But for an observer in the laboratory, the field obviously depends on t. 
If the observer is at the point P' in fig. 91, he sees nothing until the surface 
of the Mach cone reaches him. For convenience fig. 91 has been drawn as if 
the observer were travelling into the cone along the dotted straight line P' P 

1See the above-mentioned paper in the Proc. of the Amsterdam Academy. There 
it will also be seer that the Mach cone is surrounded by a marginal zone of width 2 a 
in which the field decreases continuously from its maximum on the cone to zero on the 
outside. 

2 A full discussion of this statement has recently been given by H. Motz and 
L. I. Schiff, Am. Journ. Phys. 21 (1953), p. 258. This paper also shows that the dis-
cussion given in the following sections B.-D. cannot be accepted without modification. 
(Translator). 
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with a velocity opposite to v. At the point P0 on the surface of the cone the 
observer perceives the maximum field (in our approximation, actually an 
infinite field). Also at all interior points P a field is observed which becomes 
weaker with increasing distance from P0. 

Mathematically, we obtain this time dependence simply by replacing in 
the above formulae 

xx by x-vt. 
That is, we consider the point 0 in fig. 91 not as fixed but as moving with time. 
In addition we shall write y, z instead of x2, xz and express Ω in terms of the 
real potentials A, ψ in the manner of eq. (4 b). Then eq. (10 a) becomes 

(11) 2π Αχ/μ0euv = 2nψ/μ0eu* = {u2 (x-vt)2- (v2-u2) (y2 + ζ2}~Κ. 

From this it is easy to establish the validity of the relationship 

0* Ϊ * — T O * 
We use this to calculate the electric field E from the relation in Vol. Ill , 

eq. (19.7) E = - Λ - V ψ and obtain 

E, =(:4->)^^-»<><*-->{ }■"■ 
(13) E , = - ^- = ™^-(v*-U*)y\ } '". 

dy 2π 

_ dy> μ^ηζ 

E* = - —- = — (v2 - u2) z 
dz In v ; }""'· 

where { } stands for the expression inside the curly brackets of eq. (11). 
Thus the electric field has the direction of the vector 

x-vt, yy z 

which points from the instantaneous position of the electron to the point of 
observation. // , in particular, the latter has the position P0 of fig. 91, then the 
direction of the electric field coincides with a generator of the Mach cone. 

To calculate H the relation of Vol. Ill , eq. (19.6) B = curl A is used. 
According to (11) this yields besides Ĥ  = 0 

1 dAx euv ί 1~V* 
Hy = — = —— (v2-u2)z \ \ , 

(14) " to ** 2π ' I J 
1 dAx euv , 

H,= — = - - — (v2-u2)y\ 
μ0 dy 2 π v ' J ' 

The magnetic field lines therefore form circles around the trajectory of the 
electron. At the point P0 the direction of H is tangential to a circular cross-section 
of the Mach cone. 

\ }■'"· 
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The directions of E and H determine the direction of the ray S = E x H. 
At the point P0 the ray direction is perpendicular to the Mach cone. The radiated 
light is polarized] the electric vector lies in the plane passing through the 
trajectory of the electron. Thus we have proved our initial statements about 
the character of the Cerenkov radiation. We still have to show that the 
spectrum lies principally in the visible frequency range. We note also that the 
radiation proceeds almost like a shock wave because the factor { }~3 which 
occurs in the product of E and H is large only in the immediate vicinity of 
the surface of the Mach cone. 

To produce Cerenkov radiation it is best to 
use a thin resin plate on which the electrons 
impinge perpendicularly. Thus only a small 
portion of the Mach cone appears. The emitted 
radiation fills a thin annular cone perpendicular 
to that portion ; see fig. 92. The exposed area 
on a photographic plate placed behind the resin 
plate renders the annular trace of this cone 
visible. 

C. CERENKOV RADIATION WITH DISPERSION 
TAKEN INTO ACCOUNT 

So far we have carried out all calculations as 
if the index of refraction were a fixed number. 
Actually the refractive index is a function of 
frequency which rapidly approaches the value 
1 in the far ultraviolet. But as n approaches 1, 
the interval u < v < c in which the Cerenkov 
effect can take place shrinks to zero. 

Therefore our previous treatment does not yet suffice for a quantitative 
analysis of experimental observations. In order to complete the calculations 
we would have to decompose the time dependence of the radiation field into 
its Fourier components in terms of ω t, and each of these components would 
have to be provided with its own n (ω). We would then find that only those 
Fourier components which lie in the visible spectrum make a noticeable 
contribution to the Cerenkov effect, while the ultraviolet spectrum is unable 
to excite Cerenkov radiation. Therefore we can state what has already been 
indicated in the introduction: the Cerenkov effect makes electrons visible. 

However, owing to the singularity of the field on the Mach cone, the 
Fourier analysis involves certain formal difficulties. These can be avoided if, 
instead of a point-electron, an electron of finite extent (radius a) is used (see 

Fig. 92. 
Observation of Cerenkov 

radiation behind a plate of 
large dielectric constant. 
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footnote 1 on p. 341), for then the singularity is smoothed out into a transition 
zone with finite field strength. We cannot present these somewhat involved 
calculations here. Tamm (loc. cit.) overcame the above-mentioned difficulties 
by using so-called <5-f unctions1; but these calculations, too, are complicated. 

It is interesting to note that because in quantum mechanics one is forced 
to decompose the electromagnetic field into its Fourier components from the 
very start, the quantum-mechanical treatment of the Cerenkov effect2 leads 
directly to a representation of the field in which dispersion can be taken into 
account, and therefore the visible character of the Cerenkov light is directly 
put in evidence. 

Finally we wish to mention that in the author's work of 1904 a simple 
relation was derived for the force F which, because of the radiation, acts to 
decelerate the electron. If c is replaced by the phase velocity u, assuming again 
a constant refractive index, and if the electron is treated like a rigid 
sphere with uniform spatial charge distribution, this force is given by 

(15) 4:rc|F = i *2 / uA 
4 ε 0 α 2 \ v2J 

An equivalent expression was derived by Tamm (loc. cit.). For an interesting 
application of eq. (15) to ballistics see F. Klein and A. Sommerfeld, Theorie 
des Kreisels, IV, p. 925, Leipzig, 1910. 

D . A FINAL CRITICAL REMARK 

We have used the formalism of the special theory of relativity to achieve 
a simple integration of the wave equation for the case of the Cerenkov 
electron. But in this formalism we have everywhere replaced the light velocity 
c by the phase velocity u. This change must also be made in the equation 
Div Ω = 0, Vol. I l l , eq. (26.7) which therefore becomes 

(16) div A + ^ - 1 - — = div A + ψ/u2 = 0. 
tu dt u T 

This form of the equation was implicit in the above calculations. 
However, we must note that the four-component quantities Ω, Γ which 

we have used are not really four-vectors ; they are not relativistic covariants. 
Rather, they are based specifically on the system of the stationary dielectric 
medium in which the electron is moving. In order to change from this reference 
system to another (such as the rest system of the electron, for instance), one 
should not use the usual Lorentz transformation but rather Minkowski's 
electrodynamics of moving media (Vol. I l l , chap. IV). 

Similarly in G. Beck, Phys. Rev. 74, 795, 1948. 
2K. M. Watson and J. M. Jauch, Phys. Rev. 75, 1249, 1949. 
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48. Supplement on Geometrical Optics. Curved Light Rays, Sine Condition, 
Lens Formulae, Rainbow 

In Sec. 35 A we based geometrical optics on the existence of the eikonal, 
that is, a system of surfaces 

S (x, y, z) = constant 
the orthogonal trajectories of which are rays. According to (35.3) the equation 
of the eikonal is 

D (5) = (grad 5 · grad 5) = n2, (n = refractive index). 
The unit vector1 in the ray direction, hence the normal to the eikonal surface 
passing through the point in question, is given by 
/i\ grad 5 1 
(1) s = ° = - grad 5. 

]/D (S) " 
From this follows 
(2) curl (ns) = 0. 
This condition is equivalent to the existence of the eikonal. All ray bundles 
(straight or curvilinear) realized in geometrical optics are normals to surfaces 
and are distinguished from more general systems of curves in that they 
satisfy the condition (2). 

Parallel rays and rays diverging from a luminous point source, which are 
the types of rays usually considered, obviously have the property of being 
normals to surfaces. A theorem which had already been stated by Malus says 
that this property is preserved under arbitrary reflections and under refractions 
in arbitrary lens systems. This theorem is self-evident to us because of the 
existence of the eikonal before and after every reflection or refraction, and it 
is also expressed by (2). 

The following integral requirement is equivalent to the differential condi-
tion (2): 

as 

Φ'· 
2 

(2 c) I n s · ds = S2 - Sv 

(2 a) φ w (s* dx + sy dy + s* dz) = 0. 

We can also abbreviate this as follows 

(2 b) φ n s · ds = 0. 

As a consequence 

1On its use is based the work by Sommerfeld and Iris Runge cited on p. 201. I t will 
also simplify and clarify the following presentation. 
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That is, the line integral from a point 1 in the field to a point 2 is independent 
of the path and is equal to the difference between the values of the eikonal 
at the two points. Later we shall call the starting point 1 of the integral the 
"object" and the end point 2 the "image". 

A. THE CURVATURE OF LIGHT RAYS 

At the point P under consideration we construct the osculating plane to 
the curved light ray. Next we construct the tangent unit vectors s at P 
and s' at a neighboring point P' lying on the same ray. The curvature of the 
ray is defined as the angle between these two vectors divided by the distance 
P P' = ds. Since |s| = 1 the above angle equals the vector difference s' - s 
which we call ds. Hence we define the curvature as 

-* ds 
(3) K = - . 

The absolute value of this vector gives the magnitude of the curvature; the 
direction of ds in (3) gives the position of the radius of curvature in the 
osculating plane. 

For clarity we temporarily use cartesian coordinates1 to transform the 
right-hand side of (3) : 

ds ds dx ds dy dsdz 
ds dx ds dy ds ' dzds' 

The factors dx/ds... are nothing else but the components of the unit vector s. 
Hence we have 
,_ x ds ds ds ds 

ds dx dy dz 

In addition, it follows from |s|2 = 1 for every direction of the gradient: 

(3 b) 0 = — grad |s|2 = sx grad sx + sy grad sy + sz grad s2. 

Subtracting this from (3 a) one obtains 

(3c) Ê = Si(£"grads7 + Sy(5~grads7 + s , ( l " g r a d T 
The ^-component of this vector equation (put s = sx, grad = djdx) reads 

dsx _ ldsx dsy\ l^±_ djA 
Ts ~Sy\W ~**1 Λ*ζ dxl 

— -Sy curl* s + szcurly s = (curl s x s)x, 

Otherwise we would have to use tensor calculus which we wish to avoid. 
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and corresponding results hold for the y- and ^-components of (3 c). Combining 
these into a single vector relation we have 

ds 
(4) — = curl s x s. 

as 

This is true for every unit vector s and not merely for the surface normals 
of optics. 

We now use the fundamental eq. (2) which characterizes the light vector s 
and which may be written in the form 

n curl s - s x grad n = 0 
or 

(4 a) curl s = — s x grad n. 
n 

We substitute this in (4) and form the absolute values of both sides. We note 
that according to (4 a) curl s is perpendicular to s and that therefore the 
absolute value of the vector product in (4) is equal to the product of [curl s| 
and Isl. Thus we obtain 

(5) 
ds\ \ , . — = — s x grad n 
ds\ n ■ ' 

According to (3) this is equal to the curvature 

(6) K — — Is x grad n\ = — Igrad n\ sin a, a = angle (s, grad n). 
n n 

For the direction of the radius of curvature we obtain from (4) and (4 a) : 

K = — [s x grad n] x s, 
n 

or, using a well-known vector theorem, 

(6 a) nK = grad n-s (s · grad n). 

From this we see that the principal normal K, the tangent s, and the gradient 
of n all lie in one plane, namely the osculating plane. Or, to say it better, 
if we consider as given not the osculating plane but the gradient of n and 
the direction s of the light ray, then the osculating plane passes through s 

and the gradient of n. The principal normal K also lies in this plane. According 
to (4 a) the binormal has the direction of the (axial) vector curl s. 

