MODEL OE1022 DSP Lock-In Amplifier

Copyright © 2013 by SSI. All Rights Reserved.

Revision 4.4

Ι

Ι.	技术参数	1
	1.1 信号通道	1
	1.2 参考通道	1
	1.3 解调器	2
	1.4 信号发生器	2
	1.5 显示	2
	1.6 输出	3
	1.7 接口	3
	1.8 其他	3
2.	锁相放大器基础	4
	2.1 锁相放大器介绍	4
	2.2 OE1022 功能原理图	6
	2.3 OE1022 参考通道	6
	2.4 相敏检波器	7
	2.5 时间常数和直流增益	8
	2.6 直流输出和增益	9
	2.7 OE1022 动态储备	11
	2.8 信号输入放大和滤波	12
	2.9 输入端连接	14
	2.10 固有噪声	14
	2.11 外部噪声源	16
	2 12 靖助横拟检入/检史(AUXIN/OUT)	
		18
	2.12 #助候饭桶八桶田(AOX MYOOT) 2.13 信号发生器的频率、幅值扫描	18 18
	2.12 抽動模板和人/抽出(AoA M/001/) 2.13 信号发生器的频率、幅值扫描 2.14 FFT 频谱分析	18 18 19
	 2.12 抽動模板和大/抽出(Aox m/001) 2.13 信号发生器的频率、幅值扫描 2.14 FFT 频谱分析 2.15 多谐波测量 	18 18 19 19
3.	2.12 備助候候備八桶田(Aox myoor) 2.13 信号发生器的频率、幅值扫描 2.14 FFT 频谱分析 2.15 多谐波测量 界面介绍	18 18 19 19 20
3.	2.12 曲肋侯候前八/前出(Aox m/001) 2.13 信号发生器的频率、幅值扫描 2.14 FFT 频谱分析 2.15 多谐波测量 界面介绍 3.1 前面板	18 19 19 20 20
3.	2.12 曲助侯派前八/前出(Aox m/001) 2.13 信号发生器的频率、幅值扫描 2.14 FFT 频谱分析 2.15 多谐波测量 界面介绍 3.1 前面板 3.1.1 显示屏	18 18 19 19 20 20 20
3.	2.12 曲肋侯候袖八/袖田(Aox m/OOT) 2.13 信号发生器的频率、幅值扫描 2.14 FFT 频谱分析 2.15 多谐波测量 界面介绍 3.1 前面板 3.1.1 显示屏 3.1.2 软键	18 18 19 19 20 20 20 20
3.	2.12 曲助侯派前八/前出(Aox m/OOT) 2.13 信号发生器的频率、幅值扫描 2.14 FFT 频谱分析 2.15 多谐波测量 界面介绍 3.1 前面板 3.1 乱示屏 3.1.1 显示屏 3.1.2 软键 3.1.3 旋钮	18 18 19 19 20 20 20 20 20
3.	2.12 曲助侯候桶八/桶田(Aox m/OOT) 2.13 信号发生器的频率、幅值扫描 2.14 FFT 频谱分析 2.15 多谐波测量 界面介绍 3.1 前面板 3.1.1 显示屏 3.1.2 软键 3.1.3 旋钮 3.1.4 键盘	18 18 19 19 20 20 20 20 20 20
3.	2.12 mb/(根面//前田 (Ao/m/OOT)) 2.13 信号发生器的频率、幅值扫描 2.14 FFT 频谱分析 2.15 多谐波测量 第面介绍 3.1 前面板 3.1 前面板 3.1.1 显示屏 3.1.2 软键 3.1.3 旋钮 3.1.4 键盘 3.1.5 BNC 连接器	18 18 19 19 20 20 20 20 20 20 20 20
3.	2.12 mb/(根本//ml) (Ao/ m/(Orl)) 2.13 信号发生器的频率、幅值扫描 2.14 FFT 频谱分析 2.15 多谐波测量 界面介绍 3.1 前面板 3.1 前面板 3.1.1 显示屏 3.1.2 软键 3.1.3 旋钮 3.1.4 键盘 3.1.5 BNC 连接器 3.2 后面板	18 18 19 19 20 20 20 20 20 20 20 21 21
3.	2.12 mb/(和)(和)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)	18 18 19 19 20 20 20 20 20 20 20 20 21 21 21
3.	2.12 #助候我制入(和田 (AoX N/OOT)) 2.13 信号发生器的频率、幅值扫描	18 19 19 20 20 20 20 20 20 21 21 21 21
3.	2.12 ##Dikite (NOV IN/OUT) 2.13 信号发生器的频率、幅值扫描 2.14 FFT 频谱分析 2.15 多谐波测量 界面介绍 3.15 圆式 3.1.1 显示屏 3.1.2 软键 3.1.3 旋钮 3.1.4 键盘 3.1.5 BNC 连接器 3.2 后面板 3.2.1 电源接口 3.2.3 AUX IN	18 19 19 20 20 20 20 20 20 20 20 20 21 21 21 21 21
3.	2.12 辅助保快桶小勺桶田(AOX MYOOT) 2.13 信号发生器的频率、幅值扫描 2.14 FFT 频谱分析 2.15 多谐波测量 界面介绍 3.15 BNC 连接器 3.2 后面板 3.2.1 电源接口 3.2.2 USB 3.2.3 AUX IN 3.2.4 AUX OUT	18 18 19 19 20 20 20 20 20 20 20 21 21 21 21 21 22 22
3.	2.12 辅助操运制/分析 2.13 信号发生器的频率、幅值扫描 2.14 FFT 频谱分析 2.15 多谐波测量 界面介绍 界面介绍 3.1 前面板 3.1.1 显示屏 3.1.2 软键 3.1.3 旋钮 3.1.4 键盘 3.1.5 BNC 连接器 3.2 后面板 3.2.1 电源接口 3.2.3 AUX IN 3.2.4 AUX OUT 3.2.5 TRIG IN	18 18 19 19 20 20 20 20 20 20 20 20 20 20 21 21 21 21 21 22 22 22
3.	2.12 辅助候饭桶八桶面(AOA ROUGET) 2.13 信号发生器的频率、幅值扫描 2.14 FFT 频谱分析 2.15 多谐波测量 界面介绍 3.1 前面板 3.1.1 显示屏 3.1.2 软键 3.1.3 旋钮 3.1.4 键盘 3.1.5 BNC 连接器 3.2 后面板 3.2.1 电源接口 3.2.3 AUX IN 3.2.4 AUX OUT 3.2.5 TRIG IN 3.2.6 TTL OUT	18 18 19 20 20 20 20 20 20 20 20 20 21 21 21 21 22 22 22 22 22

	3.3 主界面	22
	3.3.1 状态栏	22
	3.3.2 数据栏	24
	3.3.3 监测栏	24
	3.3.4 功能栏	25
4.	菜单	26
	4.1 [INPUT/FILTERS]子菜单	26
	4.1.1 <source/> : 输入模式设置	26
	4.1.2 <current gain="">:电流增益设置</current>	26
	4.1.3 <grounding>: 接地设置</grounding>	27
	4.1.4 <coupling>: 耦合设置</coupling>	27
	4.1.5 <line notches="">: 陷波器设置</line>	27
	4.2 [REF/PHASE]子菜单	27
	4.2.1 <ref.phase>: 参考相位设置</ref.phase>	29
	4.2.2 <ref.source>: 参考信号源设置</ref.source>	29
	4.2.3 <ref.slope>: 外部参考信号类型设置</ref.slope>	29
	4.2.4 <ref.frequency>: 内部参考信号频率设置</ref.frequency>	29
	4.2.5 <sweep>: 内部参考信号扫频设置</sweep>	29
	4.2.6 <harmonic>:谐波检测设置</harmonic>	31
	4.2.7 <sine output="">:正弦信号输出设置</sine>	32
	4.3 [GAIN/TC]子菜单	34
	4.3.1 <sensitivity>: 满偏灵敏度设置</sensitivity>	34
	4.3.2 <reserve>:动态储备设置</reserve>	34
	4.3.3 <time constant="">: 时间常数设置</time>	35
	4.3.4 <filter db="" oct="">: 低通滤波器陡降设置</filter>	35
	4.3.5 <synchronous>:同步滤波器设置</synchronous>	35
	4.4 [DISPLAY] 子菜单	36
	4.4.1 <monitor>:状态栏显示设置</monitor>	36
	4.4.2 <display&scale>: 动态区域显示设置</display&scale>	36
	4.4.3 <equation>: 公式设置</equation>	40
	4.4.4 <disp more="">: 更多显示设置</disp>	41
	4.5 [SAVE/RECALL] 子菜单	42
	4.6 [CHANNEL OUTPUT]子菜单	43
	4.6.1 <output.source>: 输出源通道设置</output.source>	44
	4.6.2 <offset &="" expand="">: 偏置与放大设置</offset>	44
	4.6.3 <speed>: 输出速率设置</speed>	45
	4.7 [SAMPLE]子菜单	46
	4.7.1 <step time="">: 采样间隔设置</step>	46
	4.7.2 <length>: 采样长度设置</length>	46
	4.7.3 <select>: 采样对象设置</select>	46
	4.7.4 <trigger mode="">: 触发模式设置</trigger>	47
	4.7.5 <sample mode="">: 采样模式设置</sample>	47

	4.8 [AUX OUTPUT]子菜单	48
	4.9 [SYSTEM]子菜单	48
	4.9.1 <info>二级子菜单</info>	49
	4.9.2 <screen>二级子菜单</screen>	50
	4.9.3 <rs232>二级子菜单</rs232>	51
	4.9.4 <reset ?="">: 锁相放大器复位</reset>	52
	4.10 [AUTO SET]子菜单	52
	4.10.1 <auto reserve="">:自动设置动态储备功能</auto>	52
	4.10.2 <auto gain="">:自动设置灵敏度功能</auto>	52
	4.10.3 <auto phase="">:自动移相功能</auto>	53
	4.10.4 <auto scale="">: 自动刻度功能</auto>	53
	4.11 [CONTROL]菜单	53
	4.11.1 [START/CONT]:开启或继续数据采样	53
	4.11.2 [PAUSE/CLEAR]:暂停采样或清空采样数据	53
	4.11.3 [CURSOR]: <chart>图中标尺的显示和隐藏</chart>	53
	4.11.4 [ACTIVE CHART]:选择 <chart>图为活动区域</chart>	54
5.	远程编程	55
	5.1 OE1022 命令语法	55
	5.2 详细的命令列表	56
	5.2.1 参考与相位指令	57
	5.2.2 Equation 指令	60
	5.2.3 输入与滤波器指令	62
	5.2.4 灵敏度和时间常数指令	63
	5.2.5 显示和输出指令	64
	5.2.6 保存读取设置指令	66
	5.2.7 自动设置指令	67
	5.2.8 数据存储指令	68
	5.2.9 数据读取指令	70
	5.2.10 复位与 IDN 指令	73
6.	PC 软件安装使用说明	74
	6.1 软件安装	74
	6.2 软件使用说明	78
	6.2.1 软件运行	78
	6.2.2 PC 机与 OE1022 连接	78
	6.2.3 输入信号配置	80
	6.2.4 参考信号及扫频配置	81
	6.2.5 动态储备和灵敏度配置	84
	6.2.6 谐波及目动设直配直	86
	6.2.7 滤波器配置	87
	6.2.8 输出通追配直	88
	6.2.9 辅助输出配直	89
	6.2.10 目定义公式配直	90

	6.2.11 正弦信号输出配置	91
	6.2.12 数据缓存区配置	93
	6.2.13 数据保存	94
	6.2.14 谐波波形显示	96
	6.3 软件使用实例	96
7.	性能测试	106
	7.1 启动测试	108
	7.2 直流偏置	108
	7.3 共模抑制	108
	7.4 幅值精度和平坦度	109
	7.5 幅值线性度	110
	7.6 频率精度	111
	7.7 Sine Out 幅值精度和平坦度	112
	7.8 直流输出和输入	113
	7.9 输入噪声	114
	7.10 OE1022 性能测试记录表	115
8.	操作实例	119
	8.1 基本信号测量	119
	8.2 谐波测量	123
	8.3 某任意光源光谱测量	126
	8.4 串口通讯	129

1. 技术参数

1.1 信号通道

•	电压输入模式	单端或差分输	λ
•	满标灵敏度	1 nV 至 1 V,以	以1-2-5 的顺序标定
•	电流输入	10 ⁶ 或10 ⁸ V/A	N N
•	输入阻抗		
	电压	10 MΩ//25 pF,	交流或直流耦合
	电流	1 kΩ 到虚拟地	
•	共模抑制比	>100 dB 至 10	kHz,以 6 dB/oct 减小
•	动态储备	>100 dB	
•	增益精度	标准 0.2%,最	大 1%
•	噪声		
	1 kHz 时	10 nV/Hz	(电压)
		0.13 pA/Hz	(电流)
	100Hz 时	0.013 pA/Hz	(电流)
•	线路滤波器	50/60 Hz 和 10	0/120 Hz
•	接地	BNC 接头可以	直接接地或者通过 1kΩ 电阻接至浮地
1.	2 参考通道		

1

输入

•

频率范围	1 mHz 至 102 kHz
参考输入	方波或正弦波
输入阻抗	1 ΜΩ
正弦参考信号	>1 Hz
	> 400 mVpp
相位	
分辨率	0.01°
绝对相位误差	<1°
相对相位误差	<0.01°
正交性	
内部参考	综合,在 1 kHz 时:<0.0001°rms
外部参考	在 1 kHz 时:0.005°rms(时间常数 100 ms,12 dB/oct)
温漂	
低于 10 kHz	<0.01°/℃
高于 10 kHz	<0.1°/℃
谐波检测	2F, 3F,nF 至 102 kHz (n<32,767)

采集时间
 内部参考
 即时采集
 外部参考
 (2 个周期+ 5 ms)或者 40 ms

1.3 解调器

稳定性 • 所有设置均无零点漂移 数字输出 显示 所有设置均无零点漂移 所有动态储备设置小于 5 ppm/℃ 模拟输出 谐波抑制 -90 dB • 时间常数 10 us 至 3 ks (<200Hz). 6, 12, 18, 24 dB/oct 陡降 10 us 至 30 s (>200Hz). 6, 12, 18, 24 dB/oct 陡降 低于 200 Hz 且 18,24 dB/oct 陡降有效 同步滤波器 •

1.4 信号发生器

•	频率	
	范围	1 mHz 至 102 kHz
	精度	25 ppm + 30 uHz
	分辨率	0.1 mHz
•	失真	-80 dBc (f<10 kHz),-70 dBc (f>10 kHz)
•	幅值	0.001Vrms 至 5 Vrms (分辨率 1 mVrms)
	误差	1%
	温度稳定性	50 ppm/℃
•	输出	正弦信号,输出阻抗为 50 Ω

1.5显示

•	屏幕	5.6 英寸,640*480 的 TFT 彩色液晶
	屏幕格式	单通道或双通道显示
	显示值	每个通道均可显示 X,Y,R,θ 值
	显示类型	数字显示图,条形图,XY 坐标图和极坐标图

2

- 1.6 输出
- 通道1和通道2
 功能 X,Y,R,θ.谐波 幅值 ±10 V
 阻抗 100 Ω
- AUX Inputs
 功能 4 通道输入 幅值 ±10 V, 1 mV 精度 阻抗 1 MΩ
 AUX Outputs
- 功能 4 通道输出 幅值 ±10 ∨ ● Trigger Input
 - TTL 外部触发用于数据存储
- Monitor Output
 功能
 信号放大器的模拟输出
- 1.7 接口

功能

● RS-232 转 USB RS-232 转 USB 接口控制和读取仪器参数及数据

1.8 其他

•	电源要素	Ŕ	
	电应	Ŧ	220/240 V AC
	频率	粹	50/60 Hz
	功率	粹	40 W
•	重量		11.9 KG
•	尺寸		
	宽		473 mm
	深		490 mm
	高		
		包括支脚	160 mm
		不包括支脚	147 mm

3

2. 锁相放大器基础

2.1 锁相放大器介绍

锁相放大器是用于微弱信号检测的装置, 微弱信号常淹没在各种噪声中, 锁相放大器可 以将微弱信号从噪声中提取出来并对其进行准确测量。锁相放大器是基于互相干方法的微弱 信号检测手段, 其核心是相敏检测技术, 利用与待测信号有相同频率和固定相位关系的参考 信号作为基准, 滤掉与其频率不同的噪声, 从而提取出有用信号成分。

对微弱信号的最基本处理是放大,传统的放大处理在放大信号的同时,也放大了噪声, 而且在不进行带限或滤波处理的情况下,任何放大操作都将使得信号信噪比下降。因此,必 须先采用滤波手段提纯信号,提高信噪比,以实现对微弱信号的准确测量。

相敏检测器(PSD)相当于一个带宽极窄的带通滤波器,基本模块包含一个将输入信号 与参考信号相乘的乘法模块和一个对相乘结果进行低通滤波的滤波器模块。有时 PSD 也特 指乘法模块,不包含滤波器模块。如图 1 所示。

图1. 相敏检测示意图

 $S_I(t)$ 是掺杂了噪声的时域输入信号, $S_R(t)$ 为与输入待测信号有固定频率关系的参考 信号。PSD 结合待测信号通道和参考信号通道,即可以形成一路完整的锁相放大器功能架构, 称为单相型锁相放大器。其结构原理图如图 2 所示。

图2. 单相型锁相放大器结构图

信号通道进入 PSD 模块的信号可定义为:

 $S_I(t) = A_I \sin(\omega t + \varphi) + B(t)$ 其中 ω 是待测信号频率, $A_I \sin(\omega t + \varphi)$ 是待测信号, B(t)是总噪声。 参考信号通道输出的标准参考信号可定义为:

 $S_R(t) = A_R \sin(\omega t + \delta)$ 两路信号同时输入 PSD 模块进行乘法操作,得到的输出为:

$$S_{\text{psd}} = S_I(t)S_R(t) = A_I A_R \sin(\omega t + \varphi)\sin(\omega t + \delta) + B(t)A_R \sin(\omega t + \delta)$$

$$=\frac{1}{2}A_{I}A_{R}\cos(\varphi-\delta)-\frac{1}{2}A_{I}A_{R}\cos(2\omega t+\varphi+\delta)+B(t)A_{R}\sin(\omega t+\delta)$$

上式结果有三部分,其中第一部分包含待测信号幅值 A_I 、参考信号幅值 A_R 以及输入信号相对于参考信号的相位差($\varphi - \delta$)的余弦值,在输入有用信号与参考信号解析均稳定的情况下,可以认为该部分为一定值,即直流信号;同理,第二部分为原参考信号二倍频交流信号;而第三部分为噪声信号与参考信号的相乘,根据正弦信号的完备性可知,随机信号与其不具有相关性,其积分结果为零。

另一方面,从频谱来看,第一部分结果处于直流部分,第二部分在参考信号二倍频点, 第三部分为原随机信号经过ω频谱搬移,以白噪声为例,搬移结果仍为白噪声。因此,将结 果通入低通滤波器可以得到其直流部分如下:

$$S_{\text{Output}} = \frac{1}{2} A_I A_R \cos(\varphi - \delta)$$

虽然通过调整待测信号与参考信号的相位差($\varphi - \delta$)就能确定待测信号的幅值, 但是这个调整的精度是很难保证的。双相锁相放大器的产生很好的解决了这个问题。如图 3 所示是 双相锁相放大器的原理架构图。

图3. 双相锁相放大器结构图

令相位差 $\theta = \varphi - \delta$, 输出 $X = S_{\text{Output0}}, Y = S_{\text{Output1}},$ 可以计算出不依赖于相位差的输出幅值:

$$R = \frac{2\sqrt{X^2 + Y^2}}{A_R} = A_I$$

参考信号与待测信号之间的相位差可由下式得到:

$$\theta = \tan^{-1}(Y/X)$$

2.2 0E1022 功能原理图

数字锁相放大器 OE1022 的原理框图如下所示:

图4. OE1022 原理框图

总体来看,其功能模块大致分为信号调理通道、参考信号处理通道、算法实现模块、系 统主控等部分。

2.3 0E1022 参考通道

参考通道的功能是为 PSD 提供与被检出信号相干的控制信号, OE1022 的参考信号可根 据实际情况来选择正弦波或者方波信号,其输入阻抗为 1 MΩ。

通常情况下两种参考波形都可以使用,TTL 参考时,高电平>2.5V,低电平<0.4V。正弦 参考为交流耦合,正弦信号大于 0.4Vpp 有效,但是由于正弦波信号输出的幅值很小而且会 有抖动,而很多函数发生器都可以产生稳定的 TTL 同步信号。所以**当频率低于 1 Hz 时,建** 议使用 TTL 电平信号,而不使用正弦波参考信号。

OE1022 锁相放大器有两种参考信号模式,一为内部参考模式,二为外部输入模式。

当设定为内部参考信号模式时,仪器内部的高精度振荡器和合成算法能够产生用于与输入信号相乘的正弦波信号,此时不需用 PLL 进行锁相,内部参考信号几乎不会受到相位噪声的影响。OE1022 的内部参考模式能够在 1 mHz 至 102 kHz 的频率范围内正常工作。

OE1022 也能够使用外部参考信号模式,正弦波信号和 TTL 逻辑电平可作为外部参考信号。锁相环在实际工作中会产生一定的相位抖动,这可能会造成测量的误差。相位抖动导致参考信号掺杂了不同频率的噪声,根据 PSD 相干原理,输出信号不仅包含有与参考信号频率相同的待测信号,还有与参考信号中其它频率相同的噪声。实际上,相位抖动一般比较小不会造成测量问题,如果需要无抖动的测量,可以选用内部参考模式。由于该模式没有使用

PLL,内部晶振与参考信号是直接相连的,所以不存在相位抖动。

2.4 相敏检波器

OE1022 的相敏检波器(PSD)由一个数字乘法器来实现。输入信号放大滤波后由 24 bit A/D 转换器变为数字信号输入到相敏检测器。又因为内部信号发生器产生的参考信号也是位 宽为 24 bit 的数字量,所以本产品的相敏检波模块的精度为 48 bit。

图5. 相干检测核心部分

锁相放大器的相敏检波模块主要实现输入信号与参考信号的相干调制,传统的锁相放大器通过一个模拟乘法器来实现以上功能。但这种以模拟技术实现相干调制的方法存在诸多缺陷,它不仅会极大地限制相敏检波器的精度还会引入很多背景噪声,这些对于微弱信号的测量都是极为不利的。

出于以上考虑,本产品采用数字技术来实现信号的相干调制。因为内部信号发生器产生的参考信号是位宽为 24 bit 的数字量,所以它能极大地避免谐波分量对相干调制的影响。实际上,谐波分量的抑制为-90 dB,这就意味着在相干调制的过程中谐波分量几乎没有影响。

由于模拟技术实现的相敏检波器存在温度漂移,所以其输出结果往往与实际结果间存在 一定的偏差(即系统误差,并且这一系统误差往往带有不确定性),而以数字技术实现的相 敏检波器就可以避免这一问题的产生。在系统正常工作的情况下,几乎不会产生相应的系统 误差。考虑到模拟乘法器的输入量均是模拟量,所以其参考信号也会受到温度漂移效应的影 响。这就会使得参考信号也会存在偏差,进而使得相干调制的结果存在更大的系统误差。

以模拟技术实现的相敏检波器的动态储备基本被限制在 60 dB 以下,这是因为在模拟系统中往往存在很多背景噪声。由于锁相放大器主要用于微弱信号的检测,所以当背景噪声的幅值与信号相接近或是比信号更大时相干调制的结果就会出错。而采用数字技术实现的相敏检波器就不存在此类问题,它的动态储备主要受 A/D 转换的质量限制。一旦输入信号完成数字化后,就不会在相干调制的过程中引入更多的误差。实际上,OE1022 的动态储备能达到 100 dB 以上。

综上可以看出,以数字技术实现的相敏检波器在各方面性能上均优于以模拟技术实现的 相敏检波器,并且以数字技术实现的相敏检波器还拥有易于调试等优点,因而成为本产品的 最优选择。

7

2.5 时间常数和直流增益

相敏检波器的输出包含很多频率成分的信号,其中既有输入信号与参考信号的和频成分 也有两者的差频成分以及噪声信号。并且仅当输入信号与参考信号同频时,两者的差频信号 才为一直流信号。相敏检波器后端的低通滤波器能将除直流分量外的噪声信号和和频信号滤 除,以便让锁相放大器具备一个高品质带通滤波器的功能。

时间常数

相敏检波器后端的低通滤波器的带宽设置方法与常规的低通滤波器相同,均是通过设置 时间常数来实现。其中时间常数的计算公式为:

$$\mathrm{TC} = \frac{1}{2\pi f}$$

其中 f 为滤波器-3 dB 处的频率值。例如对于一个一阶的 RC 低通滤波器而言, 1 秒的时间常 数意味着它的-3 dB 的截止频率为 0.16 Hz。

通常情况下,当系统的输入端有噪声时输出端也会因此而产生噪声。但通过增大时间常数的值能够使系统的输出端更稳定也能减轻输入端噪声对输出端的影响。时间常数除了对系统的稳定性和精度有影响外,还会影响系统的响应时间。时间常数还决定噪声测量时的等效噪声带宽(ENBW)。在此特别说明一下,等效噪声带宽指的并不是滤波器的-3 dB带宽,它指的是对高斯噪声的有效带宽。

数字滤波器与模拟滤波器对比

为了尽量提升 OE1022 的性能,我们采用数字滤波器来实现对相干调制结果的低通滤波 处理。与大多数模拟系统与数字系统的对比一样,数字系统拥有很多模拟系统所不具备的优 势。首先模拟器件固有的温度漂移和非线性将极大的限制滤波器的滚降程度,例如 2 级级联 模拟滤波器的高频段衰减一般为 12 dB/oct。其次,要通过模拟器件搭建一个高品质的低通 滤波器需要占据相当大的电路板面积,这不仅会使得仪器的成本上升;大量的模拟器件也会 为今后的调试带来很大的难度。

本产品采用数字技术实现的低通滤波器是一个 47 bit 位宽, 直流增益严格为 0 dB, 等效 Q 值最高达 145 dB 以上的窄带滤波器。

同步滤波器

数字滤波器的另一个优势是它是同步滤波器的最佳选择。即使输入信号没有噪声,相敏 检波器的输出仍会包含输入信号与参考信号的和频分量,并且这一和频分量幅值可能会大于 所需的差频分量幅值。在频率不太高的情况下,增大时间常数有助于和频成分的衰减。

在 OE1022 中,同步滤波器被设置为当检测频率低于 200 Hz 时有效。因为频率更高时,和频分量能够在时间常数较小的情况下被移除,所以在此时可以不必使用同步滤波器。在同步滤波器的后端我们还设计了几阶滤波器,这样的滤波器组合不仅能够滤除参考信号的谐波分量,还能滤除其余的噪声信号。

8

较大的时间常数

用模拟技术实现的滤波器很难实现高于 100 s 的时间常数。这是因为此时所需的电容不 仅在数值上还是在规格上都过大。但为什么需要如此大的时间常数?因为在某些情况下你是 别无选择的。例如当参考信号的频率低于 1 Hz 并且存在很多低频噪声干扰时,相敏检波器 的输出就会包含很多低频成分的干扰。同步滤波器仅能滤除其中参考信号的谐波分量,其余 的噪声信号需要由其后置的滤波器来滤除。

OE1022 在参考频率低于 200 Hz 时, 能提供最高达到 3000 s 的时间常数, 这能满足大多数测量的需求。

直流输出增益

相敏检测器的直流输出到底有多大? 它取决于动态储备的大小。当动态储备为 60 dB 时, 一个噪声信号会比一个满刻度信号大 1000 倍。在相敏检测器中, 噪声信号不会超过相敏检 测器的输入范围。在一个模拟锁相放大器中,相敏检测器的最大输入幅值为 5 V。在它的动 态储备为 60 dB 时,相敏检测器输入端的信号将只有 5 mV。而相敏检测器对信号是没有放 大作用的,所以其输出仅有几毫伏。即使相敏检测器的直流输出没有误差,后端的放大器直 接将其放大到 10 V 也会使该信号失真。例如 1 mV 的偏移量将在输出端变为 1 V 的输出。这 就是为什么基于模拟技术的相敏检测器不能达到太高的动态储备的原因。

因为基于数字技术的锁相放大器没有采用模拟式直流放大器,所以数字式相敏检测器不存在直流输出的偏移量。数字式直流放大器也不存在输入偏移量。数字式直流放大器只需将 接受到的数据与预先设定好的增益相乘,再将结果输出即可。这就允许 OE1022 在动态储备 达到 100 dB 时仍能不产生相同的误差。

2.6 直流输出和增益

OE1022 在前面板有 CH1 和 CH2 两个输出通道。

CH1 和 CH2 的输出与显示

CH1 和 CH2 的输出范围为-10 V 到+10 V。根据当前测量信号的测量结果与当前设置测量 范围的比例,正比到输出。除此之外,OE1022 还能通过前面板的显示屏显示 CH1 和 CH2 的 数据,其中包括被测信号的 X 值、 Y 值、R 值、θ 值。本产品除了可以以常规的数值方式显 示数据外还能以条形图的方式显示 CH1 和 CH2 的数据。为了便于观测数据的变化,我们还 提供了将数据作为时间的函数以实时曲线图的形式进行显示的模式。

图6. OE1022 显示界面

此外,本产品还能利用极坐标显示出输入待测信号的同相分量和正交分量所组成的矢量。 所有的显示方式可以简单地通过人工操作来进行显示比例的调整,同时仪器所具备的自动调 整功能也可以快速优化仪器的显示方式。

图7. 极坐标显示模式

X, Y和R的输出偏移与增益

OE1022 能够通过设置偏移量以抵消测量时的误差。这对于测量值在某些标称值附近存 在误差的情况下是极其有用的。因为偏移量可以在范围内任意设置,所以输出的偏移量几乎 为零。输出的变化可以直接从显示屏或后面板的输出端读出。偏移量以满刻度输出的百分比 形式表示并且这一比值不会因为灵敏度的变化而改变。偏移量最多可以设置为满刻度输出的

100%。

X、Y和R的输出值也能增大。这一功能是通过给输出的数据乘上一个增益因子来实现 的。因此,一个仅有满偏刻度十分之一的信号经过扩充后能提供10V的输出而不是1V的 输出。输出信号增益的一般作用是在某些非零值的附近增大测量分辨率。

在不超过满偏刻度的情况下, OE1022 能够提供增益因子为+1 ~ +256 多个档位的输出 增益。其输出增益的计算公式为:

$$Output = \left(\frac{Signal}{Sens} + Offset\right) \times Expand \times 10(V)$$

<Offset>可在 -100% ~ +100% 之间进行设置,可通过数字键盘直接输入,最小步进为 0.01%; <Expand>值可在 +1 ~ +256 之间进行设置,可通过数字键盘直接输入,最小步进 为 1。例如:

$$\text{Output} = \left(\frac{0.1\text{mV}}{1\text{mV}} + 0.2\right) \times 2 \times 10(V) = 6(V)$$

图8. 输出偏移与增益设置

2.7 0E1022 动态储备

动态储备表示锁相放大器对噪声容忍程度的大小,通常以 dB 表示。

其中 OVL 表示输入总动态范围, FS 表示输出动态范围。若动态储备为 100 dB, 表示系 统能容忍的噪声可以比有用信号高出 10⁵ 倍。

实际上动态储备容量应该保证整个实验过程中不发生过载,过载还可能出现在前置放大器的输入端和 DC 放大器的信号输出端,可以通过调整增益分配来实现高动态储备。前级放大倍数设置为较小值,以防止噪声过载,经过 PSD 和低通滤波器滤掉了大部分噪声后,直

