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Abstract

We summarize a semi-classical method to simulate the dynamics of two atoms in near resonant

light fields. Both internal state dynamics and external motion are considered. The full hyperfine

structure of alkali atoms is included. We apply this method to study the possibility of 3D complete

optical shielding in cold atom system with proper engineered laser fields.
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I. INTRODUCTION

Study of quantum degeneracy in cold atomic system requires extremely high atomic

density. When the density reaches about 1012 cm−3 [1], atom-atom interaction will play an

important role in laser cooling and trapping. In short range, hyperfine-changing collision,

radiative escape, and fine-structure-changing collisions are the main processes that lead to

trap loss [2]. Such collisional trap loss and heating constrain the density and temperature

that can be reached through purely optical method.

On the other hand, research of many-body physics in ultracold quantum gas requires

advanced imaging techniques. A basic example is imaging of multiple atoms in experimental

realization of Bose-Hubbard model. Non-destructive detection of multiple atoms in single

lattice site is, however, limited by resonant interaction between atoms [3].

Optical suppression of inelastic collisions is a potential solution to the above two problems.

Such method is called optical shielding, which is studied intensively in the last century [4–7].

The basic idea of this method is to shine blue detuned laser beams upon atomic gas. As two

atoms approaching each other, the blue detuned beams will couple the two-atom ground

state S + S with the molecular state S + P around Condon point RC . Consequently the

dressed ground state will feel an effective repulsive potential and the two atoms will recede

from each other elastically, as shown in Fig. 6. If RC is properly chosen by setting a proper

detuning, those short range (≤ 10 nm[2]) inelastic processes can be avoided. In this way the

trap loss can be suppressed and non-destructive observation of multiple atoms in single site

is made possible.

However, the research of optical shielding stagnate since last century. The 3D nature of

collision, the complex hyperfine structure of atoms, quantum jump and recoil are hard parts

of this problem, which are partly ignored by some early work. Some papers present analytical

calculation of shielding measure using simple Landau-Zener theory [4, 6]. Nevertheless, the

stochastic nature of atomic motion in laser field indicates that a statistical way of study

is more convincing. Thus, in this paper we present a theoretical framework of long range

dipole-dipole interaction including all the effects mentioned above. Based on the theory, we

give some semi-classical MCWF (Monte Carlo wave-function method) simulation results and

compare them with experimental results. In principal we can do full quantum simulation

to include the wave nature of atomic motion, as done by Suominen [8]. However, a full
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quantum 3D simulation is not applicable since it consumes too much computational resource.

In addition, simulation with quantized internal states and classical atomic motion has been

proved work well for sub-Doppler D1 cooling [9]. For these reasons, we adopt a semi-classical

way of study here.

The paper is organized as follows. In Sec. II, the master equation governing two atoms

with hyperfine structure is derived and it is unrevealed to quantum trajectory theory in

preparation for simulation. In Sec. III, the simulation method and results are given. In

Sec. IV we compare the simulation with a simple qualitative experiment.

FIG. 1: This Fig. is from Bagnato 1997 [7]. (a) Atoms approach with each other in the

ground state and excited around Condon point RC to the repulsive excited state. (b)

Dressed state picture.

II. THEORY

II.1. Two Atom Master Equation

The standard way to study the dynamics of atoms interfered by vacuum electromagnetic

field is master equation method. Following the procedure of Born-Markov approximation

and elimination of the vacuum modes, we can formulate the master equation governing the
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internal dynamics of two atoms. Interestingly, resonant dipole-dipole interaction terms will

also arise in this procedure. In another word, atoms interact with each other via vacuum

modes. Here we give a detailed deduction of the master equation based on the work of

Meystre [10, 11].

𝐽 = 𝐽𝑔

𝐽 = 𝐽𝑒

𝑀 = 0 𝑀 = +𝐽𝑔𝑀 = −𝐽𝑔

𝑀 = 0 𝑀 = +𝐽𝑒𝑀 = −𝐽𝑒
𝝎𝟎

FIG. 2: A J = Jg → J = Je system. The ground state and excited state have angular

quantum number Jg and Je respectively. The atomic transition frequency is ω0.

We consider a system composed of two identical atoms and the quantized vacuum electro-

magnetic field. We assume the two atoms are fixed at position r1, r2 and ignore the external

dynamics for now. The mechanical effects of vacuum perturbation will be discussed in

Sec. II.4. For simplicity, we model the internal state of atom as a J = Jg → J = Je system

as shown in Fig. 2. Thus, the basis of the Hilbert space is

|J1,M1⟩1 ⊗ |J2,M2⟩2 ⊗ |n⟩k,σ , (1)

where Ji denotes ground or excited state, i.e. Ji = Jg or Je; Mi = −Ji,−Ji+1, · · · Ji− 1, Ji;

|n⟩k,σ is the fock state of the mode with wave vector k and polarization σ.

The Hamiltonian of the system is composed of three terms

H = Ha +Hf +Haf . (2)

The first term

Ha = ℏω0

2∑
i=1

P i
e (3)

is the unperturbed Hamiltonian of the two atoms. Here ω0 is the atomic transition frequency.

P i
e is the projection operator of excited state of the ith atom,

P i
e =

+Je∑
M=−Je

|Je,M⟩i i⟨Je,M |. (4)
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Actually P i
e is a tensor product of the projection operator acting on the Hilbert space of the

ith atom and the identical operator acting on the Hilbert composed of the other atom and

the field. For simplicity we omit the tensor product procedure.

The second term is the free space Hamiltonian,

Hf =
∑
k,σ

ℏωka
†
k,σak,σ, (5)

where a†k,σ and ak,σ are creation and annihilation operator of the k, σ mode. ωk = kc is the

frequency of the mode.

