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Abstract. An objective theory of phase shift estimation is formulated within quantum
mechanics and quantum estimation theory. The general validity of Bayesian analysis even in
the limit of very low particle numbers is demonstrated using the information of measured phase-
sensitive data. The formalism was applied to the estimation of an unknown phase in neutron
interferometry operating near the quantum limit, when only a few particles are registered, and
also in the regime of large particle numbers.

1. Introduction

Although interferometry has a history of being a useful technique for research, the quantum
limitation of phase measurement must be acknowledged as an open problem in quantum
mechanics and one which engages the attention of theoreticians and experimentalists
alike [1]. To date only a few experiments have been published concerning phase-shift
measurements with few interfering particles limited only by quantum fluctuations. The
results of those published were sometimes affected by a particular statistical treatment. For
example in cases when only a few data were available, the root-mean-square deviation of
phase shift was evaluated instead of the full phase distribution [2, 3]. Alternatively, phase
was implicitly assumed as a quantum variable with discrete spectrum. In experiments some
registered data were neglected or the phase-shift invariance of resulting distribution was
anticipated in operational phase concept [4]. There are also several sophisticated concepts
associating phase and phase distribution with marginal distribution of quasidistribution
functions in quantum optics [5, 6], even if this treatment sometimes seems to be problematic
[7]. As well as already published experimental results accompanied by theoretical
models, there are also several contributions analysing the feasible scheme for phase-shift
measurements. The ultimate limitation of the accuracy is crucial for the detection of
gravitational waves [8]. The improvement beyond the classical limit may be achieved
by applying a non-classical signal [9–12]. The papers dealing with such interferometric
measurements mainly concentrate on the resolution achievable in the case of a strong signal.
For such a treatment there is no need to quantify the content of phase information in the form
of phase distribution, since the standard root-mean-square deviation may be used instead.
Nevertheless, the careful treatment is necessary even in this semiclassical case. Particularly,
the differences between measurements with and without accumulation of counted data may
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appear to be crucial. For example, the estimation of phase shift in interferometer where an
equal number particle states interfere, may achieve the resolution up to 1/N for multiple
measurements [13] whereas a single measurement with the same total particle numberN

yields the resolution 1/
√

lnN only [14, 15]. On the other hand, there are theoretical concepts
which do not give any realistic instruction on how to get the phase information from the
performed measurement [16–21] at all, but they are able to predict the phase distribution
corresponding to the given quantum state.

This contribution was inspired by the semiclassical analysis of phase-shift measurement
and by estimation theory applied to various kinds of estimation problems in mathematics
and contemporary physics [13, 22–30]. Its purpose is to diminish the gap between
pure theoretical predictions and possible experimental observations. In comparison with
other quantum estimation approaches [31, 32], the realistic feasible measurement (particle
counting) will be assumed instead of the optimum detection scheme. The phase is treated
as an unknown but non-fluctuating parameter (c-number). The Bayesian estimation of
this parameter is objective in the sense that the whole information from the measured
phase-sensitive data is used without any prior or additional assumptions about the unknown
phase. The phase distribution conditioned by the actual value of phase-shift will be forecast
theoretically and verified experimentally even for very few detected particles. Phase
estimation based on the evaluation of the likelihood function will be compared with the
standard treatments, which fail in the quantum regime, while in the case of high particle
numbers all the predictions are comparable. The theoretical analysis will be illustrated on
the ideal interferometer in comparison with the approach already used [4] and then used
for estimation in neutron interferometry [3, 33, 34], which offers an excellent possibility to
operate in the quantum regime when only a few particles may be detected.

This paper is organized as follows. Elements of quantum measurement and estimation
are presented in section 2. In section 3 the theory is illustrated on the case of ideal Mach–
Zehnder interferometer. Section 4 presents an analysis of realistic measurements with
decreased contrast of interference fringes together with the experimental and numerical
results, also illustrating a common but faulty and potentially dangerous treatment. The
appendix details the incorrect statement ‘zero outcome—no information’.