SSI SCIENTIFIC INSTRUMENTS 流放大倍数设置为较大值,将信号放大到满量程。

锁相放大器输入信号在 PSD 处理之前需要交流放大,而在 PSD 处理之后是直流放大信 号即可。在总增益不变的情况下,如果调整交流增益增加,直流增益减小,则输入噪声经交 流放大很容易使 PSD 过载,动态储备减小,同时输出的直流漂移减小。反之,如果增加直 流增益,降低交流增益,则动态储备提高,使锁相放大器具有良好的抗干扰能力,但以输出 稳定性为代价,降低了测量精度。

直流放大输出精度受噪声的频率和幅值影响。幅值较大且与信号频率相同的噪声经过 PSD 后同样变成直流信号,这样经过低通滤波器时直接输出,对输出结果造成影响。

动态储备与噪声频率有关。在参考频率处的动态储备为 0,远离参考频率时动态储备增 加,离参考频率足够远时,动态储备可达到最大值。参考频率附近的动态储备对仪器噪声容 限极其重要,增加低通滤波器的级数可以提高滤波效果,从而增加参考频率附近的动态储备。 远离参考频率的动态储备一般比较大,但一般其影响不大。

OE1022 动态储备大于 100 dB, 高的动态储备会产生输出噪声和漂移。当动态储备较高时,由于模数转换器的噪声存在导致输出误差增加。由于所有的信号源都存在本底噪声,固在 PSD 提取信号过程中就会掺杂着噪声,如果噪声很大,在高动态储备测量中就会产生较大的输出误差。如果外部噪声较小,则其输出主要是受 OE1022 自身噪声影响。这时可以通过降低动态储备和直流增益可以减小输出误差。因此,在实际应用中应尽量使用低动态储备。

在确定的测量精度要求下,动态储备有最小值。精度要求越高,其最小值就越大。在模 拟锁相放大器中,低动态储备意味着更小的输出误差和漂移。在 OE1022 数字锁放中,高动 态储备不会增加输出误差和漂移,但是会增加输出噪声。然而,如果在 A/D 转换器前的模 拟放大器增益足够大,则其被放大的自身噪声比 A/D 转换器的噪声还大。这样,输出主要 受输入噪声影响。因此,增大模拟增益即减小动态储备并不能减小输出噪声。在分辨率要求 极高的情况下,增益增大并不能提高信噪比,因此,这时可以降低增益从而提高动态储备。

2.8 信号输入放大和滤波

锁相放大器可以测量出低至纳伏级的微弱信号。模数转化器可以将模拟信号数字化,但 信号必须达到足够被识别的强度。因此低噪声信号放大器必须有足够大的增益,将信号增强 到可直接被模数转化器转化,而无需降低信号的信噪比。OE1022 的模拟放大倍数增益大约 7 到 1000 倍,较高的增益并不会提高信噪比。

直流信号和交流信号的总增益由灵敏度确定,两者的增益则由动态储备设定。

输入噪声

OE1022 信号放大器的输入噪声是约 10 nVrms/√Hz。如果放大器的输入噪声为 10 nVrms/√Hz, 增益为 1000 倍, 那么将输出 10 uVrms/√Hz噪音。假设放大器的输出为低 通滤波与单一的 RC 过滤器(6 dB/oct 的滚降), RC 过滤器的时间常数为 100 ms。放大器的 输入噪声和电阻的约翰逊噪声具有高斯噪声性质, 其噪声的量正比于该噪声带宽的平方根。 单级 RC 滤波器的等效噪声带宽(ENBW)为 1/4 个时间常数。这意味着,在滤波器的输入端 的高斯噪声进行滤波,其有效带宽等于 ENBW。在这个例子中,滤波器输入端 5 uVrms/√Hz噪声, 其等效噪声带宽为 2.5 Hz, 滤波器的输出电压噪声为 7.9 uVrms。

对于高斯噪声,噪声峰峰值是噪声有效值的 5 倍左右。因此,输出有大约 40uV 峰峰值 噪声。锁相放大器的输入噪声的工作方式相同。在 5 uV 量程内,输入噪音的数值将决定输 出噪声。低通滤波器的等效噪声带宽将决定输出的噪声量。

等效噪声带宽取决于时间常数和滤波器滚降。例如,将 OE1022 设定到 <5 uV>最大量程, 设置时间常数为<100 ms>以及<6 dB/oct>的滚降,则其等效噪声带宽为 2.5 Hz。一个等效噪 声带宽为 2.5 Hz 的输入信号,输入端将其自动转化成 7.9 nVrms,输出为量程的 0.16%(即 7.9nV/5uV),噪声峰峰值则是满量程的 0.8%左右。

假定一个低阻抗信号源发出信号,电阻约翰逊噪声为0.13 × \sqrt{R} 。以 100 Ω 电阻为例, 其约翰逊噪声为 1.3 nVrms/ \sqrt{Hz} 。一个阻抗为 2 kΩ 的信号翰逊噪声大于 OE1022 的输入噪 声。系统噪声的大小由各个噪声的平方之和的开根号可算出。例如,一个 1 kΩ 阻抗的信号 源,约翰逊噪声将是 4.11 nVrms/ \sqrt{Hz} 。

在低增益时(即敏感性高于 50 uV),信号放大倍数较小,经过放大后的信号仍不能被 模数转化器转化,此时系统的输出噪声主要是模数转换器噪声,但这种情况下的直流增益很 低,输出的噪声可忽略不计。

陷波滤波器

OE1022 在信号放大流程中有两个陷波滤波器。陷波器预先调谐到线频率和线频率的两 倍。若噪声信号频率和电源线频率相同时,陷波器可以移除去噪声信号。然而,在未达到最 终增益环节,移除最大的噪声信号将使得动态存储降低至测量所要求的数值以下。为了防止 出现此类情况,需要改善放大流程。在没有陷波滤波器的条件下,动态存储低于 60 dB 或者 最低存储充足,意味着陷波器不会显著提高测量精度。

若信号频率在陷波器频率时,则不能使用陷波器。陷波器对中心频率的信号有极大的衰减,而中心频率上下约 10 Hz 频率范围的信号也会衰减。一旦信号衰减了,测量的结果必然 是错误的。在测量相移时,陷波器会对相位测量造成影响。

抗混叠滤波器

所有的信号滤波和放大之后,须经过抗混叠滤波器,这是信号的数字化流程的要求。根据奈奎斯特准则,采样频率至少是信号最高频率的两倍。比如信号最高频率是 100 kHz,那 312.5 kHz 采样频率则能进行采样。A/D 转换器无法转换高于 156 kHz 频率的信号,这样的高频信号将违反奈奎斯特准,这样的采样被称为欠采样。欠采样的结果是高频的信号将出现在数字数据流的低频部分,即信号发生混叠,造成测量错误。

为了避免欠采样这种情况,先将模拟信号进行低通滤波处理,消除信号超过 154 kHz 的 高频部分。低通滤波器具有平坦的通带(0-102 kHz),在此通带内,锁相放大器的量程内不 会影响到测量。高于 102 kHz 的高频部分信号会衰减,从 102 kHz 至 154 kHz,在 154 kHz 频 率的滚降达到 100 dB 的衰减。

输入阻抗

OE1022 的输入阻抗是 10 MΩ。如果需要更高的输入阻抗,可以使用 OE1022 的远程前 置放大器,OE1022 具有最大输入阻抗为 100 MΩ。

13

2.9 输入端连接

噪声存在于所有的电路中。即使在信号不是很弱的情况下,噪声的存在也会降低测量的 精度,研究人员发明了各种措施来减少噪声,在系统设计考虑到噪声可以让测量变得更加精 确,而输入连接环节可以减少噪声源以及检测器与锁相环不同地电位的影响。

我们的仪器有两种输入连接的方式,单端连接和差分连接。单端连接非常的简便,而差 分连接则能有效消除噪声的增益。

单端连接模式(A)

单端连接中,使用 A 输入端。锁相环将检测信号,并且把信号当成 A 输入端中的中心 道题和外导体之间的电压差。单端连接有两个显著缺点。

一般认为,低电平是 0 V 的常量,然而不同仪器的地电平会有些许的差异。当检测器地 电平与检测信号的地电平直接相连时,电平差值会导致一个大电流,即接地回路。因而,通 过在两个不同的地间连接一个电阻能消除接地回路问题,一般,浮法采用 10 K 电阻,而地 采用 10 Ω 电阻。其次,单端连接模式对噪声不灵敏。信号线就像天线,会捕获环境电子活 动,从而产生了噪声,而单端连接模式则无法区分噪声和实际信号。

差分连接模式

差分连接模式有两根信号线连接到信号源,每一根接到对应的输入端中。仪器中的两个 高阻抗的功率放大器检测两个输入端与接口地端之间的电压,以两个电压的差值作为输入值, 这消除了公共电压带来的影响。

使用差分连接模式有一个需要注意的地方,两个输入端的电缆不应形成环路,以免产生 电磁感应,从而给检测带来误差。

2.10 固有噪声

噪声

从主观的角度出发,可认为凡是不希望得到或者有碍于准确得到检测结果的输入或影响 均可称之为噪声。噪声具有瞬时值不可预知性的随机性。几乎所有测量领域,探测弱信号的 最终限制因素都在于噪声。即使要测量的信号并非很弱,噪声的存在也会降低测量精度。某 些形式的噪声是无法避免的(例如要测量的波动),只有通过信号平均和缩小带宽等技术来克 服。而另一些形式的噪声(例如射频干扰和接地回路)可以由很多技术来消除或降低,包括滤 波和良好的线路结构和元件布局。同时,放大器本身在工作时也会产生噪声,可以通过低噪 声放大器设计技术解决这一问题。

约翰逊噪声 (Johnson noise)

任何一个老化的电阻,即使不连接到电路,其两端也会产生一个噪声电压,这就是约翰逊噪声。约翰逊噪声的频谱很平,说明在每一频段的噪声功率都相同(当然频率还是有上限的)。一般把频谱很平的噪声叫做白噪声。在温度为 T 时,由一个电阻 R 产生的实际开路噪声电压由下式计算出来:

$$V = (4KTRB)^{\frac{1}{2}}$$

其中 k 为玻尔兹曼常数, k=1.38×10⁻²³ J/K。T 是以开尔文为单位的热力学温度(热力学温度与 摄氏度的转换关系为:⁰K=⁰C+273.16, B 是以赫兹为单位的带宽.

随后,Nyquist 利用热力学推理以数学方式描述了热噪声的统计特性,并证明了热噪声 功率谱函数为

$$St(f) = 4KTR(V^2/Hz)$$

例如,室温下,将一个 10K 电阻接入高保真放大器的输入端,输出端接伏特表,用带宽 为 10 kHz 的滤波器来测量它的的开路有效电压,结果为 1.3 uV。

热噪声电压的幅度在任何情况下一般来说都是不可预见的,但是它遵循高斯分布。其意 义就在于它是任何检波器、信号源或者带电阻的放大器的噪声电压的下限。源内阻的阻抗部 分会产生热噪声,放大器的偏置和负载电阻也同样如此。

阻抗的物理模拟模型(在一个物理系统中任何有能量损失的机械运动,例如液体微粒之间的粘滞摩擦)是与相关物理量的波动联系在一起的(既然这样,微粒的运动速率就呈现出无规律的布朗运动)。热噪声只是这种波动耗散现象的一个特例。

散射噪声(shot noise)

电流其实是一股离散的电荷流,而不是一种真正的流体。电荷量的有限性导致了电流的 统计性起伏。如果电荷之间互不影响,那么电流的波动就由下式给定:

$$I = (2qId_{dc} B)^{\frac{1}{2}}$$

其中 q 为电子电荷(1.60 x 10-9 °C), B 为测量带宽。例如,一个稳定的 1 A 电流,在 10 kHz 范 围内测量,其有效值波动为 57 nA,也就是在 0.000 006%上下波动。对于更小的电流,其波 动更大:一个稳定的 1 uA 的电流通常也有均方电流噪声波动,在 10 kHz 范围内测量值为 0.006%,也就是-85 dB。对于 1 pA 的电流,均方电流波动为 56 fA(在同样带宽测量),也就是 5.6%的波动!

随后证明了散弹噪声电流是一种白噪声,其功率谱密度函数为

$$S_{sl}(f) = 2qId(A^2/Hz)$$

前面给出的散射噪声公式是假设电流中的载流子互不影响而得出的。当电荷通过一个势 垒时,这种假设确实是存在的,例如面接触型二极管中的电流是以电荷的扩散形式传播的。 但是对于最常见的金属导体来说就不是这样,其载流子之间有着很密切的联系。

1/f 噪声(flicker noise)

1925 年, Johnson 在电子管电流中首次发现 1/f 噪声,其突出特点在于该噪声的功率谱 函数正比于 1/f.频率越低,噪声越严重,因为又称为低频噪声。其微观机理在于当两种导体 接触不理想时,其接触电阻将发生随机涨落,从而引起噪声。

尽管对 1/f 噪声研究已达数十年, 然后其适用的情形不一从而有许多的描述模型。其电流幅度满足高斯分布, 功率谱密度正比于工作频率的倒数, 可表示为:

$$S(f) = \frac{K I_d^2}{f} (V^2 / Hz)$$

散射噪声和热噪声都是由于物理特性而产生的不可还原的噪声。对于相同阻值的电阻, 制作精良的电阻和便宜的炭阻所产生的热噪声完全一样。另外,实际设备都会有各种各样的 过量噪声源。实际中的电阻都存在阻值的波动,其结果是产生一个附加的噪声电压(与永远 存在的热噪声加在一起),其值与流经它的直流电流成正比。这一噪声和很多与电阻构造相 关的因素有关,其中包括电阻的材料,特别是封装技术。以纯炭阻,碳膜电阻,金属膜电阻 和绕线电阻为例,绕线电阻的噪声最小,金属膜电阻次之,炭膜电阻次之,纯炭阻最差。

1/f 噪声也叫闪烁噪声(flicker noise),是有源器件中载波密度的随机波动而产生的,它 会对中心频率信号进行调制,并在中心频率上形成两个边带,降低了振荡器的 Q 值。由于 1/f 噪声是在中心频率附近的主要噪声,因此在设计器件模型时必须考虑到它的影响。

2.11 外部噪声源

内部固有噪声是难以避免的,只有尽可能减少这种噪声的大小。相对于固有噪声而言, 外部噪声的形式各种各样,而且绝大多数的噪声源都是异步的。外部噪声源主要通过增加动 态储备的要求和时间常数,进而影响了测量的结果。少数的噪声源和参考电压联系紧密,与 实际测量信号相加或相减,造成测量结果的错误。然而,外部噪声源可以通过多种途径尽可 能减少。

容性耦合

由于布线之间总是有互容如同寄生在布线之间的一样,所以叫寄生电容。极板与周围体 (各种元件甚至人体)也产生电容联系,这种电容联系改变了电容传感器的电容量。尽管寄 生电容数值一般较小,但传感器本身电容量很小,寄生电容仍然会导致传感器特性不稳定, 而且寄生电容不稳定,对传感器也产生严重干扰。另外,分布在导线之间、线圈与机壳之间 以及某些元件之间的分布电容等,他们的数值虽小,却是引起干扰的重要原因。

寄生电容的影响可由以下式子计量出来:

$$I = \omega C_{stray} V_{noise}$$

其中, ω 是噪声频率的 2 倍, C_{strav} 为寄生电容容值, V_{noise} 是噪声的振幅。

当噪声源频率变大时,耦合噪声将会变大。如果噪声源和参考频率一致,对测量结果的 影响会很大。因为锁相放大器会滤除其他频率的噪声,但是会把与参考频率一致的噪声当作

信号进行测量。

减少容性耦合的方法:

- 移除噪声源。
- 设计出测量低阻抗的环节以测量大多数低频噪声源。
- 容性屏蔽例如将整个仪器放入金属盒中。

感性耦合

交流电附近会感应出一个磁场,如果放置器件在交流电附近,感应的磁场会耦合到电路 中进而影响电路。变化的交流电会产生变化的磁场,变化的磁场感应产生电动势,感应电动 势会影响电路的电流电压,进而使实验的测量发生偏差。电动势的大小和磁场变化的频率有 关,频率越快,电动势越大,对实验的测量影响就越大。 减少感性耦合的方法:

- 尽可能移除仪器附近产生交流电的噪声源。
- 使用双绞线或者同轴电缆以减小环路效应。
- 对仪器进行磁性屏蔽,防止磁场进入并穿透测量的区域。

阻性耦合和接地环路

接地环路是一个干扰源,能在传输两端的接地之间产生噪声电压,如果噪声电压足够大, 就会导致测量错误。接地环路是系统接地方案中的一个物理环路,产生于电路之间的多个接 地途径。这些接地路径可以充当一个大环路天线,从环境中拾取噪声,从而在接地系统中产 生电压。交流电源的 50Hz 磁场是接地环路拾取的常见噪声源,类似地,对于分布式接地系 统,源于某个位置的地电压也能引起地电流在接地环路中流动。由于地为低阻抗,因此噪声 电流往往相当大。数百毫伏的噪声可能会引起数安培的电流流过接地环路。 消除接地环路电流的途径:

- 将所有的地连接到同一个点。
- 地总线应尽可能粗,这样可以降低地连接中的阻抗。
- 将较大的地电流的噪声源从地总线移除。

颤动噪声效应

大部分噪声源都是以电气的形式影响电路,机械振动的噪声可通过颤噪效应转化成为电 气形式。因为微振动而使产生传输电缆或者待测信号的机械振动,会产生频率变化的电形式 噪声。

消除颤噪效应的方法:

- 在测量器件,尽可能地减少机械的振动。
- 传输微弱信号的电缆应绑紧以减少它们的颤动。
- 用低噪声的电缆来替代普通电缆以减少颤噪效应。

热电偶效应

两种不同的金属相互接触时在它们之间产生的电势差。产生接触电势差的原因是: (1)两种金属电子的逸出功不同。(2)两种金属的电子浓度不同。若 A、B 两种金属的逸出功分别为 V_a和V_b,电子浓度分别为N_a和N_b,则它们之间的接触电势差为

$$V_{ab} = V_a - V_b + \frac{kT}{q} \times \ln\left(\frac{Na}{N_b}\right)$$

其中 K 为玻尔兹曼常数, K =1.38×10⁻²³J/K。T 是以开尔文为单位的热力学温度(热力学温度与 摄氏度的转换关系为:⁰K=⁰C+273.16),其中 q 为电子电荷(1.60 × 10⁻¹⁹ C).由上式可得知接触电 势数值决定于金属的性质和接触面的温度,因不同金属的功函数(电子逸出金属表面所需的 功)不同而产生。

当两种金属接触时,在接触点产生的电动势会在原电平的基础上增加了一个缓慢变化的 毫伏级的电平。这种噪声与温度密切相关,由于温度变化缓慢,因为这种噪声频率也很低。 热电偶效应会随着检测器输出变大而增长,在低频率时影响较大,尤其是 mHz 级别的测量 时,影响更大。

消除热电偶效应的方法:

- 测量仪器尽可能保持在恒温状态。
- 使用补偿特性的节点。

2.12 辅助模拟输入/输出(AUX IN/OUT)

OE1022 包含了四路 16 位的高精度辅助 AUX_ADC 输入,输入电压范围为±10 V,最小分 辨率达 0.3 mV。这四路 ADC 提供输入信号钳位保护和内部差分放大功能,输入阻抗达 1MΩ, 可同时进行信号采集,用来测量低速模拟信号,或者测量从某个实验得到的直流信号(例如 来自温度传感器或者压力传感器),以便于进行比例运算和传送给控制计算机。

注:由于四路辅助 ADC 内部特殊结构,输入悬空时测量约结果为 2.048 V,接上输入信 号正常工作。

OE1022 同时包含了四路 16 位的高精度辅助 AUX_DAC 输出,输出电压范围为±10 V,最小分辨率达 0.3 mV。可以根据用户需要提供电压的辅助输出。

AUX IN 和 AUX OUT 的接口采用标准 BNC 接头,集成在 OE1022 后面板。对 AUX ADC 数 值显示设置在[DISPLAY]子菜单中进行,而 AUX DAC 的输出值设置在[AUX OUTPUT]子菜单中进行。

2.13 信号发生器的频率、幅值扫描

OE1022 新增频率、幅值扫描功能。信号发生器可以在输出幅值和频率上进行扫描。频率的扫描可以完成对用户感兴趣频段的扫描,更好的分析信号的特点。扫幅功能通过 Sine output 输出大大增加了在实际中的应用范围。

频率和幅值的扫描基本方式都是通过设定起点值和终点值,并在这两个值之间以步进的的方式增加数值,完成扫描。详细见频率扫描,幅值扫描相关章节。

2.14 FFT 频谱分析

FFT(Fast Fourier Transformation),即快速傅里叶变换,是一种将信号的频域信息提取 出来的算法。很多时候,信号在时域上很难看出特征,但是如果变换到频域之后,就很容易 看出该信号在各个频率上的分量,以便于对信号进行全方位的评估。

FFT 是在 DFT(Discrete Fourier Transformation)基础上进行改进获得的。直接计算 DFT 的计算量与变换区间长度 N 的平方呈正比。当 N 较大时,例如 N=1024,则需要 1048576 次 运算,因此直接用 DFT 算法进行频谱分析和信号实时处理是不切实际的。FFT 的算法思想即 是不断把长序列的 DFT 分解成多个短序列的 DFT,并利用周期性和对称性来减少 DFT 运算次 数。例如把 N 序项分为两个 N/2 项的序列,每个 N/2 点 DFT 变换需要(N/2)^2 次运算,再用 N 次运算把两个 N/2 点的 DFT 变换组合成一个 N 点的 DFT 变换。这样变换以后,总的运算 次数就变成 N+2*(N/2)^2=N+N^2/2。继续上面的例子,N=1024 时,总的运算次数就变成了 525312 次,节省了大约 50%的运算量。

在 OE1022 中开发并集成了 FFT 高精度频谱分析功能,可以在 1 kHz 至 102 kHz 的范围内 实现频域分析,并实时显示信号的频谱分布。对 FFT 功能的设置在[DISPLAY]子菜单中进行。

2.15 多谐波测量

谐波是指周期函数或者周期性波形中能用常数、与原函数的最小周期相同的正弦函数和 余弦函数的线性组合表达的部分。根据傅立叶级数的原理,周期函数都可以展开为常数与一 组具有共同周期的正弦函数和余弦函数之和。其展开式中,常数表达的部分称为直流分量, 最小正周期等于原函数的周期的部分称为基波或一次谐波,最小正周期的若干倍等于原函数 的周期的部分称为高次谐波。

现有的锁相放大器中,同一时间只能测量基频信号或者某个谐波信号分量。在很多的实际应用上,往往需要对多个谐波的同时测量和记录。这时,目前的锁相放大器就很难满足要求了。

OE1022 突破性的开发了多谐波同时测量功能,可以最多同时进行 3 通道谐波分量的测量。原来需 3 台锁相放大器完成的工作,现在 OE1022 一台即可完成。

对多谐波的测量设置在[REF/PHASE]子菜单中<Harmonic>中进行。

3. 界面介绍

3.1 前面板

图9. OE1022 前面板

3.1.1 显示屏

OE1022 使用 5.6 英寸 TFT 显示屏作为用户的数据显示与交互控制。显示屏分辨率为 640*480, 有 8 级的背景亮度可供用户选择,可以在[SYSTEM]子菜单设置。

屏幕的左边大幅区域用于显示输入信号的测量结果,支持单区域或双区域显示。此外, 每个区域显示支持数字,XY坐标,极坐标方式显示。

屏幕的右边区域用于测量控制条件的选择与修改。

3.1.2 软键

显示屏的右边有 5 个软键。软键根据不同的当前目录有着不同的功能。总体来说, 软键 有着两个主要功能, 一是在不同的设置选项进行选择, 二是高亮某些参数, 然后使用旋钮或 键盘进行输入。不管哪种功能, 软键只对屏幕右方与软键相邻的参数起作用。

3.1.3 旋钮

旋钮可以调整那些被软键高亮的参数。大部分的参数均可以使用旋钮进行调整。

3.1.4 键盘

键盘由 3 组键组成。ENTRY 区域主要对被软键高亮的参数进行数据形式的输入。MENU 区域改变屏幕右方的参数列表,并提供 10 个不同的功能菜单。CONTROL 区域提供显示测量时的辅助功能,如[CURSOR]等。

20

3.1.5 BNC 连接器

REF IN

参考信号输入可以使用正弦波或 TTL 驱动。正弦波输入时输入阻抗为 1 MΩ, 交流耦合。 对于低频应用的情况(<1 Hz), 推荐使用 TTL 驱动的参考信号。

SINE OUT

信号发生器提供最大 5 Vrms 的幅值可编程输出,输出阻抗为 50 Ω。当外部参考信号使 用时,信号发生器通过锁相环与输入信号进行锁相。

CH1&CH2 OUTPUT

CH1&CH2 OUTPUT 输出范围为-10 V 到+10 V。根据当前测量信号的测量结果与当前设置测量范围的比例,正比到输出。

SIGNAL IN

信号输入可以是单端输入 A,也可以是差分输入 A-B,同时输入端 A 也支持电流信号输入。当测量电压信号时,A、B 两个输入阻抗均为 10 MΩ//25 pF;当测量电流信号时,输入通过 1 kΩ 电阻到地。

3.2 后面板

图10. 后面板

OE1022 后面板如图 10 所示,包括散热风扇,电源接口,电源开关、USB 接口以及 扩展功能接口。其中,扩展功能接口包括 AUX IN、AUX OUT、TRIG IN、TTL OUT 和 MONITOR。

3.2.1 电源接口

电源接口用于整台仪器供电输入,接受 220 V、50 Hz 交流市电,内置保险丝,同时 兼备滤除高频噪声干扰的滤波器功能。

3. 2. 2 USB

USB 接口允许 OE1022 锁相放大器与 PC 机进行通信。可以通过 PC 机对 OE1022 进

22

行控制和读取数据。

3.2.3 AUX IN

四路辅助 AUX_ADC 输入, 输入范围±10 V。

3. 2. 4 AUX OUT

四路辅助 AUX_DAC 输出,输出范围±10 V。

3.2.5 TRIG IN

TRIG IN 接收一个 TTL 信号输入,用于触发测量数据采样和开始数据获取。TRIG IN 上升沿有效,最大采样速率为 500 Hz。

3. 2. 6 TTL OUT

TTL OUT, TTL 输出,与 Sine Output 同步。当正弦波输出幅值很小的时候 TTL OUT 可用于同步锁定。

3. 2. 7 MONITOR

MONITOR 提供了一个前级放大、滤波之后得到的输出信号,即输入到 AD 之前的信号。但是由于模拟增益不会太大, MONITOR 输出并不能观察到幅值十分小的信号。

3.3 主界面

OE1022 主界面中可以分为四个部分。

3.3.1 状态栏

图11. 主界面-状态栏1

图12. 主界面-状态栏 2

如图 11、图 12 所示,状态栏用于指示当前系统的设置情况和测量的数值,可在[DISPLAY] 子菜单中切换显示,此部分显示的内容包括:

<sens></sens>	:	灵敏度值
<filter></filter>	:	滤波器陡降值
<notch></notch>	:	陷波指示
<tc></tc>	:	时间常数值
<dr></dr>	:	动态储备设置
<sync></sync>	:	同步滤波器指示
<cpl></cpl>	:	耦合方式
<src></src>	:	输入模式
<x></x>	:	输入信号 X 值
<y></y>	:	输入信号 Y 值
<r></r>	:	输入信号 R 值
<θ>	:	输入信号 θ 值

3.3.2 数据栏

Sens: 100mV Filter: 24 dB/oct Notch: None None	Source
TC: 300mS DR: Normal Sync: OFF Cpl: AC Sre: A	A A-B
	I
	Current Gain —
K-+ 00.00mV	1M 100M
-100mV +100mV	Grounding
	Float Ground
$\theta = -72.78^{\circ}$	Coupling
	AC DC
	Line Notches —
+180	None Line
Overload: NONE NONE Freq: 1.000kHz	Both 2xLine
Ref.Source: External PLL: LOCKED	Dour ZALine

图13. 主界面-数据栏

如图 13 所示,可在[DISPLAY]子菜单中选择显示<X>、<Y>、<R>、<θ>值,显示方式可选 择数字图、条形图、XY 坐标图和极坐标图。设置方式详见[DISPLAY]子菜单。

3.3.3 监测栏

图14. 主界面-监测栏

监测栏一共显示四项内容,包括:

<Overload> :溢出提示。能够提示前级输入和放大是否溢出。若未发生溢出,则显示:
<u>Overload: NONE NONE</u>;若前级输入溢出,则显示 <u>Overload: INPUT NONE</u>;若放大溢出,则显示 <u>Overload: NONE GAIN</u>;若同时溢出,则显示 <u>Overload: INPUT GAIN</u>。此时需尽快把输入信

号减少以防止对机器造成过压损伤。

<Freq> : 输入信号频率。显示输入信号的频率。
<Ref.Source> : 参考信号。显示选用的参考信号是内部参考还是外部参考。
<PLL> : 锁相环锁相提示。显示相位是否锁定。当使用内部参考时,一直显示
PLL: UNLOCK。

3.3.4 功能栏

图15. 主界面-功能栏

如图 15 所示,功能设置框内有多种功能选择,与前面板的 5 个软键一一对应,在不同的子菜单中有不同作用,是控制系统的主要方式。

4. 菜单

OE1022 主菜单位于前面板控制部分的 MENU。MENU 主菜单共分为: [INPUT/FILTERS]、 [REF/PHASE]、[GAIN/TC]、[DISPLAY]、[SAVE/LOAD]、[CHANNEL OUTPUT]、[SAMPLE]、[AUX OUTPUT]、 [SYSTEM]和[AUTO SET]十个子菜单。通过按每个按钮可切换到相应的子菜单界面。

4.1 [INPUT/FILTERS]子菜单

Sens: 100mV Filter: 24 d	B/oct Notch: None None	Source
TC: 300mS DR: Normal S	ync: OFF Cpl: AC Src: A	A A-B
		I
D-T O	$\cap \cap Q \dots \setminus I$	Current Gain —
N-+ 0	0.00 mv	1M 100M
		Grounding
-100mV	+100mV	
		Float Ground
A=- 72 78°		Coupling —
0^{-1}	2.70	AC DC
		Line Notches
-180*	+180*	None Line
Overload: NONE NONE	Freq: 1.000kHz	Both Orline
Ref.Source: External	PLL: LOCKED	boui 2xLine

在前面板菜单栏中选择[INPUT/FILTERS]进入。如图 16 所示:

图16. [INPUT/FILTERS]子菜单

此子菜单中包括<Source>、<Current Gain>、<Grounding>、<Coupling>和<Line Notches> 五种功能设置:

4.1.1 <Source>: 输入模式设置

<A>: 单端电压信号输入模式。

<A-B> : 差分电压信号输入模式。选择此模式时,将双信号的一端由接口 A/I 输入, 另一端由接口 B 输入。

<I>: 电流输入模式。

☆当使用电压模式时,输入最大不能大于1Vrms。

4.1.2 <Current Gain>: 电流增益设置

<1 M> : 输入为微弱电流信号时,放大倍数为10⁶ V/A。
<100 M> : 输入为微弱电流信号时,放大倍数为10⁸ V/A。

4.1.3 < Grounding>: 接地设置

<Float> :输入接口地与仪器地通过 10 KΩ 电阻隔离。

<Ground> : 输入接口地与仪器地(仪器地已短接在大地---市电 GND 上)通过 10 Ω 电 阻短接。

一般认为信号灌入电流的能力不强(不致烧毁仪器接口芯片),可设置为<Ground>,让 信号地与系统地短接在一起,防止信号地过于浮空带来的信号漂动。当信号地与仪器地绝对 电势相差较大,且信号地灌入电流能力很强时,使用<Float>选项,浮空信号地,同时起限流 保护作用。

