
Adrian Down

May 01, 2006

1 Longitudinal modes of a laser cavity

1.1 Resonant modes

For the moment, imagine a laser cavity as a set of plane mirrors separated
by a distance d. We will return to the specific properties of the cavity later.

Resonant modes of the laser cavity are those that are capable of producing
standing waves. These modes occur at the wavelengths λn that satisfy

2d = nλn

The possible resonant frequencies of the cavity are

νn =
c

λn

=
nc

2d

The resonant frequencies of the cavity are equally spaced,

νn+1 − νn =
c

2d

1.2 Laser gain parameter

In considering the output of a laser, we defined the laser gain parameter,

αν =
h

c

ν

∆ν
B21 (∆N2 −∆N1)

where ∆N1,2 is the concentration of particles in the state with energy E1,2

in the frequency range ∆ν, and ∆ν is the range of frequencies in the beam
output by the laser.
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In order to achieve lasing, the energy loss due to absorption in each round
trip in the laser cavity must be less than the gain obtained in each trip. We
quantified this condition using a relative efficiency of the laser, δ, where
δ ≤ 1, which represents the energy loss due to absorption by the laser cavity.
We saw that in order to achieve lasing, it must be that,

e2ανd >
1

δν

Consider the plot of αν as a function of frequency. αν has a maximum at
the center of the laser bandwidth, ν = E2−E1

h
. The lasing threshold describes

a horizontal line at the value of αν = − ln δν

2d
. Lasing is only possible for

values of αν above this line. The possible lasing frequencies are equidistant
in frequency space at intervals of c

2d
.

1.3 Hole burning

Recall that αν was involved in the solution to the differential equation that
gave the irradiance of a beam as a function of distance traveled in the lasing
medium,

I(z) = I(0)eανz

If αν is above the lasing threshold, this equation appears to predict that
I(z) will increase without bound. In practice, the irradiance is limited by
the number of atoms in the lasing medium available to undergo spontaneous
emission. As atoms are emitted from the excited state by stimulated emis-
sion, there are fewer atoms in the excited state near the lasing frequencies.
These depopulations appear as dips in the absorption spectrum of the lasing
medium near the lasing frequencies. This depopulation effect is known as
hole burning.

Note. The “hole” being burned is in frequency space only, and does not refer
to any tangible hole.

The finite time for repopulation of the pumped state leads to some natural
frequency width in output of the laser,

∆νnat =
E2 − E1

∆t

where ∆t is the lifetime of the excited state.
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1.4 Doppler broadening

Since the gain is inversely proportional to ∆ν, it is advantageous to make
the bandwidth of the laser as small as possible. However, ∆ν is fundamen-
tally limited by Doppler broadening. This effect occurs because the atoms
producing the radiation used by the laser apparatus have a velocity due to
their thermal energy. Motion of any source of radiation, in this case atoms
of the lasing medium, results in a Doppler shift in the outgoing radiation.
Because the thermal motion of the atoms is random, the magnitude of the
Doppler shift in the radiation emitted by each atom is different, leading to a
spread in output frequencies.

The frequency shift induced by Doppler broadening is characterized by
∆ν
ν

. Let ux denote the thermal velocity of an atom in the lasing medium.
Using the Boltzmann factor, which leads to the equipartition theorem,

f(µx) ∝ e−
1
2 mu2

x
kT

⇒ 1

2
m 〈u2

x〉 =
1

2
kT

⇒ 〈(∆ν)2〉
ν2

=
kT

mc2

At room temperature,

kT ∼ 1

40
eV ∼ O(10−3eV)

The rest energy is

mc2 ∼ O(GeV) = O(109eV)

The relative magnitude of Doppler broadening is,

〈(∆ν)2〉
ν2

∼ O(10−12)

⇒ 〈∆ν〉
ν

∼ O(10−6)

1.5 Line-shape of αν

Due to the effects of hole burning and Doppler broadening, the line-shape of
αν is not Gaussian. Instead, it is proportional to,

αν ∝
1

∆ν2 + Γ2

(4π)2
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where Γ is the inverse mean life for the transition E2 to E1.

2 Transverse modes of a laser

2.1 Motivation

Intuitively, we expect the irradiance pattern of a laser beam to be circular;
if the beam is shined on a material, we expect to observe a circular hole
burned on the material. However, we will see that it is possible to obtain
other transverse modes, for which the resulting irradiance patterns are not
circular. We will first study the origin of these effects. We will then see how
they can be removed, to ensure a highly focused output beam.

2.2 Analogy to Fraunhofer diffraction

Imagine a simple setup in which there are two concave mirrors with focal
length f , which implies that their radii of curvature are R = 2f . Place these
mirrors confocally, with the concave sides of the mirrors facing each other.
Imagine a beam beginning at the point z = 0, reflecting off each mirror, and
returning to the point z = 0. The total length of this path is 4f .

Using some hand waving, we can say that this setup is very similar to
the previous setup that we considered when studying Fraunhofer diffraction.
The path length of the apparatus in that case was also 4f , where f was the
focal length of the thin field lenses placed between the aperture, transform,
and image planes.

We saw in the case of Fraunhofer diffraction that the optical disturbance
at the image plane is the fourier transform of that at the transform plane.
In this case, the concave mirrors function as the thin lenses, and so the
transform and image planes are both located at the center point of the two
confocal concave lenses.