2. Quantum measurement and estimation

Quantum mechanics is a fundamental theory yielding information about the observable
quantities of interest. Significantly, such predictions always exhibit a certain inevitable
portion of uncertainty connected with the quantum nature of investigated effects. Moreover,
the directly measurable variables need not be those, which the experimentalist is interested
in. In this case, the desired information must be inferred from the available experimental data
and the applied statistical treatment would further increase the uncertainty of measurement.
While quantum mechanics predicts outcomes of direct observations, for indirect observations
the estimation theory should also be used.

The history of quantum phase started in the early days of quantum mechanics and Dirac
[35] attempted to quantize it using the straightforward analogy of polar decomposition.
The difficulties associated with this treatment were addressed by Susskind and Glogower
[17] and further detailed by Carruthers and Nieto [18]. Besides this approach, there are
many other phase concepts addressing quantum phase. Some of them are equivalent and
predict the same phase distribution, some of them not. The waves of renewed interest
in quantum phase were inspired by the treatment of Pegg and Barnett [20] based on the
construction of the phase operator acting on finite-dimensional Hilbert space, by phase
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Figure 1. Block scheme of quantum estimation.

distributions obtained via various reconstruction techniques [5], and also by operational
definition of phase given by Nohet al [4]. An overview of various concepts and methods
may be found, for example in [1]. The common feature of all the existing theoretical
phase concepts seems to be a missing or improper analysis of realistic phase-sensitive
measurement. This is an obvious discrepancy between the theory and the experiment and
quantum phase is still assumed as a shaky ground for theoreticians. The approach proposed
in this contribution solves this issue in a pragmatic way distinguishing between directly
observed variables and those which are inferred from measurements. A typical example is
just the problem of phase-shift, which may be registered indirectly via the measurement
of phase-sensitive particle numbers in interferometry. The phase-shiftθ represents an
unknown but non-randomc-number displacement parameter in some unitary displacement
transformation. The distinction between ‘phase measurement’ and ‘phase estimation’ may
be characterized as follows. In the former case the measurement should be described by a
measurable operator with the spectrum confined to the 2π -window. In the latter case any
phase-sensitive measurement, from which the phase-shift can be inferred, is allowed. This
approach is obviously more suitable for interferometry, where the photocurrents represented
by real or natural numbers are registered. On the other hand, the quantum estimation also
involves various phase concepts as special cases, provided that the measurement of the
corresponding phase operator is considered as a registered ‘phase-sensitive’ signal.

The specification and measurement of phase-sensitive data represents the first step of
the whole estimation problem. In the second step the detected data will be interpreted as
a phase-shift predictionp(φ|D). This is the conditional probability of phase-shiftφ being
inferred when the dataD is true. There is a wide freedom in the choice of the hypothesis
p(φ|D) and therefore the final step should check the self-consistency of the procedure (see
the diagram in figure 1).

The phase-sensitive data are specified in the first step. They will be denoted by a variable
D representing a matrix of the dataD = {Dij }, i = 1, . . . , n, j = 1, . . . , m. This general
formulation describes quantum measurement performed simultaneously onm settings of a
measuring device and all this measuring procedure, called asingle measurement, is repeated
n times. The term ‘simultaneous’ does not necessarily mean that allm data of the single
measurement are obtained in the same instant of the time, but rather that the information
accumulated in this data is used simultaneously. More details about the internal structure
of the data will be given in the section detailing the description of the interferometric
measurement. For independent measurements, the probability of a resultD can be written
as a likelihood function

p(D|θ) =
n,m∏
i,j=1

pj (Dij |θ) (1)

assembling all the information about the data phase sensitivity.
In the second step the true value of phase-shift will be estimated by means of an estimator

φ, so-calledinferred phase-shift. This is the heart of the problem, since in this step one
needs to know more than the detected dataD. For example, this additional information



554 M Zawisky et al

may be the knowledge, how the counted probability (1) depends on the phase-shift. The
behaviour of the system in the classical limit may serve for this purpose. However, since the
relation between the given phase-shift and detected data is probabilistic, this correspondence
of the data to a certain phase-shift (i.e. the estimation strategy) has the form of a hypothesis.
Various strategies will be specified explicitly later in this section.