Equation (6) contains a theorem which was already used in 35 A: in a 
homogeneous medium (n = constant) the light rays are straight lines (K = 0). 

As an example of an optically inhomogeneous medium, let us consider the 
earth's atmosphere at sunset. The refractive index n of the air decreases 
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from the sun 

Fig. 93 
Curvature of the sun's rays in the atmosphere 

of the earth. 

with altitude ; therefore the gradient of n points toward the center of the earth. 
The plane of the drawing in fig. 93 is the osculating plane of the curved light 
ray shown ; this plane is perpendicular to the earth's surface. The direction of 

K is essentially given by the first term on the right-hand side of (6 a) because 
the second term is directed 
almost horizontally. Hence 
the light ray is curved 
concavely toward the earth. 
In a more elementary way 
of speaking the light ray 
is "refracted" in the direc-
tion of increasing air den-
sity. It follows that the 
setting sun appears elevated 
as indicated by the dash-
dot tangent at the point 
P in the figure. 

In the present example 
of a medium with parallel 

strata, the equation of the curved ray can be written explicitly directly from 
the law of refraction in the form 

(6 b) n sin a = const. 

It is easy to show (by logarithmic differentiation and evaluation of 
K = dcn/ds) that this equation agrees with the generally valid eq. (6). 

B. ABBE'S SINE CONDITION 

Let us consider a system 
of lenses which is symmet-
rical about an axis P P' 
and which, by means of 
bundles of rays of finite 
opening, maps the points 

on the plane P Px in the object space as (almost) faultless images onto the plane 
P' P / in the image space. Let u and u' be the angular apertures of the 
bundles; let n and n' be the indices of refraction in front of and behind the 
system of lenses; n > n' implies immersion. 

Let (1) be the axial ray from P to P' and (2) the limiting ray of the bundle 
emitted by P (because of the rotational symmetry only one meridian plane 

^ 

Fig. 94. 

On the sine condition 
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need be considered, see fig. 94). The object point P x is at a distance I from P ; 
the rays which are emitted by P1 and are parallel to (1) and (2) shall be called 
(3) and (4). Let the distance of the image Px ' from P' be /'. We are not 
concerned with the (possibly curved) ray paths inside the lens system ; outside 
the lenses the rays are straight. 

—»> 
According to eq. (2 c) two line integrals J ws- ds between the same 

beginning and end points are equal to one another and to the difference between 
the respective values of the eikonal 

(7) (1) = ( 2 ) = S ( * ' , 0 ) - S ( * , 0 ) , 
(3) = (4) = S (* ' , / ' ) - S (x,l), 

where x and x' are the abscissae of object and image measured along the 
central axis. We wish to find the difference (3) - (1) and the equal difference 
(4) - (2). 

From (7) there follows for sufficiently small /' and / 
(8) (3) - (1) - 5 (*', /') - 5 (*', 0) - {S (x, l)-S (x, 0)} 

a a 
= v a/ 5 **'*y'^ ~l~dys<^x,y^ W l t h y' = y = 0' 

The two differential quotients, originating as they do from a Taylor expansion, 
are to be evaluated on the path 1. The first derivative is to be evaluated in 
the image space at the point P ' , the second in the object space at the point P . 
On the other hand, because S is the line integral of n s, these two differential 
quotients are equal to 

(8 a) ri sy in P' and n sy in P , respectively 

Since they are evaluated on the path (1) where sy — 0, they are both zero. 
Therefore 

(8 b) ( 3 ) - ( l ) = 0 . 

If we calculate (4) - (2) by the same method, we again obtain from the 
Taylor expansion the right-hand side of (8) where, however, the derivatives 
with respect to y are to be evaluated on the path (2) in the image and object 
space, respectively; on the other hand, by the definition of 5 as a line integral, 
these derivatives are again given by the values (8 a) but are now taken for 
the path (2). These are, see figure, 

n' sy = n' sin u' and nsy = n sin u, respectively. 

Hence one obtains 
(9) (4) - (2) = /' n' sin u'-Insin u. 
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But according to (7), (4) - (2) = (3) - (1) and since (3) - (1) = 0 by (8 b), 
also (4) - (2) = 0. This is Abbe's sine condition which we had anticipated 
on p. 307: 
(10) n' V sin u' — n I sin u. 

As was shown by Straubel1, this theorem is contained in a general recipro-
city theorem of geometrical optics. 

A similar theorem can be derived by considering two points P and Px 

which are axially displaced with respect to one another instead of being 
displaced transversely as before. The assumption now is that light bundles 
of finite opening project these points onto two image points Ρ ' , Ρ / which 
are also axially displaced with respect to one another. The only difference 
in this arrangement is that in all the above formulae the derivatives of the 
eikonal are to be taken with respect to x and x' instead of y and y'. The 
result is 

(3)-(l) = -nl + n'l'9 

(4) - (2) =-nlcosu + n' V cosu', 
which yields the relation 
(11) n'V (1-cosw') = nl(\-cosu). 

The incompatibility of this expression with the sine condition (10) makes it 
clear that no optical system can simultaneously produce sharp images of 
transversally and axially neighboring points by means of ray bundles with 
wide angles of opening. 

C. ON THE STRUCTURE OF RECTILINEAR RAY BUNDLES 

Ray bundles in homogeneous media and consisting of straight lines are, 
of course, of special interest. Kummer investigated the most general, not 
necessarily normal, bundles of straight lines. We shall limit ourselves solely 
to bundles which are possible in optics, that is, to those which for n = constant 
satisfy the condition [eq. (2)] 
(12) curl s = 0. 

We call one ray the central ray and consider only those rays which 
deviate a very slight distance from the central ray. That is, we consider an 
infinitesimally thin bundle. We construct a plane E perpendicular to the 
central ray and mark the points at which the rays of our infinitesimally small 
bundle intersect the plane. We do the same with a parallel plane E' which 
is located at the (small) distance δ from E. The corresponding points on the 
planes E and E' are related to one another by an affine transformation. 

1K. Straubel, Physikal. ZS. 4, 114, 1902. 
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According to the fundamental theorem of the kinematics of continuous media 
(see Vol. II, Sec. 1, specialized to a two-dimensional continuum), this trans-
formation is composed of a deformation in two mutually perpendicular 
directions (symmetrical transformation coefticients) and a rotation about the 
axis perpendicular to these directions (antisymmetric transformation). A small 
circle drawn about the intersection of the central ray on the plane E is trans-
formed into an ellipse by the deformation, and this ellipse is rotated by the 

rotational transformation through an angle given by — curl s. This rotation 

is analogous to the angular velocity in hydrodynamics. Our condition (12) 
applied to the central ray states that the rotational component of the trans-
formation vanishes and that therefore the principal axes of the deformation 
ellipses are parallel for all planes E, E'. These axes lie in two fixed mutually 
perpendicular planes which are the symmetry planes of the structure of the ray 
bundle. 

As such they must contain the two degenerate cases of the deformation 
ellipse in which one of the two principal axes shrinks to zero. These degenerate 
ellipses are called the focal lines of the ray bundle. They are perpendicular to 
one another and to the central ray [Sturm's theorem). The points where the 
focal lines intersect the central ray are called the focal points of the ray bundle. 
The distance between the two focal points is called the astigmatic difference d. 
(In the case of general Kummer rays the two focal lines are not necessarily 
perpendicular; non-optical ray complexes have no symmetry planes but, 
since curl s Φ 0, they have a positive or negative sense of rotation.) 

From p. 208 we know that to every optical ray bundle there corresponds a 
system of parallel surfaces, the surfaces S = constant. In the simplest case 
of the spherical wave (and its special case, the plane wave) these surfaces are 
concentric spheres (or parallel planes). In this case the positions of the 
symmetry planes and of the perpendicular focal lines are indeterminate. The 
two focal points coincide, forming only one focal point; d becomes zero and 
the ray bundle converges to the focal point. This situation is characterized 
as anastigmatism. 

D. ON THE LENS FORMULA 

(n- l ) (1/2^+1/jy. 

In high school one learns the lens formula 

1 + 1 = 1 
a ^ b / ' 

a = distance from object to lens 
b = distance from lens to image 
/ = principal focal length of the lens; 1// = 

(13) 
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We shall show that this formula can be proved by the above method without 
recourse to trigonometry, to the law of refraction or to special graphical 
constructions. 

The object point P emits spherical waves. According to (35.6) their eikonal 
for n = 1 (air) and the origin at P is 

5 = ]/x2 + y2 + z2. 

We consider the anastigmatic bundle which falls perpendicularly on the lens 
and place the 2-axis along the central ray of this bundle. Near the lens 
(z = a + ζ) we have, neglecting higher powers of x, y and £, 

We now continue the bundle into the interior of the lens. Let the front surface 
of the lens be a sphere of radius Rx with its center at # = y = 0, z = a + R\-
Its equation is therefore 
(14 a) x2 + y2 + (z-a- RJ2 = Rx

2. 

The point where the central ray intersects this sphere shall be called Tv 

We assume that the perpendicularly incident bundle remains anastigmatic 
after being refracted. (This is not the case for oblique incidence.) The proof 
that this assumption is correct lies in the fact that it permits us to satisfy 
the boundary condition (continuity of 5 in passing through the spherical 
surface Rx). We think of the refracted bundle as rectilinearly extended 
backward through the boundary surface to its point of convergence Qv The 
distance Qx 7\ shall be pv The eikonal of the ray bundle emerging from Q± 
is analogous to (14), where however a is replaced by p±: 

(14b) s = n^Pl + C + ^ - ^ + S 0 . 

The factor n takes into account the fact that this ray bundle must be thought 
of as propagating in glass not only inside the lens but also outside it, since the 
bundle was constructed by a rectilinear extension across the boundary surface. 
The term 50 is the integration constant available to us in integrating the 
differential equation of the eikonal. 

We require that the eqs. (14) and (14 b) connect continuously with each 
other on the sphere (14 a) not only at the point 7\ on the central ray (ζ = 0, 
x = y = o) but also at points in its vicinity. If, as before, we set z = a + f, 
these latter points are, according to (14 a), characterized by 

(14) 

(14 c) 
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Substituting this in (14) and (14 b) one obtains 

x2 + y2 x2 + y2 

(15) S = 
a + -

2 i?x 2 « 

x2 + y2 x2 + y2 

The available constant S0 is chosen such that the constant terms in both lines 
are equal. A comparison of the variable terms yields 

x2 + y2 x2 + y2 x2 + y2 x2 + y2 

. _| = M — — ■ - — h w 

and hence 

(16) 

2RX
 x 2 a 2RX 2 Pl 

n-1 \ n 
Ri a Pi' 

Next we consider a situation where the image point P' is the source of 
spherical waves which are refracted at the rear lens surface of radius R2. 
The point where the central ray intersects this spherical surface shall be T2. 
If Rv a, px are replaced by R2, b, p2, then eq. (15) is again valid. p2 is now the 
distance between T2 and the convergence point Q2 of the bundle refracted 
at the rear surface of the lens. Equation (16) becomes then 

(16a) _ ^ = . 
K2 b p2 

But since P' is to be the image point of P, the rays emerging from P' 
must coincide inside the lens with the previously considered rays emitted 
by P. Hence Q2 and Qx must coincide, and if we write henceforth Q1 = Q2 = Q, 
we obtain 

(16b) QT^QT.+ T.T,. 

From it follows for ΤτΤ2 = d = thickness of the lens and with the same 
meanings of px and p2, that 

(17) -p2 = Pi + d-

A negative sign appears on the left because with respect to the rear surface 
of the lens the convergence point Q has the opposite position from that with 
respect to the front surface. 

For a "thin" lens (d<£ip12) one has p2 = -pv The sum of the two eqs. 
(16) and (16 a) yields directly the lens formula (15) which was to be proved. In 
order for the latter to be valid, it is not at all necessary for d to be small 
in any absolute sense. Our derivation requires only that d be small com-
pared to the radii of curvature Rv R2 (or, what is approximately the same, 
with respect to pv p2). 
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In order to progress somewhat beyond the usual school curriculum we 
shall also find the generalization for a lens of finite thickness. 