The third term corresponds to atom-field coupling. Under dipole approximation,

Haf = −
2∑

i=1

E(ri) · di, (6)

where di is the dipole operator of the ith atom. E(ri) is the field operator at ri,

E(r) =
∑
k,σ

ϵ̂k,σEka
†
k,σe

−ik·r +H.c.. (7)

ϵ̂k,σ is a set of unit polarization vectors perpendicular to k with σ = ±1. Ek is the single

photon electric field intensity,

Ek =

√
ℏωk

2ϵ0V
, (8)

where ϵ0 is the vacuum permittivity, V is the quantization volume. The choosing of ϵ̂k,σ is

arbitrary as long as the two polarization vectors are linear independent and perpendicular

to k. The set of helicity polarization vectors is a convenient choice:

ϵ̂k,σ = R(k̂)êσ. (9)

Here R(k̂) is the rotation matrix transforming unit vector in z-direction to k̂: R(k̂)ẑ = k̂.

êσ are spherical bases with σ = ±1:

ê+1 = − x̂+ iŷ√
2

(10)

ê0 = ẑ (11)

ê−1 =
x̂− iŷ√

2
. (12)

We can expand dipole operator d in the atomic basis |J,M⟩:

d =
∑
M,M ′

⟨Jg,M |d |Je,M ′⟩ |Jg,M⟩ ⟨Je,M ′|+H.c.. (13)
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Here we omit the diagonal terms because these terms are equal to zero due to parity. Ac-

cordingly, under rotating wave approximation Eq. (6) becomes

Haf = −
∑

i,k,σ,M,M ′

Eka
†
k,σe

−ik·ri ⟨Jg,M | ϵ̂k,σ · d |Je,M ′⟩ |Jg,M⟩i i⟨Je,M
′|+H.c.. (14)

Expanding d in spherical basis, we have

d =
∑
q

dqê
∗
q, (15)

where q = 0,±1 and dq = d · êq. According to Eq. (9) and Eq. (15), we rewrite ϵ̂k,σ · d in

Eq. (14) as

ϵ̂k,σ · d =
∑
q

(R(k̂)êσ) · (dqê∗
q) =

∑
q,q′

(D1
q′,σ(k̂)êq′) · (dqê∗

q)

=
∑
q,q′

D1
q,σ(k̂)dq(ê

∗
q · êq′)

=
∑
q

D1
q,σ(k̂)dq. (16)

Here we have applied the orthogonality and rotation property of spherical basis. D1
q,σ(k̂) is

the Wigner D-matrix corresponding to the rotation R(k̂).

According to Wigner-Eckart theorem,

⟨Jg,M | dq |Je,M ′⟩ = ⟨Jg∥d∥Je⟩⟨Jg,M |Je, 1,M ′, q⟩. (17)

Here ⟨Jg,M |Je, 1,M ′, q⟩ is the Clebsch-Gordan coefficient with q = 0,±1. Based on the

selection rules of the Clebsch-Gordan coefficient, we have M ′ = M − q. ⟨Jg∥d∥Je⟩ is the

reduced matrix element, which is a fixed c-number depends on Jg, Je and d. We denote

⟨Jg∥d∥Je⟩ as p. According to Eq. (16) and Eq. (17), we rewrite Eq. (14) as

Haf = −
∑

i,k,σ,M,q

pEkD
1
q,σ(k̂)e

−ik·ria†k,σ⟨Jg,M |Je, 1,M − q, q⟩ |Jg,M⟩i i⟨Je,M − q|+H.c..

(18)

Define the jump operator Si
q as

Si
q =

∑
M

⟨Jg,M |Je, 1,M − q, q⟩ |Jg,M⟩i i⟨Je,M |. (19)

Thus, Eq. (18) becomes

Haf = −
∑
i,k,σ,q

pEkD
1
q,σ(k̂)e

−ik·ria†k,σS
i
q +H.c.. (20)
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In interaction picture, Eq. (20) transforms to

H̃af = −
∑
i,k,σ,q

pEkD
1
q,σ(k̂)e

−ik·ri−i(ω0−ωk)ta†k,σS
i
q +H.c.. (21)

For clarity, we give the range of value for the indexes in Eq. (21) below:

i : 1, 2

k : full k-space

σ : ± 1

q : 0,±1.

(22)

The dynamics of the system’s density matrix ρaf is given by the Liouville - von Neumann

equation:

ρ̇af (t) = − i

ℏ
[H̃af (t), ρaf (t)]. (23)

Following the standard procedure of Born-Markov approximation, we have the equation of

the atomic density matrix:

ρ̇a(t) = − 1

ℏ2
trf

∫ t

0

dτ [H̃af (t), [H̃af (τ), ρa(t)⊗ ρf (0)]]. (24)

Here we have assumed ρaf (τ) can be decomposed into the direct product of ρa(τ) and ρf (τ).

The field is assumed to be in equilibrium, i.e. ρf (τ) ≈ ρf (0). The atomic system is assumed

to have no memory, i.e. ρa(τ) ≈ ρa(t). trf represents tracing off the field degree of freedom.

We assume the field is a reservoir at zero temperature. It can be shown that

trf (ρfak,σ) = trf (ρfa
†
k,σ) = 0 (25)

trf (ρfak,σak′,σ′) = trf (ρfa
†
k,σa

†
k′,σ′) = 0 (26)

trf (ρfa
†
k,σak′,σ′) = 0 (27)

trf (ρfak,σa
†
k′,σ′) = δk,k′δσ,σ′ , (28)

Where δk,k′ and δσ,σ′ are Kroneker delta symbols. Thus, Eq. (24) gives

ρ̇a(t) = −|p|2

ℏ2

∫ t

0

dτ
∑

k,σ,i,i′,q,q′

E 2
k (e

i(ω0−ωk)(t−τ)eik·(ri−ri′ )D1∗
q,σ(k̂)D

1
q′,σ(k̂)S

i†
q S

i′

q′ρa(t)

−ei(ω0−ωk)(t−τ)eik·(ri−ri′ )D1∗
q,σ(k̂)D

1
q′,σ(k̂)S

i′

q′ρa(t)S
i†
q

−e−i(ω0−ωk)(t−τ)eik·(ri−ri′ )D1∗
q,σ(k̂)D

1
q′,σ(k̂)S

i′

q′ρa(t)S
i†
q

+e−i(ω0−ωk)(t−τ)eik·(ri−ri′ )D1∗
q,σ(k̂)D

1
q′,σ(k̂)ρa(t)S

i†
q S

i′

q′). (29)
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To calculate the integral, it is convenient to introduce relative coordinates r,R and formal

jump operators A1,q, A2,q. Define

R =
r2 + r1

2
(30)

r = r2 − r1 (31)