The third step of the whole estimation procedure should reveal how the various
estimations are consistent among themselves. Provided that the data setsD1,D2, . . . are
available, the experimentalist should decide the purpose of the phase observation. Provided
that he wishes to achieve an optimal phase resolution, he has to multiply all obtained
hypothesis functionsp(φ|Di ). On the other hand, if he wants to investigate the consistency
among the data sets, he has to average over them,

P̄ (φ|θ) = 〈p(φ|Di )〉i . (2)

In the latter case the obtained distribution converges with increasing number of data sets to
the average phase distribution of theinferred phase-shiftφ conditioned by the true value
θ ,

P̄mean(φ|θ) =
∑
D

p(φ|D)p(D|θ). (3)

The sum depletes the spectrum of all possible values ofD. The statistics of inferred
variable is fully determined by the statistics of measured events and by the strategy applied
to the evaluation of phase-sensitive data. This result is a counterpart of the theoretical
predictions of ideal phase concepts. Various forms of mappingsp(φ|D) could be adopted,
nevertheless at the end the width of the distribution (3) reveals whether or not such attempts
are successful. It is therefore essential to find a reliable correspondence between the detected
data and the estimated phase-shift. The right correspondence represents a crucial point of
the formulation and one may ask what is optimal. The optimizations of estimation problems
remain very complex tasks, solutions of which are not known either in much more simpler
cases. However, the following Bayes’ estimation has the advantage of its general validity
even in the case of very weak fields.

2.1. Bayes’ estimation

As is well known [36], the relation between conditioning of two stochastic events may
be expressed using Bayes’ theorem. Applying the theorem to the quantum estimation, the
variableD is a fluctuating quantity whereas the induced phase-shiftθ is a given number.
On the other hand, the phase estimationφ represents a random variable and its statistics may
be regarded as a distribution of probability in the sense of degrees of belief [22]. Detection
of a particular combination of phase-sensitive dataD does not determine exactly the value
of the phase shift. Provided thatD is detected, the probability of possible values of phase
shift can be predicted in a form of a likelihood function. This is the essence of Bayes’
approach linking the detected dataD and estimated phaseφ as

p(φ|D)p(D) = p(D|φ)p(φ). (4)

Quantum theory predicts the conditional probability of detecting dataD provided thatφ is
given asp(D|φ) by relation (1). Provided that there is no prior knowledge about phase-shift,
i.e. p(φ) = 1/2π , Bayes’ theorem gives the estimation

pB(φ|D) = 1

CD
p(D|φ) (5)
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with normalizationCD =
∫ 2π

0 p(D|φ) dφ, p(D) = CD/2π . As the most important feature,
the interpretation of the measurement is not discrete (deterministic) but fuzzy (probabilistic).
Registration ofD corresponds to any phase-shiftφ in the whole interval of the length 2π
but with different probabilities according to the distributionpB(φ|D). This is in accordance
with the probabilistic nature of quantum theory. Since the dependence of the detected
data on the phase-shift is probabilistic, any strict correspondence between inferred phase-
shift and data would be incompetent. As is pointed out in [28], the Bayesian methods
are applicable to small data sets lying outside the domain of the central limit theorem.
This feature is important in quantum technology where the quantum noise connected with
irreducible fluctuations dominates. This has been demonstrated in [30] where the phase
properties were ascribed to a single interfering particle.

