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Progressive field-state collapse and
quantum non-demolition photon counting
Christine Guerlin1, Julien Bernu1, Samuel Deléglise1, Clément Sayrin1, Sébastien Gleyzes1, Stefan Kuhr1{,
Michel Brune1, Jean-Michel Raimond1 & Serge Haroche1,2

The irreversible evolution of a microscopic system under measurement is a central feature of quantum theory. From an
initial state generally exhibiting quantum uncertainty in the measured observable, the system is projected into a state in
which this observable becomes precisely known. Its value is random, with a probability determined by the initial system’s
state. The evolution induced by measurement (known as ‘state collapse’) can be progressive, accumulating the effects of
elementary state changes. Here we report the observation of such a step-by-step collapse by non-destructively measuring
the photon number of a field stored in a cavity. Atoms behaving as microscopic clocks cross the cavity successively. By
measuring the light-induced alterations of the clock rate, information is progressively extracted, until the initially uncertain
photon number converges to an integer. The suppression of the photon number spread is demonstrated by correlations
between repeated measurements. The procedure illustrates all the postulates of quantum measurement (state collapse,
statistical results and repeatability) and should facilitate studies of non-classical fields trapped in cavities.

The projection of a microscopic system into an eigenstate of the
measured observable reflects the change of knowledge produced by
the measurement. Information is either acquired in a single step, as in
a Stern–Gerlach spin-component measurement1, or in an incremen-
tal way, as in spin-squeezing experiments2,3. A projective measure-
ment is called ‘quantum non-demolition’4–8 (QND) when the
collapsed state is invariant under the system’s free unitary evolution.
Sequences of repeated measurements then yield identical results and
jumps between different outcomes reveal an external perturbation7,8.

Various QND measurements have been realized on massive part-
icles. The motional state of a trapped electron has been measured
through the current induced in the trapping electrodes9. The internal
state of trapped ions has been read out, directly by way of laser-
induced fluorescence10, or indirectly through quantum gate opera-
tions entangling them to an ancillary ion11. Collective spin states of an
atomic ensemble have been QND-detected through its dispersive
interaction with light12.

QND light measurements are especially challenging, as photons
are detected with photosensitive materials that usually absorb them.
Photon demolition is however avoidable13. In non-resonant pro-
cesses, light induces nonlinear dispersive effects14 in a medium, with-
out real transitions. Photons can then be detected without loss.
Dispersive schemes have been applied to detect the fluctuations of
a signal light beam by the phase shifts it induces on a probe beam
interacting with the same medium15,16. Neither these methods, nor
alternative ones based on the noiseless duplication of light by optical
parametric amplifiers17,18, have been able, so far, to pin down photon
numbers.

Single-photon resolution requires an extremely strong light–
matter coupling, optimally achieved by confining radiation inside a
cavity. This is the domain of cavity quantum electrodynamics19–21, in
which experiments attaining single-quantum resolution have been
performed with optical22,23 or microwave photons, the latter being
coupled either to Rydberg atoms24–26 or to superconducting junc-
tions27. In a QND experiment, cavity losses should be negligible

during a sequence of repeated measurements. We have realized a
superconducting cavity with a very long field damping time28, and
used it to detect repeatedly a single photon29. Here, we demonstrate
with this cavity a general QND photon counting method applied to a
microwave field containing several photons. It implements a variant
of a procedure proposed in refs 30 and 31, and illustrates all the
postulates of a projective measurement1.

A stream of atoms crosses the cavity and performs a step-by-step
measurement of the photon number-dependent alteration of the
atomic transition frequency known as the ‘light shift’. We follow
the measurement-induced evolution from a coherent state of light
into a Fock state of well-defined energy, containing up to 7 photons.
Repeating the measurement on the collapsed state yields the same
result, until cavity damping makes the photon number decrease. The
measured field energy then decays by quantum jumps along a stair-
case-like cascade, ending in vacuum.

In this experiment, light is an object of investigation repeatedly
interrogated by atoms. Its evolution under continuous non-
destructive monitoring is directly accessible to measurement, making
real the stochastic trajectories of quantum field Monte Carlo simula-
tions20,32. Repeatedly counting photons in a cavity as marbles in a
box opens novel perspectives for studying non-classical states of
radiation.