For this purpose we calculate from (16) 

n I \a Äx / 
and from (16 a) and (17) 

- A - P i = ΐ //_!__ !L"J.\ 
n ll\b Rj-

Adding these two equations as we previously added eqs. (16) and (16 a), we obtain 
as a generalization of (13) 

We have restricted ourselves to the case of a single lens (same n in 
front and back). The result for a system of lenses is, of course, less simple 
than eq. (18). Furthermore, we have considered only the perpendicularly 
incident bundle. As was remarked above, an obliquely incident bundle does 
not remain anastigmatic after refraction; the resulting astigmatic ray 
structure has two focal lines, one of which lies in the plane of incidence and 
the other in the perpendicular plane. We wish to remark that the astigmatic 
bundle is decidedly the normal case: only with special axially symmetric 
arrangements is the anastigmatic character of the incident plane or spherical 
wave preserved. 

As was noted above at eq. (13), it has not been necessary to make explicit 
use of the law of refraction in this entire section C. This is because the law 
of refraction by its very derivation (see beginning of Sec. 3) guarantees the 
equality of the phases of the incident and refracted waves. On the other hand, 
the eikonal, see Sec. 35 A, represents nothing but the phase of the wave; thus 
our requirement that the eikonal be continuous at the boundary surfaces of 
the lens represents an entirely valid substitute for the law of refraction. 
Indeed, the law of refraction can be obtained directly from our present eq. (2 b). 
It is only necessary to apply the latter to a shallow rectangle which surrounds 
and cuts across an element of surface of the refractive medium. Then (2 b) 
reads 

(18 a) n1s1 = n2s2> 

where sx and s2 are the tangential components of our unit vector and hence 
st = sin a, s2 = sin /?. Thus eq. (18 a) is indeed Snell's law of refraction. 

(18) 
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E. PRODUCTION OF CURVED LIGHT RAYS BY DIFFUSION AND A REMARK ON 
THE THEORY OF THE RAINBOW 

By means of a diffusion experiment it is possible to construct an optically 
inhomogeneous medium whose index of refraction varies in space in a simple 
and easily represented manner. A narrow tall parallel-walled glass tank 
is filled in its lower half, x < 0, with glycerine and in its upper half, x > 0, 
with water. While initially (t = 0) theTë 
exists a sharp plane of separation between 
the two media (x = 0), this separation 
becomes less and less distinct owing to 
diffusion. At x = 0 the concentration u 
always retains the value u = 1/2 which 
corresponds to a perfect mixture. At this 
point also the concentration curve u (x) 
has an inflection tangent whose slope 
gradually increases with time. (Curves 1 
and 2 in the figure.) At large positive values 
of x the curve u (x) approaches the value 0 
while at large negative values of x it 
approaches 1. As t ->- oo (perfect mixture if 
the very small effect of gravity is neglected) 
w-* 1/2 (the line oo in the figure). 

We may assume that the refractive 
index n behaves qualitatively like u, so 
that fig. 95 may also be used to represent n. 
Then we need only to read the figure with 
the following new designations: 

the straight line u = 0 becomes n 

n(x)=n£ 

Fig. 95. 
Variation of the concentration u 
and the refractive index n in the 

diffusion experiment. 

ft Water = fllf 

the straight line u = 1 becomes n = WGiyc. = n2, 

— becomes n = — {nx-\- n2). the straight line u ·■ 

The significant point of this n(x) diagram is the inflection point 
nx + n2 (19) x = 0, n(0) = where ri (0) = maximum of n' (x). 

At this point the optical inhomogeneity of the medium, as represented by the 
gradient of n, is greatest. The inhomogeneity vanishes only at / = oo. 

Let us now paste tinfoil on the front surface of the tank so that this 
surface becomes opaque except for a narrow slit which is inclined 45° to 
the horizontal. Let us also illuminate the rear surface with perpendicularly 
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/ o minutes 

incident light (arc lamp with collimator). One might think that a rectilinear 
image of the 45° slit should appear on an observation screen placed in front 
of the slit because each incident light ray at its position x passes through a 
horizontal layer with constant n = n (x). But this is not so; the light ray 
is curved because n' (x) Φ 0, and because of the direction of the gradient of n, 
the center of curvature of the ray lies in the lower part of the trough; the 
center lies higher where the gradient of n is greater. Since the tank is very 

narrow, the curved light path is 
very short, and we may approximate 
it by a circular arc with a horizon-
tal tangent at the rear wall of the 
trough and a downward sloping 
tangent at the front wall. If d is 
the inside width of the trough and 
R the radius of the circular path, 
the slope of the tangent at the 
front wall is γ = djR. According 

I to eq. (6) 

Fig. 96. 

The light deflection in the diffusion experi-
ment. The dashed lines indicated below the 
points of maximum light deflection should 
be imagined as colored in the rainbow colors. 

(19 a) 
R 

dn 
dx 

because the angle a in eq. (6) is equal to π/2 (the gradient of n is perpendicular 
to the approximately horizontal light path). On emerging from the trough 
the slope y is increased by a factor n (refraction at the interface with the 
thinner medium air). Hence the slope of the emerging light rays is given by 

(19 b) γ' = ηγ = d dn 
dx 

The image point on the observation screen is deflected downward a distance 
corresponding to this angle. The deflection is greatest at the level x = 0; 
for large positive and negative values of x the deflection goes to zero so that 
the upper and lower ends of the image curve form a straight line inclined at 45°. 

Figure 96 shows a sketch of the time variation of the image curve which 
was prepared during a seminar demonstration by H. Ott, who was at 
that time an assistant at our institute. In this figure 1 is the shape of the 
curve immediately after the start of the diffusion process ; 31 is its appearance 
30 minutes later, 61 is its appearance another 30 minutes later and 181 is the 
curve two hours later when the mixing process is almost complete. This 
experiment was first performed by O. Wiener1 and is described by 

10. Wiener, Ann. d. Phys. (Lpz.) 49, 105, 1893. 
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Kohlrausch in 'Traktische Physik" as a method of measuring the diffusion 
constant k. In order to explain this application we must digress very 
briefly into the theory of diffusion. 

In the one-dimensional case the differential equation of diffusion is 

(20) 
du d2u 

~dt= ~dx* 

If the following substitution, which suggests itself for dimensional reasons, 
is made 

(20 a) 

then 

and by (20) 

It follows that 

« = / ( « . 

du Ë 

ξ ]/Tt' 

d*u 1 

/" (ί) Im 

where A is a constant of integration. Hence from (20 a) 

(20 b) du - l A «-*·/«« 

(20 c) d2u 

2{kt)'l 
■ Ae-'Ί*1". 

As a consequence of (20 b) u can be represented by the Gaussian error integral, 
a representation which is similar to that derived in Vol. VI, eq. (13.19) for an 
analogous diffusion problem. For, if B is a second constant of integration. 

(20 d) 

X 

U = ~ A (e-*''iktdx + B = }πΑ Φ (*/2]/kt) + B, 
]/kt J 

Φ(ρ) = dec. 

Rewriting the above equations in terms of the refractive index n in place 
of «, we conclude from the initial conditions for n 

for t = 0 and x > 0, n = wx 
for * = 0 and x<0 
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and from (20 d) that 

ηι = ]/πΑ + B, ηζ = -]/πΑ + B, 

(21) Λ-2ΥΪ' 2 * 

From this it follows according to (20 d) that for x = 0 and arbitrary t 

(21 a) n(0) = * L ± i . 

which agrees with our assertion (19). Next we calculate from (20 b) and (21), 
again at x = 0, 

(21b) ^ = ^ L 

From this the maximum angle of emergence γ' of the light ray is found by 
(19 b) to be 

(21 c) y> = ^ÇàS, 

which determines the maximum deflection of the light ray on the curves in 
fig. 96. This deflection decreases with time as l/]/tf. Lastly, we conclude from 
(20 c) that 

ΊΓ* =* T7ÏW % ^ e~XVAkt f o r x = ° a n d a11 L 
dx2 4 ( * 0 / f \π 

The curve of the index of refraction plotted as a function of x has a permanent 
inflection point at x = 0. 

Wiener used eq. (21 c) to calculate the diffusion constant k from the 
measured deflections y\ In order to obtain a sharp deflection curve with a 
well-defined maximum deviation, he used monochromatic light. However we 
are interested in a phenomenon which appears when white light is used: 
the lowest point of the deflection curve, particularly of curve 1 in fig. 96, 
is decomposed into a horizontally narrow but vertically well-separated 
spectrum, which is indicated in the figure by seven horizontal lines (the ' 'seven'' 
colors of the rainbow starting with red at the top and ending with violet at 
the bottom). This spectrum rapidly contracts as the diffusion process proceeds 
in time and is just barely recognizable in curve 2 of fig. 96. At a small distance 
from the point of maximum deflection the spectrum is quite indistinct even 
in curve 1. All other points on curves 1, 2, etc. appear white. Let us interpret 
this phenomenon on the basis of the wave theory. 

By (21 c) the angle γ' depends on wavelength, because of the dispersion 
of nx and n2. Therefore the various colors are deflected in different directions 
and appear on the observation screen in sequence from red at the top to violet 

(21 d) 
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at the bottom. We can no longer restrict ourselves to the layer at x = 0 as 
before, but in order to obtain a finite color intensity on the screen we must 
also consider the neighboring layers. If we denote by n (x, λ) the dispersion 
of the ray passing through the layer at x, then not only n (0, λ) but also the 
behavior of n (x, λ) in the vicinity of x = 0 is of importance, n is stationary 
at x = 0 and only there. The curve n (x, λ) has, according to (21 d), an 
inflection point there. This means that in the immediate vicinity of x = 0 
the deflection angle γ' [see eq. (19 b)] is the same as at x = 0. Here the color 
effect is amplified while at points x Φ 0 it is extinguished owing to super-
position. Only at the very beginning of the diffusion process does the resulting 
spectrum show considerable extension. The denominator ]/& t is (21 c) causes 
not only the deflection but also the dispersion to decrease rapidly. The latter 
is already considerably reduced in curve 2 of fig. 96 as compared to curve 1. 

We have treated this example in some detail in order to illustrate the 
essential idea of the theory of the rainbow. In order for the rays which are 
reflected, refracted and dispersed in the water droplets to enter the eye as 
parallel rays with sufficient intensity, the wave front (or rather its trace on 
the plane of incidence) must have an inflection point. (Since we are here 
dealing with geometrical optics, we should really say "eikonal surface'' instead 
of "wave front".) This necessary and sufficient condition fixes the radius of 
the principal rainbow (single reflection in the interior of the droplet) at about 
41° and that of the secondary rainbow (double reflection) at about 51°20'. 
It is therefore clear that the rays contributing to the rainbow have an extremal 
deviation compared to all the other diverging rays which emerge from the 
droplets; for, indeed, the deviation of the inflection tangent perpendicular 
to the rainbow is an extremum compared to that of all other tangents. (In 
our diffusion experiment this was shown by the fact that the color spectrum 
appeared only at the lowest point of the deflection curve.) From this extremal 
position of the effective rays it follows that for the principal rainbow the 
diverging rays form a smaller angle with the incident rays of the sun than do 
the parallel rays and that therefore the diverging rays reach the eye from 
below the rainbow; it further follows that for the secondary rainbow the 
diverging rays form a larger angle with the incident radiation than do the 
parallel rays and that therefore the diverging rays reach the eye from above 
the bow; therefore the zone between the two rainbows appears darker than 
the regions below the principal and above the secondary rainbow. 