2.2. Maximum likelihood estimation

The maximum likelihood (ML) estimation represents a choice of estimation procedure
belonging to point estimation methods [27]. Adopting this method, the detection of dataD
is interpreted as an observation of phaseφD maximizing the likelihood distribution (5),

pML (φ|D) = δ(φ − φD). (6)

A histogram of such inferred values creates the average phase distribution (2). A theoretical
envelope of this histogram may be obtained on the basis of distribution (3). The phase
histogram converges to the smooth phase distribution for an increasing number of repetitions
n. Theory is simplified significantly in this case since frequency of the particular valueDj
detected at thej th position converges tonpj (Dj |θ). The conditional phase distribution then
reads [29],

P̄ML (φ|θ) ∝
{∏

j

∏
Dj

[pj (Dj |φ)]pj (Dj |θ)
}n
. (7)

A multiplicative factor ensures normalization of the distribution overφ on the interval of
length 2π. The product contains likelihood functions corresponding to all the valuesDj
appearing at thej th position with non-zero probability. This distribution characterizes the
spread of the ML estimations and is tightly related to the quantities used in information
theory such as Kullback–Leibler divergence, Shannon entropy or Fisher information
[7, 24, 25]. As a consequence of the central limit theorem, the discrete estimator converges
to the true value of the phase for a sufficiently high number of registered particles. If this
is not true and if there are not enough detected particles, the application of point estimation
methods is meaningless, since the convergence is no longer guaranteed.

2.3. Semiclassical estimation

The previous two estimations were inspired by the analysis of the likelihood function,
usually considered as an advanced problem. Nevertheless, a method which is slightly
simpler available in textbooks of information theory is known as themethod of moments
(MM) [36]. It may occur that a certain combination of moments of detected fluctuating
variable(s) enables us to express the desired estimated variable using a deterministic relation,
which may further serve for inversion. This is the core of the principle of correspondence
in quantum theory. Provided that quantum field is replaced by a classical one, the relation
between detected signal and investigated variable may be specified deterministically and this
relation may be imposed back onto the quantum field. This relation may be quantized by
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Figure 2. Scheme of Mach–Zehnder neutron interferometer.

replacing the simultaneously measured data by commuting operators and significantly this
relation may be extended by definition also to the region of microscopic quantum fields. The
method already used in quantum phase [4] may be interpreted in this way. Nevertheless,
since the classical relation does not need to be unique, an ambiguity may also appear in a
quantum regime [37].

Sometimes it is enough to predict the fluctuation of the phase using a linearized theory.
As a phase-sensitive signal, the first moment (mean value) of detected variableM(D|θ) is
usually considered. Fluctuations, both classical or quantum,1M(D|θ), then determine the
uncertainty of estimated variable according to the linearized theory as

1θ

∣∣∣∣ d

dθ
M(D|θ)

∣∣∣∣ = 1M(D|θ). (8)

This technique has been used many times giving satisfactory results [3, 9, 11], although it
may fail in some cases. On the other hand, Bayes’ statistical analysis of phase-sensitive
data developed above always tends to the right phase distribution.

3. Ideal interferometry

The scheme considered here is the Mach–Zehnder interferometer as is generally used
in neutron interferometry (figure 2). An unknown phase-shiftθ characterizes the path
difference between arms of the interferometer. Classically, the measured signal represented
by the mean number of particles depends on the induced phase-shift, yielding interference
fringes on the outputs. Within quantum mechanics, the phase-shift should be determined by
the evaluation of measured phase-sensitive data. Here the number of particles detected on
the output portso andh atm positions of an auxiliary phase-shifter serves for this purpose.
For a single measurement (n = 1), D represents one detected combination of counting
numbers,D ≡ {No