An atomic clock to count photons

To explain our QND method, consider the thought experiment
sketched in Fig. 1a. A photon box, similar to the contraption ima-
gined in another context by Einstein and Bohr1, contains a few
photons together with a clock whose rate is affected by the light.
Depending upon the photon number n, the hand of the clock points
in different directions after a given interaction time with the field.
This time is set so that a photon causes a p/q angular shift of the hand
(here q is an integer). There are 2q values (0, 1, …2q21) of the
photon number corresponding to regularly spaced directions of the
hand, spanning 360u (Fig. 1a shows the hand’s positions for q 5 4 and
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n 5 0, 1, 3). For n $ 2q, the readings periodically repeat and the clock
measures n modulo 2q.

This description is translatable into the atomic world (Fig. 1b). The
evolution of a two-level atom crossing the cavity C is described as
the rotation of a spin evolving on a Bloch sphere33. The atomic levels,
j6z æ, correspond to up and down spin states along the O–z direction.
Before entering C, the spin is rotated by a pulse R1 from j1zæ into
state j1xæ 5 (j1zæ 1 j2zæ)/!2, represented by a vector along O–x.
This vector then starts to rotate in the x–O–y equatorial plane, in
analogy with the ticking of the hand in the thought experiment. The
atomic flight time across C is adjusted to result, per photon, in a p/q
light-induced rotation of the spin. The 2q final spin states j1næ cor-
related with 0 # n , 2q correspond to vectors reproducing the posi-
tions of the classical clock’s hand.

In general, the photon number exhibits quantum uncertainty. The
field, initially in a superposition

P
ncnjnæ of Fock states jnæ, gets

entangled with the spin, the final atom–field state becomingP
ncnj1næfljnæ. The spin points in a fuzzy direction that the QND

measurement is designed to pin down. As an example, consider a
field in a coherent state34 of complex amplitude a defined by the
C-numbers cn 5 exp(2jaj2/2)(an/!n!). Its photon number distri-
bution, P0(n) 5 jcnj2, is poissonian with an average photon number
n0 5 jaj2 and a spread Dn 5 !n0.

If we could determine the final atom state, the clock’s delay—and
hence n—would be read in a single measurement. This is however
forbidden by quantum theory35. The 2q spin states are not mutually
orthogonal (except for q 5 1, see below) and cannot be unambigu-
ously distinguished (this ambiguity is exploited in quantum cryp-
tography36). Only partial information can be extracted from a spin,
namely its projection along a direction O–u in the x–O–y plane
making an arbitrary angle w with O–x.

The angle between O–u and the direction of the j1næ spin state is
np/q2w. The conditional probabilities for detecting the j6uæ states
when C contains n photons are P(j,wjn) 5 [1 1 cos(np/q 2 w 1 jp)]/2
(using quantum information notation33, we assign to the 1/2 spin
states the values j 5 0/1 and rename jj,wæ the states j6uæ). Measuring
the spin along O–u is performed by submitting it, after cavity exit, to a
pulse R2 whose phase is set to map O–u onto O–z (Fig. 1b). This
rotation is followed by the measurement of the atom’s energy, equi-
valent to a spin detection along O–z. The combination of R1 and R2 is a
Ramsey interferometer37. The probabilities for finding j 5 0 and 1

along O–z oscillate versus w, which is a typical feature of quantum
interference (Methods).

The q 5 1 case is a notable exception for which a single measure-
ment yields complete information. There are then only two opposite
hand positions on the atomic clock dial, corresponding to ortho-
gonal states. Ideally, a single detection pins down n modulo 2, yield-
ing the photon number parity. For weak fields with n0= 1, the
probability for n . 1 is negligible and the parity defines n. The tele-
graphic signals29 obtained by detecting a stream of atoms reveal the
photon number evolution, with quantum jumps between n 5 0 and 1
as the field randomly exchanges energy with the cavity walls. For
larger fields, though, information must be extracted in a subtler way.