A1,q = S1
q − S2

q (32)

A2,q = S1
q + S2

q . (33)

We rewrite equation Eq. (29) in terms of the above symbols:

ρ̇a(t) = −|p|2

ℏ2

∫ t

0

dτ
∑

k,σ,q,q′

E 2
k

(ei(ω0−ωk)(t−τ)(X∗
1,q,σ,kA

†
1,q +X∗

2,q,σ,kA
†
2,q)(X1,q′,σ,kA1,q′ +X2,q′,σ,kA2,q′)ρa(t)

−ei(ω0−ωk)(t−τ)(X1,q′,σ,kA1,q′ +X2,q′,σ,kA2,q′)ρa(t)(X
∗
1,q,σ,kA

†
1,q +X∗

2,q,σ,kA
†
2,q)

−e−i(ω0−ωk)(t−τ)(X1,q′,σ,kA1,q′ +X2,q′,σ,kA2,q′)ρa(t)(X
∗
1,q,σ,kA

†
1,q +X∗

2,q,σ,kA
†
2,q)

+e−i(ω0−ωk)(t−τ)ρa(t)(X
∗
1,q,σ,kA

†
1,q +X∗

2,q,σ,kA
†
2,q)(X1,q′,σ,kA1,q′ +X2,q′,σ,kA2,q′)), (34)

where

X1,q,σ,k = −D1
q,σ(k̂) cos (k · r/2) (35)

X2,q,σ,k = −iD1
q,σ(k̂) sin (k · r/2). (36)

Through the standard prescription, the sum over k can be replaced by∑
k

→ V

(2π)3

∫ ∞

0

dk k2
∫

dΩk. (37)

Now we focus on the first term of Eq. (34), i.e.

− |p|2V
(2π)3ℏ2

∑
q,q′

∫ ∞

0

dk k2E 2
k

∫ t

0

dτ ei(ω0−ωk)(t−τ)(I11q,q′(k)A
†
1,qA1,q′ + I12q,q′(k)A

†
1,qA2,q′

+I21q,q′(k)A
†
2,qA1,q′ + I22q,q′(k)A

†
2,qA2,q′)ρa(t), (38)

where

I ijq,q′(k) =
∑
σ

∫
dΩk X

∗
i,q,σ,kXj,q′,σ,k. (39)

The time integral in Eq. (38) is standard. We give the result under Markov approximation

here: ∫ t

0

dτ ei(ω0−ωk)(t−τ) ≈
∫ ∞

0

dτ ei(ω0−ωk)τ = πδ(ω0 − ωk) + iP (
1

ω0 − ωk

), (40)
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where P (1/(ω0 − ωk)) denotes Cauchy principle value and δ(ω0 − ωk) is the Dirac delta

function. The calculation of I ijq,q′(k) is tedious but straight forward. We give a detailed

deduction in App. A. The result is listed below:

I11q,q′(k) =
π

3
(βq,q′(k, r) + 4δq,q′) (41)

I22q,q′(k) =
π

3
(−βq,q′(k, r) + 4δq,q′) (42)

I12q,q′(k) = I21q,q′(k) = 0, (43)

where β(k, r) is a 3× 3 Hermitian matrix with index runs from −1 to +1:
4j0(kr)− 2j2(kr)P2 (cos θr) −

√
2e−iϕrj2(kr)P

1
2 (cos θr) −e−2iϕrj2(kr)P

2
2 (cos θr)

−
√
2e−iϕrj2(kr)P

1
2 (cos θr) 4j0(kr) + 4j2(kr)P2 (cos θr)

√
2e−iϕrj2(kr)P

1
2 (cos θr)

−e−2iϕrj2(kr)P
2
2 (cos θr)

√
2e−iϕrj2(kr)P

1
2 (cos θr) 4j0(kr)− 2j2(kr)P2 (cos θr)

 .

(44)

Here r, θr, ϕr are spherical coordinates of the relative position r; ji(kr) denotes spherical

Bessel function of the first kind with order i; P j
i (cos θr) denotes associated Legendre function

with order i, j. The remaining k-integral in Eq. (38) gives the final damping terms and

dipole-dipole interaction terms. Specifically, the first term of Eq. (40) gives rise to damping

and the second term of Eq. (40) gives rise to dipole-dipole interaction. The integral with

the kernel δ(ω0 − ωk) is trivial, while the integral with the kernal P (1/(ω0 − ωk)) requires

some work. We give the deduction in App. B and the final form of Eq. (38) below:

− Γ

16

∑
q,q′

[(βq,q′(k0, r)+4δq,q′+iαq,q′(k0, r))A
†
1,qA1,q′+(−βq,q′(k0, r)+4δq,q′−iαq,q′(k0, r))A

†
1,qA1,q′ ]ρa(t),

(45)

where

Γ =
ω3
0|p|2

3πϵ0ℏc3
(46)

is the natural line width; k0 = ω0/c is the magnitude of the wave vector corresponding to

the resonant frequency; α(k, r) is another 3× 3 Hermitian matrix:
4n0(kr)− 2n2(kr)P2 (cos θr) −

√
2e−iϕrn2(kr)P

1
2 (cos θr) −e−2iϕrn2(kr)P

2
2 (cos θr)

−
√
2e−iϕrn2(kr)P

1
2 (cos θr) 4n0(kr) + 4n2(kr)P2 (cos θr)

√
2e−iϕrn2(kr)P

1
2 (cos θr)

−e−2iϕrn2(kr)P
2
2 (cos θr)

√
2e−iϕrn2(kr)P

1
2 (cos θr) 4n0(kr)− 2n2(kr)P2 (cos θr)

 .