1 , N
h
1 , . . . , N

o
m,N

h
m

}
. The phase sensitivity is manifested in the counting

distribution of possible outputs. Denoting formally the phase-shift transformation induced
by the interferometer as|ψ(θ)〉 = e−iθN̂ |ψ〉, N̂ is an operator inducing the phase-shift (the
difference in the number of particles in both the arms here) [29], the conditional probability
of outputD when the true phase-shift isθ reads

p(D|θ) = |〈D|e−iθN̂ |ψ〉|2 (9)

with |D〉 denoting formally the quantum state with the number of particles corresponding
to the variableD. This measurable quantity plays the crucial role in quantum phase
estimation, replacing the notion of classical signal, i.e. the mean number of particles
detected at the output. All further considerations will be done for Poissonian statistics [3].
Although neutrons considered in the experiment are fermions, this fact does not influence
the photocount statistics. They enter and interfere as single-particle states, demonstrating the
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Dirac’s statement that ‘any particle interferes only with itself’ [38]. The Poissonian statistics,
characterized by some average number of particles accumulated during the detection time
reflects the independence of single neutrons. More formal arguments may be based on the
quantization of fermion and boson wavefunctions. Although their annihilation and creation
operators fulfill different commutation relations, they both yield the sameSU(2) symmetry
characterizing an interferometer [12]. The counted distribution (9) is then given by the
product (1) with the statistics at the particular positions given as

pj (Nj |θ) = e−N̄j (θ)
[N̄j (θ)]Nj

Nj !
(10)

N̄j (θ) being the respective mean number of particles andNj being the number of particles
actually detected at the respective position.

The method will be illustrated with a simple but theoretically worthwhile example of a
single mode ideal interferometer with 50/50 lossless beam splitters and one input port. To
get unambiguous information about phase-shift in the interval [0, 2π ], the counting at phase-
shifts θ and θ − π/2, denoted here by the counting numbersNo

1 , N
h
1 andNo

2 , N
h
2 , will be

considered. These numbers correspond to the outputsN3, N4, N5 andN6 in the scheme 2 of
[4]. The dependence of the average number of counts on the induced phase-shift determines
the interference fringes as

N̄
o,h
1 (θ) = N̄in

2
(1± cosθ) (11)

N̄
o,h
2 (θ) = N̄in

2
(1± sinθ) (12)

N̄in being the number of particles feeding the open interferometer input port. The Bayes’,
maximum likelihood, and semiclassical estimations will be detailed here.

A straightforward application of the Bayes’ estimation to the case where the phase-shift
is inferred after the registration of particle numbersNo

1 , N
h
1 andNo

2 , N
h
2 yields the inferred

conditional distribution (3) forn = 1 as

P̄B(φ|θ) =
∑
{Nb

j }b=o,hj=1,2

1

C{Nb
j }

∏
b=o,h
j=1,2

pjb(N
b
j |φ)pjb(Nb

j |θ) (13)

whereC{Nb
j } =

∫ 2π
0

∏
j,b pjb(N

b
j |φ)dφ. This phase distribution depends only on the mean

number of particles counted in the output beamso and h (index b) at the phase-shifter’s
positions 0 andπ/2 (index j ). Further generalization forn = 2, 3, . . ., when the phase-
shift is evaluatedafter second, third,. . . round of counts, coincides with distribution (13)
providing that the total number of particles is conserved. This is a consequence of input
Poissonian statistics—the phase distribution (13) depends on the number of samplingsn

only through the total number of particlesN = nN̄in.

The ML estimation predicts a surprisingly simple form of phase distribution for this
case. The likelihood distribution (7) may be reduced to a formula

P̄ML (φ|θ) ∝
∏
j,b

[N̄b
j (φ)]

nN̄b
j (θ) (14)

j = 1, 2 and b = o, h for any input statistics. The predicted distribution represents an
envelope of histograms of discrete ML values, which are attached to the counted values in the
following way. Provided that valuesNo,h

1,2 were experimentally counted, the corresponding
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phase should maximalize the likelihood function (1)

p(Nb
j |φ) ∝ (1+ cosφ)N

o
1 (1− cosφ)N

h
1 (15)

(1+ sinφ)N
o
2 (1− sinφ)N

h
2 .