4.1.4 <Coupling>: 耦合设置

<AC> : 交流耦合输入。交流耦合输入用于阻隔输入信号中的直流成分,如果信号频 率在 200 Hz 以上建议使用<AC>交流耦合。

<DC> : 直流耦合输入。直流耦合输入用于阻隔输入信号中的交流成分,为了不使幅 值受损,在低于 200 Hz 时建议使用<DC>直流耦合。

4.1.5 <Line Notches>: 陷波器设置

<None> :关闭所有陷波器。

<Line> : 开启 50 Hz 陷波器,抑制工频干扰。

<2×Line>:开启 100 Hz 陷波器,抑制工频二次谐波干扰。

<Both> : 同时开启 50 Hz 和 100 Hz 陷波器,抑制工频和工频二次谐波干扰。

在输入信号频率高于 200 Hz 时,可开启 50 Hz 和 100 Hz 陷波器抑制工频干扰;若输入 信号频率低于 200 Hz,建议关闭两个陷波器,以避免陷波器的陡度不够锐利可能引起的幅值 损失。

4.2 [REF/PHASE]子菜单

在前面板的菜单栏选择[REF/PHASE]子菜单进入,选择不同的参考信号模式会有不同的 界面,如图 17、图 18、图 19 所示:

图17. [REF/PHASE]子菜单-<External>

图18. [REF/PHASE]子菜单-<Internal>

图19. [REF/PHASE]子菜单<Internal Sweep>

此子菜单中包括<Ref.phase>、<Ref.source>、<Ref.slope>、<Ref.frequency>、<Sweep>、<Harmonic>和<Sine Output>七种功能设置:

4.2.1 < Ref. phase>: 参考相位设置

通过数字键盘输入可设置 PSD 算法两路正交参考信号的相移角度,移相精度为 0.01°,输入范围为-180°至+180°。

对于相位,必须有一个基准或者参考才有意义,系统中,我们默认以输入参考信号 REF IN 经过高精度锁相环锁定相位后的信号为相位基准,其余相位值都是相对于此而言的。

4.2.2 < Ref. source>: 参考信号源设置

<External> : 外部参考信号。OE1022 将与 REF IN BNC 输入的参考信号进行锁相。 此时的界面如图 17 所示,可以对<Ref.slope>进行设置。

<Internal> :内部参考信号。此设置下参考信号将根据信号发生器的产生的信号作为 参考信号。REF IN BNC 输入信号将不起作用。此时的界面如图 18 所示,可以对<Ref.frequency> 进行设置。

<Internal Sweep> : 内部参考信号扫频。在此设置下,信号发生器根据用户设置的参数 进行内部扫频。此时的界面如图 19 所示。可以对<Sweep>进行设置。

4.2.3 < Ref. Slope>: 外部参考信号类型设置

当<Ref.source>选择<External>时可进行此项设置,根据外部参考信号的类型选择对应的 信号类型。

<TTL> :外部输入信号为方波时选择此项。

<Sine> : 外部输入信号为正弦波时选择此项。

当输入参考信号为 TTL 逻辑电平时,建议选择 TTL 触发。应当注意,当输入 REFIN 的参考信号虽然是方波,但电平值不满足 TTL 逻辑高低电平阈值条件时,可能得不到稳定的触发,此时可能得不到预期的测量结果,故此时推荐选用 SINE 触发。此外,对特别低的频率(<1 Hz)时,需使用 TTL 参考。

当输入 REF IN 的参考信号为正弦信号时,建议选用该 SINE 触发。SINE 触发是在系统内 部对 REF IN 输入进行精密整形后再检测频率、相位信息。

另外,无论是<TTL>触发还是<SINE>触发,系统对其信号占空比(Duty Cycle)没有要求,但推荐使用常规 50%占空比为宜。

4.2.4 < Ref. frequency>: 内部参考信号频率设置

当<Ref.source>选择<Internal>时可进行此项设置,频率范围为1mHz 到 102 kHz, 默认 1.000 kHz。频率设置可以通过键盘输入,频率分辨率最小为1mHz。

4.2.5 < Sweep>: 内部参考信号扫频设置

当<Ref.source>选择<InternalSweep>时可进行此项设置。选择界面上的<Sweep>功能进入

二级子菜单。在二级子菜单中可以对<SweepType>、<Sweep Set>和<Sweep Run>功能进行设定。界面图如图 20 所示。

图20. <Sweep>二级子菜单

4.2.5.1 <Sweep Type>: 扫频类型设置

<Linear> : 线性扫频类型。

<Log> : 对数扫频类型。

当选择<Linear>模式时,步进类型为频率,频率与设定步进频率进行累加。而在<Log>模式时,步进的类型为频率的百分比。

例如<Log>扫频模式下,扫频步进为10%,开始频率为1kHz,截止频率为2kHz,扫描频率的过程如下:

1000.000 Hz 1100.000 Hz 1210.000 Hz 1331.000 Hz 1464.100 Hz 1610.510 Hz 1771.561 Hz 1948.717 Hz 2000.000 Hz

4.2.5.2 <Sweep Set>: 扫频参数设置

- <Start> : 扫频的开始频率。
- <Stop> : 扫频的截止频率。
- <Step> : 当选<Linear>时为扫频的步进频率,当选<Log>时为百分百频率。
- <Time> : 扫频的步进时间间隔。

通过数字键盘与软键配合对扫频的开始频率、截止频率、步进和时间设置,开始频率与截止频率的范围为1mHz到102kHz,默认<Start>开始频率为1.000kHz,<Stop>截止频率为

5.000 kHz, 频率分辨率最小为 1 mHz, <Log>时步进分辨率最小为 0.001%; 步进时间分辨率 最小为 1 mS, 最大 100 S 。

4.2.5.3 <Sweep Run>: 扫频运行模式设置

<Stop> : 停止扫频。

<Single> : 单次扫频。

<Loop> : 循环扫频。

当<Single>单次扫频启动时,OE1022 按照用户设置进行一次内部频率扫描,完成后,状态自动跳转回<Stop>停止扫频。

当<Loop>循环扫频启动时,OE1022 根据用户设计不停的循环扫频,直到用户手动改变 状态为<Stop>停止扫频。

4.2.6 <Harmonic>: 谐波检测设置

OE1022 可以进行双谐波的同时测量。通过在<Harmonic>二级子菜单中分别设置两个谐 波的阶数<Harmonic1>和<Harmonic2>,即可实现双谐波的同时测量。界面图如图 21 所示。

图21. <Harmonic>二级子菜单

<Harmonic 1>: 谐波1设置,最小值1,最大值32767。

<Harmonic 2>:谐波 2 设置,最小值 1,最大值 32767。

通过数字键盘输入所需测量的谐波阶数,默认显示 1,表示检测 1 阶谐波(即基波)。 <Harmonic>谐波阶数设置的限制是(Harmonic*Freq)<102 kHz,其中 Freq表示参考信号频 率。一旦超过限制时,系统会把谐波阶数自动往下调整直到满足条件。同时,当设置为 0 时,系统自动设置为 1。

例如输入信号是频率为 1kHz 的方波时,假定它的峰峰值为 A,设置<Harmonic>值分别为 1、2、3、4、5、6.....时,将预期得到 R 值为 0.45A、0、0.15A、0、0.09A、0.....,而这个序列正是方波信号傅立叶级数的系数序列的 A 倍。

注:双谐波测量的同时显示需在[DISPLAY]子菜单中的<FULL>选项中进行<LIST>的设置, 详细可见[DISPLAY]子菜单。

4.2.7 < Sine Output>: 正弦信号输出设置

OE1022 可通过前面板的"Sine Out"BNC 接头输出幅值由 0.001 Vrms 到 5 Vrms 的正弦波 信号,通过二级子菜单设置可以实现<Fixed>固定幅值输出、<Linear>线性扫幅输出或者<Log> 对数扫幅输出 3 种不同的模式。二级子菜单中可以进行<Sweep Type>、<Voltage>、<Sweep Set> 和<Sweep Run>的设置。选择不同的<Sweep Type>时,界面有所不同,如图 22 和图 23 所示。

当使用<External>外部参考时,<Sine Output> 提供一个与外部参考锁相的正弦信号;当使用<Internal>内部参考时,将由 OE1022 自身的振荡器产生。同时后面板上"TTL OUT"的 BNC 头将输出与<Sine Output>同步的 TTL 信号。

图22. <Sine Output>二级子菜单-<Fixed>

图23. <Sine Output>二级子菜单-<Linear&Log>

4.2.7.1 <Sweep Type>: 扫幅类型设置

<Fixed> : 固定幅值模式(默认)。

<Linear> : 线性扫幅模式。 <Log> : 对数扫幅模式。 当选择<Fixed>固定幅值模式时, <Sine output> 根据用户设置的值输入的幅值进行输出。 当选择<Linear>或<Log>扫幅模式时,通过<Sweep Set>及<Sweep Run>来进行配置。

4.2.7.2 <Voltage>: 正弦信号输出幅值设置

固定幅值模式<Fixed>下的正弦信号幅值设置,通过数字键盘输入,范围 0.001 Vrms~5 Vrms 峰峰值,最小分辨率为 0.001 Vrms。

4.2.7.3 <Sweep Set>: 扫幅参数设置

<Start> : 扫幅的开始幅值。

<Stop> : 扫幅的截止幅值。

<Step> : 当<Linear>时为扫幅的步进幅值, 当<Log>时为百分比。

<Time> : 扫幅的步进时间间隔。

通过数字键盘与软键配合对扫幅模式下的开始幅值、截止幅值,步进和时间设置。幅值 范围为 0.001 Vrms 到 5 Vrms,默认<Start>开始幅值为 1.000 Vrms,<Stop>截止幅值为 5.000 Vrms。幅值的分辨率最小为 0.001 Vrms,<Log>时步进分辨率最小为 0.001%,步进时间分辨 率最小为 1 mS,最大为 100,000 ms。

4.2.7.4 <Sweep Run>: 扫幅运行模式设置

<Stop> : 停止扫幅。

<Single> : 单次扫幅。

<Loop> : 循环扫幅。

当<Single>单次扫幅启动时,OE1022 按照用户设置进行一次幅值扫描,完成后状态自动 跳转回<Stop>停止扫幅。

当<Loop>循环扫幅启动时,OE1022 根据用户设计不停的循环扫幅,直到用户手动改变 状态为<Stop>停止扫幅。

4.3 [GAIN/TC]子菜单

Sens: 100mV Filter: 24 d	B/oct Notch: None None	Sensitivity —
TO: Sooms DR. Normal S	Suc. OFF Opt. AC SIC. A	100 mV
R=+ 8	0.08 mV	Reserve
		Low High Normal
		Time Constant
-100mV	+100m\	300 mS
$\Delta 7$	0 7Q°	Filter dB/oct
0 - 7	2.70	6 12
		18 24
-180°	+180	Synchronous -
Overload: NONE NONE	Freq: 1.000kHz	COOPE
Ref.Source: External	PLL: LOCKED	<200Hz

在前面板的 MENU 菜单栏选择[GAIN/TC]子菜单进入,如图 24 所示:

图24. [GAIN/TC]子菜单

此子菜单中包括<Sensitivity>、<Reserve>、<Time Constant>、<Filter dB/oct>和<Synchronous> 五种功能设置:

4.3.1 <Sensitivity>: 满偏灵敏度设置

根据输入信号的大小选择合适的满偏灵敏度,通过重复按软键或旋钮调节数值。满偏灵 敏度表如表1所示:

1 nV/fA	200 nV/fA	50 uV/pA	10 mV/nA	
2 nV/fA	500 nV/fA	100 uV/pA	20 mV/nA	
5 nV/fA	1 uV/pA	200 uV/pA	50 mV/nA	
10 nV/fA	2 uV/pA	500 uV/pA	100 mV/nA	
20 nV/fA	5 uV/pA	1 mV/nA	200 mV/nA	
50 nV/fA	10 uV/pA	2 mV/nA	500 mV/nA	
100 nV/fA	20 uV/pA	5 mV/nA	1 V/nA	

表1. 满偏灵敏度表

改变<Senstivity>会改变系统的动态范围,同时也会影响到对 CH1 & CH2 的输出。当测量 信号为电流信号时,满偏灵敏度为相应的电流单位。系统默认为<100 mV/nA>。

当使用自动设置灵敏度<AUTO GAIN>时,系统会根据输入信号的 R 值自动调整合适的 <Sensitivity>。需注意的是,如果此时的时间常数过大,系统将会需要较长的时间来调整。

4.3.2 <Reserve>: 动态储备设置

<Low> : 动态储备设置为低。

<High> : 动态储备设置为高。

<Normal>: 动态储备设置为普通。

对于一般情况下的测量时,使用<Normal>即可。

当使用自动设置动态储备<AUTO RESERVE>时,系统会根据输入信号的 R 值自动调整测量所需要的最小动态范围。

4.3.3 <Time Constant>: 时间常数设置

时间常数设置范围为 10 us 到 3000 s,通过重复按软件或旋钮调节数值,时间常数表如表 2 所示:

10 us	3 ms	1 s	300 s	
30 us	10 ms	3 s	1000 s	
100 us	30 ms	10 s	3000 s	
300 us	100 ms	30 s		
1 ms	300 ms	100 s		

表2. 时间常数表

时间常数越长,等效噪声带宽越小,系统测量响应的时间越长,测量的精度也越高。

4.3.4 <Filter dB/oct>: 低通滤波器陡降设置

<6 dB/oct> : 低通滤波器陡降 6 dB/oct。

<12 dB/oct> : 低通滤波器陡降 12 dB/oct。

<18 dB/oct> : 低通滤波器陡降 18 dB/oct。

<24 dB/oct> : 低通滤波器陡降 24 dB/oct。

在同样的测量准确度下,使用更高的滤波器陡降可以降低时间常数,使得测量响应更快。

4.3.5 <Synchronous>: 同步滤波器设置

<OFF> :关闭同步滤波器。

<<200 Hz>:开启同步滤波器。当信号频率低于 200 Hz 时可以开启同步滤波器。低通滤 波器在输入信号频率较低时无法或需长时间才能得到稳定的结果,此时可借助于此同步滤波 器改善效果。

注:同步滤波器开启时, <Filter db/oct> 必须为<18 dB/oct >或<24 dB/oct >才能真正起作用!

4.4 [DISPLAY] 子菜单

在前面板的 MENU 菜单栏选择[DISPLAY]子菜单进入, 如图 25 所示:

图25. [DISPLAY]子菜单

[DISPLAY]子菜单主要包括 <Monitor>、<Display&Scale>、<Equation>和<Disp More> 4 个 子菜单,可以通过子菜单旁边对应的软键进行选择、设置。

4.4.1 <Monitor>: 状态栏显示设置

<Settings> : 在液晶屏左上方状态栏内显示 <Sensitivity>、<Filter>等 8 项当前设定的 参数和状态。

<Output>:在液晶屏左上方状态栏内显示当前的<R>、<X>、<Y>和<0>实时数值。

<Intput>:在液晶屏左上方状态栏内显示当前后面板 AUX_ADC 的<AD1>、<AD2>、<AD3>和<AD4>实时数值。

4.4.2 <Display&Scale>: 动态区域显示设置

<Display&Scale>选项主要用于设置测量值的显示位置或显示类型。

<Display&Scale>选项其中又包括有<Area>区域显示设置和<Type/Trace>显示模式及类型 设置两个子菜单。

4.4.2.1 < Area>: 区域显示设置

<Full>:为全栏显示模式,提供了<Polar>、<Chart>、<FFT>和<List>共4种显示模式,在 显示界面的整个动态显示区域显示。

1)<Polar>: 极坐标图,图形指针可根据实际的<R>值改变长度,根据值<0>来绘制 指针的角度,其中还能查看到<X>、<Y>值的大小,十分方便直观。如图 26 所示。

图26. <Full>-<Polar>显示

2)<Chart>: XY 坐标图,显示测量值得曲线图形,可通过旋钮控制<Cursor>来查看采 样点的数值大小,经常与[SAMPLE]子菜单和 CONTROL 控制区域配合做测量数据的采集。 如图 27 所示。

Sens: 100mV Filter: 12 d	B/oct Notch: None None	Monitor
TC: 300mS DR: Normal S	mc: OFF Cpl: AC Src:	A Settings
Trace: R Point:830	+ 50.05mV	Output Input
		Display&Scale - Full Top Bottom
		Type: Chart Trace: R
		Equation Menu Enter
	Step Time: 0.050S	Disp More
Overload: NONE NONE	Freq: 999.996Hz	Menu Enter
Ref.Source:External	PLL: LOCKED	

图27. <Full>-<Chart>显示

3)<FFT>:频谱图,通过 FFT (快速傅里叶变换)计算输入信号的频谱信息并显示。 如图 28 所示。

图28. <Full>-<FFT>显示

4)<List> :把输入信号的基波、两个谐波、后面板的 AUX_ADC 及 AUX_DAC 的值同 时显示。如图 29 所示。

Sens: 100mV Filter: 12 d	B/oct Notch: None None	Monitor
TC: 300mS DR: Normal S	me: OFF Cpl: AC Sre: A	Settings
		Output Input
X = + 50.04 mV	Y = -0.10 mV	Display&Scale -
R = + 50.05 mV	$\theta = - 0.11^{\circ}$	E Trall
Xh1 = -26.84 mV Rh1 = + 50.05 mV	Yh1 = + 42.45 mV $\theta h1 = +122.42$ °	Bottom
Xh2 = + 50.04 mV	Yh2 = - 0.10 mV	Type: List
Rh2 = + 50.05 mV	$\theta h2 = - 0.11^{\circ}$	Trace: ALL
AD1 = + 2.051V	AD2 = + 2.059V	Equation
AD3 = + 2.03%V	AD4 = + 2.037V	
DA1 = + 0.000V	DA2 = + 0.000V	Menu Enter
DA3 = + 0.000V	DA4 = + 0.000V	Disp More
Overload: NONE NONE	Freq: 1.000kHz	Menu Enter
Ref.Source: External	PLL: LOCKED	

图29. <Full>-<List>显示

<Top> :选定上区域的显示,当切换<Type>或<Trace>时候,该区域会随之变化,如 图 30 和图 31 所示。<Type>提供<Bar>、<Chart>两种选择。当<Type>为<Bar>时,<Trace>提供 了基波、谐波及 Equation 等值的选项。当<Type>为<Chart>时,<Trace>只能选择 <Buffer1>~<Buffer4>设置的选择,<Buffer>设置通过[SAMPLE]子菜单的<Select>二级菜单来选 择,详细参考[SAMPLE]子菜单。

图30. <Top>-<Bar>显示

Sens: 100mVFilter: 12 dB/octTC: 300mSDR: NormalSync: 0	t Notch: None None OFF Cpl: AC Src: A	Monitor Settings
Trace: R Point:160 +	50.04mV	Output Input
		Display&Scale Full Top Bottom
Step	Time: 0.050S	Type: Chart
θ=+ 1	.01 °	Trace: R Equation Menu Enter
-180°	+18	Disp More
Overload: NONE NONE Free Re f.Source: External PL	q: 1.000kHz L: LOCKED	Menu Enter

图31. <Top>-<Chart>显示

<Botton>:选定下区域的显示,当切换<Type>或<Trace>时候,该区域会跟<Top>区域相同的规律随之变化。

4.4.2.2 <Type/Trace>: 显示模式及类型设置

使用软键可以在<Type>和<Trace>之间进行切换,选中的会高亮显示。然后再使用旋钮 对其进行模式切换。

<Type>:为显示的格式,选项有 <Polar>(极坐标)、<Chart>(XY 坐标)和<Bar>(数字百分比),<Full>显示模式下还有<FFT>及<LIST>选项。

<Trace> : 为显示的类型,选项有基波、谐波及 Equation 等值。如下:

- <X>: 输入信号基波X值。
- <Y> : 输入信号基波Y值。
- <R> : 输入信号基波R值。

<θ> : 输入信号基波θ值。 : 输入信号第一路谐波X值。 <Xh1> : 输入信号第一路谐波Y值。 <Yh1> <Rh1> : 输入信号第一路谐波R值。 <0h1> : 输入信号第一路谐波0值。 <Xh2> : 输入信号第二路谐波X值。 : 输入信号第二路谐波Y值。 <Yh2> : 输入信号第二路谐波R值。 <Rh2> : 输入信号第二路谐波0值。 <θh2> : 第一个Equation值。 <E1> <E2> : 第二个Equation值。 : 第三个Equation值。 <E3> <E4> : 第四个Equation值。

4.4.3 <Equation>: 公式设置

OE1022 <Equation>功能使用户可以用仪器测量值进行基本的比例运算,并通过前面板 CH1/CH2 两个 BNC 进行输出。固定公式为

Equation =
$$\frac{A \times B}{C}$$

其中 A、B、C 可以根据<Equation>二级子菜单进行设置,在[DISPLAY]子菜单共有四组 <Equation>可用。如图 32 所示。

图32. <Equation>二级子菜单

4.4.3.1 < Equation >: 公式参数设置

选项公式 Equation1~4 = A*B/C 能通过软键选择需要改变的 A、B 或者 C 值,可供数值选 项包括基波、谐波、ADC、频率及常数参数等。

例如,当 A 为 R=50 mV,B 为 θ=130°,C 为 Freq=1 kHz,此时

Equation =
$$\frac{A \times B}{C} = \frac{0.05 \times 130}{1000} = 0.0065$$

公式结果显示可以在[DISPLAY]子菜单中的<Trace>选项选择<E1>,代表显示 Equation1 结果。其中,在<Bar>显示模式下,显示范围为 0.000001 到 9999999,不带单位及进度条显示。

公式结果输出可以在[CHANNEL OUTPUT]子菜单中<Source>选择<E1>,代表输出 Equation1 结果。输出遵循固定规则,具体参考[CHANNEL OUTPUT]子菜单。

4.4.3.2 <C1>: 常数参数1的设置

常数参数<C1>设置,范围:-10~+10,可供<Equation>选择。

4.4.3.3 <C2>: 常数参数 2 的设置

常数参数<C2>设置,范围:-10~+10,可供<Equation>选择。

4.4.4 <Disp More>: 更多显示设置

<Disp More>二级子菜单增加<Range>与<Curve Point>设置,给用户在观看测量值更大的 自由。如图 33 所示。

图33. <Disp More>二级子菜单

4.4.4.1 < Range>: 显示范围设置

<Range> 用于设置<Bar>、<Chart>和<Polar>图形的最大刻度范围。

<Range>的输入范围为 1 nV 到 1 V, 会随着<Sensitivity>的改变而同步改变,也可以通过 数字键盘进行输入设置。如 1.00e-01 表示 1.00×10⁻¹ V,即 100 mV。

在不修改<Sensitivity>的情况下,修改<Range>的值,如修改为1.00e-03,即1mV,则显示的范围变为-1mV到+1mV。

4.4.4.2 <Curve Point>: 采样曲线位置设置

<Curve Point>提供了在<Chart>图模式下<Cursor>快速的位置定位功能,并查看该点测量 值。其设置范围为 1~16384。

当<Chart>图为复位状态(没有进行数据存储),该值设置不起作用,一直保持为 0。数据采集进行中该选项会隐藏起来(暂不可用),在暂停后会再显示出来。

注意:在使用<Curve Point>前请在 CONTROL 控制区域中的[CURSOR]按键调出<Cursor>。

4.5 [SAVE/RECALL] 子菜单

在前面板的 MENU 菜单栏选择[SAVE/RECALL]子菜单进入, 如图 34 所示:

Sens: 100mV Filter: 12 d TC: 300mS DR: Normal R=+ 5	B/oct Notch: None None ync: OFF Cpl: AC Src: A	Save&Recall Save Recall Channel: S1
-100mV	+100m 1 ∩ 2 °	Execute: NO YES
-180*	+180	
Overload: NONE NONE Ref.Source: External	Freq: 1.000kHz PLL: LOCKED	

图34. [SAVE/RECALL]子菜单

[SAVE&RECALL] 菜单主要用来保存(Save)和读取(Recall)已经设定的参数和状态。根据用户个人的喜好,可以在项中保存为 <S1>, <S2>, <S3>和 <S4>四个存档。如图 34 所示,选择<Save>, <Channel>选择<S1>,再选择 <Execute >项中的 <YES>,即可将当前设定的参数和状态保存在 <S1>存档。需要读取该存档,只需选择<Recall>, <Channel>选择<S1>, 再选择 <Execute> 项中的 <YES> 即可。

4.6 [CHANNEL OUTPUT]子菜单

在前面板的 MENU 菜单栏选择[CHANNEL OUTPUT]子菜单进入, 如图 35 所示:

图35. [CHANNEL OUTPUT]子菜单

[CHANNEL OUTPUT]子菜单控制前面板上的两个 BNC 通道 CH1 和 CH2 输出用户需要的 R、 X、Y 和 θ 值等,以及通过<Offset&Expand>设置输出的偏置与放大倍数。同时在<Speed>选 项栏设置通道输出数据速率。

输出信号的计算公式如下

1、当选择信号为<R>, <X>, <Y>, <Rh1>, <Xh1>, <Yh1>, <Rh2>, <Xh2>, <Yh2>, <Noise>时:

输出 =
$$\left(\frac{\text{Signal}(选择信号)}{\text{Sens}} + \text{Offset}\right) \times \text{Expand} \times 10\text{V}$$

2、当选择信号为<0>, <0h1>, <0h2>时:

输出 =
$$\frac{\text{Signal}(选择信号)}{180^{\circ}} \times 10 V$$

- 3、当选择信号为<E1>~<E4>(Equation)时,除了上面两种情况,还有下面选项:
 - a) AUX_IN1~AUX_IN4: 输出等于输入电压
 - b) 常数系数 : 直接对应,如 10 对应 10 V,-5 对应-5 V
 - c) 频率Freq

...

频率每个阶梯分5 V-10 V,例如;

.

```
1000Hz = 5 V
1200Hz = 6 V
1600Hz = 8 V
1800Hz = 9 V
1990Hz = 9.95 V
2000Hz = 5 V(下一阶梯)
阶梯定义为:
```


62.5 Hz- 125 Hz 125 Hz – 250 Hz 250 Hz – 500 Hz 500 Hz – 1000 Hz 1 kHz – 2 kHz 4 kHz – 8 kHz 8 kHz – 16 kHz

Equation 计算时,按照用户所选,以上诉公式进行换算,再根据 Equation 公式 本身计算,得出最后结果,结果范围为±10 V

4.6.1 < Output. Source>: 输出源通道设置

...

<x></x>	:通道输出X值对应的模拟电平。	
<y></y>	:通道输出Y值对应的模拟电平。	
<r></r>	:通道输出R值对应的模拟电平。	
<θ>	 通道输出θ值对应的模拟电平。 	
<xh1></xh1>	:通道输出Xh1值对应的模拟电平。	
<yh1></yh1>	:通道输出Yh1值对应的模拟电平。	
<rh1></rh1>	:通道输出Rh1值对应的模拟电平。	
<0h1>	:通道输出θh1值对应的模拟电平。	
<xh2></xh2>	:通道输出Xh2值对应的模拟电平。	
<yh2></yh2>	:通道输出Yh2值对应的模拟电平。	
<rh2></rh2>	:通道输出Rh2值对应的模拟电平。	
<θh2>	:通道输出θh2值对应的模拟电平。	
<e1></e1>	:通道输出E1值对应的模拟电平。	
<e2></e2>	: 通道输出E2值对应的模拟电平。	
<e3></e3>	:通道输出E3值对应的模拟电平。	
<e4></e4>	:通道输出E4值对应的模拟电平。	
<noise></noise>	: 通道输出Noise值对应的模拟电平	-

4.6.2 <0ffset & Expand>: 偏置与放大设置

通过选择<Offset & Expand>选项进入二级子菜单,界面如图 36 所示。

图36. <Offset&Expand>二级子菜单

4.6.2.1 < 0ffset & Expand>: 设置对应参数值的偏置及放大

<Offset>偏置设置:

通过数字键盘输入,可调范围是-100%~+100%,其中最小步进为 0.01%,默认 0.00%。 其中每一个选项值都对应了一个偏置值。

<Expand>放大设置:

通过数字键盘输入,可调范围是 1~256,默认值为 1。但 Expand 的设置使得计算超出 了±10V 的时候,将会对结果输出造成影响。

其中每一个选项值都对应了一个放大值。

注意: <Offset>与<Expand>的设置不会影响动态区域数据框内的数据显示。

4.6.3 < Speed >: 输出速率设置

<Slow> : 通道输出 CH1 & CH2 的数据速率为 10 Hz。

<Fast> : 通道输出 CH1 & CH2 的数据速率为 312.5 kHz。

4.7 [SAMPLE]子菜单

[SAMPLE]子菜单用于对测量对象进行采样存储控制。包括了<Step Time>、<Length>、<Select>、<Trigger Mode>和<Sample Mode>的设置。如图 37 所示。

图37. [SAMPLE]子菜单

[SAMPLE]菜单的设置要配合 CONTROL 区域中的按键来进行采样的开始,暂停,复位等 控制。具体见 CONTROL 区域按键介绍。

4.7.1 <Step Time>: 采样间隔设置

采样时间间隔设置,范围: 1 ms~100,000 ms,每一个时间间隔采集一个数据。

4.7.2 <Length>: 采样长度设置

采样数据长度设置,范围:1~16384。

当数据采样执行中,如果该选项被设置为小于当前采样点的长度的数值,在单次采样模式中,采样会立即停止,而在循环采样模式中,采样会重头开始采样。

4.7.3 <Select>: 采样对象设置

<Select>二级子菜单界面如图 38 所示。

图38. <Select>二级子菜单

4.7.3.1 < Buffer1-4>: 对四个采样缓存区的选择设置

OE1022内部开辟了4个存储<Buffer>,每个Buffer可以存储16384个32位数。每个<Buffer>可以记录下面测量中任意一个: <R>,<X>,<Y>,<0>,<Rh1>,<Xh1>,<Yh1>,<0h1>,<Rh2>,<Xh2>,<Yh2>,<0h2>,<6h2>,<Rh2>,<Rh2>,<E1>,<E2>,<E3>,<E4>,<A1>,<A2>,<A3>,<A4>,<Freq>。

只有当采样重新开始时,<Buffer>设置才会生效。同时<Buffer>的选择会影响到<Chart>显示模式下<Trace>的选项。在<Chart>显示模式下,<Trace>只可以选择<Buffer>设置里的测量项。

4.7.4 <Trigger Mode>: 触发模式设置

<INT>: 内部触发模式

<EXT>: 外部触发模式

当内部触发模式时,采样时间间隔由内部产生,通过<Sample Time>中设置。

当外部触发模式时,通过后面板 BNC TRIG_IN 输入采样脉冲,每个采样脉冲采样一次,采样速率不超过 500 Hz。

内部触发模式与外部触发模式都需通过 CONTROL 区域中的按钮来控制开启、停止或复位采样。

4.7.5 <Sample Mode>: 采样模式设置

<Single>: 单次采样模式

<Loop>: 循环采样模式

单次采样模式下,系统采集完一次数据会自动停止,等待下一次开始。循环采集模式下 采样自动循环并覆盖原来的采样。

单次采样模式和循环采样模式都需通过 CONTROL 区域中的按钮来控制开启、停止或复位采样。

4.8 [AUX OUTPUT]子菜单

四个选项分别对应后面板的四个 AUX_DAC 输出,范围为±10 V,默认值为 0.000 V。界面 如图 39 所示:

图39. [AUX OUTPUT]子菜单

<da1 output=""></da1>	:	AUX DAC	第一路输出,	对应后面板 AUX_DAC1
<da2 output=""></da2>	:	AUX DAC	第二路输出,	对应后面板 AUX_DAC2
<da3 output=""></da3>	:	AUX DAC	第三路输出,	对应后面板 AUX_DAC3
<da4 output=""></da4>	:	AUX DAC	第四路输出,	对应后面板 AUX_DAC4

