
JOURNAL OF COLLOID AND INTERFACE SCIENCE 177, 150–155 (1996)
Article No. 0015

The Drop Volume Method for Interfacial Tension Determination:
An Error Analysis

J. C. EARNSHAW,* ,1 E. G. JOHNSON,* B. J. CARROLL,† AND P. J. DOYLE†

*The Department of Pure and Applied Physics, The Queen’s University of Belfast, Belfast BT7 1NN, Northern Ireland; and
†Unilever Research Laboratory, Quarry Road East, Bebington, Merseyside L63 3JW, United Kingdom

Received February 7, 1995; accepted June 7, 1995

of the system dimensions, characterized by the capillary
An error analysis of the drop volume method of determination length

of surface or interfacial tension is presented. It is shown that the
presence of the empirical correction term may lead to either a
decrease or an increase in the final uncertainty of the calculated a Å S 2g

DrgD
1/2

, [1]
tension. Recommendations to maximize the precision of measure-
ment are made. It is further shown that the systematic error due
to the correction term is less than 0.04%; under the conditions

whereDr is the operating density difference (i.e., the differ-recommended to minimize the statistical uncertainty, the system-
ence between the densities of the fluid forming the drop andatic error should be less than half this figure. Tabulations of recom-
that surrounding the drop), g is the acceleration due to grav-mended values of the correction function are given. q 1996 Academic

ity, and g is the interfacial tension. The relationship betweenPress, Inc.

g and the initial (equilibrium) drop volume V * is given byKey Words: interfacial tension; drop volume method; error analysis.
the Tate equation (3), in which the tension is implicitly
treated as a force per unit length:

1. INTRODUCTION
2prg Å DrgV *. [2]

For pure liquids the drop volume method for measuring
However, the Tate equation is incorrect when applied to theinterfacial or surface tensions (1) is capable of a precision
volume of the detached drop V : first, the drop does notrivalling that of the Wilhelmy plate method, but offers cer-
totally leave the tip (as much as 40% may remain attached),tain advantages over this, notably that only small amounts
second, the boundary tension forces are not generally verti-of the fluids are needed. In favorable circumstances a preci-
cal, and third, there is a pressure difference across the curvedsion of {0.01 mN/m is achievable. This method applies also
interface. Hence an empirically derived correction factorto surfactant solutions, except when these show significant
f(r /V 1/3 ) is introduced (1) to enable the detached dropsurface dilatational moduli on the time scale of drop detach-
volume V to be used rather than V *:ment (2) .

However, the errors involved in the drop volume method
g Å DrgV /2prf(r /V 1/3 ) . [3]seem not to have been analyzed. Such an analysis is not

entirely straightforward, as the technique involves an empiri-
In this paper we analyze the uncertainties involved in thecal system-dependent correction, the precision of which is

drop volume method. A straightforward error analysis in thenot established. The present paper considers these matters,
next section indicates the role of the correction term. How-and offers, for the first time, an analysis of the uncertainties
ever, this is not susceptible to analytic solution, and so nu-involved in the drop volume technique, both random and
merical methods are used in Section 3 to estimate the effectsystematic.
the function f(r /V 1/3 ) has upon the total uncertainty in g.In the drop volume method, the volume of the drop of
Finally we consider the systematic errors liable to arise fromliquid which just detached from a cylindrical support of
imperfect knowledge of f.radius r is accurately measured. This volume is a function

of the volume V * of the largest drop of liquid that the tip
2. FORMAL CONSIDERATIONSis capable of supporting before detachment occurs, and also

The tension is a function of three observable quantities:
1 To whom correspondence should be addressed. Dr, r , and V . The function contains a functionally unknown
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151ERROR ANALYSIS OF DROP VOLUME METHOD

part, but the experimental uncertainties on these observables both show systematic deviations from the empirical values
(with coefficients of variation, C

£
, of 0.42 and 0.22%, re-(written as sr , for example) must combine in the usual

manner (4) , spectively) . Wilkinson and Kidwell (8) applied regression
analysis to limited sections of the data; for the region 0.65
£ r /V 1/3 £ 0.95 a regression analysis on 24 points gave a

s 2
g Å S Ìg

ÌDrD
2

s 2
Dr / S ÌgÌr D

2

s 2
r / S ÌgÌV D

2

s 2
V C

£
of 0.065% (with a random scatter) for a quadratic fit.