(47)

Here ni(kr) denotes spherical Bessel function of the second kind with order i.
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The deduction for the rest of terms in Eq. (34) is similar. We give the final form of the

master equation here:

ρ̇a(t) =
1

16
Γ
∑
q,q′

(−i[αq,q′(k0, r)(A
†
1,qA1,q′ − A†

2,qA2,q′), ρa(t)]

− (βq,q′(k0, r) + 4δqq′)(A
†
1,qA1,q′ρa(t) + ρa(t)A

†
1,qA1,q′ − 2A1,q′ρa(t)A

†
1,q)

− (−βq,q′(k0, r) + 4δqq′)(A
†
2,qA2,q′ρa(t) + ρa(t)A

†
2,qA2,q′ − 2A2,q′ρa(t)A

†
2,q)) (48)

II.2. Hyperfine Structure

In a realistic problem, we have to deal with near-degenerate energy levels induced by

hyperfine interaction. We will take the D1 structure of 39K as an example in our simulation.

As shown in Fig. 3, the 39K D1 structure has two sets of ground states and two sets of

4𝑆𝑆1/2,𝐹𝐹 = 1

𝑀𝑀 = 0 𝑀𝑀 = +1𝑀𝑀 = −1

𝝀𝝀 = 𝟕𝟕𝟕𝟕𝟕𝟕 nm

𝑀𝑀 = −2 𝑀𝑀 = +2

4𝑆𝑆1/2,𝐹𝐹 = 2

4𝑃𝑃1/2,𝐹𝐹𝐹 = 1

4𝑃𝑃1/2,𝐹𝐹𝐹 = 2

𝒇𝒇𝒉𝒉𝒉𝒉 = 𝟒𝟒𝟒𝟒𝟒𝟒.𝟕𝟕 MHz

𝒇𝒇𝒉𝒉𝒉𝒉 = 𝟓𝟓𝟓𝟓.𝟓𝟓 MHz

FIG. 3: 39K D1 structure.

excited states. The deduction of the master equation in such a near-degenerate system is

slightly different from Sec. II.1. Typically, the terms ei(ω1−ωk)t−i(ω2−ωk)τ will arise in the time

integral (40), with ω1 ≈ ω2, thus it will be hard to calculate the integral. We give a brief

solution to this problem here.

The eigenstates of single atom are now composed by |F,M⟩. As shown in Fig. 3, we denote

excited states with F ′ and ground states with F . For D1, F = 1 or 2 and F ′ = 1 or 2.

In addition, we denote the atomic frequencies with ωFF ′ . For example, ω12 is the atomic
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transition frequency of F = 1 → F ′ = 2. Since ωFF ′ ≫ ωhg, ωhe, we have ω11 ≈ ω12 ≈ ω21 ≈

ω22 ≈ ω0 (ωhg, ωhe are hyperfine splitting of the ground and excited states). Now the atomic

Hamiltonian in Eq. (3) turns to

Ha = ℏ
∑
i

(ω1F ′

∑
F ′,M

|F ′,M⟩i i⟨F
′,M |+ ωhg

∑
M

|F = 2,M⟩i i⟨F = 2,M |), (49)

where we have assumed the state |F = 1,M⟩ is the zero energy point. And the atom-field

couping Hamiltonian (21) in interaction picture turns to

H̃af = −
∑

i,k,σ,q,F,F ′

pEkD
1
q,σ(k̂)e

−ik·ri−i(ωFF ′−ωk)ta†k,σS
i
F,F ′,q +H.c., (50)

where

Si
F,F ′,q =

∑
M

⟨F,M |F ′, 1,M − q, q⟩ |F,M⟩i i⟨F
′,M |. (51)

Then Eq. (29) becomes

ρ̇a(t) = −|p|2

ℏ2

∫ t

0

dτ
∑

k,σ,i,i′,q,q′

F1,F ′
1,F2,F ′

2

E 2
k (e

i(ωF1F
′
1
−ωk)t−i(ωF2F

′
2
−ωk)τeik·(ri−ri′ )D1∗

q,σ(k̂)D
1
q′,σ(k̂)S

i†
F1,F ′

1,q
Si′

F2,F ′
2,q

′ρa(t)

−e
i(ωF1F

′
1
−ωk)t−i(ωF2F

′
2
−ωk)τeik·(ri−ri′ )D1∗

q,σ(k̂)D
1
q′,σ(k̂)S

i′

F2,F ′
2,q

′ρa(t)S
i†
F1,F ′

1,q

−e
−i(ωF1F

′
1
−ωk)t+i(ωF2F

′
2
−ωk)τeik·(ri−ri′ )D1∗

q,σ(k̂)D
1
q′,σ(k̂)S

i′

F2,F ′
2,q

′ρa(t)S
i†
F1,F ′

1,q

+e
−i(ωF1F

′
1
−ωk)t+i(ωF2F

′
2
−ωk)τeik·(ri−ri′ )D1∗

q,σ(k̂)D
1
q′,σ(k̂)ρa(t)S

i†
F1,F ′

1,q
Si′

F2,F ′
2,q

′). (52)

Notice the terms e
±i(ωF1F

′
1
−ωk)t∓i(ωF2F

′
2
−ωk)τ bring difficulty to the time integral. The key

point to solve this problem is to conduct a backward interaction picture transformation [12]:

ρa(t) → e−iHat/ℏρa(t)e
iHat/ℏ. (53)

Then Eq. (52) transforms to

ρ̇a(t) = − i

ℏ
[Ha, ρa(t)] (54)

−|p|2

ℏ2

∫ t

0

dτ
∑

k,σ,i,i′,q,q′

F1,F ′
1,F2,F ′

2

E 2
k (e

i(ωF2F
′
2
−ωk)(t−τ)

eik·(ri−ri′ )D1∗
q,σ(k̂)D

1
q′,σ(k̂)S

i†
F1,F ′

1,q
Si′

F2,F ′
2,q

′ρa(t)

−e
i(ωF2F

′
2
−ωk)(t−τ)

eik·(ri−ri′ )D1∗
q,σ(k̂)D

1
q′,σ(k̂)S

i′

F2,F ′
2,q

′ρa(t)S
i†
F1,F ′

1,q

−e
−i(ωF2F

′
2
−ωk)(t−τ)

eik·(ri−ri′ )D1∗
q,σ(k̂)D

1
q′,σ(k̂)S

i′

F2,F ′
2,q

′ρa(t)S
i†
F1,F ′

1,q

+e
−i(ωF2F

′
2
−ωk)(t−τ)

eik·(ri−ri′ )D1∗
q,σ(k̂)D

1
q′,σ(k̂)ρa(t)S

i†
F1,F ′

1,q
Si′

F2,F ′
2,q

′). (55)
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Redefining Si
q as

Si
q =

∑
F,F ′

Si
F,F ′,q, (56)

and using the approximation ω11 ≈ ω12 ≈ ω21 ≈ ω22 ≈ ω0, we will find Eq. (55) turns to the

exact same form of Eq. (29), except for an additional term −i[Ha, ρa(t)]/ℏ from backward

interaction picture transformation. Thus the following deduction is the same as Sec. II.1.