4.9 [SYSTEM]子菜单

[SYSTEM]子菜单包括 OE1022 中的系统资讯与系统设置。如仪器资讯,屏幕亮度,RS232 通讯设置等。如图 40 所示:

4.9.1 < Info>二级子菜单

选择<Info>二级子菜单进入,界面显示研发单位等信息,如图 41 所示:

Sens: 100mV Filter: 12 d TC: 300mS DR: Normal	B/oct Notch: None N ync: OFF Cpl: AC Src	Information
OE 1022 DSP LOO Designed by Innovati	CK-IN AMPLIFIER	'SU
		Return
Overload: NONE NONE	Freq: 999.998Hz	Return Enter
Ref.Source: External	PLL: LOCKED	

图41. <INFO>-研发单位

按对应的操作按钮, 界面显示 OE1022 版本, 如图 42 所示:

Sens: 100mV Filter: 12 d	B/oct Notch: None None	Information
TC: 300mS DR: Normal S	me: OFF Cpl: AC Sre: A	Varian
Version:		Verenout
V6.0		
		Return
Overload: NONE NONE	Freq: 1.000kHz	Return Enter
Ref.Source: External	PLL: LOCKED	

图42. <INFO>-版本

再次按下按钮,界面显示联系方式,如图 43 所示:

图43. <INFO>-联系方式

4.9.2 <Screen>二级子菜单

选择<Screen>子菜单进入,如图 44、图 45 所示:

Some: 100mV Filtor: 12 d TC: 300mS DR: Normal S R=+ 5	B/oct Notch: None None ync: OFF Cpl: AC Src: A 0.04 mV	Window Color - Style 1 Style 2 Backlight Level 8
θ=+	1.02°	2 1 _
-180°	+180	Return —
Overload: NONE NONE Ref.Source: External	Freq: 999.999Hz PLL: LOCKED	Return Enter

图44. <Screen>子菜单-<Style1>

图45. <Screen>子菜单-<Style2>

此子菜单中包括<Window Color>和<Backlight>两种功能设置:

<Window Color>: 界面色调设置

<Style1> : 界面主色调为黄色。<Style2> : 界面主色调为绿色。

<Backlight>: 背光亮度设置

通过旋钮调节,亮度等级可从<Level1>调节至<Level8>。

4.9.3 < RS232> 二级子菜单

选择<RS232>二级子菜单进入,如图 46 所示:

图46. <RS232>子菜单

此子菜单中包括<Baud Rate>、<Word Length>和<Parity>三种功能设置:

<Baud Rate>: 波特率设置

通过重复按对应软键或旋钮调节波特率,数值可设置为:<600>、<1200>、<2400>、<4800>、<9600>、<19200>、<38000>、<43000>、<56000>、<57600>、<115200>。

<Parity>: 奇偶性设置

<Even> : 偶 <ODD> : 奇 <NONE> : 无

4.9.4 < Reset ? >: 锁相放大器复位

按下对应软键会重启系统。

4.10 [AUT0 SET]子菜单

[AUTO SET]子菜单包括 OE1022 中的 4 种自动设置。如图 47 所示:

图47. AUTO SET 子菜单

4.10.1 < Auto Reserve>: 自动设置动态储备功能

当按下<Auto Reserve>按钮时,系统会根据当前的信号而自动改变<Reserve>的设置。其 原则是选取测量当前信号的最小动态储备的设置。

4.10.2 < Auto Gain>: 自动设置灵敏度功能

当按下<Auto Gain>按钮时,系统会根据当前的 R 值自动改变<Sensitivity>设置,其原则

就是在不超过最大灵敏度下选择合适的<Sensitivity>。OE1022 的<Auto Gain>功能需要一定的 响应时间(一般小于 5 秒),如果当前的 R 值波动较大时,<Auto Gain>设置有可能不成功。 此时请切换至[GAIN/TC]子菜单进行手动设置。

4.10.3 <Auto Phase>: 自动移相功能

当按下<Auto Phase>按钮时,OE1022 会调整参考信号的相移使得测得的输入信号相位为 0°。该功能需要一定的响应时间(一般小于 10 秒),如果当前的 θ 值波动较大时,<Auto Phase> 设置有可能不成功。此时请切换至[REF/PHASE]子菜单手动设置<Phase>值。

4.10.4 <Auto Scale>: 自动刻度功能

当按<Auto Scale>按钮时,OE1022 会根据输入信号 R 值来自动调整相应的 Scale 刻度值, 使显示的数值尽量在较大量程里面。该功能只影响显示,输入输出不会受到影响。同时,也 可以通过[DISPLAY]子菜单里的<Range>手动设置。

4.11 [CONTROL] 菜单

控制区域包含四个按钮,分别为[START CONT]、[PAUSE CLEAR]、[CURSOR]、[ACTIVE CHART]。 配合[SAMPLE]菜单与<Chart>图,控制当前数据采集的开启、暂停和复位,选择[CURSOR]标 尺和选择<Chart>与显示等。

4.11.1 [START/CONT]: 开启或继续数据采样

[START/CONT]按键功能有两个,一是开始新的采样[START],二是继续被暂停的采样 [CONTINUE]。

采样开始使测量数据按照[SAMPLE]菜单中设定的采样率保存到内部 Buffer 上。如果当前 是<Chart>图状态,采样的数据会同步显示在<Chart>图上。否则,系统会在后台保存好数据。

单次采样模式下,当采样点数到达了采样长度就会自动停止采样。当系统采样在停止状态,只要再次按开启采样按键,系统又会从头开始采样直到结束点处停止。

当系统在采样期间被暂停时[PAUSE],可以通过该按键继续末完成的采样。

4.11.2 [PAUSE/CLEAR]: 暂停采样或清空采样数据

[PAUSE/CLEAR]按键功能有两个,一是暂停采样[PAUSE],二是复位采样[CLEAR]。

数据采样进行中可通过该按键来暂停数据采样,如果在<Chart>图状态,<Chart>图会跟 着暂停。在暂停状态下再次按一次该按键会清空采样数据并转为停止状态。如果<Chart>图 状态,所绘制的采样曲线也会同时清除。

4.11.3 [CURSOR]: <Chart>图中标尺的显示和隐藏

[CURSOR]按键功能有两个:一是在<Chart>图调出或隐藏<Cursor>,二是在其他状态下重新选中<Cursor>的作用。

当<Chart>图中没有<Cursor>时,该按键能调出并选中<Cursor>,接下来就可以通过转动 旋钮来移动<Cursor>读取测量数值。当<Cursor>已调出但是没有被选中(例如<Sensitivity>选 项参数设置在高亮状态,旋钮只作用于该参数设定),[CURSOR]按键可以重新选中<Cursor>。 在选中<Cursor>的状态下再按一下[CURSOR]按键就可以把<Cursor>隐藏起来。

通过旋钮来调整<Cursor>时,当<Cursor>超出到<Chart>图的两个边沿时,<Chart>图会执 行换页操作,也可以通过<Disp More> 菜单的<Curve Point>直接定位。数据采样进行中或暂 停中都可以使用[CURSOR]功能。

4.11.4 [ACTIVE CHART]:选择<Chart>图为活动区域

[ACTIVE CHART]按键用于选择<Top>或<Bottom>区域的<Chart>图为当前活动区,只有被选为活动区的<Chart>图,[CURSOR]才会对该区域作用,被选中的活动区<Chart>图左上角会高亮显示。<Full>区域的<Chart>图一直是活动区,该按键对<Full>区不起任何作用。

5. 远程编程

5.1 0E1022 命令语法

上位机与 OE1022 的通信使用 ASCII 字符来进行。命令符使用大写,所有命令均由四个 命令字符(如有必要可带上参数)和一个命令终结符组成。当使用 RS232 转 USB 接口通信 时,终结字符必须是一个换行符<lf>或回车符<cr>。OE1022 只有在收到命令终结符时,才会 执行用户输入的命令。命令可能需要一个或多个参数,多个参数之间用逗号分隔(,)。

多个命令可以在同一命令行发送,但命令之间需要添加分号(;)。在同一行发送多个命令和分别发送几个独立命令的区别在于:当一个命令行被解析和执行时,在整个命令行执行完成之前,OE1022 无法执行其他命令。

OE1022 有一个容量为 256 个字符的输入缓存区,并根据接收命令的顺序来处理命令。 当缓存区写满时,最新命令将会把最旧并已执行命令覆盖。

OE1022 允许用户通过命令查询内部参数的当前值。查询命令的格式为由当前命令后加 上一个问号"?"并省略原命令所需的一个或多个参数。OE1022 以 ASCII 字符串的形式返回用 户所查询的参数,如果一个命令行中发送多个查询(用分号隔开)的话,应答将会一个一个地 返回,每个都对应一个终结符。

命令格式举例:

FMOD 1 <cr></cr>	设置参考源为内部参考
FREQ 10E3 <cr></cr>	设置内部参考信号频率为 10 kHz
OUTP? 1 <cr></cr>	查询通道1的输出值

5.2 详细的命令列表

每一个命令所指定的参数是有严格顺序的,不同参数之间用逗号(,)分隔。在大括号{} 里面的参数是可选的,不需要每个都填写。只有在命令后面加上(?)的助记符时,才会启动 查询命令,没有(?)是不会查询的。注意:在发送命令时()和{}都不需要发送。

变量定义如下:

i,j,k,l,m,n,o,p,q,r,s,t,u	整数
х	实数
f	频率值

以上所有的数值变量均可以被表示为整数、浮点数或指数格式(例如,数字5可以表示为 5,5.0,.5E1)。而字符串则被作为一个 ASCII 字符序列的形式发送。

5.2.1 参考与相位指令

PHAS (?) {x}	 PHAS 指令用于设置或查询参考相移。参数 x 是指相位值(实数值,单位:°)。用 PHAS x 命令可以设置当前的相移值为 x°。 x 的值会被四舍五入到 0.01°。相位限制在 ±180°。例如,发送 PHAS -179.0 这条指令会设置 OE1022 的相移值为-179.00°。而指令 PHAS?则是发 	
FMOD (?) {i}	 运查询指令。 FMOD 指令用于设置或查询参考信号源。参数 i=0 时选择外部参考,i=1 时选择内部参考,i=2 时 选择内部扫频参考。 	
FREQ (?) {f}	FREQ 指令用于设置或查询内部参考信号的频 率。指令 FREQ?会返回当前的参考信号频率(内部 或外部)	
RSLP (?) {i}	当使用外部参考源时,RSLP 指令用于设置或查 询参考信号当前的触发方式。 参数 i=0 时设置 <ttl>上升沿触发; i=1 时设置 正弦波过零检测<sine>。当频率低于 1 Hz 时,必须 使用<ttl>触发方式。</ttl></sine></ttl>	
SWPT (?) {i}	SWPT 指令用于设置或查询内部扫频模式,i=0 时选择 <linear>模式, i=1 时选择<log>模式</log></linear>	
SLLM (?) {f}	SLLM 指令用于设置或查询内部扫频模式下的 <start>开始频率。指令 SLLM?会返回内部扫频模式 的<start>开始频率。f 值可设置范围 0-102 kHz,最 小分辨率为 1 mHz。</start></start>	
SULM (?) {f}	SULM 指令用于设置或查询内部扫频模式下的 <stop>截止频率。指令 SULM?会返回内部扫频模式 的<stop>截止频率。f 值可设置范围 0-102 kHz,最 小分辨率为 1 mHz。</stop></stop>	
SSLL (?) {f}	SSLL 指令用于设置或查询内部扫频模式在 <linear>模式下的<step>步进频率。指令 SSLL?会返 回<step>步进频率。f 值可设置范围 0-102 kHz,最 小分辨率为 1 mHz。</step></step></linear>	
SSLG (?) {x}	SSLG 指令用于设置或查询内部扫频模式在 <log>模式下的百分百数值。指令 SSLG?会返回内部 扫频模式的百分百数值。x 值可设置范围 0-100,最 小分辨率为 0.001。如 x 值为 50,代表 50%。</log>	

STLM (?) {i}	STLM 指令用于设置或查询内部扫频模式下的 步进时间 <time>。指令 STLM?会返回内部扫频模式 的步进时间<time>。i 值可设置范围 1 ms - 100 000</time></time>
	ms,最小分辨率为1ms。
	SWRM 指令用于设置或查询内部扫频下运行模
S)A/DA4 (2) [i]	式,i=0 时选择扫频停止模式 <stop>, i=1 时选择</stop>
	单次扫频模式 <single>, i=2 时选择循环扫频模式</single>
	<loop>。</loop>
	HARM i 指令用于设置或查询谐波检测。
	发送该指令时 i 必须设置,i=1 时选择谐波 1,
	i=2 时选择谐波 2,; 参数 j 可以设置为 1 到 32767 之
	间的整数。HARM i,j 指令将会设置 OE1022 检测输
	入参考频率的 j 次谐波。参数 j 必须满足 j*f ≤102
	kHz。如果 j 次谐波的值大于 102 kHz,那么谐波次
	数 j 会被自动设置为满足条件 j*f ≤102 kHz 的 j 的最
	大值。
	SLVL 指令用于设置或查询输出的同步正弦波
	的幅度。
SLVL (?) {x}	参数 x 指幅度电压(实数值,单位:V)。x 的
	值会被四舍五入到 0.001 Vrms。参数 x 必须满足
	0.001Vrms ≤x ≤5.000Vrms。
	SWVT 指令用于设置或查询 <sine output="">的输</sine>
SW//T (2) {i}	出类型, i=0 时选择固定幅值模式输出, i=1 时选
30001(!)(I)	择 <linear>线性扫幅模式输出,i=2时选择<log>对数</log></linear>
	扫幅模式输出。
	SVLL 指令用于设置或查询 <sine output="">扫幅</sine>
SV(1, (2) {x}	模式下的 <start>开始幅值。指令 SVLL?会返回扫幅</start>
	的 <start>开始幅值。x 值最小分辨率为 0.001 Vrms。</start>
	x 必须满足 0.001Vrms ≤x ≤5.000Vrms。
	SVUL 指令用于设置或查询 <sine output="">扫幅</sine>
SV(III (2) {x}	模式下的 <stop>截止幅值。指令 SVUL?会返回扫幅</stop>
	的 <stop>截止幅值。x 值最小分辨率为 0.001 Vrms。</stop>
	x 必须满足 0.001Vrms ≤x ≤5.000Vrms。
	SVSL 指令用于设置或查询 <sine output="">扫幅</sine>
SVSL (?) {x}	<linear>模式下的<step>步进幅值。指令 SVSL?会返</step></linear>
	回 <linear>模式扫幅的<step>步进幅值。x 值最小分</step></linear>
	辦率为 0.001 Vrms。x 必须满足 0.001Vrms ≤x
	≤5.000Vrms。
	SVSG 指令用于设置或查询 <sine output="">扫幅</sine>
SVSG (?) {x}	<log>对数模式下的百分比数值。指令 SVSG?会返回</log>
	<log>对数扫幅模式的百分比数值。X 值最小分辨率</log>
	0.001。x 范围为 0-100。如 x 值为 50,代表 50%。

SVTM (?) {x}	SVUL 指令用于设置或查询 <sine output="">扫幅</sine>
	模式下的步进时间 <time>。指令 SVUL?会返回扫幅</time>
	的步进时间 <time>。x 值可设置范围 1 ms-100,000</time>
	ms,最小分辨率为1ms。
SVRM (?) {i}	SWRM 指令用于设置或查询 <sine output="">扫幅</sine>
	模式下的执行模式, i=0 时选择扫幅停止模式
	<stop>, i=1 时选择单次扫幅模式<single>,i=2 时</single></stop>
	选择循环扫幅模式 <loop>。</loop>

5.2.2 Equation 指令

EQCD i 指令用于设置或查询四个 <equation< td=""></equation<>				
	式中 A、B 和 C 三个系数所选取的参数值。发送该			
	指令时参数 i 必须设置,i=1 时选择公式 1, i=2 时选			
	择公式 2,i=3 时选择公	式 3,i=4 时选择公式 4。		
	j、k、l 分别代表 <e< td=""><td>quation>中的 A, B, C。</td></e<>	quation>中的 A, B, C。		
	参数 j、k、I 的选择具体如下:			
	j, k, l	Parameter		
	0	R		
	1	Х		
	2	Υ		
	3	θ		
	4	Rh1		
	5	Xh1		
	6	Yh1		
	7	θh1		
	8	Rh2		
	9	Xh2		
EQCD ? i{, j, k, l}	10	Yh2		
	11	θh2		
	12	Noise		
	13	A1		
	14	A2		
	15	A3		
	16	A4		
	17	Freq		
	18	C1		
	19	C2		
	例如发送指令 EQCD 2,0,18,17 就代表了把公			
	式 2 配置为:E2 = R * C1/Freq。			
	指令 EQCD? i 用于查询公式 i 所配置的系数,			
	会返回 A、B 和 C 三个对应参数值的序号,三个序			
	号以逗号(,)分隔开。例约	如,发送指令 EQCD? 2 后返		
	回字符串为"0,18,17",	那么表示公式 2 的 A 系数		
	为 <r>值, B 系数为<c1>, C 系数为<freq>。</freq></c1></r>			

	EQCS i 指令用于设置或查询两个系数值 <c1>、</c1>	
	<c2>。发送该指令时参数 i 必须设置, i=1 时选择系</c2>	
	数 <c1>的设置, i=2 时选择系数<c2>的设置。</c2></c1>	
EQCS (?) i {, x}	参数 x 用于设置系数值,范围是-10.000≤x	
	≤10.000。	
	例如发送指令 EQCS 2,5.00 会设置系数 <c2>的</c2>	
	值为 5.00.	

5.2.3 输入与滤波器指令

	ISRC 指令用于设置或查询输入信号的方式。	
ISRC(?){i}	参数 i=0 时选择 A(单端电压信号输入);i=1 时	
	选择 <a-b>(差分电压输入);i=2 时选择<1 MΩ>(电流</a-b>	
	输入,放大倍数 10 ⁶ V/A);i=3 时选择<100 MΩ>(电流	
	输入,放大倍数 10 ⁸ V/A)。	
IGND(?){i}	IGND 指令用于设置或查询输入接地方式。	
	参数 i=0 时选择 <float>模式(输入接头地与仪</float>	
	器地通过10K欧姆电阻隔离);i=1时选择 <ground></ground>	
	模式(输入接头地与仪器地通过 10 Ω 电阻短接)。	
	ICPL 指令用于设置或查询输入耦合方式。	
ICPL(?){i}	参数 i=0 时选择 <ac>(交流耦合输入);i=1 时</ac>	
	选择 <dc>(交流耦合输入)。</dc>	
	ILIN 指令用于设置或查询陷波器的开启或关	
ILIN(?){i}	闭状态。	
	参数 i=0 时选择关闭陷波器;i=1 时选择开启	
	50 Hz 陷波器;i=2 时选择同时开启 50 Hz 和 100 Hz	
	陷波器;i=3 时选择开启 100 Hz 陷波器。	

5.2.4 灵敏度和时间常数指令

	SENS 指令用于设置或查询系统的灵敏度 <sensitivity>。参</sensitivity>				
	数 i 用于选择不同的量程	数 i 用于选择不同的量程			
	具体如下:				
	i sensitivity	i sensitivity			
	1: 1 nV/fA	15: 50 uV/pA			
	2: 2 nV/fA	16: 100 uV/pA			
	3: 5 nV/fA	17: 200 uV/pA			
	4: 10 nV/fA	18: 500 uV/pA			
SENS (?) {i}	5: 20 nV/fA	19: 1 mV/nA			
	6: 50 nV/fA	20: 2 mV/nA			
	7: 100 nV/fA	21: 5 mV/nA			
	8: 200 nV/fA	22: 10 mV/nA			
	9: 500 nV/fA	23: 20 mV/nA			
	10: 1 uV/pA	24: 50 mV/nA			
	11: 2 uV/pA	25: 100 mV/nA			
	12: 5 uV/pA	26: 200 mV/nA			
	13: 10 uV/pA	27: 500 mV/nA			
	14: 20 uV/pA	28: 1 V/uA			
	RMOD 指令用于设直或查	询动念储备模式。参数 i=0 时选			
RMOD (?) {i}	│ 择 <low noise="">; i=1 时选择</low>	≰ <normal>; i=2 时选择<high< td=""></high<></normal>			
	Reserve>。				
	OFLT 指令用于设置或查询滤波器的时间常数。参数 i 用于				
	选择不同的时间常数.				
	具体如下:				
	i time constant	i time constant			
	1: 10 us	10: 300 ms			
	2: 30 us	11: 1 s			
OFLT (?) {i}	3: 100 us	12: 3 s			
	4: 300 us	13: 10 s			
	5: 1 ms	14: 30 s			
	6: 3 ms	15: 100 s			
	7: 10 ms	16: 300 s			
	8: 30 ms	17: 1000 s			
	9: 100 ms	18: 3000 s			
OFSL (?) {i}	参数 i=0 时选择<6 dB/oct>; i=1 时选择<12 dB/oct>; i=2				
		≩<24 dB/oct>。			
	SYNC 指令用于设置或查询同步滤波器的开关状态。一般				
SYNC (?) {i}	当参考频率低于 200 Hz 时需要	臣开启同步滤波器。			
	参数 i=0 时关闭同步滤波器;i=1 时开启同步滤波器。				

5.2.5 显示和输出指令

	FPOP i 指令用于设	:置或查询 OE1022 前面		
	板的输出通道。			
	发送该指令时参数 i 必须设置, i=1 时选择			
	CH1 (输出通道一); i=2 时选择 CH2 (输出通			
	道二)。参数 j 用于选择输出值的类型.			
	具体如下:			
	CH1(i=1)	CH2(i=2)		
	j 输出类型	j 输出类型		
	0 R	0 R		
	1 X	1 X		
	2 Y	2 Y		
	3 θ	3 θ		
FPOP (?) I {, J}	4 Rh1	4 Rh1		
	5 Xh1	5 Xh1		
	6 Yh1	6 Yh1		
	7 θh1	7 θh1		
	8 Rh2	8 Rh2		
	9 Xh2	9 Xh2		
	10 Yh2	10 Yh2		
	11 θh2	11 θh2		
	12 Noise	12 Noise		
	13 E1	13 E1		
	14 E2	14 E2		
	15 E3	15 E3		
	16 E4	16 E4		

OE1022	DSP	Lock-In	Amplifier
---------------	-----	---------	-----------

	OEXP i 指令用于设置或查询相应参数值的		
	偏置和放大倍数。发送该指令时参数 i 必须设		
	置,参数 i 用于选择	参数值的类型.	
	具体如下:		
	i	Parameter	
	0	R	
	1	Х	
	2	Y	
	3	Rh1	
	4	Xh1	
	5	Yh1	
	6	Rh2	
	7	Xh2	
OEXP (?) i {, x, j}	8	Yh2	
	9	Noise	
	参数 x 用于设置偏置值, 范围是(-100.00≤x ≤100.00)%.参数 j 用于设置输出放大倍数, 范围 是(1≤x ≤256)。 例如发送指令 OEXP 2,50.00,2 会设置参数 值 <y>的偏置为 50%, 输出放大倍数为 2 倍。 该指令中 x 和 j 值都需要发送。 指令 OEXP? i 用于查询 i 对应参数值的偏置 值和放大倍数。返回的字符串包括偏置值和放 大倍数, 两者以逗号(,)分隔开。例如, 发送指 令 OEXP? 2 后返回字符串为"50.00,10", 那么表 示参数<y>的偏置为 50.00%, 放大倍数是10 倍。 OAUX i 指令用于设置或查询 AUX_DAC 输</y></y>		
OAUX (?) i {, x}	OAUX i 指令用于设置或查询 AUX_DAC 输 出的电压值。发送该指令时参数 i 必须设置, 参数 i 用于选择 DAC 的通道。参数 x 用于设置 DAC 的电压值,范围是-10.000 V≤x ≤10.000 V。 例如发送指令 OAUX 2,5.00 会设置 <dac2>的值 为 5.00V.</dac2>		
SPED (?) i	SPED 指令用于设置或查询 <channel< th=""> Output>的执行模式,i=0时选择为<slow>模式,i=1时选择<fast>模式。 Fast 模式时只能选择<r>, <x>, <y>值的 输出,当<slow>模式当前选择不是<r>,<x>,<y> 值时,切换到<fast>模式时,输出值会自动选择为<r>值。</r></fast></y></x></r></slow></y></x></r></fast></slow></channel<>		

5.2.6 保存读取设置指令

SSET i	SSET i 指令用于把 OE1022 当前的设置保
	存到设置缓存区中,即 Setting buffer i(1≤i≤4)。
	Setting buffer 里面的配置信息在 OE1022
	断电后可保存,用于下次开机时使用。
RSET i	RSET i 指令用于读取 Setting buffer
	i(1≤i≤4)里的设置。读取成功后,OE1022 内部
	参数将会被设置成与 Setting buffer i 里面相
	同的参数。

5.2.7 自动设置指令

	AGAN 指令用于打开自动设置增益的功
	能。该指令作用和在前面板按下[Auto Gain]
AGAN	键的作用是一样的。
	如果时间常数设置较长,设置自动增益
	将会耗费一些时间。
	ARSV 指令用于打开自动设置动态储备
	的功能。该指令作用和在前面板按下[Auto
AKSV	Reserve]键的作用是一样的。
	自动设置动态储备需要耗费一些时间。
	APHS 指令用于打开自动设置相位的功
	能。该指令作用和在前面板按下[Auto Phase]
	键的作用是一样的。
	自动设置动态储备需要耗费一些时间。
APHS	在没有等待合适的时间之前,不要再次发送
	APHS 指令。另外,如果相位不稳定,那么该
	指令将无效。
	可以通过 PHAS (?) {x}指令来查询当前的
	相位偏移值,以确定 APHS 指令有没有生效。
	ACSL 指令用于打开自动设置显示刻度的
ASCI	功能。该指令作用和在前面板按下lauto
AJCL	

5.2.8 数据存储指令

	SRAT 指令用于讨	设置或查询数据采样的	
	步进时间。 指令 SRAT	?会返回采样的步进时	
	间值。x 值可设置范围 1 ms-100,000 ms,最		
	小分辨率为1ms。		
	SLEN 指令用于讨	设置或查询数据采样的	
SLEN (?) {I}	长度。最大值只能是	16384。	
	SSLE i 指令用于证	设置或查询四个缓存区	
	所选取的参数值。发	送该指令时参数 i 必须	
	设置,i=1 时选择缓存	字区 <buffer1>, i=2 时选</buffer1>	
	择缓存区 <buffer2>,</buffer2>	,i=3 时选择缓存区	
	<buffer3>,i=4 时选排</buffer3>	释缓存区 <buffer4>。</buffer4>	
	j 表示缓存 Buffe	r 中记录的测量值	
	参数 j 的选择具	本如下:	
	j	Parameter	
	0	R	
	1	Х	
	2	Y	
	3	θ	
	4	Rh1	
	5	Xh1	
	6	Yh1	
SSLE (?) I {,]}	7	θh1	
	8	Rh2	
	9	Xh2	
	10	Yh2	
	11	θh2	
	12	Noise	
	13	A1	
	14	A2	
	15	A3	
	16	A4	
	17	E1	
	18	E2	
	19	E3	
	20	E4	
	21	Freq	
	STRG 指令用于证	设置或查询数据采样的	
STRG (?) {i}	触发方式,i=0 时选排	译内部触发方式 <int>,</int>	
	i=1 时选择外部触发力	亏式 <ext>。</ext>	

	SPRM 指令用于设置或查询数据采样的
SPRM (?) {i}	运行模式,i=0 时选择为单次模式 <single>,</single>
	i=1 时选择循环模式 <loop>。</loop>
STRD	STRD 指令用来开启或继续当前的数据
STRD	采样功能。
DALIS	PAUS 指令用来暂停当前的数据采样功
PAUS	能。
DECT	RSET 指令用于重置数据缓存区。该指
KESI	令会清空四个数据缓存区 Buffer1~Buffer4。

5.2.9 数据读取指令

	OUTP ? i 指令用 ⁻	于读取单个参数值。参数 i			
	对应于下表:				
	参数 i 的选择具	本如下:			
	j	Parameter			
	1	Х			
	2	Y			
	3	R			
	4	θ			
	5	Xh1			
	6	Yh1			
	7	Rh1			
	8	θh1			
	9	Xh2			
OUTP IT	10	Yh2			
	11	Rh2			
	12	θh2			
	13	Noise			
	14	A1			
	15	A2			
	16	A3			
	17	A4			
	18	Freq			
	所选参数的值以 以伏特(v)、度(°)或劫 用作查询。	ASCII 浮点数的格式返回, ^{\$} 兹(Hz)为单位。该指令仅			
	SNAP ? i,j 指令用	于在同一个时间点记录最			
	多 13 个不同的参数值。				
	例如,指令 SNAP?用于在同一时刻查询				
	<x>、<y>、<r>、<θ>或<f>等值,该功能在时间</f></r></y></x>				
	常数很短的时候非常实用。因为如果使用				
	OUTP?指令来读取两个不同的参数值,可能会				
SNAP ? i,j {,k,l,m,n,o,p,q,r,s,t,u}	有一定的延时,当这	个延时值大于时间常数的			
	时候,就会使得读取	的两个数据个是同一测量			
	│ 条件 ト 测 重 所 得 。 。				
	SNAP?I,J 指令需要全?	ビ 2			
	丹州州中 				
	1				

	iiklmno	Parameter
	narstu	i di dificter
	1	x
	2	Y
	3	R
	<u> </u>	A
	5	Erequency
	6	Yh1
	7	Vh1
	,	Ph1
	0	Ab1
	10	Vh2
	10	XII2 Vh2
	12	Rh2
	13	Un2
	14	Noise
	15	A1
	16	A2
	17	A3
	18	A4
	19	E1
	20	E2
	21	E3
	22	E4
	返回的值是一个单 内不同值之间用逗号(,) 发送指令时 i, j, k, l,	1一的字符串,该字符串 分隔,并且顺序是按照 m 的顺序。例如,发送
	SNAP?1,2,5,4 会返回 <x< td=""><td>>、<y>、<frequency>杯 - 回</frequency></y></td></x<>	>、 <y>、<frequency>杯 - 回</frequency></y>
	<∀>的狙。这些值均放在	
		97,1000.00,1.234"。第一 7
	1`定 <x>11, 弗1'定<</x>	Y>阻,
		本海口人工同時分光
		直间儿们个问的豕数。 海本快去数据感去原始
		调仔陌仕数据缓仔区的
SPTS ?		士问时佚友达。如朱 Data 回 。 佐
	butter	凹 U 1且。 ,
	该指令仪用作查询	0

	TRCA ? i,j,k 指令用于查询存储在 Buffer i 数
	据缓存区的数据 Buffer1~Buffer4。
	返回值是 ASCII 浮点数的形式。不同点数之
	间用逗号(,)分隔开,并且最后一个点会伴随着
	终结符。例如,两个点的返回值可能是
	"-1.234567e-009,+7.654321e-009,"。
TRCA ? i, j, k	参数 i, j, k 都需要伴随着 TRCA?指令发送。
	其中,参数 i 用于选择需要读取的数据缓存区
	(i=1,2,3,4);读取的数据是从数据缓存区中的
	第 j (j≥0)个数据开始的;读取的总长度是 k
	(k≥1)。当读取单个数据时,设置 k=1。
	j+k的值不能超过数据缓存区 Buffer 里面存
	储的最大值 16384。