Despite these attempts the most precise variation of f with
r /V 1/3 derives from a rather careful manual interpolation of
these data (9) , which is tabulated in Table 1. However, this/ 2

Ìg
Ìr

Ìg
ÌV

srV / . . . , [4]
procedure does not readily lend itself to either numerical
differentiation or statistical analysis, so we have followed a

where the covariance terms are represented by a single term, different procedure.
for brevity. If the functionally unknown correction term We have fitted the published data with a cubic spline,
f(r /V 1/3 ) of Eq. [3] were not necessary, the matter would defined on a series of knots across the range of r /V 1/3 . The
be trivial. However, the lack of a known analytic representa- spline function is a piecewise cubic function, whose value
tion of this term complicates the issue. We will simplify the and first two derivatives are continuous functions across the
analysis below by neglecting the covariance terms; this does range, the knots being points at which the third derivative
not affect any matters of principle, but merely simplifies the of the spline can change discontinuously. Thus the location
algebraic presentation. and number of the knots within the range of the spline per-

From Eq. [3] we have the differentials mits control over the smoothness of the spline. (This sum-
mary of spline approximation is necessarily brief; fuller ac-
counts may be found in (10).)Ìg

ÌDr
Å gV

2prf
[5]

We have used a computer routine (11) which automati-
cally adjusts the position and number of the knots interior
to the range of the data so as to achieve a specified goodnessÌg

Ìr
Å 0 DgV

2pr 2f(r /V 1/3 )
0 DrgV 2/3f*(r /V 1/3 )

2prf 2(r /V 1/3 )
[6]

of fit ( judged by the sum of square residuals) . This proce-
dure is necessary as the uncertainties on the published fÌg

ÌV
Å Drg

2prf(r /V 1/3 )
/ Drgf*(r /V 1/3 )

6pV 1/3f 2(r /V 1/3 )
. [7] data are unknown (1, 5) . The fit is refined to the point where

any further reduction in the sum of squares causes a sudden
increase in the number of interior knots, corresponding to

Substituting into Eq. [4] and rearranging somewhat, we find overfitting the data. In practice this refinement is quite unam-
biguous. The routine provides estimates of f and f* across
the range of r /V 1/3 (covering 0.308–1.353 (1) and 0.064–Ssgg D

2

Å SsDrDrD
2

/ Ssr

r D
2F1 / r

V 1/3

f*

f G
2

0.453 (5)) .
The two sets of data which have been used in the deriva-

tion of f here (and in Ref. (9)) appear to be of very unequal
/ SsV

V D2F1 / r

3V 1/3

f*

f G
2

, [8] precision, although it is not possible to establish uncertainties
on either set of data. The two sets appear to be mutually
consistent, but the data of Harkins and Brown (1) are consid-

where the argument of the correction function is suppressed erably less scattered than those of Wilkinson (5). While this
for clarity. The influence of this function upon the uncer- is of little consequence to manual interpolation, the eye–
tainty in g is given by the terms in square brackets. brain combination providing a rather good noise filter, objec-