II.3. Laser Coupling

Suppose there are n driving laser fields in the form of plane wave. Under dipole approxi-

mation and rotating wave approximation, the coupling Hamiltonian between laser fields and

atoms is written as

Hl = −
∑
i,j,q

1

2
ℏΩj(ê

∗
q · ϵ̂j)ei(ωljt−kj ·ri)Si

q +H.c., (57)

where Ωj is the Rabi frequency of the j-th laser,

Ωj =
|p|Ej

ℏ
, (58)

Ej, ωlj, kj and ϵ̂j represent the magnitude, frequency, wave vector and polarization of the

j-th laser beam. Here we have assumed the laser fields are at coherent states so we can

treat them as classical electromagnetic waves. We put Hl into the unitary evolution term

of the master equation. Incorporating with the result of Sec. II.2, we give the final form of

the master equation here,

ρ̇a(t) =− i

ℏ
[Ha +Hd +Hl, ρa(t)]

− 1

16
Γ
∑
q,q′

((βq,q′(k0, r) + 4δqq′)(A
†
1,qA1,q′ρa(t) + ρa(t)A

†
1,qA1,q′ − 2A1,q′ρa(t)A

†
1,q)

+ (−βq,q′(k0, r) + 4δqq′)(A
†
2,qA2,q′ρa(t) + ρa(t)A

†
2,qA2,q′ − 2A2,q′ρa(t)A

†
2,q)), (59)

where Hd is the resonant dipole-dipole interaction Hamiltonian,

Hd =
1

16
ℏΓ

∑
q,q′

αq,q′(k0, r)(A
†
1,qA1,q′ − A†

2,qA2,q′). (60)

The definitions of α, β,A, k0 are the same as in Sec. II.1, but the definition of Si
q follows

Eq. (56).
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II.4. Quantum Trajectory Unrevealing and Recoil Effect

The master equation is a powerful tool to study atomic dynamics in laser field with posi-

tion of atoms fixed. However, it can not reveal recoil effect of spontaneous emission. In ad-

dition, time evolution computation of master equation is time-consuming. Thus, a quantum

trajectory unrevealing of the master equation is necessary. Quantum trajectory approach,

or so called MCWF method, is proved to be equivalent to master equation approach [13].

The basic idea of MCWF method is to generate a series of quantum trajectories. These

trajectories evolve according to a non-Hermitian Hamiltonian, accompanied by stochastic

quantum jumps.

According to MCWF method, we should find appropriate forms of the non-Hermitian

Hamiltonian and the quantum jump operators. The non-Hermitian Hamiltonian corre-

sponding to the master equation (59) is

Heff = Ha +Hd +Hl +Hdec, (61)

where Hdec is the damping term,

Hdec =− iℏΓ
16

∑
qq′

((βq,q′(k0, r) + 4δqq′)A
†
1,qA1,q′ + (−βq,q′(k0, r) + 4δqq′)A

†
2,qA2,q′). (62)

The choice of quantum jump operators is not unique. It depends on what problem we are

concerned. Since we are interested in the center-of-mass motion of atoms, it is important

to take into account of both direction and probability of recoil for quantum jump. For

single atom, the recoil effect has been discussed in [13]. The basic idea is to construct the

directed-detection jump operators (or so called source-field operators). These operators are

constructed according to the event of detection of photon in the far field at specific angle.

Recoil arises from the momentum translation term exp(−ik · ri) in these operators, where

ri is interpreted as atomic position operator.

In a two atom case, source-field operators can be constructed in a similar way. Carmichael

[14][15] has done this work for two-level atoms. Here we extend his result to include Zeeman

degeneracy. For simplicity we ignore hyperfine splitting here, but generalization to hyperfine

structure is straightforward, just as what we have done in Sec. II.2. We begin with calculation

of electromagnetic field generated by the atoms. In Heisenberg picture, if we consider only

the interaction between atoms and the vacuum modes, the equation of motion of annihilation

13



operator ak,σ is

ȧk,σ =
i

ℏ
[H, ak,σ]

=
i

ℏ
[Ha +Haf , ak,σ]

=− iωkak,σ − i
∑
q,i

κk,σ,q,iS
i
q, (63)

where κk,σ,q,i is

κk,σ,q,i = −pEk

ℏ
D1

q,σ(k̂)e
−ik·ri . (64)

Define ãk,σ, S̃
i
q as

ak,σ =ãk,σe
−iωkt (65)

Si
q =S̃

i
qe

−iω0t. (66)

The dynamics of ãk,σ is given by

˙̃ak,σ = −i
∑
q,i

κk,σ,q,iS̃
i
qe

−i(ωk−ω0)t. (67)

Integration of the above equation gives

ãk,σ(t) = ãk,σ(0)− i
∑
q,i

κk,σ,q,i

∫ t

0

dt′ S̃i
q(t

′)ei(ωk−ω0)t′ . (68)

Suppose the field is initially at vacuum state. We see the first term of Eq. (68) corresponds to

vacuum electromagnetic field. The second term of Eq. (68) corresponds to the field radiated

by the atoms, which is

E(+)
s (R, t) = −i

∑
k,σ,q,i

κk,σ,q,iEkϵ̂
∗
k,σe

i(k·R−ω0t)

∫ t

0

dt′ S̃i
q(t

′)ei(ωk−ω0)(t′−t). (69)