5.2.10 复位与 IDN 指令

	RST 指令用于复位 OE1022。设备内部
RST	的所有状态与参数都会重置为默认值,数据
	缓存区内的数据也会丢失。
	IDN ?指令用于查询 OE1022 的 ID, 格式
	为"SSI LIA-OE1022,SNXXXXXX,VerXXX"。
IDN ?	其中第一个为型号,如 OE1022;第二个为
	序列号, 如 SN00001; 第三个为硬件版本号,
	如 Ver1.00。

6. PC 软件安装使用说明

6.1 软件安装

我们一般都是以光盘的形式把 PC 机软件提供给用户的。打开光盘后有如下文件,如图 48 所示:

名称	Ŧ	修改日期	类型
1 🐌 OE1022		2014/1/2 20:08	文件夹
2 퉬 OE1022软件驱动		2014/1/2 20:08	文件夹
3 퉬 串口驱动		2014/1/2 20:09	文件夹
4 퉬 串口调试工具		2014/1/2 20:09	文件夹
5 励 OE1022产品简介 (英文) .pdf		2013/12/28 11:45	Foxit Reader PD
6 励 OE1022产品简介 (中文) .pdf.pdf		2013/12/28 11:45	Foxit Reader PD
7 励 OE1022用户使用手册.pdf		2013/12/28 11:45	Foxit Reader PD
8 📄 readme.txt		2014/1/2 20:10	文本文档

图48. 光盘内 PC 软件包

第一步:

首先要安装串口转 USB 驱动, 打开图 48 中的第 3 个文件夹"串口驱动", 如图 49 所示:

图49. "串口驱动"文件夹

双击打开图 49 红色方框内的"FT232_drive.exe"文件,则会弹出如图 50 的软件窗口,见 到以下界面时表示正在安装串口转 USB 的驱动,只需要等待几分钟即可。

图50. FT232 driver 安装界面

若 FT232 驱动安装成功后,会出现如图 51 的提示,此时只需要按照提示按下"回车"键即可完成该驱动的安装:

图51. TF232 driver 安装完成提示

此时,使用 USB 线连接 PC 机和锁相放大器,则可自动识别连接成功。 注意: 1.如果 PC 机已经联网,当插上 USB 连接 PC 与锁相放大器时,会自动联网搜索

驱动并进行安装。

2.如果 PC 机已安装有串口转 USB 的驱动,则可跳过该步。

3.如果安装不成功,则可根据"串口驱动"目录下的说明文件"readme.txt"里面的解决 方法,使用 inf 文件进行安装。

第二步:

如果 PC 本地没有安装 NI LabView 2011 或更新的版本,并且没有安装对应的 VISA 驱动的话,则需要安装图 48 中第 3 个文件夹内的驱动,打开"OE1022 软件驱动",如图 52:

名称	修改日期	类型
🐌 bin	2015/9/6 20:31	文件夹
🐌 license	2015/9/6 20:31	文件夹
🐌 supportfiles	2015/9/6 20:31	文件夹
nidist.id	2014/9/22 16:31	ID 文件
🚚 setup.exe	2013/5/6 17:01	应用程序
📄 setup.ini	2014/9/22 16:31	Configuration

图52. "OE1022 软件驱动"文件夹

双击打开上图中红色方框内的"setup.exe"安装文件,开始安装 OE1022 PC 软件的使用环 境驱动,一般情况下根据默认选项安装就可以了。

注意: 安装成功后, 需要重启电脑, 以完成软件环境的配置。

第三步:

若前面的安装步骤都确定没有问题后,用户则可打开图48中的第1个文件夹"OE1022"; 该文件包含了英文版和中文版的应用软件,Windows 7/XP系统下都能正常运行。

打开图 48 中的第 1 个文件夹"OE1022 ",有以下文件:

名称	修改日期	类型
OE1022_Console_CH.aliases	2014/1/2 19:48	ALIASES 文件
SSI OE1022_Console_CH.exe	2014/1/2 19:48	应用程序
OE1022_Console_CH.ini	2014/1/2 19:48	配置设置
OE1022_Console_CH.tlb	2014/1/2 19:48	TLB 文件
OE1022_Console_EN.aliases	2014/1/2 19:49	ALIASES 文件
SSI OE1022_Console_EN.exe	2014/1/2 19:49	应用程序
OE1022_Console_EN.ini	2014/1/2 19:49	配置设置

图53. "OE1022"文件夹

双击打开图 53 中红色方框内的"OE1022_Console_CH.exe"文件,如前面的安装无误,则 会弹出以下软件窗口,此时可以在 PC 机上开始进行锁相放大器的参数配置:

st OE1022_LabVIEW 连接 串口配置信息 浅		ssi	SYSU SCIENTIFIA INSTRUME	C NTS	OE1022 数字锁相放 控制平台	大器
输入配置输出及采样配置	谐波波形显示	中部打探米利	R值 X值 Y值	[θ值 频率]	噪声	清除波形
10/A 信亏減 () 単時电圧信号 电流增益 () 1 MOhm Current 输入屏蔽接地 () 浮空 输入耦合 () 次流精合 输入路波器 () 关闭所有阻波器 配置输入信号	参考相位(') 0.00 参考信号流 外部参考信号类型 7TTUB平上升沿 内部参考信号频率(Hz) 1000.000 配置参考信号	Pian日初央空生 「民性目初映型 日初开始第率(Hz) 1000.000 日第載止頻率(Hz) 5000.000 日第步进时间(ms) 1000 3000 日第步进时间(ms) 1000 1000 1000 1000 1000 1000 1000 1000 4 1000 1000 1000 4 1000 1000 4 1000 4 1000 4 1000 4 1000 4 100 4 100 4 100 4 100 4 100 4 100 4 100 4 4 5 <tr< th=""><th>1 0.8 0.6 0.4 0.2 0 0 0 R (V) 0.000E+0 Θ (*) 0.00</th><th>X (V) 0.000E+0 频率 (Hz)</th><th>Y (V) 0.000E+0 唤声 (V) 0.000E+0</th><th>500 保存数据 数据采样率 (5)</th></tr<>	1 0.8 0.6 0.4 0.2 0 0 0 R (V) 0.000E+0 Θ (*) 0.00	X (V) 0.000E+0 频率 (Hz)	Y (V) 0.000E+0 唤声 (V) 0.000E+0	500 保存数据 数据采样率 (5)
谐波1 谐波2 1 1 配置谐波检测 自动动态储备 自动相移 关闭 关闭 自动灵敏度 自动量程 关闭 关闭	 滤波器时间常数 300 ms 滤波器陡降 12 dØ/cct 同步滤波器 关闭 配置滤波器 	动态储备 〕正常 灵教度 〕100 mV/nA 配置动态储备 与灵教度	0.00 Rh1 (V) 0.000E+0 Rh2 (V) 0.000E+0 AUX-ADC1 (V) 0.000	0 Xh1 (V) 0.000E+0 Xh2 (V) 0.000E+0 AUX-ADC2 (V) 0.000	U.000E+0 Yh1 (V) 0.000E+0 Yh2 (V) 0.000E+0 AUX-ADC3 (V) 0.000	0.1 0h1 (°) 0.00 0h2 (°) 0.00 AUX-ADC4 (V) 0.000

图54. OE1022 软件界面

此外,该软件对应的英文本,请点击"OE1022_Console_EN.exe",打开后如下图 55 所示; 以下软件说明均以图 54 的中文版为例子。

Conne RS232 VISA F	ect Resource			551	SYSU SCIENTIFI INSTRUM	IC ENTS	Model OE10 DSP Lock-in Control Cor)22 n-Amplifier Isole
put Setting	Output a	nd Sample Setting	Harmonic Display	Clear Waveform	R Value X Valu	e YValue θVal	ue Frequency	Noise
Input Sour	ce	Phase (°)	Int.Swe	eep Mode	1-			
() Single-Ende	d Voltage	7 0.00	Linear		0.8			
Current Im	pedence	Reference So	Int.Swe	eep Start(Hz)	0.6-			
) 1 MOhm Cu	rrent	() External	() 1000.0	000	0.4-			
Input Shield G	irounding	()) External	Int.Swe	eep Stop(Hz)	0.4			
float		External Ref T	rigger () 5000.0	000	0.2-			
Input Coup	ling	TTL Rising Ed	ge Linear S	tep Time(ms)	0-			500
C AC		Int.Frequency	(Hz) (1000		C			
Input Note	h Filter	1000.000	Int.Swe	ep Step(Hz)	P	v	v	
None			7 1000.0	000	0	0	0	Save Data
		Reference	e Int.Swe	eep Run Mode				
Input Confi	guration	Configurat	Stop		θ	Frequency	Noise	
					0	0.000	0	Clear Data
Dynamic Re	eserve	Harmonic 1 Harr	Ti	ime Constant	Rh1	Xh1	Yh1	0h1
Normal		JI JI	5 300	ms	0	0	0	0
Constativitare		Configuratio	on la	Filter Slope	Ph2	Vh2	Vh2	Ab2
100 mV/mA		Auto Soncitivity Au	to Phase	B/oct	0	0	0	0
JITO HIV/HA		Disable	Disable	Sync Filter				
Reserve & Se	nsitivity	Auto Reserve Au	to Scale	Disable	AUX-ADC 1	AUX-ADC 2	AUX-ADC 3	AUX-ADC 4
Configura	tion		Filter	Configuration	0.000	0.000	0.000	0.000

图55. OE1022 软件界面(英文版)

注意:如果 PC 机已安装有 NI LabView 2011 或以上版本,并且安装有对应 LabView2011 版本的 VISA 驱动,则只需要安装好串口驱动(第一步)后,再直接进行第三步就可以使用 锁相放大器的配置软件进行相关参数设置了。

6.2 软件使用说明

前面所示的图 54 是锁相放大器 OE1022 (以下简称 OE1022)当前版本的 PC 机配置软件的界面。

6.2.1 软件运行

图56. 程序运行(左图)与程序停止(右图)

6.2.2 PC 机与 0E1022 连接

要使用该软件正确地配置 OE1022, 首先需要完成 PC 机和 OE1022 的正确连接。图 57 所示为软件界面中显示当前连接状态的部分:

连接	
串口配置信息	
I ∕₀ ▼	

图57. 当前连接状态

如图 57 所示, 点击左边的连接选项"连接",软件会自动搜索串口资源,若 PC 机和 OE1022 连接成功,此时下方窗口会显示 OE1022 的版本号信息,如图 58 所示:

连接中	连接成功,设备信息:
串口配置信息	SSI LIA-OE1022 SN:L6041451
^I ∕ ₈ ASRL9: ▼	Ver4.000

图58. 连接成功图

若等待几秒后,弹出如图 59 所示的提示框,则表示 PC 机与 OE1022 连接异常。

图59. 搜索设备失败提示框

再次确认设备连接正确后,点击提示框中"确定"按钮,此时连接状态右方窗口会显示出 错信息,如图 60 所示:

连接中	连接失败,请重新连接。
串口配置信息 % ▼	

图60. 连接错误图

此时有两种方法可以重新连接:

(1) 点击"串口配置信息"选项右边的"┸",在弹出的下拉菜单中点击"刷新"则可以显示出当前 PC 机所连接的全部外部 COM 资源,用户需要选择正确的 COM 口来进行 PC 与 OE1022 的连接。

注意:当 PC 机使用 USB 线连接 OE1022 时,可以在电脑的设备管理器里确定当前的连接 使用的是哪个 COM 口,具体操作步骤是:选择"我的电脑"->右键->属性->设备管理器->查看 "端口(COM 和 LPT)"。

若 COM 端口选择正确,等待几秒后,连接状态会更新为图 58 所示,连接成功。

(2)点击"连接中..."按钮,使其变为"连接",此时可再次点击"连接"按钮,重复上述连接操作,直到连接成功。

当连接成功后,如图 61 所示,红框内窗口内容将清空并重新开始显示数值,默认窗口 显示 R 值,在红框中上方位置可以选择显示 X、Y、θ、频率或噪声值。同时,软件界面将显 示 OE1022 当前配置的各项参数。

SSI OE1022_LabVIEW <u> </u>	挂接成功,设备信息: SI LIA-OE1022 N:16041451 er4 000	ssi	SYSU SCIENTIFIA INSTRUME	S NTS	OE1022 数字锁相放 控制平台	大器
输入配置 输出及采样配置	谐波波形显示		R值 X值 Y值	θ值 频率	噪声	清除波形
输入信号源 維減但正信号 电流增益 1 MOhm Current 输入屏截接地 3 浮空 输入耦合 输入耦合 输入路波器 3 天现所有陷波器 配置输入信号	参考相位() ④000 参考信号源 例那參考 外部参考信号类型 ① TIU用平上升沿 内部参考信号频率(Hz) ① 1000.000 配置参考信号	内部扫频类型 陆性主要要型 扫频开始频率(Hz) 1000.000 扫频截止频率(Hz) 5000.000 扫频步进时间(ms) 1000 线性步进频率(Hz) 1000.000 扫频运行模式 停止用频	0.1 0.08 0.06 0.04 0.02 0 0 0 R (V) 5.014E-2 B (°) -0.08	X (V) 5.014E-2 频率 (Hz) 1000.001	Y (V) -6.742E-5 噪声 (V) 4.927E-2	500 保存数据 数据采样率 (5)
谐波1 谐波2 1 1 配置谐波检测 1 自动引态储备 自动相移 关闭 关闭 自动灵敏度 自动量程 关闭 关闭	滤波器时间常数 300 ms 違波器陡降 12 dB/oct 同步滤波器 美闭 配置滤波器		Rh1 (V) 5.014E-2 Rh2 (V) 5.014E-2 AUX-ADC1 (V) 2.070	Xh1 (V) 5.012E-2 Xh2 (V) 5.005E-2 AUX-ADC2 (V) 2.076	Yh1 (V) 1.533E-3 Yh2 (V) 3.017E-3 AUX-ADC3 (V) 2.070	0h1 (°) 1.72 0h2 (°) 3.45 AUX-ADC4 (V) 2.074

图61. OE1022 软件连接成功

6.2.3 输入信号配置

输入信号的软件配置区域如图 62 红框内所示:

连接中 按 串口配置信息 SN %ASRL6: ▼ V4	接成功,设备信息: H LIA-OE1022 h:1:6041451 er4.000	SSI	SYSU SCIENTIFIC INSTRUME	NTS	OE1022 数字锁相放 控制平台	大器
入配置 输出及采样配置	谐波波形显示		R值 X值 Y值	[6值 频率	噪声	清除波形
输入信号源 ・) 単純电圧信号 电流增益 ・) 1 MOhm Current 输入屏蔽接地 ・) 浮空 输入耦合 ・) 1 本語会	参考相位(*) ④0.00 参考信号源 例前参考 小部参考信号类型 川田平上升沿	内部扫频类型 法性扫频类型 扫频开始频率(Hz) 1000.000 扫频截止频率(Hz) 5000.000 扫频步进时间(ms)	0.1 0.08 0.06 0.04 0.02 0			500
○ 全回時日 输入陷波器 () 关闭所有脑波器 配置输入信号	内部参考信号頻率(Hz) (1000.000 配置参考信号		R (V) 5.014E-2 θ (°)	X (V) 5.014E-2 频率 (Hz)	Y (V) -6.742E-5 噪声 (V)	保存数据 数据采样率 (S)
谐波1 谐波2 1 1 配置谐波检测	滤波器时间常数 3 300 ms 滤波器陡降 3 12 dB/oct 同步滤波器	动态储备 〕正常 灵敏度 100 mV/nA	Rh1 (V) 5.014E-2 Rh2 (V) 5.014E-2	Xh1 (V) 5.012E-2 Xh2 (V) 5.005E-2	4.927E-2 Yh1 (V) 1.533E-3 Yh2 (V) 3.017E-3	0.1 θh1 (°) 1.72 θh2 (°) 3.45
天闭 天闭 自动灵敏度 自动量程 关闭 关闭	关闭 配置滤波器	配置动态储备 与灵敏度	AUX-ADC1 (V) 2.070	AUX-ADC2 (V) 2.076	AUX-ADC3 (V) 2.070	AUX-ADC4 (V) 2.074

图62. 输入信号的配置区域图

可供用户配置的选项如下表 3:

+	+4 \	
- <u></u>	467 A	1==
48.7.		

PCS: ADD V					
	Single-Ended Voltage				
	单端电压信号				
Input Source	Differential Voltage				
输入信号源设置	差分电压信号				
	Current				
	电流信号				
	1 MOhm Current Gain				
Current Impedence	输入为微弱电流信号时,放大倍数 10E6 V/A				
电流增益设置	100 MOhm Current Gain				
	输入为微弱电流信号时,放大倍数 10E8 V/A				
	Float				
	输入接头地与仪器地(仪器地已短接在大地				
Input Shield Grounding	市电 GND 上)通过 10 KΩ 电阻隔离				
11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	Ground				
	输入接头地与仪器地通过 10 Ω 电阻短接				
	AC				
Input Coupling	交流耦合				
输入耦合设置	DC				
	直流耦合				
	None				
	不开启陷波器				
	Line Notch				
Innut Noteh Filter	开启 50 Hz 陷波器,抑制工频干扰				
mput Notch Filter 检入应注罢近罢	Both Notch Filters				
刊 刊 刊 刊 四 四 日 刊 刊 刊 日 四 日 日 日 日 日 日 日 日	同时开启 50 Hz 和 100 Hz 陷波器,抑制工频				
	和工频二次谐波干扰				
	2x Line Notch				
	开启 100Hz 陷波器,抑制工频干扰				

注意:

- 1 当选择好需要的设置后,需要点击"配置输入信号",以完成输入信号的配置;全部设 置都可同时更改,只需点击一次"配置输入信号"即可。
- 2.每次重新修改其中的设置后,都需要点击该按钮以完成配置,否则设置无效。

6.2.4 参考信号及扫频配置

该项参数的软件配置区域如图 63 红框内所示:

SSI OE1022_LabVIEW						
<mark>连接中</mark> 连 串口配置信息 SN %ASRL6: ▼ Ve	接成功,设备信息: I LIA-OE1022 :L6041451 r4.000	SSI	SYSU SCIENTIFIC INSTRUME	NTS	OE1022 数字锁相放 控制平台	大器
输入配置输出及采样配置	谐波波形显示		R值 X值 Y值	θ值 频率	噪声	清除波形
输入信号源 単調电圧信号 电浅增益 1 MOhm Current 输入屏截接地 浮空 输入耦合 交流耦合 给入的效深	参考相位() ◆ 0.00 参考信号源 → 外部参考 外部参考信号类型 → TTL电平上升沿 内部参考信号英率(Hz)	内部扫频类型 与统世扫频类型 扫频开始频率(Hz) 1000.000 扫频截止频率(Hz) 5000.000 扫频步进时间(ms) 1000	0.1 0.08 0.06 0.04 0.02 0- 0			500 E
● 关闭所有陷波器 配置输入信号	3,1000.000 配置参考信号	3(性少世頻率(HZ) 1000.000 扫頻运行模式 ()停止扫频	R (V) 5.014E-2 θ (°)	X (V) 5.014E-2 频率 (Hz)	Y (V) -6.742E-5 噪声 (V)	保存数据 数据采样率 (S)
谐波1 谐波2 1 1 配置谐波检测 自动动态储备 自动相移 关闭 关闭 自动灵敏度 自动量程 关闭 关闭	法波器时间常数 300 ms 法波器陡降 12 40/cct 同步速波器 美闭 配置滤波器		-0.08 Rh1 (V) 5.014E-2 Rh2 (V) 5.014E-2 AUX-ADC1 (V) 2.070	Xh1 (V) 5.012E-2 Xh2 (V) 5.005E-2 AUX-ADC2 (V) 2.076	4.927E-2 Yh1 (V) 1.533E-3 Yh2 (V) 3.017E-3 AUX-ADC3 (V) 2.070	0.1 0h1 (*) 1.72 0h2 (*) 3.45 AUX-ADC4 (V) 2.074
						• •

图63. 参考信号配置区域图

可供用户配置的选项如下表 4:

表4. 参考信号配置选项表

1					
Phase(°)	设置 PSD 算法两路正交参考信号的相移角度,移相精度				
参考相位设置	为 0.01°,输入范围为-180°至+180°				
	External				
	外部参考信号				
Reference Source	Internal				
参考信号源选择设置	内部参考信号				
	Int. Sweep				
	内部扫频参考				
	TTL Rising Edge				
External Ref Trigger	TTL 信号上升沿检测				
外部参考信号触发方式设置	Sine Zero Crossing				
	Sine 信号过零检测				
IIII.Frequency	而广于4J111八, 则竿氾固乃 I 11172 封 102 KHZ, 则竿刀 				
	辨率取小刃1mHz				

注意:

- 1.当选择好需要的设置后,需要点击"配置参考信号",以完成各项参数的配置;全部参数都可同时更改,只需点击一次"配置参考信号"即可。
- 2.每次重新修改其中的设置后,都需要点击"配置参考信号"按钮以完成配置,否则设置

无效。

当在的参考信号配置中的"参考信号源"里选择"内部扫频参考"时,可对此项进行配置,器软件配置区域如图 64 红框内所示:

st OE1022_LabVIEW 连接中 串口配置信息 SASRL6: • Ve	接成功,设备信息: I UA-OE1022 I:L6041451 er4.000	SSI	SYSU SCIENTIFIQ INSTRUME	C NTS	OE1022 数字锁相放 控制平台	大器
输入配置 输出及采样配置	谐波波形显示		R值 X值 Y值	i θ值 频率	噪声	清除波形
 協入信号源 単純电圧信号 电法增益 1 MOhm Current 協入屏蔽接地 浮空 協入構合 交流場合 输入陷波器 关闭所有陷波器 配置输入信号 	参考相位(') ◆ 0.00 参考信号源 ◆ 内部目频参考 外部参考信号类型 ◆ 川屯平上升沿 内部参考信号気座(Hz) ◆ 1000.000 配置参考信号	 内部日頻类型 「該世日環典型 日頻开始頻率(Hz) 1000.000 日頻截止頻率(Hz) 5000.000 日頻表进时间(ms) 1000 34世歩迸頻率(Hz) 1000.000 目頻忘行機式 17月環 	0.1 0.08 0.06 0.04 0.02 0 0 R (V) 5.014E-2 B (°)	X (V) 5.014E-2 频率 (Hz)	Y (V) -1.364E-4 噪声 (V)	500 保存数据 数据采样率 (5)
谐波1 谐波2 1 1 配置谐波检测 1 自动动态储备 自动相移 关闭 关闭 自动灵敏度 自动量程 关闭 关闭	 · 法波器时间常数 · 300 ms · 違波器陡降 · 12 dB/ott · 同步違波器 · 关闭 · 武沼違波器 · 武沼違波器 · · ·	动态储备 ② 正常 灵教度 ③ 100 mV/nA 配置动态储备 与灵教度	-0.16 Rh1 (V) 5.014E-2 Rh2 (V) 5.014E-2 AUX-ADC1 (V) 2.070	999.999 Xh1 (V) 5.012E-2 Xh2 (V) 5.006E-2 AUX-ADC2 (V) 2.076	4.530E-2 Yh1 (V) 1.462E-3 Yh2 (V) 2.947E-3 AUX-ADC3 (V) 2.070	0.1 0h1 (°) 1.64 0h2 (°) 3.37 AUX-ADC4 (V) 2.075

图64. 内部扫频参考配置区域图

可供用户配置的选项如下表 5:

	Linear
Int.Sweep Type	线性扫频类型
内部扫描类型设置	Log
	对数扫描类型
Int.Sweep Start(Hz)	用于设定扫频的开始频率值,由用户手动输入,频率范
内部扫频开始频率设置	围为 1 mHz 到 102 kHz,频率分辨率最小为 1 mHz
Int.Sweep Stop(Hz)	用于设定扫频的截止频率值,由用户手动输入,频率范
内部扫频截止频率设置	围为 1 mHz 到 102 kHz,频率分辨率最小为 1 Hz
Linear Step Time(ms)	用于设置每次步进的时间,用户手动输入,步长范围为
扫频步进时间设置	1 ms 到 100 s,频率分辨率最小为 1 ms

Int.Sweep Step(Hz)	用于设置每次步进的频率值,用户手动输入,步长范围				
线性步进频率设置	为 1 Hz 到 102 kHz,频率分辨率最小为 1 Hz				
	Single				
	单次扫频				
Int.Sweep Run Mode	Loop				
扫频运行模式设置	循环扫频				
	Stop				
	停止扫频				

注意:

当选择好需要的设置后,需要点击"配置参考信号",以完成各项参数的配置;全部 参数都可同时更改,只需点击一次"配置参考信号"即可。

6.2.5 动态储备和灵敏度配置

该项参数的软件配置区域如图 65 红框内所示:

连接中 连 串口配置信息 SN %ASRL6: ▼ Ve	接成功,设备信息: LIA-OE1022 L6041451 r4.000	551	SYSU SCIENTIF INSTRUM	IC ENTS	OE1022 数字锁相放 控制平台	大器
俞入配置 输出及采样配置	皆波波形显示	/	R值 X值 Y	值 6值 频率	噪声	清除波形
 输入信号源 単純电圧信号 电流增益 ① 1 MOhm Current 输入屏蔽接地 ⑦ 序空 输入耦合 ② 支流耦合 输入陷波器 ④ 关闭所有阻波器 配置输入信号 	参考相位() 0.00 参考信号源 分析部参考 分析部参考信号类型 1000000 前1000000 1000000 配置参考信号 日	内部扫频类型 出類开始频率(Hz) 1000.000 扫频截止频率(Hz) 5000.00 扫频步进时间(ms) 1000 线性步进频率(Hz) 1000.000 扫频运行模式 停止因频	0.1 0.08 0.06 0.04 0.02 0 0 0 R (V) 5.014E-2 B (°)	X (V) 5.014E-2 频率 (Hz)	Y (V) -6.742E-5 哚声 (V)	500 保存数据 数据采样率 (5)
谐波1 谐波2 1 1 配置谐波检测 1 自动动态储备 自动相移 关闭 关闭 自动灵發度 自动置程 关闭 关闭	 北波器时间常数 300 ms 建波器陡降 12 dB/ott 同步滤波器 关闭 配置滤波器 	动态储备 分正零 灵敏度 分100 mV/nA 配置功态储备 与灵敏度	-0.08 Rh1 (V) 5.014E-2 Rh2 (V) 5.014E-2 AUX-ADC1 (V) 2.070	1000.001 Xh1 (V) 5.012E-2 Xh2 (V) 5.005E-2 AUX-ADC2 (V) 2.076	4.927E-2 Yh1 (V) 1.533E-3 Yh2 (V) 3.017E-3 AUX-ADC3 (V) 2.070	0.1 θh1 (°) 1.72 θh2 (°) 3.45 AUX-ADC4 (V) 2.074

图65. 动态储备和灵敏度配置区域图

可供用户配置的选项如下表 6:

表6. 动态储备和灵敏度配置选项表

	Low Noise 低噪声						
Dynamic Reserve	<u> </u>	k\'	ネー				
古太供名い聖		No	rmal				
切 芯 陷 苗 反 直		Ξ	Ē常				
		High f	Reserve				
		高	储备				
		[
	1 nV/fA	200 nV/fA	50 uV/pA	10 mV/nA			
	2 nV/fA	500 nV/fA	100 uV/pA	20 mV/nA			
Sensitivity	5 nV/fA	1 uV/pA	200 uV/pA	50 mV/nA			
满偏灵敏度设置	10 nV/fA	2 uV/pA	500 uV/pA	100 mV/nA			
	20 nV/fA	5 uV/pA	1 mV/nA	200 mV/nA			
	50 nV/fA	10 uV/pA	2 mV/nA	500 mV/nA			
	100 nV/fA	20 uV/pA	5 mV/nA	1 V/uA			
	1						

注意:

1.当选择好需要的设置后,需要点击"配置动态储备与灵敏度",以完成各项参数的配置; 全部参数都可同时更改,只需点击一次"配置动态储备与灵敏度"即可。

2.每次重新修改其中的设置后,都需要点击"配置动态储备与灵敏度"按钮以完成配置, 否则设置无效。

6.2.6 谐波及自动设置配置

谐波及自动设置的软件配置区域如图 66 红框内所示:

	1.000	SST	SYSU SCIENTIFIC INSTRUME	NTS	OE1022 数字锁相放 控制平台	大器
输入配置 输出及采样配置 谐	皆波波形显示	, <u>.</u>	R值 X值 Y值	●值 频率	噪声	清除波形
输入信号源 ● 美电压信号 电流增益 ③ I MOhm Current 输入原态接地 ④ 浮空 输入耦合 ④ 灰流環合 输入防波器 ④ 内压体的波器	参考相位(*) 0.00 参考信号源 分部参考 外部参考信号类型 分TTL电平上升沿 内部参考信号频率(Hz) 1000.000	内部扫频类型 保住扫频类型 扫频开始频率(Hz) 扫频此频率(Hz) 5000.000 扫频步进时间(ms) 1000 条性步进频率(Hz)	0.1 0.08 0.06 0.04 0.02 0 0 0 R (V)	X (V)	Y (V)	500
配置输入信号	配置参考信号	1000.000 扫频运行模式 停止扫频	5.014E-2 9 (°) -0.08	5.014E-2 频率 (Hz) 1000.001	-6.742E-5 噪声 (V) 4.927F-2	保存数据 数据采样率 (S)
谐波1 谐波2 1 1 配置谐波检测 1 自动动态储备 自动相修 关闭 关闭 自动灵教度 自动星程 关闭 关闭 关闭 关闭	 滤波器时间常数 ☆ 300 ms 滤波器陡降 ☆ 12 dB/cdt 同步滤波器 关闭 配置滤波器 	功态储备 正常 灵教度 100 mV/nA 配置功态储备 与灵教度	Rh1 (V) 5.014E-2 Rh2 (V) 5.014E-2 AUX-ADC1 (V) 2.070	Xh1 (V) 5.012E-2 Xh2 (V) 5.005E-2 AUX-ADC2 (V) 2.076	Yh1 (V) 1.533E-3 Yh2 (V) 3.017E-3 AUX-ADC3 (V) 2.070	0h1 (°) 1.72 0h2 (°) 3.45 AUX-ADC4 (V) 2.074

图66. 谐波及自动设置配置区域图

可供用户配置的选项如表 7:

表7. 谐波及目动设置配置选项:

Harmonic 1 谐波 1 检测设置	用户手动输入,范围是 1—32767			
Harmonic 2 谐波 2 检测设置	用户手动输入,范围是 1—32767			
Auto Sensitivity	Disable/Enable			
自动设置满偏灵敏度	关闭/开启			
Auto Reserve	Disable/Enable			
自动设置动态储备	关闭/开启			
Auto Phase	Disable/Enable			
自动设置相移	关闭/开启			
Auto Scale	Disable/Enable			
自动设置量程	关闭/开启			

注意:

1.当选择好需要的谐波设置后,需要点击"配置谐波检测",以完成各项参数的配置;全 部参数都可同时更改,只需点击一次"配置谐波检测"即可。

2."自动灵敏度"、"自动动态储备"、"自动相移"和"自动量程"的配置相对独立,不是通过

按钮"配置动态储备与灵敏度",而是点击相应的"关闭"来选择是否开启自动功能。"关闭"表示不开启,当点击"关闭"时,该按钮会变为"处理中", 表示 OE1022 正在执行 自动功能,当执行完毕后,按钮会重新复位为初始状态"关闭",此时的"动态储备" 和"灵敏度"一项会更新为 OE1022 返回的值。

6.2.7 滤波器配置

滤波器参数的软件配置区域如图 67 红框内所示:

连接中 连 串口配置信息 KASRL6: ▼ Ve	接成功,设备信息: I LIA-OE1022 :L6041451 r4.000	ssi	SYSU SCIENTIFI INSTRUME	C NTS	OE1022 数字锁相放 控制平台	大器
俞入配置 输出及采样配置	谐波波形显示	, <u>, , , , , , , , , , , , , , , , , , </u>	R值 X值 Y值	ī θ值 频率	噪声	清除波形
	参考相位(') 0.00 参考信号源 分部参考 外部参考信号类型) TT电平上升沿 内部参考信号频率(Hz)	内部扫频类型 () 送性扫频频型 扫频开始频率(Hz) 1000.000 扫频截止频率(Hz) 5000.000 扫频步进时间(ms) 1000	0.1 0.08 0.06 0.04 0.02 0 0			500
输入陷波器 关闭所有陷波器 配置输入信号	1000.000 配置参考信号	线性步进频率(Hz) 1000.000 扫频运行模式	R (V) 5.014E-2 θ (°)	X (V) 5.014E-2 频率 (Hz)	Y (V) -6.742E-5 噪声 (V)	保存数据 数据采样率 (S)
谐波1 谐波2 1 1 配置谐波检测 自动动态储备 乡河、金储备 自动相移 关闭 关闭		动态储备 ↓正常 灵敏度 ↓100 mV/nA	-0.08 Rh1 (V) 5.014E-2 Rh2 (V) 5.014E-2 AUX ADC1 (V)	1000.001 Xh1 (V) 5.012E-2 Xh2 (V) 5.005E-2 AUX ADC2 (V)	4.927E-2 Yh1 (V) 1.533E-3 Yh2 (V) 3.017E-3	θh1 (°) 1.72 θh2 (°) 3.45
自动灵敏度 自动量程 关闭 关闭 关闭	配置滤波器	配置动态储备 与灵敏度	2.070	2.076	2.070	2.074

图67. 滤波器配置区域图

可供用户配置的选项如下表 8:

表8. 滤波器配置选项表

	10 us	3 ms	1 c	300 s	
	20 us	10 mc	13	1000 c	
Time Constant	50 US	10 1115	55	1000 \$	
速 边哭时间曾粉迟罢	100 us	30 ms	10 s	3000 s	
心火品时间市奴反且	300 us	100 ms	30 s		
	1 ms	300 ms	100 s		
Filter Slope 滤波器陡降设置	6 dB/oct 12 dB/oct 18 dB/oct 24 dB/oct				

Sync Filter	Disable/Enable
同步滤波器设置	关闭/开启

注意:

- 1.当选择好需要的设置后,需要点击"配置滤波器",以完成各项参数的配置;全部参数 都可同时更改,只需点击一次"配置滤波器"即可。
- 2.每次重新修改其中的设置后,都需要点击"<mark>配置滤波器</mark>"按钮以完成配置,否则设置无 效。
- 3."Sync Filter"的配置相对独立,不是通过按钮"配置滤波器",而是点击相应的"关闭"来

选择是否开启自动功能。当按钮被按下并显示"用台滤波器功能,当用户需要关闭同步滤波器时,再次点击该按钮会重新复位为初始状态"(关闭)",表示 OE1022 已经关闭了同步滤波器功能。

6.2.8 输出通道配置

该项参数的软件配置区域如图 68 红框内所示:

OE1022_LabVIEW 连接中 连接页 串口配置信息 %ASRL6: 文 Ver4.00	载功,设备信息: OE1022 41451 30	SSI	SYSU SCIENTIFIA INSTRUME	E NTS	OE1022 数字锁相放 控制平台	大器
输入配置 输出及采样配置 谐波	波形显示		R值 X值 Y值	[θ值 频率	噪声	清除波形
CH输出通道1 CH输出通道2 R R 偏移(%) 0 0 0 放大 放大 1 1 速度 配置通道输出	正弦信号输出模式 正弦信号输出模式 回定幅值模式 1.0 1000 1.0 扫幅截止幅值(vpp) 1.0 扫幅截止幅值(vpp) 1.0 扫幅载进幅值(vpp) 1.0 扫幅载进幅值(vpp) 1.0 扫幅载进幅值(vpp) 1.0 扫幅载进幅值(vpp) 1.0 扫幅载进幅值(vpp) 1.0	幅值(Vpp) 00 步进幅值(Vpp) 00 运行模式 扫幅	0.1 0.08 0.06 0.04 0.02 0 0			500
DAC输出 1 (V) DAC输出 2 (V)	1000 P	2置正弦输出	R (V)	X (V)	Y (V)	保右数据
DAC输出 3 (V) DAC输出 4 (V)	缓存区1 采样间隔(ms) R ↓ 50 缓存区2 采样长度	保存数据	θ (°) -0.17	频率 (Hz) 999.998	噪声 (V) 4.927E-2	数据采样率 (S)
配置DAC输出	※ ※ 1000 缓存区3 采样触发模式	用時数据	Rh1 (V) 5.014E-2	Xh1 (V) 5.012E-2	Yh1 (V) 1.449E-3	θh1 (°) 1.63
$\begin{array}{c} A \downarrow B \downarrow \\ \hline \downarrow E 1 \\ \hline C 1 \\ \hline \hline 1 1000 \end{array} = \begin{array}{c} R \bigtriangledown \hline X C 1 \bigtriangledown \\ \hline C 2 \bigtriangledown \\ \hline \hline \end{array}$	Y 内部采样触发 缓存区4 采样运行模式 0 单次采样	暂停采样	Rh2 (V) 5.014E-2	Xh2 (V) 5.006E-2	Yh2 (V) 2.934E-3	θh2 (°) 3.36
C2 1.000 和置公式	配置采样	停止采样	AUX-ADC1 (V) 2.070	AUX-ADC2 (V) 2.076	AUX-ADC3 (V) 2.069	AUX-ADC4 (V) 2.073
,,		ш.				

图68. 输出通道的配置区域图

可供用户配置的选项如下表 9:

表	€9. 输出通道配置选项表
Channel 1 输出通道 1	可以控制前面板上输出通道 CH1 输出用户需要的数 值,数值类型包括信号的 X/Y/R/θ 值、信号谐波的 X/Y/R/θ 值、噪声值以及计算公式 E1/E2/E3/E4 值
Channel 2 输出通道 2	可以控制前面板上输出通道 CH2 输出用户需要的数 值,数值类型包括信号的 X/Y/R/θ 值、信号谐波的 X/Y/R/θ 值、噪声值以及计算公式 E1/E2/E3/E4 值
Offset(%) 偏置设置	可调范围是 -100% +100% , 其中最小步进为 0.01%, 默认 0.00%,只能对 R/X/Y 值进行设置
Expand 放大设置	可调范围是 1~256,默认值为 1
Speed 输出速度设置	可选择"快速/Fast"或者"慢速/Slow"。当选择"快速"时, 输出通道 1 和 2 只能输出 R、X、Y 值。

注意:

- 1.当设置好 CH1 和 CH2 输出配置之后,点击"配置通道输出",以完成各项参数的配置; 全部参数都可同时更改。
- 2.每次重新修改其中的设置后,都需要点击"配置通道输出"按钮以完成配置,否则设置 无效。
- 6.2.9 辅助输出配置

该项参数的软件配置区域如图 69 红框内所示:

连接中. 串口配置1 ∛ASRL6:	连接戶 SSI LIA SN:L60 ▼ Ver4.0	或功,设备信息: OE1022 /41451 00	551	SYSU SCIENTIFIC INSTRUME	NTS	OE1022 数字锁相放 控制平台	大器
俞入配置 输出	及采样配置 谐波	皮波形显示]	R值 X值 Y值	[●值 频率	噪声	清除波形
CH输出通道1 R 偏移(%) 0 放大 1 速度 慢速	CH输出通道2 分 R 偏移(%) 分 D 放大 1 配置通道输出	正弦信号输出模式 正弦) 固定幅值模式 分 扫码开始幅值(Vpp) 扫码 1000 扫码 1660 分 1660 分 1660	な幅值(Vpp) 1.000 福步进幅值(Vpp) 1.000 電运行模式 身止扫幅	0.08 0.06 0.04 0.02 0.02			500
DAC输出 1 (V)	DAC输出 2 (V)		配置正弦输出	R (V) 5.014E-2	X (V) 5.014E-2	Y (V) -1.489E-4	保存数据
DAC输出 3 (V)	DAC输出 4 (V)	<u>缓存区1</u> 未件间隔(ms) ()R ()50	保存数据	θ (°) -0.17	频率 (Hz) 999.998	噪声 (V) 4.927E-2	数据采样率 (S)
配置の	AC输出	缓存区 2 采梓长度 X 1000 缓存区 3 采祥触发模式	清除数据	Rh1 (V) 5.014E-2	Xh1 (V) 5.012E-2	Yh1 (V) 1.449E-3	θh1 (°) 1.63
C1	C2 ▽	····································	暂停采祥	Rh2 (V) 5.014E-2	Xh2 (V) 5.006E-2	Yh2 (V) 2.934E-3	θh2 (°) 3.36
C2	配置公式	配置采样	停止采祥	AUX-ADC1 (V) 2.070	AUX-ADC2 (V) 2.076	AUX-ADC3 (V) 2.069	AUX-ADC4 (V) 2.073

图69. 辅助输出配置区域图


```
可供用户配置的选项如下表 10:
```

```
表10. 辅助输出配置选项表
```

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
DA1 Output DA 输出 1 设置	
DA2 Output DA 输出 2 设置	用于控制四路辅助 AUX_DAC 输出直流电压,由用户手
DA3 Output	] 动锏入, 电压范围为-10 V 至+10 V, 最小分辨率为 1 mV。 
DA 输出 3 设置	
DA4 Output	
DA 输出 4 设置	

注意:

- 1.当设置好辅助输出配置之后,点击"配置 DAC 输出",以完成各项参数的配置;全部参数都可同时更改。
- 2.每次重新修改其中的设置后,都需要点击"配置 DAC 输出"按钮以完成配置,否则设置 无效。

### 6.2.10 自定义公式配置

该项参数的软件配置区域如图 70 红框内所示:

连接中 串口配置信息 ∛ASRL6: ▼	连接成功,设备信息: SSI LIA-OE1022 SN:L6041451 Ver4.000	551	SYSU SCIENTIFI INSTRUME	C ENTS	OE1022 数字锁相放 控制平台	大器
俞入配置 输出及采样配置	诸 谐波波形显示	] /	R值 X值 Y值	自 θ值 频率	噪声	清除波形
C+输出通道1         C+输出通道1           分         R           价         例           价         例           竹         例           竹         例           竹         例           竹         例           竹         例           竹         ①           沙         次           竹         ①           小         ①           ①         ①           ①         ①           ①         ①           ①         ①           ①         ①           ①         ①           ①         ①           ②         ①           ③         ①           ③         ①           ③         ①           ③         ①           ③         ①           ③         ①           ③         ①           ③         ②           ③         ①           ③         ①           ③         ②           ③         ③           ③         ③           ③         ③           ③	<ul> <li>● 正弦信号输出模式 正5</li> <li>● 回定幅值模式 ● 1</li> <li>□ 扫幅开始幅值(Vpp) 扫标</li> <li>● 1000</li> <li>● 1</li> <li>● 1600</li> <li>● 1</li> <li>● 1600</li> <li>● 1</li> <li>● 1600</li>     &lt;</ul>	<b>友転值(Vpp)</b> L000 編步进幅值(Vpp) L000 晶运行模式 ∮止扫幅	0.1 0.08 0.06 0.04 0.02 0			500
DAC输出 1 (V) DAC输出	2 (V)	配置正弦输出	R (V)	<b>X (V)</b> 5 014F-2	<b>Y (V)</b>	保在教报
DAC输出 3 (V)         DAC输出           ① 0.000         ① 0.000	4(V) 缓存区1 采样间隔(ms) () R () 50	保存数据	θ (°) -0.17	频率 (Hz) 999.998	<b>噪声 (V)</b> 4.927E-2	数据采样率 (S)
配置DAC输出	缓存区 2         米杆长度           X         1000           缓存区 3         采样触发模式	清除数据	Rh1 (V) 5.014E-2	<b>Xh1 (V)</b> 5.012E-2	<b>Yh1 (V)</b> 1.449E-3	<b>θh1 (°)</b> 1.63
$\frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} R \\ \nabla \end{bmatrix} X \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} C $	1 ↓         JY         J内部采样触发           缓存区4         采样运行模式           0         ●	暂停采样	Rh2 (V) 5.014E-2	Xh2 (V) 5.006E-2	Yh2 (V) 2.934E-3	<b>θh2 (°)</b> 3.36
C2 配置公式	式	停止采祥	AUX-ADC1 (V) 2.070	AUX-ADC2 (V) 2.076	AUX-ADC3 (V) 2.069	AUX-ADC4 (V) 2.073

图70. 公式配置区域图

可供用户配置的选项如下表 11:



	公式的输出值可选择 E1/E2/E3/E4,输入的三个值可选
Equation	择信号的 X/Y/R/θ 值、信号谐波的 X/Y/R/θ 值、四路辅
公式设置	助输入的信号值 ADC1/ADC2/ADC3/ADC4、噪声值、频
	率值以及参数 C1/C2 值
C1	
C1 参数设置	用于设定公式的可选输入,由用户手动输入,范围为
C2	-10 至+10,最小分辨率为 0.001
C2 参数设置	

表11. 公式配置选项表

注意:

- 1.当设置好公式的输出配置之后,点击"配置公式",以完成各项参数的配置;全部参数 都可同时更改。
- 2.每次重新修改其中的设置后,都需要点击"配置公式"按钮以完成配置,否则设置无效。

#### 6.2.11 正弦信号输出配置

该项参数的软件配置区域如图 71 红框内所示:



图71. 正弦信号输出配置区域图

可供用户配置的选项如下表 12:



N	
	Fixed
	定值正弦信号
SineOut Mode	Linear
正弦信号输出模式设置	线性扫幅模式
	Log
	对数扫幅模式
	当正弦信号输出模式选择定值正弦信号时可操作此
Sine Out voltage(vrms)	项,由用户手动输入,电压值范围为 1m Vrms 至 5
<u> </u>	Vrms,最小分辨率为1mVrms。
SineOut Start Voltage(Vrms)	用于设定扫幅的开始值,由用户手动输入,电压值范
扫描开始幅值设置	围为 1m Vrms 至 5 Vrms,最小分辨率为 1 mVrms。
SineOut Stop Voltage(Vrms)	用于设定扫幅的截止值,由用户手动输入,电压值范
扫描截止幅值设置	围为 1m Vrms 至 5 Vrms,最小分辨率为 1 mVrms。
Step Time(ms)	用于设置每次步进的时间,用户手动输入,范围为1ms
扫描步进时间设置	到 100 s,频率分辨率最小为 1 ms
Linear Step(Vrms)	用于设置每次步进的频率值,用户手动输入,电压值
扫描步进幅值设置	范围为 1m Vrms 至 5 Vrms,最小分辨率为 1 mVrms。
	Single
	单次扫频
SineOut Run Mode	Loop
扫描运行模式设置	循环扫频
	Stop
	停止扫频

表12. 正弦信号输出配置选项表

注意:

- 1.当设置好正弦信号的输出配置之后,点击"配置正弦输出",以完成各项参数的配置; 全部参数都可同时更改。
- 2.每次重新修改其中的设置后,都需要点击"⁽"配置正弦输出</mark>"按钮以完成配置,否则设 置无效。



6.2.12 数据缓存区配置

该项参数的软件配置区域如图 72 红框内所示:

连接中 连接 串口配置信息 SN:L %ASRL6: ▼ Ver4	E成功,设备信息: IA-OE1022 6041451 .000	551	SYSU SCIENTIFIC INSTRUME	NTS	OE1022 数字锁相放 控制平台	大器
俞入配置 输出及采样配置 谐	波波形显示		R值 X值 Y值	●值 频率	噪声	清除波形
CH输出通道1 CH输出通道2 () R () R 偏移(5) () 0 放大 () 1 () 1 速度 () 暖速 () 暖速 () 暖速 () 暖速	正弦信号输出模式         正弦           」面定幅值模式         」1           扫幅开始幅值(Vpp)         扫幅           〕1000         〕1           扫幅截止幅值(Vpp)         扫幅           〕5,000         〕得           扫幅表出时间(ms)         〕	<b>友锅值(Vpp)</b> .000 高步进幅值(Vpp) .000 高运行模式 	0.1 0.08 0.06 0.04 0.02 0 0			500
DAC输出 1 (V) DAC输出 2 (V)		配置正弦输出	<b>R (V)</b>	<b>X (V)</b>	Y (V)	保在教报
DAC输出 3 (V)         DAC输出 4 (V)           ① 0.000         ① 0.000	<b>缓存区1</b> 采样间隔(ms) 分R 分50	保存数据	θ (°) -0.17	频率 (Hz) 999.998	<b>噪声 (V)</b> 4.927E-2	数据采样率 (S)
配置DAC输出	後存区 2 米祥长度 分 X 分 1000 缓存区 3 采祥触发模式	清除数据	Rh1 (V) 5.014E-2	Xh1 (V) 5.012E-2	<b>Yh1 (V)</b> 1.449E-3	<b>θh1 (°)</b> 1.63
$\begin{array}{c} 2\mathbf{x}11 \\ 1\mathbf{E}1 \\ \mathbf{C}1 \\ \mathbf{C}1 \end{array} = \begin{array}{c} \mathbf{R}  \nabla  \mathbf{X}  \mathbf{C}1  \nabla \\ \mathbf{C}2  \nabla \\ \mathbf{C}2  \nabla \\ \mathbf{C}1 \end{array}$	・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         ・         1         1         1         1         1         1         1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>	11月二十日 11月二日 11月1日 11月1日1日 11月1日 11月1日 11月1日 11月1日 11月1日 11月1日 11月	Rh2 (V) 5.014E-2	Xh2 (V) 5.006E-2	<b>Yh2 (V)</b> 2.934E-3	<b>θh2 (°)</b> 3.36
1.000 C2 1.000 配置公式	配置采样	停止采祥	AUX-ADC1 (V) 2.070	AUX-ADC2 (V) 2.076	AUX-ADC3 (V) 2.069	AUX-ADC4 (V) 2.073
· · · · · · · · · · · · · · · · · · ·						

图72. 数据缓存区配置区域图

可供用户配置的选项如下表 13:

表13. 数据缓存区配置选项表

Buffer 1	
设置数据缓存区1内容	
Buffer 2	
设置数据缓存区 2 内容	
Buffer 3	
设置数据缓存区 3 内容	频率值、公式值 E1/E2/E3/E4 以及多数 C1/C2 值
Buffer 4	
设置数据缓存区 4 内容	
Step Time(ms)	用于设定采样的时间间隔,用户手动输入,时间间隔范
采样间隔设置	围为 1 ms 到 100 s,分辨率最小为 1 ms
Length	用于设定采样的数据长度,用户手动输入,长度范围为
采样长度设置	1 到 16384, 分辨率最小为 1
	Int
Int/Ext	内部采样触发
采样触发模式	Ext
	外部采样触发



	Single
Single/Loop	单次采样
采样运行模式	Loop
	循环采样

注意:

1.当选择好需要的设置后,需要点击"配置采样",此时才能对右边的"开始采样"进行设置。每次重新修改其中的设置后,都需要点击"配置采样"按钮以完成配置并启动采样, 否则设置无效。

2.点击"开始采样"按钮,其下方出现进度条" " "时,表示 OE1022 已经启动 数据采样,当进度条跑到 100%后会消失不显示,表示数据采样已完成;在采样过程中 可以通过点击"暂停采样"和"停止采样"按钮对采样过程进行控制。全部参数都可同时更 改,只需点击一次"配置采样"即可。 3.采样完成之后才能对上方的"保存数据"和"清除数据"进行操作。这两个按钮用于保存 和清除缓存区内的数据。

4.点击"保存数据"按钮后,界面会弹出窗口

开始保存数据,按钮下方会显示进度条"

",表示正在进行数据保存:当进

点击"确定"之后

确定

度条跑到 100%后会消失不显示,表示已经保存好 buffer 采集的数据,此时会在当前软件运行目录下生成一个 excel 表格,文件名为 Buffer_Data.xls。点击"清除数据"按钮后,

保存数据

会清空四个数据缓存区,并清空当前软件运行目录下的 excel 表格。

6.2.13 数据保存

软件有数据记录保存的功能,可根据用户需要选择是否保存一段时间内的 OE1022 采集 到的数据。

保存的数据包括测量信号的 R、X、Y、 $\theta$ 、频率和噪声的值;测量的两路谐波的 R、X、 Y 和  $\theta$  的值;以及四路辅助输入的信号值。

选择是否存储数据的具体步骤如下:

1.数据以 Excel 表格的形式保存,文件名为"Data_recorded_excel.xls",保存在程序目录下。 保存数据

2.当软件运行时,点击图 73 红框内"<u>保存数据</u>"按钮,当按钮被按下并显示"<u>保存中...</u>",表示 正在保存当前采集的数据。



连接中 连 串口配置信息 SN %ASRL6: ▼ Ve	接成功,设备信息: LIA-OEI022 :L6041451 r4.000	ss	SYSU SCIENTIFIC INSTRUME	E NTS	OE1022 数字锁相放 控制平台	大器
俞入配置 输出及采样配置	谐波波形显示		R值 X值 Y值	[ θ值 频率 ]	噪声	清除波形
<ul> <li>输入信号源</li> <li>●単興电圧信号</li> <li>电法增益</li> <li>● 1 MOhm Current</li> <li>输入原動接地</li> <li>● 浮空</li> <li>输入耦合</li> <li>● 交流耦合</li> <li>● 交流耦合</li> <li>● 公式耦合</li> </ul>	参考相位(*)           0.00           参考信号源           外部参考信号类型           可止电平上升沿           内部参考信号频率(Hz)	内部扫頻类型 接性扫频类型 扫頻开始頻率(Hz) 1000.000 扫頻截止頻率(Hz) 5000.000 扫頻步进时间(ms) 1000	0.1 0.08 0.06 0.04 0.02 0 0			500
) 关闭所有陷波器 配置输入信号	配置参考信号		R (V) 5.014E-2 θ (°) -0.08	X (V) 5.014E-2 <b>频率 (Hz)</b> 1000.001	Y (V) -6.742E-5 <b>噪声 (V)</b> 4.927E-2	保存数据 数据采样率 (S)
谐波1         谐波2           1         1           配置谐波检测           自动动态储备         自动相移           关闭         長肉	北波器时间常数         )300 ms         北波器陡降         )12 dB/oct         同步滤波器         关闭	动态储备 () 正常 灵敏度 () 100 mV/nA	Rh1 (V) 5.014E-2 Rh2 (V) 5.014E-2 AUX-ADC1 (V)	Xh1 (V) 5.012E-2 Xh2 (V) 5.005E-2 AUX-ADC2 (V)	Yh1 (V) 1.533E-3 Yh2 (V) 3.017E-3 AUX-ADC3 (V)	θh1 (°) 1.72 θh2 (°) 3.45 AUX-ADC4 (V)
自动灵敏度         自动量程           关闭         关闭	配置滤波器	61. 血4) 念 喃 奋 与灵 敏度	2.070	2.076	2.070	2.074

#### 图73. 数据保存配置区域图

3.再次按下"保存中..."按钮,按钮状态由"保存中..."重新变为"保存数据",表示停止保存采集的数据。





#### 6.2.14 谐波波形显示

SSI OE1022_LabVIEW						x
<u> </u>	551	SYSU SCIENTIFIC INSTRUME	- NTS	OE1022 数字锁相放 控制平台	大器	
输入配置 输出及采样配置 潜波波形显示		R值 X值 Y值	[ 0值 频率	噪声	清除波形	
Rh1值         Xh1值         Yh1值         Gh1值           0.1         0.08         0.06         0.04           0.02         0.02         0.02         0.02		0.1 0.08 0.06 0.04 0.02 0 0			500	Ш
e o	500	R (V)	X (V)	Y (V)		
Rh2值 Xh2值 Yh2值 0h2值		5.014E-2 0 (°)	5.014E-2 频率 (Hz)	-1.576E-4 噪声 (V)	保存数据 数据采样率 (S)	
0.1-		-0.18	1000.002	4.927E-2	0.1	
0.08-		Rh1 (V)	Xh1 (V)	Yh1 (V)	θh1 (°)	
0.06		5.014E-2	5.012E-2	1.440E-3	1.62	
0.04-		Rh2 (V)	Xh2 (V)	Yh2 (V)	θh2 (°)	
0.02		5.014E-2	5.005E-2	2.925E-3	3.35	H
	500	AUX-ADC1 (V)	AUX-ADC2 (V)	AUX-ADC3 (V)	AUX-ADC4 (V)	
		2.070	2.076	2.068	2.072	
L						
•	III					►

在软件左窗口选择"谐波波形显示"选项页,视图如下:

图74. 谐波波形显示图

此时左窗口中可以分别显示两个谐波的 XY 坐标图。对每一个谐波可设置显示 R、X、Y 和θ值。

### 6.3 软件使用实例

本使用实例将简单演示如何使用 OE1022 PC 软件进行锁相放大器的参数配置以及 R、X、 Y 和 θ 值的观察和记录。

首先需要按照前面 6.2 的软件使用说明, 成功连接 OE1022 与 PC 机, 然后就可以开始进行配置了。

假设用户需要进行以下锁相放大器设置,并进行数据采集与保存:

表14. 实例配置表

输入信号类型	单端电压输入
输入信号大小	40mV
输入耦合方式	AC
开启陷波器	不开启



动态储备	Low Noise
满偏灵敏度	使用自动功能 Auto Sensitivity
参考信号输入	使用外部参考,1000 Hz
参考信号触发方式	TTL 上升沿触发
移相角度	0
低通滤波器的时间常数	300 ms
滤波器陡降	12 dB/oct
数据采样率	125 Hz
数据缓存区 1(buffer1)	X
数据缓存区 2(buffer2)	Y

要完成以上设置,具体操作步骤如下:

①首先根据表 14, 在输入信号配置中选择输入信号类型、输入耦合方式和是否开启陷 波器, 其它选项默认, 如下图 75 所示, 最后需要点击"配置输入信号", 以完成输入信号的 配置:

连接中 连 串口配置信息 SN %ASRL6: ▼ Ve	接成功,设备信息: UA-OE1022 :L6041451 r4.000	SSI	SYSU SCIENTIFIC INSTRUME	NTS	OE1022 数字锁相放 控制平台	大器
入配置 输出及采样配置	谐波波形显示		R值 X值 Y值	0值   频率	噪声	清除波形
输入信号源           ④ 单碘电压信号           电流增益           ⑤ 1 Mohn Current           输入屏蔽接地           ⑥ 1 万安           输入耦合           ⑦ 次流耦合           ④ 光闭听者阅读器	参考相位[1]         少           少のの         参考信号派           分析参考         分析参考           外部参考信号类型         1110年上升沿           内部参考信号策率(H2)         1000.000	内部扫频类型 法性扫频处理 扫频开始频率(Hz) 1500.000 扫频发进时间(ms) 1000 线性步进频率(Hz) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 100	0.1 0.08 0.06 0.04 0.02 0 0 <b>R (V)</b> 4.039E-2	<b>X (V)</b> 4.039E-2	<b>Y (V)</b> -1.090E-4	500 保存数据
配置输入信号	配置參考信号	分停止扫频	θ (°) -0.16	<b>频率 (Hz)</b> 1000.001	<b>噪声 (V)</b> 3.978E-2	数据采样率 (S)
谐波1         谐波2           1         1           配置谐波检测         1           自动动态储备         自动相移           关闭         关闭           自动源数储备         自动理報	<ul> <li>滤波器时间常数</li> <li>300 ms</li> <li>滤波器陡降</li> <li>12 d8/oct</li> <li>同步滤波器</li> <li>关闭</li> <li>All 深速波器</li> </ul>	<b>功态储备</b> 〕正常 灵敏度 〕100 mV/nA 配置动态储备 与灵敏度	Rh1 (V) 4.039E-2 Rh2 (V) 4.039E-2 AUX-ADC1 (V) 2.070	Xh1 (V) 4.037E-2 Xh2 (V) 4.032E-2 AUX-ADC2 (V) 2.076	Yh1 (V) 1.178E-3 Yh2 (V) 2.375E-3 AUX-ADC3 (V) 2.069	θh1 (°)           1.64           θh2 (°)           3.37           AUX-ADC4 (V)           2.074

图75. 输入信号配置图



②根据表 14, 在参考信号配置区域选择参考信号源类型、外部参考和参考相位值, 其它选项默认, 如下图 76 所示, 最后需要点击"配置参考信号", 以完成配置:



图76. 参考信号配置图

若不使用"自动相移"和"自动量程"来自动设置移相和显示刻度范围,则不需要点击相应的"关闭"按钮,保持不变即可。

若使用"自动相移"来自动设置移相角度,则点击相应的"关闭"按钮,当按钮被按下并显示"处理中...",表示 OE1022 正在执行自动移相功能,当执行完毕后,按钮会重新复位为初始状态"关闭",此时的"Phase"一项会更新为 OE1022 返回的移相角度值。

③根据表 14,在滤波器配置区域选择好时间常数和滤波器陡降,其它选项默认,如下 图 77 所示,最后需要点击"配置滤波器",以完成配置:



连接中         连接成功,设备信息:           串口配置信息         SSI UA-OE1022           SN:L6041451         Ver4.000		55	SSI SCIENTIFIC INSTRUMENTS		<b>OE1022</b> 数字锁相放大器 控制平台	
入配置 输出及采样配置	谐波波形显示	<u>,</u>	R值X值	Y值 θ值 频率	噪声	清除波形
输入信号源           単調电压信号           电流增益           1 MOhm Current           输入屏蔽接地           浮空           输入耦合           交流場合           输入的波器           关闭所有陷波器           配凹输入信号	参考相位(*)         0.00         参考信号源         分部参考信号类型         7TTL电平上升沿         内部参考信号类型         1000.000	内部扫频类型 出生日频电型 扫频开始频率(Hz) 1000.000 扫频截止频率(Hz) 5000.000 扫频步进时间(ms) 1000 线性步进频率(Hz) 100000 扫频运行模式	0.1 0.08 0.06 0.04 0.02 0 0 <b>R (V)</b> 4.039E-2 <b>9 (°)</b>	X (V) 4.039E-2 频率 (Hz)	Y (V) -1.090E-4 噪声 (V)	500 保存数据 数据采样率 (S
谐波1         谐波2           1         1           配置谐波检测         1           动动态储备         自动相移           关闭         关闭           自动灵教度         自动量程           关闭         关闭	<ul> <li>滤波器时间常数</li> <li>300 ms</li> <li>滤波器陡降</li> <li>12 dB/oct</li> <li>同步滤波器</li> <li>关闭</li> <li>配置滤波器</li> </ul>	<b>动态储备</b> う正常 灵教度 う100 mV/nA 配置动态储备 与灵教度	-0.16 Rh1 (V) 4.039E-2 Rh2 (V) 4.039E-2 AUX-ADC1 (V 2.070	1000.001 Xh1 (V) 4.037E-2 Xh2 (V) 4.032E-2 /) AUX-ADC2 (V) 2.076	3.978E-2 Yh1 (V) 1.178E-3 Yh2 (V) 2.375E-3 AUX-ADC3 (V) 2.069	0.1 <b>9h1 (°)</b> 1.64 <b>9h2 (°)</b> 3.37 <b>AUX-ADC4 (V)</b> 2.074

#### 图77. 滤波器配置图

若不使用同步滤波器,则不需要点击相应的"关闭"按钮,保持不变即可。

若使用同步滤波器,则点击相应的"关闭"按钮,当按钮被按下并显示"开启",表示 OE1022 已经开启了同步滤波器功能,当用户需要关闭同步滤波器时,再次点击该按钮会重新复位为初始状态"关闭",表示 OE1022 已经关闭了同步滤波器功能。

④根据表 14,在动态储备和满偏灵敏度配置区域选择储备类型、灵敏度类型,其它选项默认,如下图 78 所示,最后需要点击"配置动态储备与灵敏度",以完成配置;