The problem thus reduces to establishing f and its deriva- tive fitting of the combined data set is not possible, lacking
tive. In the absence of any functional form for this function, estimates of the errors on the data. We have, therefore, fitted
we turn to numerical considerations. the two sets of data separately. In both cases the fits were

constrained to pass through the point f(0) Å 1 (12). The
data of Harkins and Brown (1) are so precise that the fitting3. NUMERICAL ANALYSIS
is seriously affected by inclusion of one or two points which
lie off the trend of the data. We have therefore neglectedThe correction term is based upon published tabulations

of carefully measured data for fluids of known properties these points, as did Harkins and Brown.
Figure 1 shows the interpolation of f across the estab-(1, 5) . Unfortunately, the data, while close to a cubic, depart

significantly from that form (1). Various attempts have been lished range of r /V 1/3 , for both sets of data. The two fits
accord well; the slight differences about r /V 1/3 Ç 0.35 arisemade to determine an appropriate functional form for f. The

curves fitted by Strenge (6) and by Lando and Oakley (7) from the problems of accurately fitting data points at the
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152 EARNSHAW ET AL.

TABLE 1
The Recommended Interpolation of the Correction Function f(r/V 1/3) Tabulated from r/V 1/3 Å 0.0 to 1.598 in Steps of 0.002

f(r/V 1/3)