Progressive pinning-down of photon number

The random outcome of a spin detection modifies our knowledge of
the photon number distribution. The conditional probability
P(njj,w) for finding n photons after detecting the spin value j along
O–u is related to the inverse conditional probability P(j,wjn) by
Bayes’ law38:

P(njj,w) 5 P0(n)P(j,wjn)/P(j,w) 5 P0(n)[1 1 cos(np/q 2 w 1 jp)]/2P(j,w) (1)

where P(j,w) 5
P

nP(j,wjn)P0(n) is the a priori probability for j. This
formula directly follows from the definition of conditional probabil-
ities. It can also be derived from the projection postulate1. After
detection of the spin in state jj,wæ, the entangled atom–field system
collapses into [

P
ncnÆj,wj1næjnæ]fljj,wæ/!P(j,w). This entails that the

photon number probability is (up to a global factor) multiplied by
jÆj,wj1næj2 5 P(j,wjn).

Equation (1) embodies the logic of our QND procedure. The spin
measurement has the effect of multiplying P0(n) by P(j,wjn), which is
a periodic function vanishing for specific values of n when w is prop-
erly adjusted. If we choose w 5 pp/q (where p is an integer), O–u
points along the direction of j1pæ. This entails P(j 5 1,wjp) 5

P(j 5 0, wjp 1 q) 5 0. Detecting the spin in 1 (resp. 0) excludes the
photon number n 5 p (resp. p1q) as these outcomes are forbidden
for the corresponding Fock states. One of the probabilities for finding
n 5 p or n 5 p 1 q is cancelled, while the other is enhanced (when
normalization is accounted for). At the same time, the probabilities
of other photon numbers are modified according to equation (1).

This decimation is robust against imperfections. In a realistic situ-
ation, the theoretical probability P(j,wjn) becomes P(exp)(j,wjn) 5

[A 1 B cos(nW 2 w 1 jp)]/2, where A and B are the Ramsey inter-
ferometer fringes offset and contrast, somewhat different from 1. The
phase shift per photon W may also slightly depart from p/q. Before a
QND measurement, A, B and W are determined by independent
calibration. The limited contrast of the interferometer corresponds
to a statistical uncertainty in the final atomic state. The atom and the
field must then be described by density operators instead of pure
states. The formula (1) remains valid with P(j,wjn) replaced by
P(exp)(j,wjn). This is justified by Bayes’ law or by generalization of
the measurement postulate to statistical mixtures33.

In order to obtain more information, we repeat the process and send
a sequence of atoms across C. This results in a step-by-step change of
the photon number distribution. From one atom to the next, we vary w.
Calling w(k) the detection angle for the kth atom and j(k) its spin
reading, the photon number distribution after N atoms becomes:

PN nð Þ~ P0 nð Þ
Z

P
N

k~1
AzB cos nW{w kð Þzj kð Þpð Þ½ � ð2Þ

where Z enforces normalization. For an efficient decimation, we altern-
ate between detection directions nearly coinciding with the vectors
associated with q non-orthogonal j1pæ states. Each atom has a chance
to reduce the probability of a photon number different from the one
decimated by its predecessor. After a finite number of steps, numerical
simulations predict that a single n value (modulo 2q) survives.
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Figure 1 | Principle of QND photon counting. a, Thought experiment with a
clock in a box containing n photons. The hand of the clock undergoes a p/4
phase-advance per photon (n 5 0, 1, 3 represented). b, Evolution of the
atomic spin on the Bloch sphere in a real experiment: an initial pulse R1

rotates the spin from O–z to O–x (left). Light shift produces a p/4 phase shift
per photon of the spin’s precession in the equatorial plane. Directions
associated with n 5 0 to 7 end up regularly distributed over 360u (centre).
Pulse R2 maps the direction O–u onto O–z, before the atomic state is read
out (right).
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Observing the field-state collapse

We have applied this procedure to a coherent microwave field at
51.1 GHz stored in an ultrahigh-Q Fabry–Pérot cavity made of
niobium-coated superconducting mirrors28. Our set-up is described
in ref. 29. The cavity has a very long damping time Tc 5 0.130 s. It is
cooled to 0.8 K (average thermal photon number nt 5 0.05). The field
is prepared by coupling a short microwave pulse into C (by way of
diffraction on the mirrors’ edges28). Its photon number distribution
and average photon number, n0 5 3.82 6 0.04, are inferred from the
experimental data (see below). Our single-photon-sensitive spin-
clocks are circular Rydberg atoms of rubidium. They cross C succes-
sively, separated on average by 2.33 3 1024 s. Parameters are adjusted
to realize a ,p/4 clock shift per photon (Methods), corresponding to
eight positions of the spin on the Bloch sphere (Fig. 1b). This con-
figuration is adapted to count photon numbers between 0 and 7. For
n0 5 3.82, the probability for n $ 8 is 3.5%.