We have emphasized before (p. 179) that, strictly speaking, the rainbow 
represents a difficult diffraction problem whose character changes from one 
case to the next depending on the sizes of the drops. As; for^the wave-



352 ADDENDA, CHIEFLY TO THE THEORY OF DIFFRACTION 49 . 

theoretical treatment of the rainbow, we shall limit ourselves to a result which 
is directly connected with the existence of the inflection point. If we wish to 
investigate the propagation of a cylindrical wave surface, for example by 
the saddle-point method, and represent the trace of the wave surface by 
y = S (x), then we must look for the point x = x0 where S' (x0) = 0. To do 
this we develop S (x) in a Taylor series about this point: 

The radiation is in general determined by the curvature of the trace of this 
wave surface as given by S" (x0). Since we are concerned with the approxima-
tion of an integral of the form 

I exp (i k y) dx, 

we are led to a Fresnel integral 

/ , X P ( ,W,* , r-,-* » I r - W . 
But if the trace has an inflection point S" (x0) — 0, that is, if its curvature 
vanishes, this approximation breaks down; in place of the Fresnel integral 
one is then led to an Airy integral of the form 

This could also be called a "rainbow integral", for it is characteristic of the 
quantitative investigation of the color distribution in the rainbow and of all 
similarly degenerate wave problems. One of these latter problems is 
discussed in detail in connection with the asymptotic representations of the 
Hankel functions in Vol. VI, Sec. 21 D; see in particular the final remarks in 
that section. Here we have only been interested in showing that the principal 
features of that most impressive of celestial phenomena, the rainbow, can be 
understood at least qualitatively in terms of geometrical optics and that, 
moreover, geometrical optics provides us with a hint for the quantitative 
treatment of the problem. 

49. On the Nature of White Light. Photon Theory and Complementarity 

In the historical chart of Sec. 1 we have listed an important achievement 
of Lord Rayleigh in the field of optics : his theory of natural white light as a 
completely random process. We shall first quote a remark made by Rayleigh1 

which concerns the opposite of white light, that is to say, regular monochromatic 
waves. 

1Phil. Mag. 50, 135, 1900, Sei. Papers, Vol. IV, p. 486. 
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'To suppose, as is sometimes done in optical speculations, that a train 
of simple waves may begin at a given epoch, continue for a certain time 

and ultimately cease, is a contradiction in terms. A like contradic-
tion is involved if we speak of unpolarized light as homogeneous, really homo-
geneous light being necessarily polarized/ ' 

Regarding the last point in this quotation we refer to our Sec. 2 where 
the elliptic polarization of an ideal monochromatic and plane wave was proved 
to be a mathematical consequence of Maxwell's equations. The first sentence 
quoted has been taken into account in Sec. 22 where a wave train of the type 
described by Rayleigh was decomposed into its Fourier spectrum and was 
therefore treated not as monochromatic but rather as polychromatic. 

Concerning the problem of white light we again quote a remark2 by 
Lord Rayleigh which refers to the then recent discovery by Röntgen: "The 
conclusion of Stokes and J. J. Thompson 'that the Röntgen rays are not 
waves of very short wavelength, but impulses', surprises me. From the fact 
of their being highly condensed impulses, I should conclude on the contrary 
that they are waves of short wavelength... What then becomes of Fourier's 
theorem... ?" 

"Is it contended that previous to resolution (whether merely theoretical, 
or practically effected by the spectroscope) the vibrations of ordinary (e. g. 
white) light are regular, and thus distinguished from disturbances made up 
of impulses ? This view.. . has been shown to be untenable by Gouy, Schuster, 
and the present writer. A curve representative of white light, if it were drawn 
upon paper, would show no sequences of similar waves." 

We wish to add that Emil Wiechert, independently of Stokes, advanced 
the same hypothesis regarding the nature of Röntgen rays and that the author 
cooperated with him on several papers at the beginning of this century. In 
contrast to these theories, Planck, in connection with his discovery of the 
quantum of action (see p. 9), recognized the necessity of assuming the complete 
phase independence of "natural light". Laue's discovery subsequently put 
the individual Fourier components of the continuous Röntgen spectrum into 
direct evidence and proved the distinction between pulsed and wave radiation 
to be meaningless, in complete agreement with Rayleigh. 

We use the words white light and natural light synonymously. We 
perceive the sun's natural light as white, i. e. as lacking all spectral colors, 
because the eye is adapted to the sun; that is to say, because our eye and 
the associated physiological-psychological vision apparatus has in its evolution-

2 Röntgen Rays and Ordinary Light. Nature 57, 607, 1898 and Sei. Papers, Vol. IV, 
p. 353. 

23 
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ary development adapted itself to the spectrum of the sun. If we lived in the 
vicinity of a red giant, we would presumably perceive its red color as the 
normal white. As is well known, Goethe abhorred the theory that white light 
is a mixture of the seven colors of the rainbow (he was certainly correct in 
regard to the white-sensation which he had primarily in mind). But the 
rainbow should have convinced him that white light is decomposed into colors 
by a spectral apparatus (in this case water droplets). In this decomposition 
the periodicity originates not from the primary sun light but from the 
frequency-sensitive spectral apparatus. 

Gouy (1886) was probably the first to ascertain that a line grating diffracts 
a single "plane" pulse1 in the same manner as a plane wave. An oblique-
ly incident primary pulse (or a random sequence of mutually independent 
pulses) impinges on the various grating lines at rhythmically equal time 
intervals. Thereupon the grating lines emit a staggered sequence of second-
ary pulses2; one may refer to fig. 37, bearing in mind, however, that it 
describes continuous waves, while we are now dealing with a discrete se-
quence of secondary cylindrical excitations. At a sufficiently large distance 
from the grating and in any given direction these pulses are spaced a con-
stant distance 

λ = d (a - OQ) 

apart (a is the direction cosine of the incident pulse with respect to the plane 
of the grating). This is our former grating formula (32.2) for h = 1. However 
λ is now not the wavelength of a monochromatic sinusoid but is the distance 
between pulses. The white character of the light has thereby not been lost 
entirely. Our sequence of secondary pulses is still far from being monochro-
matic. The periodicity originates in the grating and not in the primary pulse. 
It differs for different directions of observation. The higher order spectra 
(h > 1) would be obtained if the secondary pulse were decomposed into pure 
sine waves in the manner of Fourier, that is, into a fundamental oscillation 
of wavelength λ and harmonics of wavelengths λ/h. 

But what is the situation in the case of a prism which also produces 
monochromatic waves from white light without seeming to possess any 
periodic structure as the grating does? Gouy answers this question in the 

x By "plane pulse" we mean the counterpart of a "plane wave", that is to say an 
electromagnetic disturbance which has an appreciable intensity only between two 
parallel infinite planes a small distance apart and which has a constant instantaneous 
value on every plane parallel to these two. 

2 By a "secondary pulse" we mean an excitation which has an appreciable intensity 
only between two coaxial cylinder surfaces centered about a grating line and which 
propagates outward in this cylindrical shape with the velocity of light. 
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following manner : a wide spectral line, i. e. a certain portion of the continuous 
spectrum, represents from a wave-optical viewpoint a modulated wave train 
(with beats between neighboring frequencies). These beats propagate with 
the group velocity and therefore lag behind the wave train which propagates 
with the phase velocity. This results in a periodic variation of the shape of 
the wave train : the wave train assumes the same shape only when the group 
has lagged behind the phase by one whole wavelength. The light path inside 
the prism increases continuously from the edge to the base. Those light paths 
which satisfy the above condition for any given wavelength define on the 
surface of emergence a sequence of equidistant parallel lines comparable to 
the grating structure. The resulting regularity of the emerging waves is thus 
due to the difference between group and phase velocity or, as we may also 
say, it is due to dispersion. Again the regularity originates in the prism and 
not in the incident (more or less white or colored) light. 

With this concept of pulses we have extended the older, overly restricted 
conception of the wave theory in such a way that it comes closer to Einstein's 
hypothesis of the light-quantum. Indeed the mechanics of light quanta 
has haunted the science of optics from its very beginning. 

What else is Fermat's principle of the shortest time of arrival but the 
principle of the shortest (geodetic) line in the mechanics of a force-free mass 
point ? Both give the same result because in the force-free case the time of 
travel and the path length are proportional to one another. The same holds 
for the principle of least action because of the constancy of the kinetic energy, 
see Vol. I, eq. (37.1) and (37.2). Fermat's principle provides us with a truly 
popular exercise in the method of maxima and minima: given the starting 
and end points of the path and given the velocities in the first and second 
media, the incident particle of light travels along that path by which it 
reaches the end point in the second medium in the shortest possible time. 
The same is true if the end point also lies in the first medium and the accessory 
condition is added that the particle shall touch the surface ̂ separating media 
1 and 2. Let us here use this principle to calculate the curvature of the 
trajectory in an inhomogeneous medium which we calculated in the preceding 
paragraph by means of the theory of the eikonal. 

We start with the principle 
p 

(1) ojdt = 0, 
Po 

where P 0 and P are the prescribed starting and end points of the path. Let us 
consider a stratified medium in which therefore the velocity u of the light particles 
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(phase velocity of the light) is a given function of the coordinate x alone. 
We replace u by the velocity ratio n (x) = cju (x) where c is a standard 
velocity, the magnitude of which is of no importance here. (1) becomes then 

p 

-Ô I n(x)ds = 0, (2) 
P. 

which we write in the form 

F (x, y') dx = 0, F (x, y') = n (x) ]/\ + y'2. 

■l· The Lagrangian derivative for this variational problem reads 
d dF dF _ 
dx dy' dy 

and hence, since F is independent of y 
d dF , v d y' dn y' 

3 -j—r-7 = n (x) -=-. , y + -=- Ί /
 y = 0. 

dx dy dx y \ _j_ y'2 #% l· J _|_ /y'2 
If a is the angle wrhich the tangent to the curve y = y (x) forms with the 
#-axis, then 
/A\
(4)
Therefore the last term in the double eq. (3) equals sin a dn/dx, the next to 
the last term equals n (x) cos a dcnjdx, and eq. (3) becomes 

(5) n (x) cos a ——f- sin a — = 0. 

But now 

(6) dx = cos a ds, hence cos a-r— = -:— — K, 
dx ds 

where K is the curvature of the curve y (x). Combining eqs. (5) and (6) we 
obtain 

(7) \K\ = — Igrad n\ sin a. 

This is our eq. (48.6). As Hamilton had already recognized, geometrical optics 
is identical with the ordinary mechanics of mass points not only for homogeneous 
but also for inhomogeneous media. 

However to pass from this primitive corpuscular theory of light to the 
modern ' 'photon theory" required a bold step into quantum theory, a step 
which was taken by Einstein in 1905: the energy of the photon had to be 
set equal to hv and its momentum to hvjc. Only in this way does one obtain 
the energy relations which are so drastically brought into evidence in the 
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photoelectric effect, the Compton effect, and in the short wave limit of the 
continuous X-ray spectrum. Only in this way can classical optics be brought 
into harmony with atomic physics. 

It is significant that Einstein made this advance in the quantum theory 
in the same year in which the theory of relativity was created. L. de Broglie1 

emphasizes that only relativistic mechanics satisfies the requirements of the 
photon theory. According to classical mechanics we would have for a photon 
of energy W, momentum g and velocity u 

W = — u2, g = mu, hence g = y2 m W. 

If we substitute for the mass the value obtained from the generally valid 
relationship W — m c2, then we obtain 

and not 
_W__hjv_ 

c c 

as required by the photon theory. A similar discrepancy by a factor 2 appears 
in the expression for the light pressure, depending upon whether it is calculated 
from classical mechanics or, as in Vol. I l l , Sec. 31, eq. (15), from relativistic 
electrodynamics. 

The photon theory is a corpuscular theory of light such as the one which 
Newton envisioned. The wave theory of light has equal status with the 
photon theory. Which of the two will give the correct answer depends on 
the question that is posed in each particular experiment. Each completes 
the other — they are complementary. At the end of Chapter II we discussed 
the fact that the two theories do not contradict one another, and we 
mentioned the resulting far-reaching philosophical consequences. One is 
taught in school that the eye "sees the light waves". That is a 
myth. What our eye "sees" is the photoelectric processes taking place 
in the retina which, depending on the magnitude hv of the incident 
light quanta, produce the varicolored world of our visual impressions. 
Certainly as far as our primary sensations go, there is no preference for a 
wave structure of light (however imbued we may be with it) over a quantum 
structure. It is fitting that we should conclude our volume on Optics by 
emphasizing once more that most remarkable and epistemologically most 
important result, the complementarity of wave and corpuscle. 

Rev. Mod. Physics Vol. 21, p. 345, 1949, on Einstein's seventieth birthday. 



PROBLEMS 

CHAPTER I. 

1.1. Superposition of two parallel linear oscillations of equal frequency. 

Let the two oscillations (in real notation) be 

(1) xx = ax cos (ω t + a t), x2 = a2 cos (ω t + a2) 

By forming the vectorial (complex) sum of these oscillations, find the amplitude 
a and the phase a of the resulting oscillation 

(2) x = xx + x2
 = a c o s («> / + a). 