r/V 1/3 0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018

0.00 1.00000 0.99800 0.99600 0.99400 0.99200 0.99000 0.98780 0.98580 0.98380 0.98170
0.02 0.97980 0.97770 0.97560 0.97370 0.97170 0.96980 0.96770 0.96560 0.96370 0.96170
0.04 0.95970 0.95770 0.95560 0.95370 0.95170 0.94980 0.94770 0.94560 0.94370 0.94170
0.06 0.93980 0.93780 0.93570 0.93400 0.93180 0.92970 0.92780 0.92580 0.92370 0.92200
0.08 0.91980 0.91780 0.91570 0.91370 0.91180 0.90990 0.90780 0.90570 0.90370 0.90180
0.10 0.89980 0.89780 0.89580 0.89370 0.89150 0.88950 0.88740 0.88570 0.88320 0.88140
0.12 0.87970 0.87770 0.87540 0.87340 0.87180 0.87010 0.86820 0.86630 0.86430 0.86220
0.14 0.86020 0.85860 0.85670 0.85460 0.85250 0.85040 0.84880 0.84710 0.84530 0.84320
0.16 0.84170 0.83960 0.83780 0.83580 0.83420 0.83260 0.83040 0.82870 0.82710 0.82530
0.18 0.82370 0.82180 0.82010 0.81820 0.81680 0.81530 0.81330 0.81130 0.80960 0.80780
0.20 0.80640 0.80460 0.80290 0.80110 0.79970 0.79780 0.79600 0.79440 0.79280 0.79160
0.22 0.78980 0.78800 0.78640 0.78510 0.78380 0.78170 0.78000 0.77860 0.77700 0.77530
0.24 0.77380 0.77230 0.77080 0.76920 0.76770 0.76630 0.76480 0.76320 0.76170 0.76020
0.26 0.75880 0.75730 0.75600 0.75460 0.75290 0.75170 0.75020 0.74870 0.74740 0.74600
0.28 0.74470 0.74320 0.74200 0.74060 0.73960 0.73820 0.73690 0.73570 0.73440 0.73310
0.30 0.73180 0.73060 0.72960 0.72840 0.72720 0.72600 0.72480 0.72370 0.72260 0.72160
0.32 0.72030 0.71920 0.71800 0.71690 0.71590 0.71480 0.71370 0.71270 0.71170 0.71080
0.34 0.70960 0.70860 0.70770 0.70650 0.70560 0.70470 0.70380 0.70280 0.70170 0.70080
0.36 0.69980 0.69890 0.69800 0.69710 0.69620 0.69530 0.69450 0.69360 0.69270 0.69180
0.38 0.69100 0.69020 0.68930 0.68850 0.68760 0.68680 0.68610 0.68540 0.68470 0.68380
0.40 0.68300 0.68225 0.68145 0.68070 0.68005 0.67925 0.67860 0.67800 0.67740 0.67665
0.42 0.67600 0.67535 0.67480 0.67420 0.67355 0.67290 0.67230 0.67165 0.67105 0.67040
0.44 0.66985 0.66920 0.66865 0.66795 0.66740 0.66670 0.66600 0.66525 0.66470 0.66410
0.46 0.66335 0.66280 0.66220 0.66165 0.66090 0.66030 0.65980 0.65915 0.65860 0.65790
0.48 0.65725 0.65670 0.65610 0.65555 0.65500 0.65440 0.65385 0.65320 0.65270 0.65210
0.50 0.65150 0.65090 0.65010 0.64945 0.64885 0.64825 0.64765 0.64710 0.64650 0.64590
0.52 0.64535 0.64480 0.64420 0.64365 0.64300 0.64240 0.64185 0.64125 0.64065 0.64010
0.54 0.63950 0.63895 0.63835 0.63780 0.63725 0.63670 0.63620 0.63560 0.63505 0.63455
0.56 0.63400 0.63345 0.63300 0.63250 0.63205 0.63155 0.63105 0.63060 0.63015 0.62965
0.58 0.62920 0.62875 0.62835 0.62790 0.62745 0.62705 0.62665 0.62625 0.62585 0.62545
0.60 0.62510 0.62470 0.62430 0.62395 0.62360 0.62325 0.62285 0.62250 0.62225 0.62190
0.62 0.62155 0.62120 0.62090 0.62060 0.62025 0.62000 0.61970 0.61940 0.61910 0.61885
0.64 0.61855 0.61830 0.61795 0.61765 0.61740 0.61705 0.61670 0.61635 0.61605 0.61580
0.66 0.61550 0.61515 0.61490 0.61455 0.61425 0.61400 0.61360 0.61335 0.61300 0.61270
0.68 0.61240 0.61205 0.61180 0.61150 0.61115 0.61085 0.61055 0.61025 0.60995 0.60965
0.70 0.60935 0.60905 0.60880 0.60850 0.60815 0.60790 0.60765 0.60745 0.60715 0.60690
0.72 0.60660 0.60635 0.60610 0.60590 0.60560 0.60540 0.60515 0.60495 0.60470 0.60450
0.74 0.60425 0.60405 0.60390 0.60365 0.60345 0.60325 0.60300 0.60285 0.60265 0.60250
0.76 0.60235 0.60220 0.60205 0.60190 0.60180 0.60165 0.60145 0.60135 0.60120 0.60110
0.78 0.60095 0.60085 0.60070 0.60060 0.60050 0.60045 0.60035 0.60025 0.60015 0.60005
0.80 0.60000 0.59995 0.59990 0.59985 0.59980 0.59970 0.59965 0.59960 0.59955 0.59950
0.82 0.59945 0.59940 0.59935 0.59930 0.59925 0.59920 0.59920 0.59915 0.59915 0.59910
0.84 0.59910 0.59910 0.59905 0.59905 0.59905 0.59905 0.59900 0.59900 0.59900 0.59900
0.86 0.59905 0.59905 0.59905 0.59905 0.59905 0.59910 0.59910 0.59915 0.59915 0.59920
0.88 0.59925 0.59930 0.59935 0.59940 0.59945 0.59950 0.59955 0.59965 0.59970 0.59980
0.90 0.59985 0.59995 0.60000 0.60010 0.60020 0.60035 0.60050 0.60060 0.60070 0.60085
0.92 0.60100 0.60115 0.60125 0.60140 0.60155 0.60170 0.60180 0.60200 0.60210 0.60230
0.94 0.60240 0.60260 0.60275 0.60290 0.60310 0.60330 0.60350 0.60370 0.60395 0.60415
0.96 0.60440 0.60460 0.60485 0.60505 0.60530 0.60550 0.60580 0.60605 0.60635 0.60655
0.98 0.60685 0.60705 0.60730 0.60750 0.60775 0.60800 0.60825 0.60850 0.60880 0.60915
1.00 0.60950 0.60985 0.61010 0.61045 0.61080 0.61110 0.61145 0.61180 0.61210 0.61245
1.02 0.61280 0.61310 0.61345 0.61385 0.61415 0.61455 0.61490 0.61520 0.61555 0.61590
1.04 0.61620 0.61655 0.61695 0.61730 0.61765 0.61800 0.61840 0.61875 0.61910 0.61950
1.06 0.61980 0.62015 0.62055 0.62095 0.62135 0.62170 0.62210 0.62250 0.62290 0.62330
1.08 0.62365 0.62415 0.62455 0.62495 0.62535 0.62580 0.62620 0.62660 0.62705 0.62750
1.10 0.62800 0.62845 0.62895 0.62940 0.62985 0.63035 0.63085 0.63130 0.63175 0.63230
1.12 0.63275 0.63325 0.63375 0.63420 0.63480 0.63535 0.63590 0.63640 0.63695 0.63745
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TABLE 1—Continued