Four phases wi (i 5 a, b, c, d), corresponding to directions pointing
approximately along the spin states associated with n 5 6, 7, 0, 1, are
used, in random order, for successive atoms (Methods). A sequence
of j values can be decoded only when combined with the correspond-
ing phase choices, in analogy with the detection basis reconciliation
of quantum key distribution protocols36. Figure 2a shows the data
from the first 50 detected atoms, presented as (j, i) doublets, for two
independent detection sequences performed on the same initial field.

From these real data, we compute the products of functions
PN(n) 5 P(k 5 1…N) [A 1 Bcos(nW 2 wi(k) 1 j(k)p)]. The A, B, W
and wi values are given by Ramsey interferometer calibration

(Methods). The evolutions of PN(n), displayed as functions of n
treated as a continuous variable, are shown in Fig. 2b for N increasing
from 1 to 50. The PN(n) functions converge into narrow distribu-
tions whose widths decrease as more information is acquired. These
functions are determined uniquely by the experimental data. Their
evolution is independent of any a priori knowledge of the initial
photon distribution. The data sequence itself, however, depends of
the unknown state of the field, which the measurement reveals.

Inserting PN(n) into equation (2) and extending the procedure to
N 5 110, we obtain the evolution of the photon number histograms
for these two realizations (Fig. 2c). These histograms show how our
knowledge of the field state evolves in a single measuring sequence, as
inferred from baysian logic. The initial distributions (P0(n) 5 1/8)
are flat because the only knowledge assumed at the beginning of each
sequence is the maximum photon number nmax. Data are analysed
after the experiment, but PN(n) could also be obtained in real time.
The progressive collapse of the field into a Fock state (here jn 5 5æ or
jn 5 7æ) is clearly visible. Information extracted from the first 20 to 30
atoms leaves an ambiguity between two competing Fock states. After
,50 atoms (detected within ,0.012 s), each distribution has turned
into a main peak with a small satellite, which becomes totally neg-
ligible at the end of the two sequences.

Reconstructing photon number statistics

Repeatedly preparing the field in the same coherent state, we have
analysed 2,000 independent sequences, each made of 110 (j, i) doublets
recorded within Tm < 0.026 s. This measuring time is a compromise.
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Figure 2 | Progressive collapse of
field into photon number state.
a, Sequences of (j, i) data (first 50
atoms) produced by two
independent measurements.
b, Evolution of PN(n) for the two
sequences displayed in a, when N
increases from 1 to 50, n being
treated as a continuous variable
(integral of PN(n) normalized to
unity). c, Photon number
probabilities plotted versus photon
and atom numbers n and N. The
histograms evolve, as N increases
from 0 to 110, from a flat
distribution into n 5 5 and n 5 7
peaks.
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Short compared to Tc, it is long enough to allow for a good convergence
of the photon number distribution. We have computed the mean
photon number Ænæ 5

P
nnPN(n) at the end of each sequence. The

histogram of these Ænæ values, sampled in bins of width 0.2, is shown
in Fig. 3. Peaks at integers appear on top of a small background due to
sequences that have not fully collapsed, or that have been interrupted
by field decay.