1.2 The curve described by the electric and magnetic vectors of a plane wave 
during one period. 

In the ideal case (perfectly plane and perfectly monochromatic wave) this 
curve is an ellipse. Under what conditions does this ellipse degenerate into a 
circle or a straight line ? 

1.3. Concerning the surface charge on the boundary between I and I I . 

Show that the boundary surface must be free of charges in Sec. 3 B as well 
as in Sec. 3 A. 

1.4 A check on figure 4. 

Find the equations of the parabolas Rp and Rs as functions of a. 

1.5 On the calculation of the reflective power r and the transmissivity d. 

Confirm the energy theorem r + d = 1 for arbitrary material constants ε, μ. 

1.6. Elliptic polarization of light through total reflection. 

Starting with eq. (5.11), prove eq. (5.12) for the maximum phase difference 
γ - δ and the associated angle of incidence ccmax> 

1.7. The Perot-Fabry maxima considered as a resonance effect. 

Following a suggestion by Kossel1, investigate the electromagnetic eigen-
vibrations of the Perot-Fabry air space between the silvered plates of the étalon. 
Consider only the case where the field depends only on the y-coordinate (perpen-

XW. Kossel, Ann. d. Phys. (Lpz.) 36, 1939; see remark at the bottom of p. 191 
and top of p. 192 of that paper. 
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dicular to the plates) and where the silvering is so heavy that, for instance, the 
electric vector E oscillates everywhere parallel to the plates. Determine the 
frequency of this free oscillation and show that it agrees with the frequency of 
the maxima of the forced oscillation which is excited by a perpendicularly incident 
/»-polarized wave. 

1.8 Wiener's experiment with obliquely incident light. 

Investigate the appearance of interference fringes for arbitrary angles of 
incidence a and for both cases of polarization. 

CHAPTER III. 

111.1. The reduced mass in the problem of intra-molecular oscillations. 

For a molecule consisting of a positive ion of mass Mx and a negative ion of 

mass M2, prove the expression 

which was used in (18.3). The ions are to be thought of as idealized mass points 
which attract one another with a central force. The same expression appeared 
in connection with the inelastic collision of two mass points in Vol. I, eq. (3.28 b). 

111.2. The deflection angle Ô of a prism. 

Prove that the deflection angle is a minimum for symmetrical ray paths. 

111.3 Direct vision and achromatic prisms. 

For small prism angles and small angles of incidence calculate the deflec-
tion ô due to a double prism composed of two different glasses (refractive indices 
nlt nt ; prism angles φν φ2) ; prism 1 is upright, prism 2 is upside down so that 
its edge adjoins the base surface of 1. Determine the ratio φ21ψι for <5 = 0 (direct 
vision prism) and for ddjdk = 0 (achromatic prism). 

III.4. Zeeman effect and Larmor precession. 

Treat the motion of an electron in an arbitrary atomic field describable by a 
potential V (r) a) when an additional homogeneous magnetic field B is present and 
b) when, instead, the motion is referred to a coordinate system which rotates with 
the angular velocity ω about the direction of B as an axis. Show that the motions 
a) and b) are the same when 

1 e 
ω = B (Formula of the Larmor precession). 

Assume that the ordinary centrifugal force is negligible compared to the Coriolis 
force. 
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CHAPTER IV 

IV. 1. Geometrical derivation of the normal surface. 

In Vol. II, solution to exercise 1.6, the following two theorems were derived 
from the invariants of a tensor surface represented by an ellipsoid with principal 
axes a, b, c: 

a) The sum of the inverse squares of any three mutually perpendicular semi-
diameters is independent of the spatial orientation; hence, in particular, it is 
equal to 

1 1 1 

b) The volume of any circumscribed parallelepiped of the ellipsoid is inde-
pendent of its particular position or shape; hence, in particular, it is equal to 

2a · 2b · 2 c. 

Apply these theorems to the index ellipsoid and to the construction described 
in Sec. 25, eqs. (12) to (19) and derive in this way the equation of the normal surface. 

IV.2 Elementary geometrical derivation of the ray surface. 

Apply the theorems a), b) of the previous exercise to Fresnel's ellipsoid and 
supplement the construction of Sec. 25 by a corresponding construction for the field 
vector E. In this way obtain the equation of the ray surface. 

IV.3. Proof of the approximate formula (31.9) for the phase difference due to the 
illumination of a crystal plate with converging light. 

A sufficiently good approximation is obtained if in the exact formula for the 
phase difference between the two rays ABD and A C in fig. 47 one replaces ßx 

and ß2 by a suitable mean angle ß and if one treats both ß1 and ß2 as small 
quantities. 



SOLUTIONS TO PROBLEMS 

1.1. The usual method would be to set 

χλ —- αλ cos τ, x2 = a2 cos (τ + δ), τ = cot + αχ, ô = α2 - alf 

#ι + #2 = (Λι 4~ α2 c o s *5) c o s τ - α2 sm <5 sin τ. 

Comparison with eq. (2) in the exercise yields then 

ax + a2 cos δ = a cos (a - ax), a2 sin <5 = a sin (a - ax) 
hence 

(1) a2 = (ax + a2cosô)2 + a2
2s in2o = ax

2 + a2
2 + 2a1a2cos<5, 

(2) tan (»-04) 
ai H" #2 COS ^ 

I t is much simpler, however, to proceed in the 
following manner: omitting the common factor 
eioit one writes: 

xx = axe
i(tit = /!./»*« 

where Λ^, #2 represent the vectors O PlfO P2 of lengths 
α1,α2 in the complex plane. Their sum is represented 
in fig. 97 by the diagonal OQ of the parallelogram 
formed from xx and x2. By the theorem of Pythagoras 
the length a of the diagonal is given by 

(3) a2 = ax
2 + #2

2 + 2axa2cos δ 

imag, 

0 real 

Fig. 97. 
Superposition of two 
parallel oscillations of 
different phases in the 

complex plane. 

as in eq. (1). The angle a - ax between OQ and OP is calculated from the right 
triangle OQ R to be 

a2 sin <5 
(4) tan (α-α,) —· 

as in eq. (2). 
For a2 — ax and δ = π - Δ it follows from (3) that 

(5) ^ a ^ O - c c s J ) , a — 7αΛ sin —. 1 2 

We shall meet this formula again in an interference problem in Sec. 31. 

1.2. Substituting in (2.1) 

Ey =η, Εζ = ζ, Ay == A ér*'«, A, = B e'** 
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then in real notation; 

rç = 4̂ cos (τ - α), ζ = B cos {τ-β), τ—kx-cot. 

By eliminating sinr or COST one finds 

η ζ 
cos τ sin (β - a) = — sin β sin a, 

' A r B 

sin r sin (p - a) = cos β -{ cos a 
v A * B 

and by squaring and adding one obtains 

(W-* U) | ^ - | + | l H - 2 ^ i - c o e y = 8tn«y, y - / » - a . 

This is the polar equation of an elUpse. The two principal axes are in general 
rotated with respect to the y- and -s'-axes; they coincide with the latter only 
when γ = ± π/2. 

If in addition A = B, then the ellipse becomes a circle, which corresponds to 
criterion (2.6) for circular polarization. 

The polarization is linear when γ = 0 or π. For then (1) becomes 

M-
which corresponds to criterion (2.6 a). 

In view of (2.5) the same calculation yields for the magnetic vector Hy = η, 
ΗΜ = ζ 

η = - B / - cos (τ - β), ζ = A \ - cos (τ - α) 

and hence in place of (1) 

(!)' + (7)' + 4 j - ' V - ' · 
Thus the curve described by the magnetic vector becomes a circle or a straight 
line under the same conditions which hold for the electric vector. 

1.3. The general proof of the non-existence of a surface charge rests upon the 
following considerations: from Maxwell's equations for non-conducting media 
it follows that div D = p is independent of t. But since the field is assumed to 
be purely periodic in time, p = f (x, y, z) is excluded and only p — 0 remains 
possible. The same statement holds for the surface divergence ω — Dn - Dn'. 

This can be formally verified for the case of Sec. 3 B in the following way :% at 
y = 0 (see fig. 3 b) 

{ (A + C)siiia£**i*sina i n medium I. 

Bsinßeik*xsinß in medium l i . 

(2) 
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From this, the law of refraction, and the relation D = ε Ε follows 

{ ε1 (A -f C) sin a 1 

e2 B sin β J 

From eq. (3.14 a), the law of refraction and the definitions of mlt and nlt it is 
easily shown that these two values of Dy are equal. 

1.4. From the law of refraction it follows that for small a in second approxima-
tion: 

4-?+KK+4 
and hence, consistently neglecting higher powers of a, 

a / a 2 W a2 \ a / * « - l \ 

' - » ( , - Τ ) ( · + Ϊ Ϊ Ϊ ) - ; Γ ( , - - Π Γ ' " ' ) · 

(1) 

Thus one obtains to the same order of approximation 

• , m n-\+-^—ln*-\-(n-\)A 
sin (α- β) 6 n2 x ' 

(2) sin (a + β) α2 
n+\-—(n*--\ + (n+\y) 

on* x ' 

n - \[ a2 \ n - \l a2\ 
= 1 + — - ( 2 w + 4w | = 1 - } -— , 

which is given by (4.4) as the expression for Rp. 
From (1) one obtains in the same approximation 

(3) cos (α + β) = 1 2 α2 

cos (a - β) η 

and the negative product of (2) and (3) is 

as in (4.9). 

«.-«-^(,-4 
n + 1 \ n ] 

1.5. In order to give a general proof (not only for the special case μ% = μχ con-
sidered in Sec. 4) we rely on eqs. (3.9) and (3.15). By (4.18) the equation to 
be proved becomes 
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Dividing by \B/A\2 it can be rewritten 

! c 

IB 

2 COS0 
+ m -

cos a 

According to (3.9) this equation becomes for p-polarization 

( COSjS\2 COS/? / COStf\2 

\-m 1 -f 4 m = 11 -f m 1 
cos a/ cos a \ cos OLJ cos a/ cos ( 

and according to (3.15) it becomes for s-polarization 

l COSjff\2 COS0 / C O S # \ 2 

[m - ) + 4 m = m-f -
y cos OLJ cos a \ cos a/ 

Both equations are clearly identities. 

1.6. By differentiating (5.11) with respect to a and setting the resulting differential 
quotient equal to zero one obtains [using the upper signs in the numerator and 
denominator of (5.11)1 

(1)

By differentiating the law of refraction n sin a —· cos iß' one finds 

dß' in cos a 

da sin i/?' 

Substituting this in (1) one obtains 

0 = sin 2 iß' -j- n 
sin 2 a cos a 

sin i/T 

A second judicious application of the law of refraction yields 

sin α , 
0 = 2 n — {2 - {n2 + 1) sin2 a}, 

sin iß'x v s 

which contains the second formula (5.12) which was to be derived. Rewriting 
now (5.11) in the real notation and letting A = y - ô one writes 

e*Δ — 1 cos a sin iß' 

sin a cos iß' 

or the identical expression 

i tan — —- - cot a tan iß'. 
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From the above-derived value of sin <x.max and the law of refraction the two 
factors on the right-hand side are found to be equal to 

Vw 2 - 1 
, 

2 
cot a = | / —^—-, tan iß' = — 

Thus also the first formula (5.12) has been proved. 

1.7. If in the general trial solution of Sec. 7 A the coefficient A is set equal to zero, 
that is, if the continuous excitation supplied by the incident wave is omitted, then 
the solution of the problem of the plane parallel plate represents the free oscilla-
tions in the plate instead of the forced oscillations. The wave of amplitude C, which 
had previously been called the reflected wave, now represents, like the D-,wave 
the radiation emitted by the free oscillations into outer space. This radiation 
must clearly be present if the silver layer is not totally reflecting. Let the thickness 
of the air plate again be 2 A. The formulae of Sec. 7 are based upon the same 
^-polarization which is assumed in the exercise, but because of the given geometrical 
characteristics of the free oscillations (independence of x), one must now set 
a = ß = γ = 0. Furthermore, since all three media 7, II, and III are now air, 
n — n1 — 1. 