Choosing helicity polarization vectors and rearranging Eq. (69), we have

E(+)
s (R, t) =i

∑
k,σ,q,q′,i

pωk

2ϵ0V
D1

q,σ(k̂)D
1∗
q′,σ(k̂)ê

∗
q′e

i(k·(R−ri)−ω0t)

∫ t

0

dt′ S̃i
q(t

′)ei(ωk−ω0)(t′−t)

=i
∑

k,q,q′,i

pωk

2ϵ0V
ê∗
q′e

i(k·(R−ri)−ω0t)(δqq′ −D1
q,0(k̂)D

1∗
q′,0(k̂))

∫ t

0

dt′ S̃i
q(t

′)ei(ωk−ω0)(t′−t)

=
ip

16π3c3ϵ0

∑
q,q′,i

∫ ∞

0

dωk ω
3
k

∫
dΩkê

∗
q′e

i(k·Ri−ω0t)(δqq′ −D1
q,0(k̂)D

1∗
q′,0(k̂))

×
∫ t

0

dt′ S̃i
q(t

′)ei(ωk−ω0)(t′−t),

(70)
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where we have replaced (R−ri) with Ri. The integral over unit sphere in k-space is similar

to the integral we have dealt with in App. A. We give the result here,∫
dΩkê

∗
q′e

ik·Ri(δqq′ −D1
q,0(k̂)D

1∗
q′,0(k̂)) =

2π

3
βT
q,q′(k,Ri), (71)

Where βq,q′ is defined in Eq. (44). For the reason that only far field is concerned, we take

the limit Ri → ∞ and ignore the terms higher than R−1
i in Eq. (71), we have

β(k,Ri) → j0(kRi)γ(R̂i) =
sin (kRi)

kRi

γ(R̂i), (72)

where

γ(R̂i) =


4 + 2P2 (cos θRi

)
√
2e−iϕRiP 1

2 (cos θRi
) e−2iϕRiP 2

2 (cos θRi
)

√
2e−iϕRiP 1

2 (cos θRi
) 4− 4P2 (cos θRi

) −
√
2e−iϕRiP 1

2 (cos θRi
)

e−2iϕRiP 2
2 (cos θRi

) −
√
2e−iϕRiP 1

2 (cos θRi
) 4 + 2P2 (cos θRi

)

 . (73)

Eq. (70) becomes

E(+)
s (R, t) =

∑
q,q′,i

ipγTq,q′(R̂i)ê
∗
q′

24π2c2ϵ0Ri

∫ ∞

0

dωk ω
2
k sin (

ωk

c
Ri)e

−iω0t

∫ t

0

dt′ S̃i
q(t

′)ei(ωk−ω0)(t′−t). (74)

Now we focus on the integrals in Eq. (74), i.e.,∫ ∞

0

dωk ω
2
k sin (

ωk

c
Ri)e

−iω0t

∫ t

0

dt′ S̃i
q(t

′)ei(ωk−ω0)(t′−t). (75)

Under Markovian approximation, the system has no memory. Accordingly, the electromag-

netic field at time t and position R only depends on the state of atom at time (t − Ri/c),

where Ri/c comes from the retardation effect. Therefore we replace S̃i
q(t

′) in Eq. (75) with

S̃i
q(t−Ri/c),∫ ∞

0

dωk ω
2
k sin (

ωk

c
Ri)e

−iω0t

∫ t

0

dt′ S̃i
q(t

′)ei(ωk−ω0)(t′−t)

≈
∫ ∞

0

dωk ω
2
k sin (

ωk

c
Ri)e

−iω0tS̃i
q(t−

Ri

c
)

∫ t

0

dt′ ei(ωk−ω0)(t′−t)

≈
∫ ∞

0

dωk ω
2
k sin (

ωk

c
Ri)e

−iω0tS̃i
q(t−

Ri

c
)(πδ(ω0 − ωk) + iP (

1

ω0 − ωk

))

=e−iω0tS̃i
q(t−

Ri

c
)

∫ ∞

0

dωk ω
2
k sin (

ωk

c
Ri)(πδ(ω0 − ωk) + iP (

1

ω0 − ωk

))

≈e−iω0tS̃i
q(t−

Ri

c
)πω2

0(sin(k0Ri)− i cos(k0Ri)), (76)
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Where we have applied the results of Eq. (40) and App. B. Then Eq. (74) becomes

E(+)
s (R, t) =

∑
q,q′,i

pω2
0γ

T
q,q′(R̂i)ê

∗
q′

24πc2ϵ0Ri

S̃i
q(t−

Ri

c
)ei(k0Ri−ω0t)

=
∑
q,q′,i

pω2
0γ

T
q,q′(R̂i)ê

∗
q′

24πc2ϵ0Ri

Si
q(t−

Ri

c
)

=
∑
q′

ê∗
q′E

(+)
s,q′ (R, t), (77)

where

E
(+)
s,q′ (R, t) =

∑
q,i

pω2
0γ

T
q,q′(R̂i)

24πc2ϵ0Ri

Si
q(t−

Ri

c
) (78)

is the q′ component of electromagnetic field in spherical basis. Following the approximation

in [16] and assuming |r1 − r2| ≪ R, we have

E
(+)
s,q′ (R,

R

c
) ≈

∑
q,i

pω2
0γ

T
q,q′(R̂)

24πc2ϵ0R
Si
q(0)e

ik0(Ri−r)

≈
∑
q,i

pω2
0γ

T
q,q′(R̂)

24πc2ϵ0R
Si
q(0)e

−ik0R̂·ri . (79)

According to [14], we define the scaled source-field operators

Oq′(R̂) =

√
2ϵ0c

ℏω0

R2 sin θRdθRdϕRE
(+)
s,q′ (R,

R

c
)

=

√
2ϵ0c

ℏω0

sin θRdθRdϕR

∑
q,i

pω2
0γ

T
q,q′(R̂)

24πc2ϵ0
Si
qe

−ik0R̂·ri , (80)

where we have replace Si
q(0) with Schrödinger operator Si

q. The source-field operators satisfy

the super-operator identity∑
q

∫
Oq(R̂) ·O†

q(R̂) =
1

8
Γ
∑
q,q′

((βq,q′(k0, r)+4δqq′)(A1,q′ · A†
1,q)

+(−βq,q′(k0, r) + 4δqq′)(A2,q′ · A†
2,q)), (81)

which confirms that Oq(R̂) is a set of jump operators to unravel the master equation (59).