The histogram of the peaks in Fig. 3 directly reveals the photon
number probability distribution of the initial field, modified by damp-
ing during the measurement. Disregarding the 23% background, we fit
the experimental histogram of integer values to a Poisson law with
Ænæave 5 3.46 6 0.04 (blue circles), and normalized to 0.77 (probability
of fully converged sequences). This is the expected distribution for a
coherent field with an initial mean n0 5 3.82 6 0.04, after decay during
the time Tm/2 < Tc/10. Remarkably, the non-converged sequences do
not introduce any noticeable bias in the distribution of fully collapsed
measurements. The experimental excess probability of 0.019 6 0.006
for n 5 0 is well understood. It is due to the measurement being per-
formed modulo 8, which attributes n 5 8 events (0.012 probability) to
the n 5 0 bin. The near-perfect agreement of the fit with the experi-
ment provides a direct verification of the quantum postulate about the
probabilities of measurement outcomes.

Repeated measurements and field jumps

Repeatability is another fundamental feature of an ideal QND mea-
surement. To test it, we follow the evolution of the field state along
sequences made of ,2,900 atoms. We determine PN(n) and Ænæ up to
N 5 110. We then drop the first atom and replace it with the 111st
one, resuming the calculation with a flat initial distribution and
obtain a new Ænæ. We repeat the procedure atom by atom. We thus
decode continuously a single field history versus time. Measurements
separated by more than Tm exploit independent information.

Figure 4a shows the evolution of Ænæ over 0.7 s for the two
sequences whose initial data are displayed in Fig. 2a. In each case,
Ænæ evolves quickly towards an integer (5 or 7). This collapse is fol-
lowed by a plateau, corresponding in these two realizations to ,2
independent measurements. Eventually, cavity damping results in a
photon loss: a quantum jump occurs, decreasing Ænæ by one. This
event is recorded after a delay of a fraction of Tm with respect to the
real jump time, as several atoms are required after the quantum leap
to build up the new photon number probability. Note in the inset of
Fig. 4a that it takes about 0.01 s for the atoms to ‘realize’ that a jump
has occurred. The staircase-like evolution of the field proceeds in this
way down to vacuum. Figure 4b presents four other examples of
signals following a collapse into n 5 4. The randomness of the step
durations is typical of quantum dynamics. In one of these recordings
(leftmost panel), the n 5 4 step lasts 0.235 s, corresponding to ,9
independent QND measurements

The lifetime of a n-Fock state, Tc/n at T 5 0 K (ref. 39), is reduced
by thermal effects to Tc/[n 1 nt(2n 1 1)], that is, ,0.029 s, ,0.023 s
and ,0.017 s for n 5 4, 5 and 7, respectively. The statistical analysis of
2,000 QND sequences, each of 0.7 s duration, provides a detailed
description of the dynamical evolution under cavity relaxation of
Fock states with n up to 7 (J.B. et al., manuscript in preparation).
The sequences of Fig. 4, in which some Fock states survive much
longer than their lifetimes, are relatively rare events. We have selected
them to demonstrate the ability of the QND procedure to generate
and repeatedly measure large n-Fock states of radiation in a cavity.

Beyond energy measurements

Our QND source of Fock states operates in a way different from
previous methods based on resonant25,40 or Raman41 processes in
cavity quantum electrodynamics, which have so far been limited to
smaller photon numbers (n 5 1 or 2). This QND measurement opens
novel perspectives for the generation of non-classical states of light. If
the initial photon number distribution spans a range of n values larger
than 2q, the decimations induced by successive atoms do not distin-
guish between n and n 1 2q. The field then collapses into a superposi-
tion of the form

P
qcn12qjn 1 2qæ. For instance, c0j0æ 1 c2qj2qæ
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Figure 3 | Reconstructed photon number distribution. Histogram of Ænæ
values obtained from 2,000 QND collapse sequences (each involving N 5 110
atoms). The Ænæs are sampled in intervals of 0.2. The error bars are the
statistical standard deviations. The peaks at integer numbers reveal Fock
states. The background is due to incomplete or interrupted collapses. Data
shown as blue circles are obtained by fitting the distribution of integer number
peaks to a Poisson law, yielding Ænæave 5 3.46 6 0.04 (the blue line represents a
continuous Poisson distribution joining the circles as a guide for the eye).
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Figure 4 | Repeated QND measurements.
a, Mean photon number Ænæ followed over 0.7 s
for the two sequences whose collapse is analysed
in Fig. 2. After converging, Ænæ remains steady for
a while, before successive quantum jumps bring it
down to vacuum. Inset, zoom into the n 5 5 to 4
jump, showing that it is detected in a time of
,0.01 s. b, Four other signals recording the
evolution of Ænæ after field collapse into n 5 4.
Note in the leftmost frame the exceptionally long-
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represents a field coherently suspended between vacuum and 2q
photons. This superposition of states with energies differing by many
quanta is a new kind of ‘Schrödinger cat’ state of light.