f(r/V 1/3)

r/V 1/3 0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018

1.14 0.63800 0.63855 0.63910 0.63960 0.64015 0.64070 0.64140 0.64200 0.64255 0.64310
1.16 0.64370 0.64430 0.64485 0.64540 0.64600 0.64650 0.64710 0.64770 0.64825 0.64885
1.18 0.64935 0.64990 0.65050 0.65100 0.65145 0.65190 0.65235 0.65260 0.65300 0.65340
1.20 0.65365 0.65395 0.65425 0.65450 0.65465 0.65495 0.65505 0.65515 0.65525 0.65530
1.22 0.65530 0.65530 0.65520 0.65515 0.65505 0.65495 0.65475 0.65455 0.65435 0.65415
1.24 0.65390 0.65365 0.65335 0.65305 0.65270 0.65240 0.65205 0.65170 0.65135 0.65090
1.26 0.65055 0.65005 0.64960 0.64915 0.64865 0.64815 0.64765 0.64715 0.64660 0.64605
1.28 0.64550 0.64500 0.64445 0.64390 0.64330 0.64270 0.64215 0.64155 0.64095 0.64035
1.30 0.63970 0.63910 0.63850 0.63785 0.63725 0.63660 0.63585 0.63515 0.63450 0.63385
1.32 0.63315 0.63245 0.63180 0.63110 0.63040 0.62975 0.62900 0.62830 0.62760 0.62695
1.34 0.62620 0.62555 0.62485 0.62410 0.62340 0.62265 0.62190 0.62120 0.62050 0.61965
1.36 0.61895 0.61805 0.61740 0.61655 0.61580 0.61500 0.61420 0.61345 0.61270 0.61195
1.38 0.61115 0.61030 0.60950 0.60870 0.60800 0.60715 0.60640 0.60560 0.60490 0.60410
1.40 0.60325 0.60260 0.60180 0.60100 0.60020 0.59950 0.59875 0.59795 0.59720 0.59640
1.42 0.59560 0.59490 0.59405 0.59330 0.59250 0.59165 0.59095 0.59015 0.58940 0.58865
1.44 0.58790 0.58715 0.58645 0.58570 0.58500 0.58435 0.58360 0.58290 0.58220 0.58150
1.46 0.58080 0.58010 0.57940 0.57870 0.57800 0.57730 0.57660 0.57590 0.57515 0.57450
1.48 0.57380 0.57310 0.57245 0.57175 0.57115 0.57045 0.56985 0.56920 0.56850 0.56785
1.50 0.56715 0.56650 0.56585 0.56515 0.56455 0.56395 0.56320 0.56250 0.56185 0.56115
1.52 0.56050 0.55985 0.55910 0.55845 0.55780 0.55705 0.55635 0.55570 0.55505 0.55445
1.54 0.55380 0.55315 0.55255 0.55200 0.55135 0.55065 0.55000 0.54935 0.54865 0.54800
1.56 0.54735 0.54670 0.54605 0.54540 0.54485 0.54415 0.54350 0.54290 0.54235 0.54165
1.58 0.54105 0.54045 0.53990 0.53930 0.53865 0.53800 0.53745 0.53685 0.53625 0.53565

extremes of the two ranges covered. These differences must absence of f. It is clear that the precision of g would be
maximized by working within this range.obviously affect the corresponding derivatives, shown in Fig.