Therefore the four equations (7.30) and (7.31) simplify to 

(1) -Ce+ikh -Be~ikh + Ee+ikh = gCe+ikh = g (B e~ikh -+- Ee+ikh), 

(2) -De+ikh-Ee~ikh + B e+ikh =. gDe+ikh = g (E e~ikh + B e+ikh). 

This way of writing the equations shows that the problem has become symmetrical 
in C and D as well as in B and E, which is due to the fact that the incident wave 
has been omitted. Therefore one can set (symmetrical type of solution) 

(3) D = C, E = B 

whereby (2) and (1) become identical so that only one double equation remains 

(4) - C e i k h -}- 2 i B sink h = g Ceikh = 2gBcoskh. 

By eliminating either B or C one obtains 

(5) tan kh— —:— . 

Alternately, one can set (antisymmetric type of solution) 

(5 a) D = - C , E = -B. 

Equations (1) and (2) again become identical except for the sign. In place of 
(4) and (5) one obtains 

(4a) -Ceikh-2Bcoskh =gCeikh = -2igBs'mk h, 

(5 a) tan k h = — . 
* (1 + g) 
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(8 a) kh = \ +J]7l~ilg' 

The symmetrical and antisymmetrical eigenvalues of k h form an equidistant 
sequence with the spacing π/2 between neighboring values. This result is in complete 
agreement with the forced etalon-oscillations as represented in fig. 11. 

According to (8) and (8 a) the damping constant \jg is the same for all free 
oscillations. From this one concludes that the half-width is also the same for all 
forced oscillations as in^ ated in fig. 11. To prove this it is only necessary to 
compare the results for the simplest mechanical type of damped free oscillations 
and damped forced oscillations as derived in Vol. I, Sec. 19. 

1.8. According to the general expression (3.1), the incident and reflected waves 
for arbitrary angle of incidence a are represented by 

Ei=Ae 
(1) ,, r . 

hr = C e 

ik(xsin a — y cos a)l 

,t**(*sina+ ycosa) Γ 

With p-polarization E is parallel to the £-axis and, because of the boundary condi-
tion at y = 0, C = -A as in (8.3). Therefore 

Re (E{ + Er) =2A cos (ωί-k x sin a) sin (k y cos a). 

The locus of points of maximum electric field strength (maximum photographic 
effectiveness) is the system of parallel planes 

(2) k y cos a = ( m + j ) J I · 

The spacing of these planes is larger than the spacing λ/2 for perpendicular 
incidence (a = 0). In particular, for α = π/4 it becomes equal to λ/]/2. 

With s-polarization H is in the z direction, and E has components in the x and y 
directions. From the boundary condition 

Exi + Exr = 0 for y = 0 

Setting 

(6) 

(5 a) yields 

(7) 

and (5) yields 

(7 a) 

From (7) and (7 a) follows, with ξ and β as defined in eq. (6) 

(8) 
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it follows that C — -A (see fig. 3b) and according to (1) for y > 0: 

Re (Ei + Er)y = 2 A sin a sin (a> t - k x sin a) sin (k y cos a), 

Re (Ei + Er)x = 2A cos a cos (œt-k x sin a) cos (Λ y cos a). 

The time average of the sum of the squares of these components gives 

/ = 2 A 2 {sin2 a sin2 (Ä y cos a) + cos2 a cos2 (k y cos a)} 

-2 A2 {cos2 a - cos 2 a sin2 (£ y cos a)}. 

Thus, for the angle of incidence α = π/4 which was used by Wiener one has 
J = A2; no fringe system results and the illumination is uniform. For other 
angles of incidence weak fringes appear superimposed on uniform brightness. 

111.1. If the central force divided by the distance between the two mass points 
is denoted by /, then the equations of motion, written in terms of the cartesian 
coordinates x, y and xlt y{, are 

(1) MlLXl=--f{x2-x1), M1y1=f(y2-y1), 

M2 x\ =f(xt- x2), M2y2=f (yx - y2). 

Addition of the equations in each column yields the equations of motion of the 
center of mass ; subtraction yields the equations of the relative motion of the two 
masses : 

If the definition of M is that given in the exercise, these equations describe the 
motion of a mass point M with coordinates ξ, r\. If the binding force is quasi-
elastic as we had generally assumed it to be in our dispersion calculations, then 
/ = const, and from (2) follows 

(3) f + ω0
2 f = 0, η + ω0

2 η = 0, ω0
2 = fjM. 

Thus the motion is simply periodic with the frequency ω0. The same is true in 
the case of Coulomb attraction (/ proportional to r - 3) but not for arbitrary 
central forces. 

111.2. Applied to the front and rear surfaces of the prism, the law of refraction 
requires that 

sin a sin a' 
= n, = n' 

sin ß sin β' 

where n' = \\n if both surfaces border on air. From the sum of the angles in the 
triangle formed by the prism faces and the interior ray follows 

(2) φ = β + α'. 
At the front face the incident ray is deflected by Ö1 = a - ß; the emerging ray 
is deflected by ô2 = ß' - ac' at the rear surface. The total deflection is therefore 

δ = ô1 + δ2 = α - β + β' - α' 

(2) 

(1) 
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and because of (2) 

(3) δ=α + β'-φ. 

Substitution in (1) yields 

sin a sin a' 1 
(4) = n, — = - . 

sin((p-a') sin (ό+9?-oc ) n 

Therefore, by eliminating α', δ can be represented as a function of a. 
Differentiation of (4) with respect to a (before eliminating α') gives the 

following conditions for the minimum deflection dô = 0: 

cos a da + w cos (φ - α') da.' = 0, 

n cos et' da' + cos (<5 + <p - a) da = 0. 

These can be satisfied only if 

cos a cos (φ - a') 

cos (δ + φ - a) cos a' 
(5) = 0. 

Equating the terms in the first and second column gives a = (ô -f Ç>)/2, a' = φ/2 
and applying (2) and (3) yields β = OL', β' = α. Hence, if the ray is symmetrical 
with respect to the bisector plane of the prism angle, one obtains by substitution 
in one of the eqs. (1) an equation which is much used in the determination of n: 

(6) n = sin — (δ + φ) I sin — φ . 

III .3. For small angles α, φ, a' it follows from the two eqs. (4) of the preceding 
solution by eliminating a + w a' that 

ô = (n - \)φ. 

In order to be able to apply this result directly to the twin prisms, it is convenient 
to imagine prisms 1 and 2 as separated by a narrow air space. Thus, taking into 
account the opposite positions of the two prism edges, one obtains for the total 
deflection 

(1) ô = ô1-ô2, ά1 = (η1-\)φν ô2 = {nt-l)<pt. 

a) For a direct vision prism it is to be required that 

(2) 0 = 0, i . e . K - 1) Pi - («i - l)c>i = 0, ^ = ^ — . 
Ψι η9-ι 

Since nL and n2 depend on the wavelength, this condition can only be satisfied 
for some average wavelength such as λ = 0.590μ. 

b) For an achromatic prism one requires that 

(3) 
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Also this condition may in particular be satisfied for A = 0.590 μ. The table 
below lists the refractive indices nx of light boron crown glass and n2 of heavy 
flint glass for various wavelengths. For A = 0.590 μ eqs. (2) and (3) yield 

(4 a) fi-*™». (4b) * 4 1 8 

φλ 0.7562 <px 13.84 

In the case a) the value of δ is small everywhere in the spectrum but it does depend 
strongly on color. In the case b) the (also for A = 0.590 μ) non-vanishing deflec-
tion is quite independent of color (only at the violet end of the spectrum does 
the deflection decrease slightly). Once the angle φχ is arbitrarily chosen (though 
it must be small), the angle <p2 is determined by (4 a, b). 

Dispersion of crown glass (nx) and of flint glass (n2) 

A nx n2 

0.761 1.5050 1.7390 
0.656 1.5076 1.7473 
0.590 1.5103 1.7562 
0.486 1.5156 1.7792 
0.397 1.5245 1:8403 

A much more important problem is that of achromatic lenses. For these a 
condition similar to (3) must be satisfied. 

111.4. In case a) the inertial force tending to deflect the electron from its orbit 
must be balanced by the force - dV/dr of the atomic field and by the Lorentz 
force K = e v x B. We do not need to go into the shape of the orbit or the 
velocity variations along it. In case b) the ordinary centrifugal force 

| Z I = m ρ ω2 (p distance from the axis of rotation) 

and the Coriolis force 

C = 2 m v x ω (v velocity relative to the rotating system) 

take the place of K (see Vol. I, Sec. 29), while the force due to the atom - dV/dr 
is the same as in a). I t is to be assumed (see wording of problem) that Z is negligi-
ble compared to C. Then one obtains equilibrium in case b) by setting C = K. 
This yields 

2 w v x w = e v x B ; ω = B 
2 m 

which proves Larmor's theorem. 
In order to be able to neglect Z we must have 

m p a ) 2 < 2 m |v| ω. 

This is equivalent to saying that the velocity p ω imparted to the electron when 
the magnetic field is switched on is small compared to the velocity |v| which the 
electron would have without the magnetic field. For practically attainable fields 
B this condition is always fulfilled. 
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We conclude therefore that the theory of the Zeeman effect developed in 
Sec. 21 remains valid when the quasi-elastic binding, there assumed, is replaced 
by a Coulomb field (hydrogen atom) or by an arbitrary atomic field V (r). In 
particular the theorems on the normal Zeeman effect [A ω = 0 for longitudinal 
observation, 2 A ω = ± (ejm) B for transverse observation] are preserved because 
of the general validity of Larmor's theorem. 

IV. 1. The index ellipsoid [normalized in accordance with (25.12)] 

(1) V V + V *22 + «a1 V = C, C = 2 Wefr0 

and the plane E perpendicular to the wave number vector k 

(2) kx x1 + k2x2 + k3x3 = 0 

intersect in an ellipse. As in (25.19) we denote the reciprocals of the principal 
axes of this ellipse by u'iyc,u"iyc without, however, presupposing the former 
definitions of u\ w", as wave velocities to hold. We construct a third axis 
perpendicular to these two and call its length from the origin to the ellipsoid 
OP = /. The coordinates of P are X{ = I kijk. Substituting these in (1) one 
obtains 

(3) μ - ftt JL
 U> *> ■ 

Then theorem a) gives the following relationship between the three axis lengths 

VciW, ]/Cju", l: 

1 (M'S + „»*) + 1 = I . (Mi2 + th2 + Uz 

and hence by (3) 

(4) M'2 + M"2 = Σ «k-$\ 
In order to be able to apply theorem b) we must construct the plane E' which 

is tangent to the ellipsoid (1) and parallel to E. The equation of any arbitrary 
tangent plane with the point of tangency ξχ ξ2 £3 is 

(5) ^itf&fo-M^O. 

If this plane is to be perpendicular to K, then 

(5 a) Ui2 ξ( = pki, (p = constant of proportionality). 

Since, in particular, the point ξ must lie on the ellipsoid (1): 

Because of (5 a) and (1), eq. (5) becomes 

[7) p^J kiXi-C=0. 

(Q 
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By the rules of analytic geometry the distance of this plane E' from the center 
of the ellipsoid is 

(8) p = , and hence by (6) p = - VcEkfluf. 
pk k 

E' and its diametrically opposite parallel plane E", together with the planes 
which are tangent to the ellipsoid at the end points of the principal axes of the 
intersectional ellipse, form a circumscribed parallelepiped of the ellipsoid. Its 
volume is 

2 l / c iVc 8 C·/. , , _ _ _ -
ut' ni" h ta' *È" * k u'u' 

According to theorem b) this volume equals the volume of the rectangular 
parallelepiped formed by the three principal axes of lengths yCjui of the ellip-
soid ; that is, it is equal to 8 C8/» uy u.2 u3. I t follows therefore that 

u2u2u2 u V 
u>* u»2 = _i—?—L > _L_. 

A2 - ^ Uf 

The two symmetric functions u'2 + w"2, eq. (4) and u'2 u"2, eq. (9) yield a 
quadratic equation in u2, the roots of which are w'2 and u"2. I t is easy to show that 
this equation agrees with the eq. (26.19 b) of the normal surface when in the latter 
the expressions (26.19) for the & are substituted. 