Superpositions of field states with the same amplitude but different
phases—‘Schrödinger cats’ of a different kind—are also generated in
this experiment. As the photon number converges, its conjugate vari-
able, the field’s phase, gets blurred. After the first atom’s detection, the
initial state collapses into a superposition of two coherent states with
different phases31,42. Each of these components is again split into two
coherent states by the next atom and so on, leading to complete phase-
uncertainty when the photon number has converged31. The evolution
of the Schrödinger cat states generated in the first steps of this process
could be studied by measuring the field Wigner function43.
Decoherence44,45 of superpositions of coherent states containing many
photons could be monitored in this way.

METHODS SUMMARY
The preparation and detection of circular Rydberg atoms, the cavity and the

Ramsey interferometer are described elsewhere20,26,29. The j6zæ states are the

circular Rydberg levels of rubidium with principal quantum numbers 51 and

50 (transition frequency ,51.1 GHz). The theoretical phase shift per photon20,26

is V2t/2d, where V/2p5 50 kHz is the vacuum Rabi frequency at cavity centre,

d/2p is the atom–cavity detuning and t 5 3 3 1025 s is the effective atom–cavity

interaction time. It is defined as t 5 (p/2)1/2w/v, where w is the waist of the

gaussian cavity field mode (w 5 6 mm) and v the atomic velocity

(v 5 250 m s21). This effective time is obtained by averaging the spatial variation

of the square of the atom–field coupling as the atom crosses the cavity mode20,26.

More details about the experimental settings, including the determination of
the A and B parameters, the fine tuning of the phase shift per photon, W, and the

adjustment of the four phases of the Ramsey interferometer are given in the

Methods section. We also analyse the adiabaticity of the atom–field coupling,

which is an essential feature of our measurement. We describe the generation of

sequences of atoms crossing the cavity one at a time with a well-defined velocity,

and we discuss the effect of rare multi-atom events on the detection signals. We

also explain why the sequences of detection directions wi occur randomly in a

measuring sequence. We conclude by discussing alternative strategies to pin

down the photon number non-destructively.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Experimental settings. To calibrate the Ramsey interferometer, we send atoms

prepared in j2zæ across the set-up, with C empty. We measure the probability

P(j 5 0,w) for detecting the atom in j1zæ as a function of the relative phase w
between R1 and R2. From the Ramsey fringes, we obtain the phase origin w 5 0

corresponding to a detection along the j10æ spin direction.

Tuning of d is performed by moving the cavity mirrors with piezoelectric

actuators. In theory, a p/4 phase shift corresponds to d/2p5 300 kHz. We set

the detuning close to this value (with a 15 kHz uncertainty due to imperfect

knowledge of the atomic transition frequency affected by small residual Stark
and Zeeman shifts). With this detuning, the photon-induced phase shift is,

within 3%, a linear function of n for n 5 0 to 7.

By Stark-shifting the atomic spin phase with a short electric field pulse

applied just before R2 and adjusted to different amplitudes, we translate the

fringes and set w to four different values, close to lp/4 (l 5 22, 21, 0 and 1).

After preliminary settings of W and wi, we refine our calibration. We inject a

small coherent field in C (n0 5 1.2). This field has a negligible probability

for n . 4. For each wi, we record the fraction g0(wi) of spins found in j1zæ on

a sequence of atoms crossing C in a time short compared to Tc. Repeating

the sequence many times, we find distributions of g0(wi)s, which we fit

as a sum of five peaks centred on the discrete values equal to

P(exp)(j 5 0,wijn) 5 [A 1 Bcos(nW 2 wi)]/2, with n 5 0 to 4. From a best fit of

the g0 distributions, we get the values A 5 0.907 6 0.004, B 5 0.674 6 0.004,

W/p5 0.233 6 0.004, wi/p5 20.464 6 0.013, 20.229 6 0.009, 20.015 6 0.007

and 10.261 6 0.006 (i 5 a, b, c, d). These values are inserted in equation (2). The

fringe contrast B is reduced below 1 by experimental imperfections (stray fields,

detection errors, two-atom events, see below). The other six parameters A, W/p
and wi/p (i 5 a, b, c, d) are close to their ideal values (1, J, 2K, 2J, 0, J,
respectively).