Notice

⟨ψ(t)|O†
q(R̂)Oq(R̂) |ψ(t)⟩ dt (82)
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is the photon detection probability at the solid angel (sin θRdθRdϕR) in the time interval

t→ t+dt with photon polarization q. Thus, Oq(R̂) can be interpreted as the back action of

photon detection upon the atomic wave function. Specifically, if we detect a photon in the

time interval t → t + dt with photon polarization q at the solid angel (sin θRdθRdϕR), the

back action of this observation upon the atoms is Oq(R̂) |ψ(t)⟩. Notice the term e−ik0R̂·ri

in Eq. (80). If we reinterpret the wave function |ψ(t)⟩ as a tensor product of the center-

of-mass motion wave function and the internal state wave function, the action of the term

e−ik0R̂·ri is actually recoil effect. However, Oq(R̂) is a sum over operators acting on two

atoms. The action of Oq(R̂) on |ψ(t)⟩ will generate entanglement between internal and

external states, which brings difficulty to our semi-classical simulation. We argue that the

entanglement decoherent rapidly compared to the atomic collision time interval (∼ 1 µs)

due to the randomness of atomic motion. We will handle quantum jump in simulation in

this way: if a quantum jump happens, act the corresponding jump operator Oq(R̂) on the

internal state wave function and choose one of the atoms randomly to give it momentum

−k0R̂.

II.5. Force Operator

As mentioned in Sec. I, we will treat the center-of-mass motion of atoms classically. Thus,

we use the Heisenberg-picture force operator

Fi = ṗi =
i

ℏ
[H,pi] = −∇riH (83)

to calculate the force exerted on the i-th atom,

fi(t) = ⟨Fi⟩ = −⟨ψ(t)|∇riH |ψ(t)⟩ . (84)

Because

H = Ha +Hd +Hl, (85)

we have included both dipole-dipole force and light force in Eq. (84).
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III. SIMULATION

III.1. D1 Molasses

In consideration of our experimental setup, we hope to achieve 3D complete optical

shielding in 39K D1 molasses. Our simulation is based on this motivation.

4𝑆𝑆1/2

4𝑃𝑃1/2
𝐹𝐹𝐹 = 1

𝐹𝐹𝐹 = 2

𝐹𝐹 = 1

𝐹𝐹 = 2

20 MHz

𝑓𝑓ℎ𝑔𝑔 = 461.7 MHz

𝑓𝑓ℎ𝑒𝑒 = 55.5 MHz

𝑓𝑓ℎ𝑔𝑔

Δ𝑆𝑆

𝜆𝜆 = 770 nm

FIG. 4: 39K D1 molasses scheme and the shielding laser. The cooling laser (in blue) is blue

detuned from the transition |F = 1⟩ → |F ′ = 2⟩ by 20MHz, and the repumping laser (in

red) is blue detuned from the transition |F = 2⟩ → |F ′ = 2⟩ by 20MHz. The shielding laser

(in green) is blue detuned from the transition |F = 1⟩ → |F ′ = 2⟩ by ωhg +∆S.

A typical 39K D1 molasses scheme is shown in Fig. 4. Two sidebands of D1 lasers have

frequency difference equal to ωhg and are both blue detuned by 20MHz. The D1 molasses

lasers are shone from six directions (±x,±y,±z). Each beam is circular polarized. Counter-

propagating beams have opposite polarizations. The saturation parameters of cooling and

repumping lasers are set to 10 and 2. Our plan is to add blue detuned shielding beams in

addition to the D1 molasses beams to shield atoms.
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III.2. Dressed Ground States Potential

Before we start to do dynamical simulation, we need some indications about how to

select parameters for the shielding beams. Therefore, we calculate the energy spectrum of

the dressed two atom ground states in monochromatic laser fields. This calculation will show

us the effects of shielding beams or D1 molasses beams on ground state molecular potential

between atoms.

Since laser fields are monochromatic, a rotating wave transformation can remove the

time-dependence of the Hermitian part of the Hamiltonian H = Ha +Hd +Hl. H has the

dependence of atomic position r1, r2. We calculate the eigenvalues of H at different atomic

position, and the projection of each eigenstates on ground states. Then we pick out 64

eigenstates with the largest projection on ground states and plot the eigenvalues of these

states versus atomic distance r (64 because 39K has 8 ground).

We first plot the energy spectrum in the effect of the repumping lasers. We find the

repumping lasers couple the ground state |F = 1⟩1 ⊗ |F = 1⟩2 with the attractive molecular

potential. Consequently, the coupling opens an attractive gap at r = 0.026 µm, as shown in

Fig. 5.

FIG. 5: Energy spectrum of |F = 1,M⟩1 ⊗ |F = 1,M⟩2 with repumping lasers dressing.

Atoms are displaced in y direction.
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To compensate the effect of these repulsive potential generated by the repumping lasers,

we properly tune the frequency of shielding laser to open a repulsive gap for the dressed

|F = 1,M⟩1 ⊗ |F = 1,M⟩2 state at r > 0.026µm. We find it is appropriate to blue detune

the shielding laser to the |F = 1⟩ → |F ′ = 2⟩ transition by ωhg +∆S, as shown in Fig. 4. In

this frequency, the shielding laser will not interfere the D1 cooling process since its detuning

is larger than about 500 MHz. In addition, it will couple the |F = 1,M⟩1 ⊗ |F = 1,M⟩2
state with the repulsive molecular state corresponding to |F = 2,M⟩⊗|F ′ = 2,M⟩. Besides,

we find that circular polarization opens larger gap than linear polarization. So we adopt

circular polarization for shielding lasers. Based on classical intuition, we set the directions

of shielding beams as (+x,+y) in order to achieve 3D shielding effect. As shown in Fig 6,

the shielding lasers open a gap at r = 0.032µm for both atomic configurations, for which we

postulate that this shielding laser configuration can shield atoms from attracting each other

in different directions.