IV.2. The equation (24.6 a) of the Fresnel ellipsoid is written in a form analogous 
to eq. (1) of the preceding problem 

v 2 y 2 y 2 
Λ ι Λ α Λ ο 

V u2
2 u3

2 

where the X{ now denote the components of E. Since E is perpendicular to the 
ray vector S, hence also to the parallel unit vector s = slf s2, s3, one must now 
cut the ellipsoid with the plane 

(2) 5X xx + 52 x2 + s3 *3 = 0 

and calculate the principal axes of the intersectional ellipse so formed. Except 
for the changed form of the subsidiary conditions (1) and (2), the extremum 
problem to be solved here is the same as that in Sec. 25. 

Let the principal axis lengths of the intersectional ellipse be \c*. ]/cv": 
let / be the length from the origin to the ellipsoid of the axis perpendicular to these 
principal axes. Since its end point has the coordinates £t = / Si, eq. (1) yields 

(3) - = Σ—· 

Theorem a) gives the following relationship for the three axis lengths 
]/Cv', ]/Cv", C: 

(9) 

(1) 
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and hence by (3) 

(4) „'2 + „"2 J-J „Λ 

Theorem b) concerns the tangential planes Ε', E" of the Fresnel ellipsoid 
which are parallel to our present intersectional ellipse. The equation of one of 
these planes is 

(5) 2J-^(xi-Si)=° 
or, see the preceding problem, 

(6) pj^sixi-C = 0, where (7) p2 ] ? u*s? = C. 

I t follows that the distance of the plane from the origin is 

C v 

(8) p = — =VC2,5i
2wt·2 

P 

and the volume of the parallelepiped to be considered here is 

2 p · 2 ]/c v' · 2 ]/c v" = 8 Ca/» v' v" ^Ys*u~*. 

From theorem b) one obtains therefore 

1 Zsi*Ui* 
(9) 

From (4) and (9) it follows that i>'2, v"2 are the roots of a quadratic equation in 
v2 which we may write 

o = ll-±\ll J _ U l - l y - ^ + L _ y w . 
\v2 v'2]\v2 v"2) v* v2 ^ Ui2 ux

2u2
2uz

2J^ l *' 

I t is easy to verify that this equation is identical with the equation (26.13 b) of the 
ray surface 

IV.3. From fig. 47 one finds that 

(1) A C = if/cos ft, A B = dlcos ft, B D = B C sin a, 

( la ) BC ^EC-EB = (tan ft - t a n ft) rf 

while from the law of refraction it follows that 

k k 
(2) sin a ==■■ sin ß1— — sin ft — . 

k k 
Hence 

sin2 ft ^ sin2 ft Λ, 
sin a tan ft = , sin a tan ft = cos ft k " cos ft A 
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where the wave number k refers to the surrounding air, and kx refers to the more 
strongly and k2 to the less strongly refracted ray. Therefore by (1) and ( l a ) 

B 
k \ cos ft cos ft I 

The total phase difference A is found to be 

A ==k2AC-k,A B-kBD 

I k2 kx ^ s in* /? , ^ s in ' jgA 
ycos /?2 cos ßx cos ß2 cos ^j J 

= (k2 cos /?2 - kx cos /?x) d. 

This result is to be specialized to small angles of incidence a, hence also to 
small ßlt ß2. A mean angle of refraction defined by 

sin ß — ]/sin ßx sin ß2 

is to be introduced. By multiplying the two laws of refraction (2) we obtain 

sin2 a = sin2 B 

and 

(4) — - = 11 - - - — s i n 2 a = 1 + - τ - τ - sin*a + 
DSjff \ ÄjÄ f / 2kxk2 

On the other hand, we have for i — 1, 2 

1 1 Ä2 

cos ft = 1 - - sin2 ft 4- . , . = 1 - - sin2 a — + . . . 
2 2 /?j 

£2 / l l \ 
Ä2cos ft -Ä1cos ft = k2 -Λ, sin2 a I 1 -j-

2 \Ä2 Ä i / 

= ( * i - Ä i ) | l + 4 ^ 7 T s i n a a + ' [ 2 ÄJ k2 

Substituting this in (3) and applying (4) one obtains 

(5) J==L!_iL., 
cos ß 

which agrees with eq. (31.9). 

(3) 
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Cubic system of crystals, 154, 156 
Curvature of the sun's rays, 540 
Curved light rays, 557 
Curved rays, 208 

by diffusion, 547 
Cylindrical wave and phase jump, 525 
Cylindrical wave emitted by the edge, 262 

I) 

Damping constant, 98 
Damping term, 97 
Debye, 191, 248, 519 
Deflection, minimum, 568 
Deformation, 156 
Delta functions, 556 
Descartes, 4, 179 
Dextrose, 164 
Diamond, 191 
Dichroic dyes, 171 
Dichroism, 165 

of crystals, 171 
Dielectric axes, principal, 129, 150 
Dielectric constant, 7 
Dielectric constants, principal, 129 
Diffracted light, polarization of, 285 
Diffraction, 179 

behind a circular disc, 215 
by colloidal particles, 247 
by a laminary profile, 251, 510 
by a narrow slit, 275 
by a parabolic cylinder, 246 
by randomly distributed particles, 191 
by a rectangle, 222 
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Diffraction, by a slit, 224 
by a straight edge, 245, 249, 261 
Fraunhofer, 202 
Fresnel, 203 
Fresnel, by a slit, 237 
microscopic, 203 
near focal points, 318 
similarity law of, 220 
telescopic, 203 
Young's interpretation of, 311 

Diffraction problems, rigorous solution 
of, 247 

Diffusion, curved rays by, 3 
Direct vision prism, 359 
Dirichlet's discontinuous factor, 224 
Discoveries, historical list of, 4 
Dispersion, 88, 106, 114, 181, 335 

anomalous, 97, 100 
Dispersion electrons, 92 
Displacement current, 13 
Doppler effect, 60 

corpuscular explanation of, 85 
transverse, 69 

Doppler principle, relativistic, 68 
Double refraction, 118, 148 
Double space, 253 
Doublet lines, 106 
Drag, coefficient of, 69 
Drude, 92, 97 
Dual relations in crystal optics, 139 
Dualistic conception of light, 86 
Dynamics, Hamilton partial differential 

equation of, 210 

E 

Earth's atmosphere, its inhomogeneity, 
209, 339 

Echelette grating, 228 
Echelon gratings, resolving power of, 292 
Edge, cylindrical wave emitted by, 263 
Eigenf unctions, 126 

of the sphere, 207 
Eigenvibrations, 358 
Eikonal, 207, 337 

surface, 337 
Elasticity, theory of, 156 
Electric moment, 128 

Electrochemical equivalent, Faraday's, 
92 

Electrodynamics, review, 6 
Electron, specific charge of, 92 
Electron theory, 25 
Electrostriction, 156 
Ellipsoid, Fresnel, 129, 130, 154, 360, 371 
Ellipsoid, index, 129, 132, 136, 370 
Elliptic polarization, 8 
Elliptically polarized light,, 33, 168 
Enantiomorphic arrangements of atoms, 

164 
Envelope, 147 
Epstein, 248 
Etalon, theory of the, 52 
Ether wind, 72 
Euler, 267 
Euler-Mascheroni constant, 279 
Ewald, 191 
Examination candidates, 169 
Extraordinary ray velocity, 157 
Extraordinary wave velocity, 157 
Eye, resolving power of, 301 

Fano, 182 
Faraday, 101 
Fedorow, 156 
Fermat's principle, 355 
Ferromagnetic materials, 105 
Field glasses, prismatic, 30 
Fitzgerald, 79 
Fizeau, 62, 303 
Fizeau's experiment, 69 
Fluids, optically active, 164 
Fluorescence, 83 
Fluorite, 191 
Focal lines of the ray bundle, 343 
Focal points, diffraction near, 318 
Forced oscillation, 359, 365 
Form factor, atomic, 187 
Foucault's pendulum experiment, 82 
Fourier representation, 114 
Fourier transform, 309 
Four-vectors, 336 
Frank, 329 
Franz, 325 

F 
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Fraunhofer, 180 
vs. Fresnel diffraction, 201 
diffraction, 201, 202 

Free oscillations, 359, 365 
Fresnel, 69, 201 

diffraction, 203 
integral, conformai mapping of, 243 
zones, 216, 218, 318 

Fresnel's ellipsoid, 129, 130, 154, 360, 371 
Fresnel's formulae, 13, 16, 18 

for metals, 36 
Fresnel's integrals, 239, 258, 352 
Fresnel's theory of the shadow, 215 
Front, propagation of wave, 116 
Frost flowers, 171 
Fundamental cell of lattice, 166 

G 
Galileo, 60 
y-tensor, 159 
Gaussian error integral, 240, 349 
Geometrical optics, 1, 179, 321, 337 

transition from wave optics to, 209, 210 
Glancing angle, 180 
Glass plates, stack of, 25 
Goethe, 354, 1 

vs. Newton, 3 
Gouy, 318, 353 
Granulation, 194 
Grating, amplitude, 228, 232, 310 

cross, 179, 185 
echelette, 228 
Rowland, 182 
three-dimensional, 186 

Gratings, Une, 180 
phase, 228, 310 
space, 186 

Green's function, 199, 206, 229, 274 
Green's theorem, 197 
Grimaldi, 4, 311 
Granite, 175 
Group velocity, 114, 122 
Groups, space, 156 
Gurney, 33 
Gyration constant of optically active 

fluids, 164 
Gyration vector of solenoidal structures, 

158, 159 

H 

Hagen and Rubens, 37 
Half-plane, diffraction by, 246 
Halo, 179, 195 
Hamilton, 209, 356 
Hamilton's partial differential equations 

of dynamics, 210 
Hankel function, 274, 352 
Harress, 79 
Hauswaldt, 177 
Helmholtz, 306 
Hermite's functions, 248 
Hertz, 82, 284 

vector, 196 
Hexagonal crystal, system of, 155 
Historical list of optical discoveries, 4 
Homogeneous wave, 31 
Hornblende, 175 
Huygens, 4, 166 
Huygens' principle, 148, 180, 195, 206, 

228, 264, 273 
Kirchhoff's formulation of, 197 
of vector problem, 325 

Hydrodynamics, 88 
Hypergeometric function, confluent, 265 

I 

Ice crystals of cirrus clouds, 195 
Iceland spar, 166 
Image-wave, 251 
Images, method of, 200 
Incoherent light, 224 
Index ellipsoid, 129, 132, 136, 370 
Index of refraction, 15 
Indices of refraction, principal, 131 
Inelastic collision, 359 
Inertia ellipsoid, 130 
Infinite conductivity, 205 
Inhomogeneity of the earth's atmosphere, 

209 
Inhomogeneous medium, passage of light 

through, 347 
Inhomogeneous wave, 31, 182 
Integral equation for narrow slit, 276, 278 
Interference phenomena due to crystal 

plates, 172 
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Interferometer ot Perot and Fabry, 52,358 
Isochromatics, 177 
Isotropy, 158 

axes of, 145 

Jaffe, 277 
Joos, 75, 79 
Jupiter, 60 

K 

Kalaschnikow, 262 
Kirchhoff's formulation of Huygens' 

principle, 197 
Kirchhoff's solution, 312 
Klein, 336 
Kohlrausch, 30 
Kossel, 215, 358 
Kuhn, 158 
Kummer, 342 
Kundt, 100 