This yields, after a little manipulation the ML equation forφ as

−No
1

√
1− cosφ

1+ cosφ
+Nh

1

√
1+ cosφ

1− cosφ

+No
2

√
1− sinφ

1+ sinφ
−Nh

2

√
1+ sinφ

1− sinφ
= 0.

(16)

The method already used in quantum mechanics [4] is closely related to the semiclassical
treatment. A detected data setD ≡ {No

1 , N
h
1 , N

o
2 , N

h
2 } may be interpreted as detection of

the phaseφD,

eiφD = No
1 −Nh

1 + i(No
2 −Nh

2 )√
(No

1 −Nh
1 )

2+ (No
2 −Nh

2 )
2
. (17)

The discrete phase variable then fluctuates in accordance with the distribution

P̄MM (φ|θ) =
∑
D

p(D|θ)δ[φ − φD]. (18)

4. Evaluation of experimental data

In neutron interferometry the estimation of an unknown phase difference between both
beam paths plays the crucial role [3, 33, 34] and therefore we tried to generalize the
methods of phase inference. The visibility of the interference fringes is reduced by several
factors, but the statistical theory of phase measurement developed above is still valid. A
common technique of phase measurement is to scan an auxiliary phase-shifter overm

discrete positions1j, j = 1, . . . , m and to count neutrons in the output beamso and h
within fixed time intervals, see figure 2. The smallest unit of detected data is given by
particle numbersN1, . . . , Nm, which fluctuate according to the Poissonian distribution with
the average number of particles given as

N̄j (θ) = N̄(1+ V cos(1j + θ)). (19)

The mean intensityN̄ of one output beam and the visibilityV of the interference fringes
may be assumed as known (for example from the previous measurements), or alternatively,
asa priori unknown parameters, estimated together with the phase-shift on the basis of the
performed counting. In the former case the Bayes’ estimation is given straightforwardly by
relation (5). In the latter case the probability density for the inferred phase-shiftφ is given
as the function

p(φ|{Nj }) ∝
∫

dN̄
∫

dV
∏
j

p(Nj |φ) (20)

normalized on the phase interval(0, 2π). In our case the interference pattern is counted
at nine equidistant positions of an auxiliary phase-shifter and such a data set consisting
of valuesN1, . . . , N9 represents a single measurement. This single measurement is the
smallest unit for phase inference in our experiments, which is analysed individually and
independently from all the other data. By means of such a measurement the unknown
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overall phase-shiftθ may be determined without ambiguity in the whole interval(0, 2π).
The single measurement was repeated several hundred times for the purpose of testing
the predictions of estimation theory. Experiments were performed at the Atominstitut in
Vienna with its 250 kW TRIGA reactor neutron source. The intensity of the input beam was
constant during all measurements, which enabled a simple adjustment of the mean particle
numbersN̄ by the measurement time (equal for all nine measurement positions). Each data
series, characterized bȳN , consisted of hundreds of single measurements and the visibility
V of the data series differed from 0.37 to 0.47.

The phase evaluation process is shown in the series of figures 3(a)–(c). The structure
corresponding to the separate steps of the estimation procedure sketched in figure 1 is the
following. The left-upper panel shows a randomly selected counted event illustrating step 1.
The right-upper panel shows its interpretation as a phase-shift estimation corresponding to
step 2. All events counted repeatedly form an interference fringe characterized by its
visibility and total average number of particles as the left-bottom panel presents. The
inferred phase-shift distribution conditioned by the true phase-shift and corresponding to an
‘average’ single measurement is displayed in the right-bottom panel demonstrating step 3
of the estimation procedure.