After many reflections of the beam, we expect by symmetry that the
optical disturbance at z = 0 should be the same before and after reflection off
one of the mirrors. Combined with the previous result, this implies that the
optical disturbance must be a function that is equal to its Fourier transform.
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2.3 Possible solutions

One possibility is the Gaussian, which is equal to its Fourier transform as we
mentioned previously,

U(x, y) = e−
(x2+y2)

w2

where w is a characteristic width.
There are also other higher order solutions,

Upq(x, y) = Hp

(√
2x

w

)
Hq

(√
2y

w

)
e−

(x2+y2)

w2

where Hp,q are Hermite polynomials,

H0(u) = 1 H1(u) = 2u Hn(u) = (−1)neu2 dn

dun

(
e−u2

)
Note. • With this notation, the Gaussian case can be denoted U00.

• These are the same Hermite polynomials that appear in the solution
to the 1D Shrödinger equation for the quantum mechanical simple har-
monic oscillator.

We are considering the case in which the electromagnetic fields are per-
pendicular. In this case, the solutions are called transverse electromagnetic
(TEM) solutions.

Each choice of p and q leads to a different irradiance pattern. Some
examples are:

TEM00 consists of a pure circle

TEM10 consists of two symmetric spots

TEM11 consists of four spots, the total forming a circular shape with the
coordinate axes removed from the circle.

Visualizations of some of these patterns appear in Padrotti, figures 22-17 and
22-18.

All TEM modes beyond the 00 mode produce an undesirable spread in
the irradiance of the output laser beam. We would like to eliminate all of
these higher order modes to create single mode laser with maximum point-
like irradiance.
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3 Description of the beam field

3.1 Motivation

Our discussion thus far is in terms of U , a scalar function. To return vector
fields to the problem, assume all fields are polarized in the x̂ direction.

Our discussion of Fraunhofer diffraction also assumed plane waves. The
waves emitted by a laser have a very limited transverse extent and are cer-
tainly not plane waves. To better understand the case of waves comprising
the laser beam, we must return to the underlying physics encapsulated in
Maxwell’s equations.

3.2 Calculation

We consider the case of an insulator, which will simplify the resulting equa-
tions. In this case, the conductivity σ is equal to 0, and there is no attenua-
tion of the beam within the material. Maxwell’s equations become,(

∇2 − εµ
∂2

∂t2

)
E = 0

Going from the vector to the scalar case, assume x̂ polarization,

E(phys) = x̂E(phys)

where the physical field is, as usual, the real part of a complex field. Assume
a monochromatic wave, so that the fast timescale variation of the wave can
be expressed as e−ıωt. The complex field contains the slower variations in the
field,

E(phys) = <
(
E(r)eı(kz−ωt)

)
E(r) is dependent on z, although the variation in the complex field is

slow relative to the exponential dependence on z. E(r) is dependent on x
and y, and in particular, has important dependence on ρ =

√
x2 + y2.

Now, substitute this assumed form of the E field into Maxwell’s equation
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above. Computing the derivatives,

∇2
(
E(r)eı(kz−ωt)

)
=∇∇∇

(
∇∇∇E(r)eı(kz−ωt) + E(r)∇∇∇eı(kz−ωt)

)
= ∇2E(r)eı(kz−ωt) +∇∇∇E(r) · ∇∇∇eı(kz−ωt)

+∇∇∇E(r) · ∇∇∇eı(kz−ωt) + E(r)∇2eı(kz−ωt)

∂2

∂t2
(
E(r)eı(kz−ωt)

)
= E(r)

∂2

∂t2
eı(kz−ωt)

⇒
(
∇2 − εµ

∂2

∂t2

)(
E(r)eı(kz−ωt)

)
= ∇2E(r)eı(kz−ωt) + 2∇∇∇E(r)∇∇∇eı(kz−ωt)

+ E(r)

(
∇2 − εµ

∂2

∂t2

)
eı(kz−ωt)

The derivatives of the exponential can be simplified, assuming a particular
value for k,(

∇2 − εµ
∂2

∂t2

)
eı(kz−ωt) =

(
−k2 + εµω2

)
eı(kz−ωt)

⇒
(
∇2 − εµ

∂2

∂t2

)
eı(kz−ωt) = 0 if k = ω

√
εµ =

ω

c

√
εµ

ε0µ0

=
ω

vph

The second term in the expression above can also be simplified,

∇∇∇eı(kz−ωt) = ıkeı(kz−ωt)ẑ

∇∇∇E(r) =
∂E(r)

∂x
x̂ +

∂E(r)

∂y
ŷ

∂E(r)

∂z
ẑ

⇒∇∇∇E(r) · ∇∇∇eı(kz−ωt) = ık
∂E(r)

∂z
eı(kz−ωt)

Canceling the remaining exponential factors in the Maxwell equation,

∇2E + 2ık
∂E

∂z
= 0

As mentioned above, The variation of ∇2E is slow with respect to eıkz.
This we can neglect ∂2E

∂z2 with respect to k ∂E
∂z

. Hence we can neglect the
∂2

∂z2 component of the ∇2 operator, although the variation in the x̂ and ŷ
components is still significant,(

∂2

∂x2
+

∂2

∂y2
+ 2ık

∂

∂z

)
E(r) = 0 (1)
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