Lambert's law, 201 
Lamé, 149 

functions, 248 
Laminar y profile, 231, 310 
Laplace integral, 241 
Laplace's equation, 267 
Larmor precession, 359 
Larmor's theorem, 369 
Lattice, fundamental cell, 166 

reciprocal, 191 
Laue, v., 70, 186, 311, 353 

diagrams, 187 
spot, 187 

Laue's fundamental equations, 187 
Legendre polynomials, 320 
Lemniscates, 178 
Lenard, 82 
Lenard's misunderstanding, 64 
Lens formula, elementary, 343, 357 
Lens of finite thickness, 346 
Lens, thin, 345 
Lenses, achromatic, 369 

coated, 44 
Leonardo da Vinci, 1 
Levine, 273, 278 

Lévulose, 164 
Light, coherent, 10 

dualistic conception, 86 
natural, 6, 9 
transverse, character of, 6 

Light fan, 233 
Light-quantum, 355 
Lindman, 165 
Linear polarization, 8 
Line gratings, 180 
Lippmann, 59 
Lorentz, 71, 328 

contraction, 79 
force, 101, 369 
transformation, 64, 336 
triplet, 110 

Lorenz-Lorentz formula, 93 
Lumière plate, 40 
Luminous sources, 310 
Lummer, 310 
Lummer-Gehrke plate, 50, 151 

resolving power of, 294 

M 

Mach cone, 328, 331 
Maey, 317 
Magnetic crystals, 132 
Magnetic currents, 328 
Magnetic rotation of the plane of polariza-

tion, 101, 104 
Malus, 4, 23, 337 
Mathieu functions, 249, 288 
Maxwell's equations, 8, 283, 328 

separation of, 247 
Maxwell's relation, 15 
Meixner, 248, 271 
Metallic reflection, 34 
Metals, Fresnel's formulae for, 36 
Meteorological applications of diffrac-

tion, 194 
Method of images, 200 
Mica, 129, 167, 191 
Michelson, 303 

experiment, 75 
Gale, 79 

Michelson's measurements of the sizes of 
fixed stars, 301 

Microscope, Abbe's theory of, 307 

J 

L 
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Microscope, resolving power, 306 
Microscopic diffraction, 203 
Mie, 247 
Miles, 288 
Miller, D. C , 75 
Miller indices, 189 
Millikan, 83 
Minimum deflection, 359 
Minkowski, 336 
Misunderstanding of Lenard's, 64 
Momentum equation, 210 
Monochromator, 6 
Monoclinic crystals, system of, 154, 167 
Morse, 288 

and Rubenstein, 249 
Mount Wilson, 301 
Moving media, optics of, 60 
Moving mirror, reflection by a, 72 
Multiplet, 111 
Muscovite, 167 
Museum, Deutsches, 75, 180, 187 
Myth, 357 

N 
Narrow slit, diffraction of, 273 
Natanson, 92 
Natural light, 6, 9 
Natural rotation of the plane of polariza-

tion, 106 
Newton, 1, 4 
Newton's rings, 46 
Nicol prism, 33, 165 
Nodes, 57 
Normal dispersion, 91 
Normal surface, 139, 146, 359 
Normal Zeeman effect, 106 
Numerical aperture, 307 

0 
Ohmic current, 34 
Oil, thin layer of, 42 
Opaque screen, 205 
Optic activity, 158 
Optic axis, 131, 139, 145 
Optical activity of biaxial crystals, 163 
Optically active fluids, 164 
Optically active substances, 158 
Optically isotropic crystals, 156 

Optically uniaxial crystals, 157 
Optics, geometrical ray, 1 

physical, 1 
physiological, 1 

Optics of moving media, 60 
Ordinary ray velocity, 157 
Ordinary wave velocity, 157 
Orthorhombic crystal, 187 

system of, 155 
Oscillations, forced, 559 

free, 559, 565 
Oseen, 158 
Ott, 548 
Ovaloid, 157 

P 
Palomar, 501 
Parabolic cylinder, diffraction by, 246 
Parallax, 65 
Parhelia, 195 
Paschen-Back effect, 107, 111 
Pauli, 265 
Pedal surface, 147 
Permeability, 7 

complex, 19 
Perot-Fabry interferometer, 52, 558 

resolving power of, 295 
Pétrographie investigations, 175 
Phase contrast method, 510 
Phase difference, 181 
Phase gratings, 228, 510 

resolving power of, 292 
Phase jump for straight-edge, 265 
Phase jump for cylindrical wave, 525 
Phase, surfaces of constant, 210, 215 
Phase velocity, 114 
Phosphorescence, 85 
Photon, 85 

theory, 556 
Physical optics, 1 
Physiological optics, 1 
Piezoelectricity, 156 
Pigments, 59 
Pilate, Pontius, 86 
Planck, 82, 124, 210 
Plane of polarization, rotation of, 160, 165 
Plasma, 88 
Pleochroism of crystals, 171, 172 

INDEX 
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Pocklington, 163 
Pohl, 216 
Poinsot's construction, 130 
Poisson diffraction, 215 
Poisson spot, 215, 322 
Polarization, angle of, 23 

circular, 33, 103 
elliptic, 8, 168 
linear, 8 
natural rotation of plane of, 106 
rotation of plane of, 101, 104 

Polarization of diffracted light, 283 
Polarization filter, 170 
Polarization microscope, 178 
Polarization vector, 89 
Polarizer, 167 
Polygonally bounded apertures, 233 
Precursor, 118 
Preston's rule, 111 
Principal dielectric axes, 129, 130 
Principal dielectric constants, 131 
Principal indices of refraction, 131 
Principal maxima, 183 
Principal series, 124 
Principal solution, 199 
Prism, achromatic, 359, 368 

direct vision, 359 
resolving power of, 295 

Problems for the reader, 358 
Propagation of the wave front, 116 
Puiseux expansion, 271 
Pyrite, 191 
Pyroelectric property, 170 
Pythagoras, 332, 361 

Q 

Quantum theory of light, 82, 113 
Quarter-wave plate, 165, 169 
Quartz, 129, 157 
Quasielectric force, 107 

R 

Racemic state, 164 
Radial fiber structure, 195 
Radiation vector, 7 
Rainbow, theory of, 179, 248, 337,347,351 
Random process, 352 

Randomly distributed particles, diffrac-
tion by, 191 

Ray bundle, focal lines of, 243 
Ray directions, 208 
Ray optics, geometrical, 1 
Ray surface, 139, 142, 143, 359 
Ray vector, 140 
Ray velocity, extraordinary, 157 

ordinary, 157 
Rayleigh, 123, 182, 273, 289, 352 
Rays of the sun, their curvature, 340 
Reciprocal ellipsoid, 132 
Reciprocal lattice, 191 
Rectangle, diffraction by a, 222 
Rectilinear ray bundles, structure of, 342 
Reduced mass, 359 
Reflecting power, 26, 27, 37 
Reflecting screen, 205 
Reflection, 6 

law of, 14 
total, 27 

Reflection by a moving mirror, 72 
Refraction, 6 

complex index jof, 98 
double, 118, 148 
index of, 15 
law of, 14 

Refraction as a boundary value problem, 
150 

Refractive media, 88 
Reiche, 310 
Relativistic Doppler principle, 68 
Relativity, theory of, 60, 328 
Residue in complex plane, 115 
Resolution of optical instrument, 289 
Resolving power, 289 

of echelette grating, 228 
of echelon grating, 292 
of eye, 301 
of Lummer-Gehrke plate, 294 
of microscope, 206 
of Perot-Fabry interferometer, 293 
of phase grating, 292 
of prism, 295 
of telescope, 301 

Resolving power, general considera-
tions, 298 

Resonance denominator, 100 
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Resonance frequency, 125 
Resonance, ultraviolet, 89 
Retardation, 332 
Rhombohedral structure, 165 
Rhombohedral system of crystals, 155 
Rhombohedron, 166 
Riemann, 198 

surface, 251 
Rigorous solution of diffraction problem, 

247, 249 
Rochelle salt, 191 
Römer, Olaf, 4, 60 
Röntgen, 353 
Rotating power of crystals, 158 
Rotation of the plane of polarization, 101, 

104, 106, 160, 163 
Rowland, 180 

grating, 182 
Rubinowicz, 312, 314 
Rubenstein, 288 
Ruling engine, 180 
Runge's denominator, 113 
Runge's rule, 111 
Rutherford, 191 

S 

Saddle-point method, 122, 257, 317 
Sagnac, 79, 318 
Satellites of Jupiter, 60 
Scalar spherical wave, 180 
Scattering, 181 
Schoenflies, 156 
School curriculum, 346 
Schrödinger, 84, 209 

equation, 126 
Schuster, 353 
Schwarzschild, 288 
Schwerd, 227 
Schwinger, 273, 278 
Screen, black, 205, 265 

curved, 207 
opaque, 205 
reflecting, 205 

Screens, complementary, 205 
Selmayr, 168 
Separation of Maxwell's equations, 247 

Septet system, 112 
Shadow, 179 

Fresnel's theory of, 215 
origin of, 210 
problem of, 207 

Short wave limit, 83 
Signal velocity, 114 
Similarity law of diffraction, 220 
Sine condition, 307, 340 
Singlet lines, 106 
Sizes of stars, according to Michelson, 301 
Slit, 224 

diffraction by a, 224 
Fresnel diffraction by a, 237 
integral equation for narrow, 276, 278 

Snell's construction, 150, 151 
Soap bubbles, 46 
Solenoidal crystal structure, 158 
Solutions, rigorous, of diffraction pro-

blems, 247, 249 
Sommerfeld, 112, 249, 272 
Space-gratings, 186 
Space groups, 156 
Specific charge of the electron, 92 
Spherical functions, 248 
Spherical wave, 180, 195 

scalar, 180 
vectorial, 196 

Spheroidal functions, 248 
Staining process, 232 
Standing light waves, 56 
Stationary phase, method of, 123, 317 
Stereochemistry, 158 
Stokes theorem, 52 
Straight edge, diffraction by, 245, 249,261 
Stratton, 325 
Straubel, 342 
Stress and strain, 156 
Sturm's theorem, 343 
Subsidiary maxima, 184 
Sugar, cane, 163 
Summation method, 49, 320 
Summation problems, 266 
Suppression of reflection, 18 
Suret, 220 
Surface charge, 358, 362 
Surface divergence, 362 



INDEX 383 

Surfaces of constant phase, 210, 213 
Symmetric tensor, 129 
Symmetrical solution, 365 
Symmetry of crystals, 154 
Systems of crystals, 154, 155, 156 

Tamm, 329 
Telescope, resolving power of, 301 
Telescopic diffraction, 203 
Tensor calculus, 338 
Tensor surface, 130, 359 
Tetragonal crystals, system of, 156 
Thick lens, 346 
Thick plates, 40 
Thin layer of oil, 42 
Thin lens, 345 
Thin membranes, 40 
Thomson, J. J., 82 
Three-dimensional grating, 186 
Total reflection, 27 
Tourmaline, 170 
Tourmaline tongs, 165 
Triclinic crystal, system of, 154 
Transformation rule of crystal optics, 142 
Transition from wave optics to geome-

trical optics, 209, 210 
Transmissivity, 26, 27 
Transverse character of light, 6 
Transverse Doppler effect, 69 
Tunnel effect, 32 

U 

Umbilical points, 145 
Uniaxial crystals, 156, 157 
Uniqueness of boundary value problems, 

266 
Units, 12 
Unsold, 112 
Ultraviolet resonance, 89 

V 

Valence number, 92 
Vector model, 113 
Vector problem, Huygens' principle for, 

325 
Vectorial spherical wave, 196 
Velocity addition theorem, 70 

Velocity, group, 114, 122 
phase, 114 
signal, 114 

Velocity of light, 60 
Verdet's constant, 105 
Voigt, 107, 163, 182 
Volterra, 149 

W 

Wave, homogeneous, 31 
image, 251 
inhomogeneous, 31, 182 

Wave function, 126 
Wave impedance, 13 
Wave mechanics, 32. 123 
Wave-mechanical theory of dispersion, 123 
Wave normal vector, 140 
Wave number, 7 
Wave optics, 1, 179 

transition to geometrical optics, 209, 
210 

Wave packet, 11 
Wave surfaces, 143, 208 
Wave train, bounded, 114 
Wave velocity, extraordinary, 157 
Wave velocity, ordinary, 157 
Wiechert, 353 
Wiener, 57, 348 
Wien's displacement law, 72 
W.K.B method, 210 

X-ray, continuous spectrum, 188 
X-ray analysis of crystals, 156 
X-ray interference, dynamic theory of, 191 
X-rays, 186 

Young, 4, 311, 314 
Young's interpretation of diffraction, 311 

Zeeman effect, 106, 
Zeiss works, 75 
Zernicke, 310 
Zero reflection, 45 
Zinc blende. 187 
Zone plate, 220 

359 
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X 

Y 

z 
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