The set with the lowest particle number was chosen asN̄ = 0.25 neutrons for the single
measurement in figure 3(a). The smallest data unit for phase estimation then consisted of
9×0.25 neutrons on average and phase-shift was inferred from the single measurements in
1721 single runs. Similarly, figure 3(b) is characterized by the average number of counted
particles in single experiment 9× 4.15, each measurement was performed 455 times and
figure 3(c) demonstrates the behaviour of phase estimation with average particle number
9× 71.3 repeated 87 times. Remarkably, figure 3(c) indicates that the phase-shift drifted
during the long running experiment resulting in an asymmetric average phase distribution.
Fitting its shape by a superposition of two Gaussian curves yields the value of phase drift
about 25◦. Note that this conclusion is not obvious from the common analysis of interference
fringe.

Figures 4(a) and (b) demonstrate a proper and improper manipulation with phase
information. The measurement corresponding toN̄ = 0.25 was used as the data set for
figure 4(a). Figure 4(b) shows results of measurement with 12 times higher average particle
number but 12 times smaller number of repetitions, hence with the same total particle
number. The full curve with a grey region plotted against the number of single experiments
n shows the mean value and 68.3% confidence interval of Bayes’ estimation as a product of
the likelihood functions of registered single events. Similarly the broken curve with dotted
curves displays the mean value and confidence interval of the ML estimation. Here the
phase with the MLϕi is determined separately for each single measurement and then all
these estimates are used to evaluate the preferred phase [25]

eiϕ ∝
∑
i

eiϕi . (21)

The preferred phase is a meaningful analogy of the mean value of variable for the finite
interval. The width of this ‘classical’ estimation is then scaled as 1/

√
n in analogy with

the standard root-mean-square deviation. Figures 4 shows the difference between results
of Bayes’ and ML estimation. The Bayes’ estimation is spread around the true value
within the width of the confidence interval. For Poissonian statistics the precision of the
Bayes’ estimation depends only on the total number of particlesN = nN̄in. In this case the
multiple measurement with very weak input gives the same phase prediction as the single
measurement with equivalent total particle number. On the other hand, the repeatedly
evaluated ML estimation fails for weak particle numbers. The single number acquired
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Figure 3. Phase evaluation of a single measurement. The left-upper panels show particle
numbers counted at nine positions of phase-shifter (step 1). The right-upper panels show
appropriate Bayesian estimates (step 2) including the 68.3% confidence intervals (grey regions).
The left-bottom panels show the interference fringes as means of all single measurements.
The right-bottom panels show the conditional phase distributionsP̄ (φ|θ) corresponding to
average single measurements for both the maximum likelihood (histograms) and Bayes’ (smooth
curves) estimations (step 3). (a) N̄ = 0.25, V = 0.34. (b) N̄ = 4.15, V = 0.43. (c)
N̄ = 71.3, V = 0.47.

from each single measurement cannot describe all information stored in the shape of a
non-Gaussian likelihood function. These differences disappear in the case of higher particle
numbers plotted in figure 4(b). Significantly, the content of phase information may always
be defined for Bayes’ estimation, while point estimations become moot in the case of weak
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Figure 3. (Continued)

fields. The true value of the phase-shift characterizes the measured sample. Its value was
determined as the ML phase corresponding to the all available data collected during repeated
runs.

Figure 5 shows the sharpening of the phase information for increasing total number of
particles used in experiment. The estimation method corresponds to Bayes’ estimation and
the same data as in figure 4(a) were used.

One important conclusion from these low counting number measurements is that there
is no lower limit for phase inference. Any single measurement is giving useful phase
information provided non-zero mean particle numbers and non-zero visibility. Even the so-
called zero measurements, when no neutron was detected by the detector during a single run,
lead to some phase information, see the appendix. These measurements therefore cannot be
discarded. The information accumulated in low particle number measurements should be,
nevertheless, used properly. As demonstrated above, improper use of point estimations may
lead to incorrect results in this limit. On the other hand, the Bayesian estimation describes
the quantum regime well even when very few particles are detected. The only disadvantage
of the Bayesian inference is the high computation time, especially when the mean particle
number and visibility are also unknown and counting numbers are high. However, for high
counting numbers the classical techniques seem to be sufficient.