2: the slight differences in the region where the two data
sets overlap arise from these extremal values of r /V 1/3 . Esti- 4. SYSTEMATIC ERRORS
mates of both f and f* from the fits to the separate data
sets agree excellently with the best manual interpolation (9) The correction term f(r /V 1/3 ) derives from empirical
and its derivative apart from at the ends of the ranges of the data. It must itself, therefore, be uncertain to a degree. This
two data sets, giving us confidence in our fitting procedure. entails a systematic error intrinsic to the drop volume
Despite these discrepancies, the main point of present con- method. How significant is this error? We adopt a jackknife
cern is clear: the derivative f* changes sign within the range approach to this question (13).
of tabulated values of r /V 1/3 . The jackknife is a computer-intensive resampling ap-

The effect of the correction term f, which is always posi- proach to establish the accuracy attending the estimation of
tive itself, is thus either to raise or to lower the final uncer- some quantity from a limited set of data. Each point in the
tainty on g over different parts of the range (cf. Eq. [8]) . original data set, of say n members, is discarded in turn,
To achieve the optimal precision of determination of tension, generating n sets of n 0 1 members which are individually
it is apparent that measurements should be made in such a analyzed. The scatter of the n estimates of the statistic of
way that the combination r /V 1/3 lies in the regime where f* interest (xi ) can be used to estimate the standard error of
is negative. the mean x̂ This is given by

The effect of the correction term upon the final uncertainty
in g is expressed in Eq. [8] through the ratio (r /V 1/3 ) (f* /
f) . Figure 3 shows this ratio as a function of r /V 1/3 for the s Å

√
n 0 1

n
∑
n

iÅ1

(xi 0 x̂)2 . [9]
fits to both sets of data, and for the manual interpolation
already cited. Clearly for 0 õ r /V 1/3 õ 0.85 the final uncer-
tainty in g is reduced by the effects of the function f. Over The factor (n 0 1) ‘inflates’ the estimated standard error to

allow for the fact that the n data sets are more similar topart of this range, from about 0.2 to about 0.55, the ratio is
below 00.2. In this smaller range, therefore, the influences each other than truly independent data sets would be (see

p. 143 of (13)) . Other resampling schemes avoid this infla-of sr and sV in the quadratic composition of uncertainties
are reduced to less than 64 and 87% of the values in the tion of the estimated error (13), but are inappropriate in the
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FIG. 3. The ratio (r /V 1/3 ) (f* /f) for the fits to the two sets of data
(solid lines) and the manual interpolation of the combined data set (broken
line) . Note that the ratio is negative over part of the range covered.

r /V 1/3 . The above error estimate refers to the precision of
f at a single arbitrarily chosen value of the argument of that

FIG. 1. Cubic spline approximations (solid lines) to the data of Harkins
function. But f must be a smooth function, and so this willand Brown (1) (1) and Wilkinson (5) (s) . Note the greater scatter on
overestimate its uncertainty. We compromise by taking thethe latter data. The broken line represents the manual interpolation of the

combined set of data referred to in the text. standard deviation of the jackknife values of f(r /V 1/3 ) as

present case where the statistic of interest derives from a
spline fit to the resampled data. In the present case the
analysis involves spline fitting the literature tabulations of
f, the statistic of interest being the estimate of f at a given

FIG. 4. Cubic spline fits to jackknife data sets derived from the data
of Harkins and Brown (1) and Wilkinson (5), together with the manualFIG. 2. The first derivatives of the spline fits to f( r /V 1/3 ) from Fig.