99

同步滤波器

SSI OE1022_LabVIEW <u> 连接中</u> 连 串口配置信息 SN ^K ASRL6: Ve	557	SYSU SCIENTIFIC INSTRUMENTS			<ul> <li>○ ●</li> <li>○ ●</li></ul>	
输入配置输出及采样配置	谐波波形显示		R值 X值 Y值	θ值 频率	噪声	清除波形
输入信号源       単時电圧信号       电流增益       1 MOhn Current       输入病裁挽地       ( ) 序空       输入病合       公式耦合       输入防波器       ( ) 关闭所有脑波器	参考相位(1)	内部扫頻类型           減性扫频类型           目猿开始频率(Hz)           1000.000           扫頻成止频率(Hz)           5000.000           扫頻度进时间(ms)           1000           线性步进频率(Hz)           1000.000	0.1 0.08 0.06 0.04 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<b>X (V)</b> 4.039E-2	<b>Y (V)</b> -1.090E-4	
配置输入信号	配置参考信号	扫频运行模式 分停止扫频	θ (°) -0.16	频率 (Hz) 1000.001	<b>噪声 (V)</b> 3.978E-2	数据采样率 (S)
谐波1         谐波2           1         1           配置谐波检测           自动动态储备         自动相移           关闭         关闭           自动灵敏度         自动重程	<ul> <li>滤波器时间常数</li> <li>300 ms</li> <li>滤波器陡降</li> <li>12 dB/oct</li> <li>同步滤波器</li> <li>关闭</li> </ul>	<b>动杰储备</b> 〕正常 <del>〕</del> 100 mV/nA 100 mV/nA 配置効杰储备 与灵教度	Rh1 (V) 4.039E-2 Rh2 (V) 4.039E-2 AUX-ADC1 (V) 2.070	Xh1 (V) 4.037E-2 Xh2 (V) 4.032E-2 AUX-ADC2 (V) 2.076	Yh1 (V) 1.178E-3 Yh2 (V) 2.375E-3 AUX-ADC3 (V) 2.069	θh1 (°) 1.64 θh2 (°) 3.37 AUX-ADC4 (V) 2.074
关闭关闭						

#### 图78. 动态储备和灵敏度配置图

另外,由于选择使用"自动灵敏度"来自动设置满偏灵敏度,只需要点击"自动灵敏度"下的"关闭"按钮,"该按钮会变为"处理中...",表示 OE1022 正在执行自动功能,当执行完毕后,按钮会重新复位为初始状态"关闭",此时的"动态储备"和"灵敏度"一项会更新为 OE1022 返回的值。

此时,再看主界面上的"Sensitivity"一项,对比图 78,发现 Sensitivity 已经改变为合适的 灵敏度了(由 100 mV 变为 50 mV),如图 79 所示:



连接贞功,设备信息:           串口配置信息         SSI UA-OE1022           SN:16041451         Ver4.000		55	SYSU SCIENTIFIC INSTRUMENTS		<b>OE1022</b> 数字锁相放大器 控制平台	
入配置 输出及采样配置	谐波波形显示		R值 X值 Y值	i θ值 频率	噪声	清除波形
输入信号源         ● 詳細电压信号         电波增益         ① 1 MOhm Current         输入屏藏接地         ④ 浮空         输入耦合         ④ 交流耦合         输入陷波器         ④ 关闭所有指波器         配馏输入信号	参考相位() 0.00 参考信号源 外部参考 外部参考信号类型 0 TTU电平上升沿 内部参考信号频率(Hz) 0 1000.000 配置参考信号	内部扫頻类型 日新开始頻率(Hz) 100000 扫頻截止頻率(Hz) 50000 日頻步进时间(ms) 1000 気性步进頻率(Hz) 1000 気性步进頻率(Hz) 100000 日頻运行模式 停止扫频	0.1 0.08 0.06 0.04 0.02 0 0 0 <b>R (V)</b> 4.039E-2 <b>0</b> (*) 0	X (V) 4.039E-2 频摩(Hz)	Y (V) -1.090E-4 嗓声 (V)	500 保存数据 数据采样率 (5)
谐波1         谐波2           1         1           配置谐波检测           自动动态储备         自动相移           关闭         关闭           自动灵教度         自动量程           关闭         关闭	<ul> <li>滤波器时间常数</li> <li>300 ms</li> <li>滤波器陡降</li> <li>12 dB/oct</li> <li>同步滤波器</li> <li>关闭</li> <li>配置滤波器</li> </ul>	<b>动态储备</b> → 正常 → <u>3</u> 敏度 → 50 mV/nA 配置动态储备 与灵教度	40.10           Rh1 (V)           4.039E-2           Rh2 (V)           4.039E-2           AUX-ADC1 (V)           2.070	Xh1 (V)           4.037E-2           Xh2 (V)           4.032E-2           AUX-ADC2 (V)           2.076	S.576-2           Yh1 (V)           1.178E-3           Yh2 (V)           2.375E-3           AUX-ADC3 (V)           2.069	0.1           0h1 (°)           1.64           0h2 (°)           3.37           AUX-ADC4 (V)           2.074

图79. 自动灵敏度设置

把配置前后的 OE1022 界面对比图如下两图所示,可见配置成功:



图80. 配置前 OE1022 界面-SENS 为 100 mV





图81. 配置后 OE1022 界面-SENS 为 50 mV

⑤以上步骤 1-4 已经根据要求配置完了 OE1022,其它选项默认,此时可以开始进行数据的采集和保存了。

数据以 Excel 表格的形式保存在选定目录下,文件名为"Data_recorded_excel.xls",共有 18 列数据。

连接中         连接成功,设备信息:           串口配置信息         SSI LIA-OE1022           SNI:6041451         SNI:6041451           NASRL6: ▼         Ver4.000		ssi	SYSU SCIENTIFI INSTRUME	C ENTS	OE1022 数字锁相放大器 控制平台	
入配置 输出及采样配置	谐波波形显示	] <u></u>	R值 X值 Y值	直 θ值 频率	噪声	清除波形
输入信号源	参考相位 (°)	内部扫频类型	0.1-			
() 单端电压信号	0.00	线性扫频类型	0.08-			
电流增益	参 <u>老</u> 信 <b>宁</b> 酒	扫频开始频率(Hz)	0.06-			
1 MOhm Current	ショロコか	1000.000	0.04-			
输入屏蔽接地	UNITED STORES	扫频截止频率(Hz)	0.02-			
() 浮空	外部参考信号类型	5000.000	0.02			
输入耦合	创 TTL电平上升沿	扫频步进时间(ms)	0-			500
分交流耦合	内部参考信号频率(Hz)	/ T) 1000				
输入陷波器	x 1000.000	线性步进频率(Hz)	R (V)	X (V)	Y (V)	
关闭所有陷波器		1000.000	4.039E-2	4.039E-2	-1.090E-4	保存数据
配置論入信号	配置参考信号	扫频运行模式	0.(9)	designed and a	19 <b>=</b> 1 1 1	
		分停止扫频	-0.15	<b></b>	県戸(V) 2.9785-2	数据米件学 (S)
送波1 送波2	· 法波器时间尝赖	动太战久		10001001	5.5762 2	30.1
	A5 A2 63 P1 P3 75 52	49.330 m m	Rh1 (V)	Xh1 (V)	Yh1 (V)	θh1 (°)
	300 ms	기보추	4.039E-2	4.037E-2	1.178E-3	1.64
配五宵波位测	12 dB (n st	<b>灭教</b> 授	Rh2 (V)	Xh2 (V)	Yh2 (V)	θh2 (°)
自动动态储备 自动相移	Siz ab/odt	∬100 mV/nA	4.039E-2	4.032E-2	2.375E-3	3.37
关闭 关闭	回梦 滤波 益					
自动灵敏度 自动量程		配置功态储备 与录数度	2.070	2.076	2.069	2.074
关闭 关闭	配置滤波器	-154.9402	2.070	21070	21005	21074

图82. 数据保存暂停中

如图 82 所示,点击红框内按钮"保存数据",当按钮被按下并显示"保存中...",表示正在保存当前采集的数据,如图 83 所示:


连接中 连 串口配置信息 SN %ASRL6: ▼ Ve	接成功,设备信息: UA-OE1022 :L6041451 r4.000	551	SYSU SCIENTIFI INSTRUM	ENTS	OE1022 数字锁相放 控制平台	大器
入配置 输出及采样配置	谐波波形显示	) <u>.</u>	R值 X值 Y1	直   6值   频率	噪声	清除波形
	参考相位 (*)       0.00       参考信号源       分部参考信号类型       可に电平上升沿       内部参考信号频率(Hz)       1000.000	内部扫頻类型 長性扫示時型 扫頻开始频率(Hz) 1000.000 扫頻能止频率(Hz) 5000.000 扫频步进时间(ms) 1000 线性步进频率(Hz) 1000.000 扫频运行模式	0.1 0.08 0.06 0.04 0.02 0 0 0 <b>R (V)</b> 4.039E-2	X (V) 4.039E-2	<b>Y (V)</b> -1.136E-4	500 【 <b>保存中…</b>
配置输入信号 <td< td=""><td><ul> <li>配置参考信号</li> <li>濾波器时间常数     <li>300 ms     <li>濾波器陡降     <li>12 dB/oct     <li>同步滤波器     <li>关闭     <li>配置滤波器</li> </li></li></li></li></li></li></ul></td><td><ul> <li>() 停止日気</li> <li>动态储备</li> <li>() 正常</li> <li>灵教度</li> <li>() 100 mV/nA</li> <li>配置动态储备</li> <li>与灵教度</li> </ul></td><td>θ (°) -0.16 Rh1 (V) 4.039E-2 Rh2 (V) 4.039E-2 AUX-ADC1 (V) 2.070</td><td>频率 (Hz) 999.999 Xh1 (V) 4.037E-2 Xh2 (V) 4.032E-2 AUX-ADC2 (V) 2.076</td><td>噪声 (V) 3.969E-2 Yh1 (V) 1.173E-3 Yh2 (V) 2.370E-3 AUX-ADC3 (V) 2.070</td><td>数据采样率 (S) 0.1 0h1 (*) 1.64 0h2 (*) 3.36 AUX-ADC4 (V) 2.075</td></td<>	<ul> <li>配置参考信号</li> <li>濾波器时间常数     <li>300 ms     <li>濾波器陡降     <li>12 dB/oct     <li>同步滤波器     <li>关闭     <li>配置滤波器</li> </li></li></li></li></li></li></ul>	<ul> <li>() 停止日気</li> <li>动态储备</li> <li>() 正常</li> <li>灵教度</li> <li>() 100 mV/nA</li> <li>配置动态储备</li> <li>与灵教度</li> </ul>	θ (°) -0.16 Rh1 (V) 4.039E-2 Rh2 (V) 4.039E-2 AUX-ADC1 (V) 2.070	频率 (Hz) 999.999 Xh1 (V) 4.037E-2 Xh2 (V) 4.032E-2 AUX-ADC2 (V) 2.076	噪声 (V) 3.969E-2 Yh1 (V) 1.173E-3 Yh2 (V) 2.370E-3 AUX-ADC3 (V) 2.070	数据采样率 (S) 0.1 0h1 (*) 1.64 0h2 (*) 3.36 AUX-ADC4 (V) 2.075

图83. 数据保存执行中

⑥除了步骤 5 中的保存数据方法,还有一种是可以根据用户的需要设置不同的数据采样率,把数据保存在 OE1022 的四个数据缓存区内,每个数据缓存区可以采集一种数据,数据 类型参见 6.2.12 章节。

数据以 Excel 表格的形式保存在当前软件运行的目录下, 文件名为 Buffer_Data.xls, 如图 84 所示:

名称	修改日期	类型
🕙 Buffer_Data.xls	2014/1/2 19:53	Microsoft Excel
Data_recorded_excel.xls	2014/1/2 19:59	Microsoft Excel
OE1022_Console_CH.aliases	2014/1/2 19:48	ALIASES 文件
SSI OE1022_Console_CH.exe	2014/1/2 19:48	应用程序
OE1022_Console_CH.ini	2014/1/2 19:48	配置设置
OE1022_Console_CH.tlb	2014/1/2 19:48	TLB 文件
OE1022_Console_EN.aliases	2014/1/2 19:49	ALIASES 文件
SSI OE1022_Console_EN.exe	2014/1/2 19:49	应用程序
OE1022_Console_EN.ini	2014/1/2 19:49	配置设置

#### 图84. 保存数据表格

具体操作如下(假设用户选择数据采样间隔为 50 ms,采样长度为 1000,缓存区 1~4 分别采集 R、X、Y 和θ值):

SSI SCIENTIFIC INSTRUMENTS

1. 在数据缓存区配置区域选择好每个缓存区的采集数据类型、采样间隔和采样长度,其它选项默认,然后点击"配置采样"按钮,再点击右方的"开始采样"按钮。当在按钮下方出现进度条时,表示开始进行数据采集,如图 85 红框内所示。

SSI OE1022_LabVIEW						
<u> </u>	线功,设备信息: -0E1022 41451 00	SST	SYSU SCIENTIFIC INSTRUME	e NTS	OE1022 数字锁相放 控制平台	大器
输入配置 输出及采样配置 谐波	波形显示		R值 X值 Y值	i   θ值   频率	噪声	清除波形
CH输出通道1         CH输出通道2           R         第           備移(%)         第           0         0           放大         放大           1         1           速度         配置通道输出	正弦信号输出模式         正弦信号输出模式           ) 固定幅值模式         分100           扫稿开始幅值(Vpp)         扫稿           分100         月10           分100         月11           分100         月14           分100         月14           分100         月14           分100         月14           分100         月4           分500         分4           月幅歩进时间(ms)         月4	幅值(Vpp) 900 步进幅值(Vpp) 900 运行模式 上扫幅	0.1 0.08 0.06 0.04 0.02 0 500		_	1000
DAC输出 1 (V) DAC输出 2 (V)	1000	2置正弦输出	R (V)	X (V)	Y (V)	保右数据
DAC输出 3 (V)         DAC输出 4 (V)           ↓ 0.000         ↓ 0.000	援存区1 采样间隔(ms)	保存数据	θ (°) -0.18	频率 (Hz) 1000.001	<b>噪声 (V)</b> 3.969E-2	数据采样率 (S)
配置DAC输出		<b>有际叙据</b>	Rh1 (V) 4.039E-2	Xh1 (V) 4.037E-2	Yh1 (V) 1.165E-3	θh1 (°) 1.62
$\frac{\Delta \mathbf{x}}{\nabla \mathbf{E}_{1}} = \frac{\mathbf{R} \nabla \mathbf{x} \mathbf{C}_{1} \nabla}{\mathbf{C}_{2} \nabla}$	次         Y         内部采样触发           災         Y         内部采样触发           災存区4         采样运行模式	开始采祥 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	Rh2 (V) 4.039E-2	<b>Xh2 (V)</b> 4.032E-2	Yh2 (V) 2.362E-3	<b>θh2 (°)</b> 3.35
↓1.000 C2 1.000	Ŋ♥ Ŋ♥次¥祥 配置采祥	停止采祥	AUX-ADC1 (V) 2.071	AUX-ADC2 (V) 2.075	AUX-ADC3 (V) 2.070	AUX-ADC4 (V) 2.075
<						,

图85. 数据采集

2.当进度条时跑到 100%时,进度条会消失不显示,表示 OE1022 已经完成数据采集,此时若

想保存数据,则点击图 86 红框的"保存数据"按钮:

保存数据



输入配置       输出及来样配置       谐波波形显示       席值       X值       Y值       0 值       频率       噪声       清除波形         C+输出通道1       C+输出通道2       R       C+输出通道2       R       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       1.000       <	<mark>连接中</mark> 串口配置信 ∛ASRL9:	连接 SSI LIA SN:L60 ▼ Ver4.0	成功,设备信息: ⊷OE1022 ¥1451 ¥00	SSI	SYSU SCIENTIFI INSTRUME	C NTS	OE1022 数字锁相放 控制平台	大器
C+输出通道       C+输出通道       C+输出通道       C+输出通道       C+输出通道       C+输出通道       C+输出通道       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C	输入配置 输出)	及采样配置 谐波	皮波形显示	, <u>.</u>	R值 X值 Y值	自 θ值 频率	噪声	清除波形
0.000       0.000         Dacâa出 4 (V)       0.000         0.000       0.000         DacâaL 4 (V)       0.000         0.000       0.000         0.000       0.000         0.000       0.000         0.000       0.000         0.000       0.000         0.000       0.000         0.000       0.000         0.000       0.000         0.000       0.000         0.000       0.000         0.000       0.000         0.000       0.000         0.000       0.000         0.000       0.000         0.000       0.000         0.000       0.000         0.000       0.000         0.000       0.000         0.000       0.000         0.000       0.000         0.000       0.000         0.000       0.000         0.000       0.000         0.000       0.000         0.000       0.000         0.000       0.000         0.000       0.000         0.000       0.000         0.000       0.000      <	CH输出通道1 分 R 偏移(%) 分 D 放大 分 1 速度 分 侵速 DAC输出1(V)	CH输出通道2 分 R 偏移(%) 分 0 放大 1 配置通道输出	<b>正弦信号输出模式</b> ) 面定幅電域式 日編开始幅值(Vpp) 〕1000 日幅載止幅值(Vpp) 〕5000 日幅歩进时间(ms) 〕1000	<b>正弦幅值(Vpp)</b> 1000 扫幅步进幅值(Vpp) 1.000 扫幅运行模式 停止扫幅 配置正弦输出	0.1 0.08 0.06 0.04 0.02 0 500	X (V)	Y (V)	1000
DAC編出 3 (V)         DAC編出 4 (V)         文化 1 (V)         文化 1 (V)         文化 1 (V)         数据采样率 (s)           0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000 <td< td=""><td>0.000</td><td>0.000</td><td>/ · · · · · · · · · · · · · · · · · · ·</td><td>(ms) /2 /2 ****/2</td><td>4.039E-2</td><td>4.039E-2</td><td>-1.225E-4</td><td>保存数据</td></td<>	0.000	0.000	/ · · · · · · · · · · · · · · · · · · ·	(ms) /2 /2 ****/2	4.039E-2	4.039E-2	-1.225E-4	保存数据
一次式     第     第     第     第     第     第     第     999.999     3.9685-2     0.1       公式     第     第     第     第     第     第     第     第     1     1       公式     第     第     第     第     第     第     第     1     1     1       公式     第     第     第     第     第     第     1     1     1       公式     第     第     第     第     第     第     1     1     1       (1)     1000     (1)     (1)     1     1     1     1     1     1       (1)     1000     (1)     (1)     1     1     1     1     1     1       (1)     1000     (2)     (1)     (1)     1     1     1     1     1       (1)     1000     (2)     (2)     (2)     (2)     (2)     1     1     1       (1)     (1)     (1)     (1)     (1)     (1)     (1)     1     1       (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)     (2)       (2)     (2)     (2)     (2)     (2)     (2) <td< td=""><td>DAC输出 3 (V)</td><td>DAC输出 4 (V)</td><td>R + 50</td><td></td><td>θ (°)</td><td>频率 (Hz)</td><td>噪声 (V)</td><td>数据采样率 (S)</td></td<>	DAC输出 3 (V)	DAC输出 4 (V)	R + 50		θ (°)	频率 (Hz)	噪声 (V)	数据采样率 (S)
第     第     第     第     第       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1	配置D 公式	AC输出	缓存区 2         采样长度           X         1000           缓存区 3         采样触发	模式 开始采样	-0.18 Rh1 (V) 4.039E-2	999.999 Xh1 (V) 4.037E-2	3.968E-2 Yh1 (V) 1.164E-3	0.1 θh1 (°) 1.62
C1         C2         C3         C3 <thc3< th="">         C3         C3         C3</thc3<>	() E1 =		缓存区 4 采样运行	模式	Rh2 (V)	Xh2 (V)	Yh2 (V)	θh2 (°)
C2         配置公式         配置采样         停止采样         2.071         2.076         2.070         2.076	C1 7 1.000			暂停采样	AUX-ADC1 (V)	4.032E-2	2.301E-3	AUX-ADC4 (V)
1.000	C2	配置公式	配置采样	停止采样	2.071	2.076	2.070	2.076

图86. 保存采集数据

如下图所示,当点击"保存数据"后,按钮下方会显示进度条,表示正在进行数据保存; 当进度条跑到 100%后会消失不显示,表示已经保存好缓存区采集的数据,此时在软件运行 的当前文件夹会生成上面讲过的四个 excel 文档。

连接中 连接员 串口配置信息 SSI LIA- %ASRL9: ▼ Ver4.00	i功,设备信息: OE1022 1451 0	551	SYSU SCIENTIFIC INSTRUME	ENTS	OE1022 数字锁相放 控制平台	大器
输入配置 输出及采样配置 谐波	波形显示	]	R值 X值 Y值	I θ值 频率	噪声	清除波形
CH输出通道1     CH输出通道2       R     備移(%)       0     0       放大     放大       1     1       速度     配置通道输出       日本G输出1(V)     日本G输出2(V)       0.000     0.000       日本G输出3(V)     日本G输出2(V)       0.000     0.000       日本G输出3(V)     日本G输出4(V)       0.000     0.000       配置日本G输出     (V)       ①     0.000       配置日本G输出     (V)       ③     日       公式     R       ○     C1	正弦信号输出機式         正弦           圖是編編集式         目編           1002         目編           1000         目編           1000         目編           1000         目編           1000         日編           1000         日編           1000         日編           第4年日         米祥的周囲(ms)           1000         1000           餐存区 1         米祥长皮           1000         東洋総要           餐存区 3         米祥敏发機式           1000         東洋総要           餐存区 4         米祥公行機式	幅值(Vpp) 100 步进幅值(Vpp) 100 运行模式 上扫幅 2.置正弦输出 保存数据 开始采祥 新德亚祥	0.1 0.08 0.06 0.04 0.02 0 1000 <b>R (V)</b> 4.039E-2 <b>θ (°)</b> -0.16 <b>Rh1 (V)</b> 4.039E-2 <b>Rh2 (V)</b> 4.039E-2	X (V) 4.039E-2 频率 (Hz) 1000 Xh1 (V) 4.037E-2 Xh2 (V) 4.032E-2	Y (V) -1.137E-4 噪声 (V) 3.968E-2 Yh1 (V) 1.173E-3 Yh2 (V) 2.370E-3	(保存数据 数据采样率 (s) ①0.1 6h1 (°) 1.64 6h2 (°) 3.36
1.000 C2 1.000 配置公式	の「一般語采祥	停止采样	AUX-ADC1 (V) 2.070	AUX-ADC2 (V) 2.075	AUX-ADC3 (V) 2.069	AUX-ADC4 (V) 2.073

图87. 采集数据保存中



# 7. 性能测试

### 简介

本章性能测试的目的是让用户验证我们设备的测量结果能否正确,同时增加对我们的信 心。

每一项测试的结果可以记录在本章最后的性能测试记录表上。

### 序列号

如果有疑问需要联系我们公司,请记下设备的序列号,方便我们登记资料。序列号在设备背面、光盘盒和包装箱上均有标明。同时设备开启后,在<INFO>中也可以查看序列号。

#### 固件版本

设备开启后,在前面板的<INFO>中可以查看设备的固件版本号。

#### 预热

由于设备内部芯片存在温漂现象,为了减少测试结果的误差,在测试之前,最好先启动 设备预热一段时间(30-60 分钟)。

#### 测试记录

本章最后有一份性能测试记录表,填写之前最好备份一份。在完成所有测试并填写完记 录表后,可以根据记录表上的数据来判断设备的性能测试是否通过。请保存好记录表,方便 以后跟我们工程师联系。

#### 测试失败

如果测试失败,请重新检查一遍本设备和外部设备的设置是否正确;设置检查完成后,确保设置正确,预热后重新进行测试。如果条件允许,更换其他外部设备再进行测试。

如果测试还是失败,请查询设备的序列号和固件版本号,并准备好性能测试记录表,与 我们公司进行联系。



### 测试必要设备

1.	.函数信号发生器	
	Freq Range	1 Hz to 1 MHz
	Freq Accuracy	Better than 5 ppm
	Amplitude Accuracy	0.2dB from 1 Hz to 102 kHz
	Spurious	≤-55 dBc
	TTL SYNC	Available
	Output Setup	50Ω or High Z
	推荐	AGILENT 33250A
2.	.数字万用表	
	Voltage Range	≥20 V, 41/2 digits
	Accuracy	≤0.005%
	按车	
	推仔	KEITHLEY 2100
3.	直流稳压源	
-	Voltage Range	≥10 V
	Accuracy	<10 mVpp
	,	
	推荐	RIGOL DP831A
4	短路连接器	
	BNC 电阻	50 Ω

### 前面板液晶测试

打开背部电源开关,启动设备;观察液晶屏幕,是否点亮;在开机界面中,观察屏幕是 否存在坏点。

#### 键盘测试

在启动设备后,尝试按下某一个按键,会听到设备发出"滴"声;测试每一个按键,观察 屏幕,看对应的设置是否改变;最后在<Sensitivity>中测试旋钮是否工作正常。



# 7.1 启动测试

通过启动测试检测锁相放大器的硬件。必须在进行其它性能测试前完成这项测试。

### 设备

在本测试中不需要外部设备。

### 步骤

- 1) 打开背部电源开关,启动锁相放大器;
- 2) 观察设备屏幕、键盘功能、背部散热风扇是否工作正常;
- 3) 在本章最后的测试记录表中记录通过与否。

# 7.2 直流偏置

本项测试主要进行输入端直流偏置的测试。

### 设备

使用 50 ΩBNC 电阻负载将 A/I 接口短路,短路后锁相放大器可以测量自身的直流偏置。

### 步骤

- 1) 先关闭再打开背部电源开关,重新启动锁相放大器;
- 2) 按以下顺序修改设置:

<Ref.source>: 修改为<Internal>。 <Ref.Frequency>: 修改为1Hz。 <Sensitivity>: 使用旋钮修改为<1mV>。

- 3) 等待 10 秒后,记录<R>值;
- 4)修改设置:

<Coupling>: 修改为<DC>。

- 5) 等待 10 秒后,记录<R>值;
- 6)到此完成直流偏置测试,在本章最后的测试记录表中填入数据。

# 7.3 共模抑制

本项测试主要进行锁相放大器的共模抑制测试。



### 设备

我们使用信号发生器产生的正弦波作为输出来提供信号。

连接锁相放大器的 SINE OUT 输出端与 A、B 输入端。把 BNC T 型接头插到 SINE OUT 接口上,使用 2 条等长的信号线(带 BNC 公接头)分别连接 T 型头与 A/I、B 接口。

#### 步骤

- 1) 先关闭再打开背部电源开关,重新启动锁相放大器;
- 2) 按以下顺序修改设置:

<Sensitivity>: 使用旋钮修改为<1 V>。 <Ref.source>: 修改为<Internal>。

<Ref.Frequency>: 修改为 100 Hz。

- 3) 等待<R>值稳定, <R>值应该为 1.000 Vrms (3%误差);
- 4) 按以下顺序修改设置:

<coupling>:</coupling>	修改为 <dc>。</dc>
<source/> :	修改为 <a-b>。</a-b>
<sensitivity>:</sensitivity>	使用旋钮修改为<200uV>。

- 5) 等待 10 秒后,记录<R>值;
- 6) 到此完成共模抑制的测试,共模抑制比 CMRR = 20lg(1.0/R),其中 R 值单位为 V。在本章最后的测试记录表中填入数据。

# 7.4 幅值精度和平坦度

本项测试主要进行幅值精度和频率响应的测试。

### 设备

我们使用函数信号发生器提供精准的频率和正弦波。

使用一条信号线(带 BNC 公接头)连接函数信号发生器的输出接口到锁相放大器的 A/I 接口,使用另一条信号线连接函数信号发生器的参考信号接口和锁相放大器的 REF IN 接口。

设置函数信号发生器:

函数:	正弦波
频率:	1 kHz
幅值:	1 Vrms
偏置:	0 V
输出:	高阻
扫频:	off
调整:	none



#### 步骤

- 1) 先关闭再打开背部电源开关,重新启动锁相放大器;
- 2) 修改设置:

Filter dB/oct: 修改为 24 dB/oct。

3)幅值精度的测试需要保持函数信号发生器的频率为1 kHz,按以下顺序修改其幅值 和锁相放大器的<Sensitivity>:

<u>Sensitivity</u>	<u>Amplitude</u>
1 V	1.0000 Vrms
200 mV	200.00 mVrms
100 mV	100.00 mVrms
20 mV	20.000 mVrms
10 mV	10.000 mVrms

- a) 设置函数信号发生器的幅值;
- b) 设置锁相放大器的<Sensitivity>;
- c) 等待 10 秒后, 记录<R>值, 然后测试另外一组数据;
- d) 重复 3a 到 3c 直到完成幅值精度测试。
- 4) 频率响应的测试在大于1kHZ的频率下进行,按以下顺序修改函数发生器的频率:

Test Frequencies

24 kHz

- 48 kHz 72 kHz
  - 2 1112
- 96 kHz
- a) 设置锁相放大器的<Sensitivity>为<200 mV>;
- b) 设置函数信号发生器的频率为 1kHz, 幅值为 200.00 mVrms;
- c) 按顺序设置函数信号发生器的频率;
- d) 等待 10 秒后,记录<R>值,然后测试另外一组数据;
- e) 重复 4c 到 4d 直到完成频率响应测试。
- 5) 到此完成幅值精度和频率响应的测试,在本章最后的测试记录表中填入数据。

# 7.5 幅值线性度

本项测试主要进行幅值线性度的测试,测试锁相放大器如何在信号小于满量程的情况下 准确测量。

#### 设备

我们使用函数信号发生器提供精准的频率和正弦波。

使用一条信号线(带 BNC 公接头)连接函数信号发生器的输出接口到锁相放大器的 A/I 接口,使用另一条信号线连接函数信号发生器的参考信号接口和锁相放大器的 REF IN 接口。



设置函数信号发生器:

函数:	正弦波
频率:	1 kHz
幅值:	1 Vrms
偏置:	0 V
输出:	高阻
扫频:	off
调整:	none

#### 步骤

- 1) 先关闭再打开背部电源开关,重新启动锁相放大器;
- 2) 修改设置:

<Filter dB/oct>: 修改为<24 dB/oct>。

<Sensitivity>: 使用旋钮修改为<1 V>。

3) 保持函数信号发生器的频率为1kHz,按以下顺序修改其幅值:

Amplitude 1.0000 Vrms 100.00 mVrms

10.000 mVrms

- a) 设置函数信号发生器的幅值;
- b) 等待 10 秒, 记录<R>值, 然后测试另外一组数据;
- c)重复 3a 到 3b 直到完成所有数据测量。
- 4) 到此完成幅值线性度的测试,在本章最后的测试记录表中填入数据。

## 7.6 频率精度

本项测试主要进行频率精度的测试。

### 设备

我们使用函数信号发生器提供参考信号。

使用一条信号线(带 BNC 公接头)连接函数信号发生器的参考信号接口和锁相放大器的 REF IN 接口。

#### 步骤

- 1) 先关闭再打开背部电源开关,重新启动锁相放大器;
- 2) 设置函数信号发生器的频率为 10 kHz;
- 3) 等待锁相放大器屏幕右下方的<PLL>由<UNLOCK>变为<LOCKED>后,记录<Freq>值;
- 4) 到此完成频率精度测试,在本章最后的测试记录表中填入数据。



# 7.7 Sine Out 幅值精度和平坦度

本项测试主要测试由信号发生器产生的正弦波(Sine Out)的幅值精度和频率响应。

### 设备

使用一条1米长的信号线(带 BNC 公接头)连接 SINE OUT 接口和 A/I 接口。

### 步骤

- 1) 先关闭再打开背部电源开关,重新启动锁相放大器;
- 2) 修改设置:
  - <Sensitivity>: 使用旋钮修改为<1 V>。

<Ref.source>: 修改为<Internal>。

3) 幅值精度的测试需要保持内部参考信号的频率为1kHz,按以下顺序修改<Sensitivity>和 Sine 幅值:

<u>Sensitivity</u>	Sine Out Fixed Voltage
1 V	0.8Vrms
200 mV	0.160 Vrms
50 mV	0.040 Vrms
10 mV	0.008 Vrms

- a)设置<Sine Output>的幅值;
- b)设置锁相放大器的<Sensitivity>;
- c) 等待 10 秒后, 记录<R>值, 然后测试另外一组数据;
- d) 重复 3a 到 3c 直到完成幅值精度测试。
- 4)频率响应的测试在大于1kHz的频率下进行,按以下顺序修改<Ref.Frequency>的值:

Test Frequencies

24 kHz 48 kHz

- 72 kHz
- 96 kHz
- a) 设置锁相放大器的<Sensitivity>为1V;
- b) 设置<Sine Output>的值为 1 Vrms;
- c) 按顺序设置<Ref.Frequency>的值;
- d) 等待 10 秒后,记录<R>值,然后测试另外一组数据;
- e) 重复 4c 到 4d 直到完成频率响应测试。
- 5) 到此完成<Sine Out>幅值精度和频率响应的测试,在本章最后的测试记录表中填入数据。



# 7.8 直流输出和输入

本项测试主要测试锁相放大器的直流输出和输入的精度。

#### 设备

我们使用线性直流稳压源作为直流输入。然后使用数字万用表来测量锁相放大器的直流 输出。

使用 50ΩBNC 电阻负载将 A/I 接口短路。

#### 步骤

- 1) 先关闭再打开背部电源开关,重新启动锁相放大器;
- 2) 修改设置:

<Ref.source>: 修改为<Internal>。

- 3) 按以下步骤:
  - a) 使用信号线连接 CH1(或 CH2)接口到数字万用表,设置数字万用表量程为 19.999 V;
  - b)按以下列表顺序修改<Channel Output>中的<Offset>:

Offset (%) 100.00 50.00 0.00 -50.00

#### -100.00

- c) 等待 10 秒后, 记录数字万用表读数, 然后测试下一组数据;
- d) 重复 2b 到 2c, 直到完成 CH1 的测试, 然后换 CH2 连接到数字万用表, 继续完成 CH2 的测试。
- 4) 按以下步骤:
  - a) 使用信号线连接锁相放大器 AUX-OUT(位于后面板)中1接口到数字万用表;
  - b) 按以下列表顺序修改<AUX Output>中的<DA Output>:
    - DA Output (V)
      - 10.000 5.000 0.000 -5.000
      - -10.000
  - c) 等待 10 秒后,记录数字万用表读数,然后测试下一组数据;
  - d) 重复 3b 到 3c, 直到完成 DA1 的测试, 然后依次连接 DA2、DA3、DA4 到数字 万用表, 完成 DA2、DA3、DA4 的测试。
- 5) 按以下步骤:
  - a) 修改设置: [DISPLAY]子菜单中,修改<Monitor>为<Input>;



- b) 使用信号线连接直流稳压源的电压输出接口到锁相放大器 AUX-IN(后面板)中 1 接口;
- c) 按以下顺序设置直流稳压源的输出电压:

```
Voltage (V)
10.000
5.000
0.000
```

```
-5.000
```

```
-10.000
```

- d) 等待 10 秒后,记录屏幕上方<A1>读数,然后测试下一组数据;
- e) 重复 4c 到 4d,知道完成 A1 的测试,然后依次连接直流稳压源输出接口到 A2、
   A3、A4,完成 A2、A3、A4 的测试。
- 6) 到此完成直流输出和输入的测试,在本章最后的测试记录表中填入数据。

# 7.9 输入噪声

本项测试主要测试锁相放大器的输入噪声。

### 设备

使用 50ΩBNC 电阻负载将 A/I 接口短路, 输入接地后锁相放大器可以测量自身的输入噪声。

### 步骤

- 1) 先关闭再打开背部电源开关,重新启动锁相放大器;
- 2) 按以下顺序修改设置:
  <Ref.source>: 修改为<Internal>。
  <Ref.Frequency>: 修改为 997 Hz。
  <Sensitivity>: 使用旋钮修改为<100 nV>。
  <Reserve>: 修改为<Low>。
  <Filter dB/oct>: 修改为<24 dB/oct>。
  <Trace>: 修改<Display>中的<Trace>为<Noise>。
- 3) 等待读数较为稳定后,记录 Noise 值(取最大值);
- 4) 到此完成输入噪声测试,在本章最后的测试记录表中填入数据。



7.10 0E1022 性能测试记录表

	OE1	022 性能测试	记录表					
序列号:								
固件版本:		日期:						
仪器用途:								
_								
1.启动测试								
	Pass		Fail					
2.直流偏置								
	Input Coupling	<b>Reading</b>	<u>Upper Limit</u>					
	AC		0.500 mV					
	DC		0.500 mV					
3.共模抑制								
	Frequency	Reading	Upper Limit					
	100 Hz	<u></u>	30 uV					
	200112							
4.幅值精度和	和平坦度							
<u>Sensitivity</u>	<u>Amplitude</u>	Lower Limit	<b>Reading</b>	<u>Upper Limit</u>				
1 V	1.0000 Vrms	0.9800 V		1.0200 V				
200 mV	200.00 mVrms	198.00 mV		202.00 mV				
100 mV	100.00 mVrms	98.00 mV		102.00 mV				
20 mV	20.000 mVrms	19.60 mV		20.400 mV				
10 mV	10.000 mVrms	9.800 mV		10.200 mV				
<u>Sensitivity</u>	Frequency	Lower Limit	<u>Reading</u>	<u>Upper Limit</u>				
200 mV	24 kHz	196 mV		204 mV				
200 mV	48 kHz	196 mV		204 mV				
200 mV	72 kHz	196 mV		204 mV				
200 mV	96 kHz	196 mV		204 mV				
	 史							
<u>Sensitivity</u>	Amplitude	Lower Limit	<b>Reading</b>	<u>Upper Limit</u>				
1 V	1.0000 Vrms	0.9900 V		1.0100 V				
	100.00 mVrms	0.0990 V		0.1010 V				
	10.000 mVrms	0.0099 V		0.0101 V				



## 116

# OE1022 DSP Lock-In Amplifier

OE1022 性能测试记录表				
6.频率精度				
Freq	uency Low	er Limit <u>R</u> e	eading Upper	<u>Limit</u>
10	kHz 9.9	90 kHz	10.010	kHz
	[結度和平田度			
Sonsitivity		Lower Limit	Reading	Unnerlimit
	0.800Vrms	0.776 Vrms	Reading	0.824 Vrms
ĬV	0.800 11115	0.770 VIIIIS		0.824 11113
200 mV	0.160 Vrms	155.2mVrms		164.8 mVrms
50 mV	0.040 Vrms	38.80 mVrms		41.20 mVrms
10 mV	0.008 Vrms	7.760mVrms		8.240 mVrms
<u>SineOut Ampl.</u>	<u>Frequency</u>	<u>Lower Limit</u>	<u>Reading</u>	<u>Upper Limit</u>
1.000 Vrms	24 kHz	0.9700 V		0.1030 V
	48 kHz	0.9700 V		0.1030 V
	72 kHz	0.9700 V		0.1030 V
	96 kHz	0.9700 V		0.1030 V
8.直流输出				
<u>Output</u>	<u>Offset</u>	<u>Lower Limit</u>	<u>Reading</u>	<u>Upper Limit</u>
CH1	100.00	9.960 V		10.040 V
	50.00	4.960 V		5.040 V
	0.00	-0.020 V		0.020 V
	-50.00	-5.040 V		-4.960 V
	-100.00	-10.040 V		-9.960 V
<u>Output</u>	<u>Offset</u>	Lower Limit	<u>Reading</u>	<u>Upper Limit</u>
CH2	100.00	9.960 V		10.040 V
	50.00	4.960 V		5.040 V
	0.00	-0.020 V		0.020 V
	-50.00	-5.040 V		-4.960 V
	-100.00	-10.040 V		-9.960 V



OE1022 性能测试记录表				
8.直流输出(	续前表)			
Output	<u>Voltage</u>	Lower Limit	<u>Reading</u>	<u>Upper Limit</u>
AUX OUT 1	10.000	9.700 V		10.300 V
	5.000	4.900 V		5.100 V
	0.000	-0.020 V		0.020 V
	-5.000	-5.100 V		-4.900 V
	-10.000	-10.300 V		-9.700 V
<u>Output</u>	<u>Voltage</u>	Lower Limit	<u>Reading</u>	Upper Limit
AUX OUT 2	10.000	9.700 V		10.300 V
	5.000	4.900 V		5.100 V
	0.000	-0.020 V		0.020 V
	-5.000	-5.100 V		-4.900 V
	-10.000	-10.300 V		-9.700 V
<u>Output</u>	Voltage	Lower Limit	<u>Reading</u>	Upper Limit
AUX OUT 3	10.000	9.700 V		10.300 V
	5.000	4.900 V		5.100 V
	0.000	-0.020 V		0.020 V
	-5.000	-5.100 V		-4.900 V
	-10.000	-10.300 V		-9.700 V
<u>Output</u>	<u>Voltage</u>	Lower Limit	<u>Reading</u>	<u>Upper Limit</u>
AUX OUT 4	10.000	9.700 V		10.300 V
	5.000	4.900 V		5.100 V
	0.000	-0.020 V		0.020 V
	-5.000	-5.100 V		-4.900 V
	-10.000	-10.300 V		-9.700 V
<u>Intput</u>	<u>Voltage</u>	Lower Limit	<u>Reading</u>	<u>Upper Limit</u>
AUX IN 1	10.000	9.960 V		10.040 V
	5.000	4.960 V		5.040 V
	0.000	-0.020 V		0.020 V
	-5.000	-5.040 V		-4.960 V
	-0.000	-10.040 V		-9.960 V



OE1022 性能测试记录表				
8.直流输出	(续前表)			
<u>Intput</u>	<u>Voltage</u>	Lower Limit	<u>Reading</u>	<u>Upper Limit</u>
AUX IN 2	10.000	9.960 V		10.040 V
	5.000	4.960 V		5.040 V
	0.000	-0.020 V		0.020 V
	-5.000	-5.040 V		-4.960 V
	-0.000	-10.040 V		-9.960 V
Intput	<u>Voltage</u>	Lower Limit	Reading	Upper Limit
AUX IN 3	10.000	9.960 V		10.040 V
	5.000	4.960 V		5.040 V
	0.000	-0.020 V		0.020 V
	-5.000	-5.040 V		-4.960 V
	-0.000	-10.040 V		-9.960 V
<u>Intput</u>	<u>Voltage</u>	Lower Limit	<u>Reading</u>	Upper Limit
AUX IN 4	10.000	9.960 V		10.040 V
	5.000	4.960 V		5.040 V
	0.000	-0.020 V		0.020 V
	-5.000	-5.040 V		-4.960 V
	-0.000	-10.040 V		-9.960 V
9.输入噪声				
Freque	ncy <u>S</u>	<u>ensitivity</u>	<u>Reading</u>	<u>Upper Limit</u>
1 kHz	2	100 nV		15 nV/vHz



# 8. 操作实例

## 8.1 基本信号测量

本操作实例将简单演示如何使用 OE1022 测量信号的 R、θ、X 以及 Y 值。你需要准备两 条带 BNC 接头的信号线用于输入待测信号及参考信号。现在我们举例使用函数信号发生器 产生一个幅值为 80 mVrms、频率为 1 kHz 的正弦波,并用 OE1022 进行测量。步骤如下:

- 1. 断开所有与机箱连接的信号线, 接入电源, 打开电源开关, 此时系统处于默认设置状态。
- 用一条带 BNC 接头的信号线连接函数信号发生器的输出接口和 OE1022 前面板 SIGNAL IN 的 A/I 接口,用另一条带 BNC 接头的信号线连接函数信号发生器的参考信号接口和 OE1022 前面板的 REF IN 接口,如图 88 所示:



图88. 信号线连接图

 打开函数信号发生器电源,将参数设置为"波形:正弦波"、"幅值:80 mVrms"、"频率: 1 kHz"、"输出阻抗:高阻",待测信号的参数如图 89 所示:





图89. 待测信号参数图

4. 开启函数信号发生器的输出,观察主界面中监测栏的<Overload>是否提示溢出:



图90. 主界面监测栏

若前级输入溢出,则显示 <u>Overload: INPUT NONE</u>;若放大溢出,则显示 <u>Overload: NONE</u> <u>GAIN</u>;若同时溢出,则显示 <u>Overload: INPUT GAIN</u>。

前级溢出时应立即减小数字信号发生器输出幅值,放大溢出应立即调节灵敏度值 (OE1022 输入端峰值高于 1.7 V 或谷值低于-1.7 V 时发生前级溢出,且默认灵敏度为 100 mV, 因此本例中数字信号发生器输出幅值为 80 mVrms 的正弦波时不会发生溢出,但是测量其他 信号时要注意溢出情况)。调节灵敏度值的方法见下。

5. 调节灵敏度值。按下前面板[GAIN/TC]按键进入子菜单。



图91. [GAIN/TC]菜单位置



I	<b>GAIN</b>	/TC	子菜单界面如	口下。
	U/All V	110		H I C



图92. GAIN/TC 菜单界面

按下软键1以选中<Sensitivity>功能,选中区域会有高亮显示,通过旋转旋钮调节 <Sensitivity>值,使测量信号值尽量满偏而不溢出。此处我们调节为<100 mV>即可。至此, 我们即简单测出了从函数信号发生器输送过来的正弦波,如图 92 所示,测量出来的数据为: R=80.08 mV, θ=-72.78°。



6. 主界面数据栏显示<R>、<θ>、<X>及<Y>值。按下前面板[DISPLAY]按键进入子菜单。

图93. [DISPLAY]菜单位置



DISPLAY 子菜单界面如下。



图94. [DISPLAY]菜单界面

系统默认设置中,数据栏上方显示<R>,下方显示<θ>值,通过以下介绍的方法可更改 显示的数值。

例如将上方显示的<R>值更改为采用 XY 坐标来显示<θ>值的方法:首先按[软键 2],使其选中<Top>;再按[软键 3]选中<Type>, <Type>区域此时高亮显示,通过调节旋钮可选择<Chart>(XY 坐标)或<Bar>(数字百分比),我们选择<Chart>;再按[软键 3]选<Trace>, <Trace> 区域此时高亮显示,通过调节旋钮可选择显示<R>、<θ>、<X>、<Y>,我们选择<θ>。通过以 上设置实现效果如下:

Sens: 100mV Filter: 12 dB/	oct Notch: None None	Monitor
TC: 300mS DR: Normal Syn	c: OFF Cpl: AC Src: A	Settings
Trace: 0 Point:1000	- 19.54°	Output Input
		Display&Scale
		Full Top
		Bottom
St	mple Time:50mS	Type: Chart Trace: θ
θ=+ (	).10°	Equation — Menu Enter
–180°	+18	Disp More —
Overload: NONE NONE	Freq: 999.997Hz	Menu Enter

图95. XY 坐标显示<θ>值效果

7. 主界面监测栏显示<R>、<θ>、<X>、<Y>值。

可以更改检测栏的内容使其实时显示<R>、<θ>、<X>、<Y>值。方法:按下前面板[DISPLAY] 按键进入子菜单,再按[软键 1]将<Monitor>设置中从<Setting>切换为<Output>,此时监测栏



显示<R>、<θ>、<X>和<Y>的值,如图 96 所示。



图96. 监测栏显示效果图

# 8.2 谐波测量

本实例将演示如何测量输入信号的谐波分量值。你需要准备两条带 BNC 接头的信号线 用于输入待测信号及参考信号。我们举例使用函数信号发生器产生一个幅值为 160 mVpp、 频率为 1 kHz 的方波,并用 OE1022 进行测量其 1 次和 3 次谐波。步骤如下:

- 1. 断开所有与机箱连接的信号线,接入电源,打开电源开关,此时系统处于默认设置状态。
- 用一条带 BNC 接头的信号线连接函数信号发生器的输出接口和 OE1022 前面板 SIGNAL IN 的 A/I 接口,用另一条带 BNC 接头的信号线连接函数信号发生器的参考信号接口和 OE1022 前面板的 REF IN 接口,如图 97 所示:



图97. 信号线连接图

 打开函数信号发生器电源,将参数设置为"波形:方波"、"幅值:80 mVrms"、"频率:1 kHz",待测信号的参数如图 98 所示:





图98. 待测信号参数图

4. 按下前面板[REF PHASE]按键进入子菜单。



图99. [REF PAHSE]子菜单位置





图100. REF PHASE 子菜单

其中<Harmonic>二级子菜单中设置测量的谐波次数,使用键盘输入可选择所需阶次。 同时测量输入方波的1次谐波和3次谐波的操作方法:在[REF PHASE]子菜单中,按下[软 键4]选择谐波功能,进入<Harmonic>二级子菜单。如图101所示。



图101. Harmonic 二级子菜单

按下[软键 1], 在数字键盘上按下数字键[1], 并按下[ENTER]键以确认; 再按下[软键 2], 在数字键盘上按下数字[3],此时测量出来的值即为输入信号的1次和3次谐波。选择[DISPLAY] 子菜单, 在<Display&scale>选项中选择<Full>, <Type>选择<List>, 即可查看测得的谐波(谐 波1对应<Xh1>、<Yh1>、<Rh1>和<0h1>, 谐波2对应<Xh2>、<Yh2>、<Rh2>和<0h2>,)。测 量结果如图 102 所示。



Sens: 100mV Filter: 12 d	B/oct Notch: None None	Monitor
TC: 300mS DR: Normal S	mc: OFF Cpl: AC Src: A	Settings
		Output Input
X = + 71.74  mV	Y = - 1.21  mV	Display&Scale -
R = + 71.75  mV	$\theta = - 0.97$ °	Eull Ten
$\frac{Xh1 = + 71.74 \text{ mV}}{Rh1 = + 71.75 \text{ mV}}$	Yh1 = - 1.23 mV θh1 = - 0.97 °	Bottom
Xh2 = + 1.37  mV Rh2 = + 23.85 mV	Yh2 = + 23.81 mV 0h2 = + 86.70 °	Type: List
AD1 = + 2.043V	AD2 = + 2.033V	Equation —
AD3 = + 2.063V DA1 = + 0.000V	AD4 = + 2.043V DA2 = + 0.000V	Menu Enter
DA3 = + 0.000V	DA4 = + 0.000V	Disp More —
Overload: NONE NONE	Freq: 1.000kHz	Menu Enter
Ref.Source: External	PLL: LOCKED	

图102. 方波三次谐波测量结果

方波的谐波理论值计算:设方波的峰峰值为 E,角频率为 ω,则经过傅里叶展开之后得 到:

$$f(t) = \frac{2E}{\pi} \left( \sin(\omega t) + \frac{1}{3}\sin(3\omega t) + \frac{1}{5}\sin(5\omega t) \dots + \frac{1}{n}\sin(n\omega t) \right)$$

其 n 次谐波即为正弦波:

$$f(t) = \frac{2E}{n\pi} \sin(n\omega t)$$

因此得到 n 次谐波的有效值为:

$$R = \frac{\sqrt{2}E}{n\pi}$$

因此我们可以根据此公式来比较测量结果与理论结果是否接近。在本实例中,方波峰峰 值 E 为 160mV,则 1 次谐波计算值为:

$$R = \frac{\sqrt{2} \times 160}{1 \times \pi} \,\mathrm{mV} \approx 72.025 \,\mathrm{mV}$$

3次谐波计算值为:

$$R = \frac{\sqrt{2} \times 160}{3 \times \pi} \,\mathrm{mV} \approx 24.008 \,\mathrm{mV}$$

根据以上算法,即可将测量值与理论计算值进行对比。

# 8.3 某任意光源光谱测量

本实例将演示如何测量一个任意光源的光谱。你需要准备好光谱测量的有关仪器,包括 光学斩波器(SIGNAL RECOVERY Model 197 Light Chopper)、光栅单色仪(WDG15-Z)及其控制系 统、光电探头(电探头采用日本 Hamamatsu 公司 S2386 系列的 Si 光敏二极管)、数据采集平 台(NI cDAQ-9172 数据采集平台)和 PC 等,控制单色仪在其光谱测量范围内自动扫描,并 用 OE1022 对光电流进行测量。步骤如下:



- 1. 断开所有与机箱连接的信号线,接入电源,打开电源开关,此时系统处于默认设置状态。
- 2. 设置 OE1022 的相关参数:
  - (1) 在前面板菜单栏中选择[INPUT/FILTERS]键进入子菜单,选择<I>电流输入模式,电流 增益设置为<1 M>,其它设置为默认状态;
  - (2) 选择[REF/PHASE]键进入子菜单,参考信号源选择<External>,信号源类型选择<TTL>;
  - (3)选择[GAIN/TC]键进入子菜单,在第一次测量时满偏灵敏度设置为最大值<1 uA>,在 随后的测量中可以根据实际适当调小;动态储备设置为<Normal>;时间常数设置为 <300 ms>;低通滤波器陡降设置为<12 dB/oct>;关闭同步滤波器;
  - (4) 选择[OUTPUT/OFFSET]进入子菜单,选择输出通道一<CH1>,信号源选择<R>,输出 速度设置为<Fast>;
- 3. 搭建起光谱测量平台,并用一条带 BNC 接头的信号线连接光电探头的输出接口和 OE1022 前面板 SIGNAL IN 的 A/I 接口;用另一条带 BNC 接头的信号线连接光学斩波器的 同步频率信号输出接口 Sync out f1 和 OE1022 前面板的 REF IN 接口;用一条带 BNC 接头 的信号线连接 OE1022 前面板的 CH1 接口和数据采集平台,示意图如图 103 所示:



#### 图103. 光谱测量平台示意图

该平台的实际连接图如下图 104 所示:





图104. 光谱测量平台实物连接图

 开始光谱测量实验,同时利用数据采集平台采集光谱数据,可以得到如下光谱曲线图 105(未定标):



图105. OE1022 测得的光谱曲线图

5. 将 OE1022 替换为 SR830,在相同的参数设置下进行同样的光谱测量实验,得到的光谱 曲线对照图 106 如下:





图106. 两台锁放测得的光谱曲线对照图

观察波形图可得,两条曲线基本重合。

# 8.4 串口通讯

本实例将演示 OE1202 远程控制串口环境搭建以及调试操作, 你需要准备一条 USB 线, 步骤如下:

- 1. 请用 USB 线连接 OE1022 的 USB 插口跟电脑上的任一 USB 插口。
- 电脑会自动识别到 USB 设备,然后提示安装驱动程序。如果电脑操作系统为 WIN 7 系统, 系统一般就会自动在网络上搜索驱动程序并自动安装,这个过程需要等待一段时间。如 果安装失败(电脑没有连接网络会导致失败)就需要手动去安装 USB 的驱动,安装细节 请参考 6.2 章节。
- 3. 打开光碟中 uart 文件夹,双击 UartAssist.exe 文件,弹出软件界面如图 107:



	串口调试助手	(精装版	V3.6)		×
通讯设置					
串口号 COM1 ▼					
波特率 9600 ▼					
校验位 NONE ▼					
数据位 8位 💌					
停止位 1位 💌					
● 连接					
□ 接收转向文件					
□ 自动换行显示					
□ 十六进制显示					
□ 暂停接收显示					
保存数据 清除显示					
发送区设置					
□ 启用文件数据源					
🗆 自动发送附加位					
□ 发送完自动清空					
□ 按十六进制发送					
│ □ 数据流循环发送					
发送间隔 1000 毫秒					
文件载入 清除显示					发送
(♂ 就绪!		发ì	<u> </u>	接收:0	复位计数

### 图107. 打开的软件界面

该串口调试软件包含了通讯设置,接收区设置,发送区设置,接收区,以及发送区。 OE1022 默认波特率为 921600,校验位无,数据位 8 位,停止位 1 位(OE1022 的波特率 及校验位等可通过前面板键盘上的 RS232 菜单选项来设置)。

串口号需要选择电脑为 OE1022 USB 接口自动分配的 COM 口, COM 端口编号可通过设 备管理器中的端口(COM 和 LPT)选项来查看(计算机右键->属性->设备管理器->端口),如 图 108 所示:





图108. 端口号的查看

当配置好了端口号、波特率、校验位、数据位、停止位之后,如果连接按钮左边小圆圈 为黑色熄灭状态( • **连** ),需要点击一次改变按钮状态显示为红色点亮状态 ( • **并**),如果按钮为红色点亮状态就表明电脑跟当前串口号设备已连接成功, 若多次点击连接不成功,请检查端口号是否选择合适,然后再尝试连接。连接成功如图 109

若多次点击连接不成功,请检查端口号是否选择合适,然后再尝试连接。连接成功如图 109 所示:



	串口调试助手(	青装版 ▼3.6)	×
通讯设置			
串口号 COM9 <u>▼</u>	选择COM9端口号		
波特率 115200 💌	选择默认波特率11	5200	
校验位 NONE ▼			
数据位 8位 ▼			
停止位 1位 💌			
● 断开	连接及断开按钮		
接收区设置			
□ 接收转向文件			
□ 自动换行显示			
□ 十六进制显示			
□ 習停接收显示			
保存数据 清除显示			
发送区设置			
□ 启用文件数据源			
□ 自动发送附加位			
□ 发送完自动清空			
技士六进制友达 大規定派环告送			
1 30147/018/1721区 中洋河原 2000 古孙			
及因间期 200 元42 文件载入 清除显示			发送
	1		

图109. 连接成功的状态

4. 完成以上操作之后,即可向 OE1022 发送指令来进行通讯:

OE1022 指令要求格式是四个大写字母助记符后加选项参数,例如指令"SENS 25+回车符 (0D)"或"SENS ?+回车符(0D)",连续多条的指令可以用";"号分隔开,指令结尾一定要 附加上回车符或十六进制数 0D,更多详细指令请查看远程编程章节的介绍。

需要特别注意的是指令结尾一定要附加上回车符或十六进制数 0D 才会有效执行当前指 令。发送指令时首先在发送区敲入指令,然后紧接着敲一下回车,最后点击发送按钮,指令 就会发送出去。如图 110、图 111 所示:



📟	(精装版 V3.6)		×
通讯设置 25 OF1021返回的	小数店		
波特率 115200			
校验位 NONE 👤			
数据位 8位 💌			
停止位 1位 💽			
👾 断开			
接收区设置			
□ 接收转向文件			
□ 自动换行显示			
□ 十六进制显示			
【 保存数据 清除显示			
发送区设置			
□ 启用文件数据源			
□ 自动发送附加位			
」 友达元目初演全   「 埃士会讲制发送			
□ 数据流循环发送 输入指令,结尾需	附带回车符		
发送间隔 1000 毫秒 SENS ?			
文件载入 清除显示	发送及接收	字节数	发送
」 就绪!	发送:8	接收:3	复位计数

图110. ASCII 码形式发送和接收指令





### 图111. 十六进制格式发送和接收指令

同时的,串口调试助手可配置自动添加发送回车符 0X0D。勾选发送区设置的"自动发送 附加位"选项,在弹出的附加位设置窗口选择固定位,附加值设置为十六进制值"0D"即可。配 置如图 112 所示:



	串口调试助手(精装版 ∀3.6)	×
<ul> <li>通讯设置</li> <li>串口号 COM9 ▼</li> <li>波特率 115200 ▼</li> <li>校验位 NONE ▼</li> <li>数据位 8位 ▼</li> <li>停止位 1位 ▼</li> </ul>	25 能正常返回参数	
<ul> <li>接收区设置</li> <li>接收转向文件</li> <li>自动换行显示</li> <li>十六进制显示</li> <li>千合进制显示</li> <li>暂停接收显示</li> <li>保存数据 清除显示</li> <li>发送区设置</li> <li>启用文件数据源</li> </ul>	附加位设置 ① 负校验 (附加位字节的值为其他所有字节和的负数) ② 正校验 (附加位字节的值为其他所有字节的和) ③ 固定位 (附加位字节的值为固定的16进制数: 00 H) 选中固定位,设数值为01 确定 取	× D I消
<ul> <li>✓ 自初友医附加位 友医完目动清空</li> <li>✓ 按十六进制发送</li> <li>□ 数据流循环发送</li> <li>✓ 数据流循环发送</li> <li>✓ 支送间隔 1000 毫秒</li> <li>文件载入 清除显示</li> </ul>	53 45 4E 53 20 3F 不需附加回车符0x0D 发送:47 接收:15	发送

### 图112. 附加位的设置

多个指令的发送需要添加";"号来分隔开,例如发送指令"SENS 24;FMOD 1;FREQ 1000;SENS ?;FMOD ?;FREQ ?"效果如图 113 所示:





### 图113. 多重指令的执行

连续读取 OE1022 的 X、Y、R、θ 和 Freq 值,可以设置串口调试助手软件的间隔发送, 配置如图 114、图 115 所示:





图114. 连续读取单个 R 值



	串口调试助手(精装版 ♥3.6)	) \- • ×
通讯设置	4 65220e-02 1 83296e-02 5 00035e-02 21 498 1000 000	
串ㅁ号 COM9 🔽	4. 66315e-02, 1. 80468e-02, 5. 00027e-02, 21. 154, 1000. 000	
波特率 115200 💌	4.67404e-02, 1.77635e-02, 5.00029e-02, 20.806, 1000.000	
校验位 NUNE ▼ 数据位 8位 ▼	4.68485e-02, 1.74766e-02, 5.00030e-02, 20.452, 1000.000	
停止位 1位 🖃	4.69564e-02, 1.71835e-02, 5.00034e-02, 20.096, 1000.000	
● 断开	4. 70639e-02, 1. 68900e-02, 5. 00037e-02, 19. 738, 1000. 000	
接收区设置	4. 71893e-02, 1. 65942e-02, 5. 00039e-02, 19. 379, 1000. 000	
□ 接收转向文件 □ 自动换行显示	4. 72730e-02, 1. 62986e-02, 5. 00046e-02, 19. 017, 1000. 000	
	4.73753e-02, 1.60018e-02, 5.00055e-02, 18.660, 1000.000	
□ 暫停援收显示 保存執握	4. 74734e-02, 1. 57105e-02, 5. 00062e-02, 18. 308, 1000. 000	
	4. 75680e-02, 1. 54221e-02, 5. 00062e-02, 17. 957, 1000. 000	
□ 启用文件数据源	4. 76594e-02, 1. 51375e-02, 5. 00064e-02, 17. 615, 1000. 000	
✓ 目动发送附加位 「 发送完自动清空	4. 77521e-02, 1. 48441e-02, 5. 00068e-02, 17. 265, 1000. 000	
□ 按十六进制发送 □ 数据流循环发送	连续返回了X、Y、R、θ和Freq的值	
发送间隔 200	SNAP?1,2,3,4,5 发送多值读取指令,洗项参数之	
文件载入 清除显示	间用","号区分开	停止发送
● 成功发送 SNAP?1,2,3,	4,5 发送:195 接收:67	6 夏位计数

#### 图115. 连续读取 X、Y、R、θ 及 Freq 值

通过串口调试助手远程控制发送指令设置 OE1022 内部参数时,会同时更新 LCD 显示屏 上状态的显示。例如 OE1022 当前状态栏的<sens>值为<100 mV>,对应指令标识号为 25。当 发送了指令"SENS 24"之后,OE1022 状态栏<sens>值会改变为指令标识码 24 所对应的值为<50 mV>。

OE1022 不只是单一兼容以上这款串口调试助手(精装版 V3.6)的远程控制,现在网络 上许多的串口调试工具都能很好的兼容,操作步骤也基本类似。