5. Conclusions

The statistical analysis of quantum-phase estimation in interferometers was given free of any
additional assumptions which cannot be verified experimentally. The probability distribution
of inferred phase shift was fully determined only by the measured dependence of counted
distribution on the induced phase shift and the treatment may be applied to any measurement
of phase-sensitive variable. The content of phase information may be evaluated even in the
cases when other methods fail, for example in the case of weak fields.

In the case of Bayesian analysis all information on the phase-sensitive data is conserved
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(a)

(b)

Figure 4. Comparison of Bayes’ (interval) estimation with the ML (point) estimation. Phase
uncertainty (confidence interval) is plotted against the number of single measurementsn used for
evaluation. Part (a) corresponds to the data evaluated in figure 3(a), whereas (b) corresponds to
the 12 times higher particle numbers in single measurements but the same total particle number.

without discarding any zero or ambiguous data. For practical purposes the shape of the
averaged distribution (2) can be used to verify the reproducibility and stability of the
measurement. The Bayesian analysis represents an appropriate tool to reveal all information
on single detection events releasing an experimentalist from waiting and collecting many
data before beginning the analysis. This important feature of quantum estimation can be
applied to all quantum measurements where interactive control or fast gain in knowledge is
necessary. Our experiments demonstrated that quantum estimation theory and in particular
the Bayesian analysis will become an important tool in neutron interferometry, which often
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Figure 5. Improvement of the phase resolution with increasing number of particles used for
phase evaluation. The likelihood function is plotted as a function of inferred phase and number
of single measurements. Data correspond to the same measurement as in figure 3(a).

deals with low neutron numbers and where phase drifts during the measurements have to
be analysed in more detail.
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Appendix. Phase information of zero outcome

A common experimental myth, formulated in brevity as ’zero outcome—zero information’,
will be corrected here. The truth of this statement depends strongly on a particular
measurement set-up.

Let the counts in theo beam, according the scheme described above, be detected. The
nine positions1j are mutually shifted byπ/4, hence11 = 19. The output statistics (10)
is Poissonian with the dependence of the mean particle number on the unknown phase
described by (19). Having detectedNo

j = 0 at all of nine positions, the likelihood
function (5) reads

pB(φ|{0 . . .0}) ∝ exp

[
− N̄V

9∑
j=1

cos(1j + φ)
]
. (22)
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Due to a non-uniform distribution of the measurement positions1j (the position11 = 19

is counted twice), the likelihood function is not uniform but can be simplified to

pB(φ|{0 . . .0}) ∝ exp[−N̄V cos(11+ φ)]. (23)

Hence the detection of very zeros in this set-up does yield some phase information. In
contrast omitting detection at19 position tends to a uniform likelihood function with no
phase information.
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[30] Hradil Z, Myška R, Pěrina J, Zawisky M, Hasegawa Y and Rauch H 1996Phys. Rev. Lett.76 4295
[31] Osaki M, Ban M and Hirota O 1996Phys. Rev.A 54 1691
[32] Paris M G A 1997Phys. Lett.A 225 23
[33] Bonse U and Rauch H (ed) 1979Neutron Interferometry(Oxford: Clarendon)

Zawisky M, Rauch H and Hasegawa Y 1994Phys. Rev.A 50 5000
[34] Rauch H and Werner S A 1998Neutron Interferometry(Oxford: Clarendon) to be published
[35] Dirac P A M 1927Proc. R. Soc.A 114 243
[36] Barlow R 1987Statistics(New York: Wiley)
[37] Barnett S M and Pegg D T 1993Phys. Rev.A 47 4537
[38] Dirac P A M 1947The Principles of Quantum Mechanics(Oxford: Clarendon)