Adiabaticity. The adiabatic variation of the coupling as the atoms cross the

gaussian profile of the cavity mode keeps the atomic emission rate extremely

low. The theoretical probability that an atom deposits an additional photon

when the cavity contains a coherent field with n0 5 3.82 is below 1.3 3 1026.

Consistent with this very small value, we found on analysing our experimental

data that the average number of photons deposited in C by a sequence of ,2,900

atoms is negligible compared to nt.

Atomic sequences. They are realized by pulsing the Rydberg atom preparation.

The atoms are excited from a thermal atomic beam, velocity selected by optical

pumping, at a rate of 1.4 3 104 pulses per second. The velocity spread,

Dv 5 61 m s21 around 250 m s21, has a negligible effect on the Ramsey fringe

contrast. In order to limit the number of events with two atoms per pulse, the

intensity of the exciting lasers is kept low (average number of detected Rydberg

atoms per pulse is 0.3, detection efficiency 50%). Undetected atoms do not affect

the photon number distribution. A single atom is counted in 22% of the pre-

paration pulses, while 3% of them contain a detected atom pair. When two

atoms (whether detected or not) cross C together there is a slight reduction of
the interferometer contrast, owing to small cavity-mediated interactions46

between the atoms. This reduction is taken into account in the measured B value.

All detected events with one or two atoms per pulse are compiled independently

in the data analysis. When three atoms are in C together the fringe contrast is

strongly reduced, but the probability of these events is small (2% probability for

preparing 3 atoms or more per pulse).

Randomness of detection directions. The interferometer phase is changed from

pulse to pulse, going cyclically from wa to wd. As the presence of one (or two)

atoms in a given pulse is random, we cannot predict which phase will correspond

to the next observed atom. We acquire this knowledge by detecting the atom, and

i(k) is thus a randomly measured variable.

Other QND measurement strategies. Efficient photon number decimation

could be obtained by alternative methods. As suggested in refs 30 and 31, we could

change the atom–cavity interaction time (and hence the phase shift per photon) by

detecting randomly atoms from a thermal atomic beam, without velocity selec-

tion. The optimal data acquisition procedure consists in applying to successive

atoms a sequence of p, p/2,p/4 .... phase shifts per photon, while adjusting w for

each spin, based on the result of the previous measurement. This expresses n in
binary code, each atom providing a bit of information20,47. The required number

of atoms per measuring sequence is then minimal, equal to the smallest integer

$ log2(nmax 1 1). This ideal strategy requires however a deterministic beam of

atoms, with perfect Ramsey fringe contrast and 100% detection efficiency.

46. Osnaghi, S. et al. Coherent control of an atomic collision in a cavity. Phys. Rev. Lett.
87, 037902 (2001).

47. Haroche, S., Brune, M. & Raimond, J. M. Measuring photon numbers in a cavity by
atomic interferometry: optimizing the convergence procedure. J. Phys. II France 2,
659–670 (1992).

doi:10.1038/nature06057

Nature   ©2007 Publishing Group

www.nature.com/doifinder/10.1038/nature06057
www.nature.com/nature
www.nature.com/nature

	Title
	Authors
	Abstract
	An atomic clock to count photons
	Progressive pinning-down of photon number
	Observing the field-state collapse
	Reconstructing photon number statistics
	Repeated measurements and field jumps
	Beyond energy measurements
	Methods Summary
	References
	Methods
	Experimental settings
	Adiabaticity
	Atomic sequences
	Randomness of detection directions
	Other QND measurement strategies

	Methods References
	Figure 1 Principle of QND photon counting.
	Figure 2 Progressive collapse of field into photon number state.
	Figure 3 Reconstructed photon number distribution.
	Figure 4 Repeated QND measurements.