1 (solid lines ) . The broken line derives from the corresponding line of interpolated variation (broken line) . Note the closeness of the fits to the
manual interpolation and the rather small scatter on the jackknife fits.Fig. 1.
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155ERROR ANALYSIS OF DROP VOLUME METHOD

the uncertainty in that function. This estimate, while not We have also considered the possible systematic errors in
g due to the empirical basis of the correction term. It seemsvery rigorous, does indicate the likely systematic error; the

jackknife is, after all, a crude device (13). unlikely that this systematic error could exceed 0.02%,
which is likely to be smaller than the random errors of mea-We show the multiple estimates of f(r /V 1 /3 ) in Fig.

4. All the spline fits are very close to the best manual surement. We offer the tabulation of the manual interpolation
(9) of f(r /V 1/3 ) given in Table 1 as a recommended varia-interpolation, giving assurance of the satisfactory nature

of the present results. The scatter of the fits is really rather tion for use by other workers.
small: the error in the interpolated value of f is not large.
The fractional standard deviation of these fits to f varies ACKNOWLEDGMENTS
with r /V 1 /3 : it is£3 1 1004 over most of the range studied

E.G.J. is grateful to DENI and Unilever research for financial support.by Harkins and Brown (1 ) , rising to 1003 about r /V 1 /3 Ç
J. Magorrian is thanked for advice on computing aspects.1.3. For the data of Wilkinson (5) , the corresponding

figure is £5 1 1004 over the entire range covered. For
REFERENCES0.3£ r /V 1 /3 £ 0.85, the portion of the Harkins and Brown

range for which f* is negative, the fractional jackknife
1. Harkins, W. D., and Brown, F. E., J. Am. Chem. Soc. 41, 499 (1919).error is £2 1 1004 . These figures represent our estimate
2. Carroll, B. J., Doyle, P. J., Donegan, A. C., and Ward, A. J., J. Chem.of the systematic error on g, due to the inherent impreci-

Soc. Faraday Trans. 1 81, 2975 (1985).
sion of f, expressed as a fraction of g. 3. Tate, T., Philos. Mag. 27, 176 (1864).

4. See, e.g., Barlow, R. J., ‘‘Statistics.’’ Wiley, Chichester, 1989.
5. CONCLUSIONS 5. Wilkinson, M. C., J. Colloid Interface Sci. 40, 14 (1972).

6. Strenge, K. H., J. Colloid Interface Sci. 29, 732 (1969).
In summary we have presented, for the first time, a de- 7. Lando, J. L., and Oakley, H. T., J. Colloid Interface Sci. 25, 526

tailed error analysis of the drop volume method of determi- (1967).
8. Wilkinson, M. C., and Kidwell, R. L., J. Colloid Interface Sci. 35,nation of surface or interfacial tensions. The principal con-

114 (1971).clusions are that, due to the effect of the empirical correction
9. Doyle, P. J., PhD thesis, CNAA, 1991.term, the uncertainty in the measured tensions can be mini-

10. e.g., de Boor, C., ‘‘A Practical Guide to Splines.’’ Springer–Verlag,
mized by making measurements so that r /V 1/3£ 0.85, where New York, 1978; Dierckx, P., ‘‘Curve and Surface Fitting with
the effect of the correction term is to reduce the effects of Splines.’’ Oxford Univ. Press, Oxford, 1993.

11. Routine E02BEF of the NAG Library, Numerical Algorithms Group,the errors in r and V . This recommendation partially rein-
Oxford, OX2 8DR, UK.forces that of Harkins and Brown (1), who suggested that

12. Harkins, W. D., in ‘‘Physical Methods of Inorganic Chemistry’’ (A.the most accurate results would be obtained between 0.6 £
Weissberger, Ed.) , Vol. 1, p. 355. Interscience, New York, 1949.

r /V 1/3 £ 1.2, where the slope of the plot of f was not 13. Efron, B., and Tibshirani, R. J., ‘‘An Introduction to the Bootstrap.’’
too great. Very small values of r may involve experimental Chapman & Hall, New York, 1993.

14. Kaufman, S., J. Colloid Interface Sci. 57, 399 (1976).difficulties (14) and should, therefore, be avoided.

/ m4420$3886 11-29-95 17:26:12 coida AP: Colloid