FIG. 6: Energy spectrum of |F = 1,M⟩1 ⊗ |F = 1,M⟩2 with shileding lasers dressing.

Left: atoms are displaced in y direction. Right: atoms are displaced in z direction.

Detuning is chosen as ∆S = 0.5ωhg. Saturation parameter is 35 for each beam.

III.3. Aspects of The Simulation Method

To testify our postulation in Sec. III.2, we carry out dynamical simulation. Based on

MCWF method, a statistical way of study is applied, i.e., we repeatedly simulate the dy-

namics of atoms for many trials in certain conditions and compare statistical results of

simulation in different conditions. Bellow are our simulation steps.
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Firstly we set up initial condition. The initial wave function |ψ⟩i is set as a tensor product

of two randomly chosen ground states. The relative direction of atoms and initial positions

are set randomly with the initial atomic distance r0 fixed for the convenience of comparison.

The center-of-mass velocity of two atoms is set to be zero. The magnitude of initial relative

velocity v0 is fixed. The two atoms are set to move towards each other initially. Besides, we

discretize the space into about 100 solid angles in order to calculate the source-field jump

operators Oq(R̂).

During simulation, the wave function |ψ(t)⟩ evolves with Heff when no quantum jump

happens. The nuclear motion of atoms are subjected to the force fi(t) under Newton’s laws.

During each time step, a random number between 0 and 1 is generated and the norm of

|ψ(t)⟩ is compared to this number. If the norm is larger than the number then a quantum

jump is carried out in this step, otherwise no jump happens in the step. In any case |ψ(t)⟩ is

renormalized in the end of each time step. If a quantum jump happens, the expectation value

⟨ψ(t)|O†
q(R̂)Oq(R̂) |ψ(t)⟩ is calculated for each solid angle. One angle is chosen weighted-

randomly according to the expectation values. Then we act the corresponding jump operator

Oq(R̂) on |ψ(t)⟩ and randomly chose one atom to give it the back action momentum −k0R̂.

If the atomic distance is below a criterion rc or the atomic velocity is larger than a

criterion vc, the simulation will cease and this trial will be marked as failed. Otherwise, if

the atomic distance returns back to r0, the simulation will stop and this trial will be marked

as succeed.

The simulation parameters are listed bellow in Tab. I. Notice that we choose time step

dt according to the largest frequency in the Hamiltonian, i.e., 2ωhg.

III.4. Results

We scan both frequency and intensity of the shielding lasers. For each condition, 100

trails are carried out. The success rate (the probability atoms repulse each other) is a

TABLE I: Simulation parameters

r0/µm v0/m · s−1 rc/µm vc/m · s−1 dt/µs

0.1 0.1 2.33 0.01 5.4× 10−5
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proper measure of shielding effect. We compare the success rates in different conditions, as

shown in Fig 7, 8.
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FIG. 7: Success rate in different ∆S. Saturation parameter is fixed to 35
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FIG. 8: Success rate in different s. ∆S is fixed to 0.1ωhg

Notice in Fig 7, the success rate has a dip when ∆S < 0, which is reasonable since red

detuning laser couples the ground state to attractive potential. The shielding effect reaches
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optimum at ∆S = 100 MHz and decreases as frequency increases. In Fig. 8, we find the

shielding effect stays good when s > 40.

IV. EXPERIMENTAL VERIFICATION

Ultimately, we will test our theory experimentally in degenerate atomic gas and conduct

non-demolishing detection of two atoms. Before that, a test of the theory in dipole trap is

necessary and easier to conduct. Cold atoms in dipole trap will escape from the trap due

to cold collision, and population of atoms in dipole trap will decay exponentially. A typical

way to measure the shielding effect is to measure the rate of population decay [2], because

optical shielding can avoid cold collision and diminish the rate of decay. We plan to conduct

such an experiment. Specifically, we will shine shielding lasers on a 39K D1 molasses in

dipole trap. We will measure the rate of decay with different laser parameters and different

laser configurations. The population of atom sample will be measured by absorption image

or fluorescence.

V. DISCUSSION AND CONCLUSIONS

Appendix A: Integral Over Unit Sphere in k-space

In this appendix we give the deduction for Eq. (39). Firstly we focus on I11q,q′(k), i.e.

I11q,q′(k) =
∑
σ=±1

∫
dΩk X

∗
1,q,σ,kX1,q′,σ,k

=
∑
σ=±1

∫
dΩk D

1∗
q,σ(k̂)D

1
q′,σ(k̂) cos

2 (k · r/2). (A1)

Expressing the Wigner D-matrixD1
q,σ(k̂) in Euler angles form and applying the orthogonality

of D1
q,σ(k̂), we have

∑
σ=±1

D1∗
q,σ(k̂)D

1
q′,σ(k̂) =

∑
σ=±1

D1∗
q,σ(ϕk, θk, 0)D

1
q′,σ(ϕk, θk, 0)

= δq,q′ −D1∗
q,0(ϕk, θk, 0)D

1
q′,0(ϕk, θk, 0), (A2)
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where ϕk, θk are azimuthal and polar angles in k-space. According to plane wave expansion,

cos2(k · r/2) = 1

2
(1 + cos(k · r)) = 1

2
+ 2πRe(

∞∑
l=0

m=l∑
m=−l

iljl(kr)Y
m∗
l (θk, ϕk)Y

m
l (θr, ϕr)),

(A3)

where Re means taking the real part. According to the relation between Wigner D-matrix

and spherical harmonics Y m
l (θ, ϕ):

Y m
l (θ, ϕ) =

√
2l + 1

4π
Dl∗

m,0(ϕ, θ, 0), (A4)

we rewrite Eq. (A1) as

I11q,q′(k) =
1

2

∫
dΩk (δq,q′ −

4π

3
Y q
1 (θk, ϕk)Y

q∗
1 (θk, ϕk))

× (1 + 4πRe(
∞∑
l=0

m=l∑
m=−l

iljl(kr)Y
m∗
l (θk, ϕk)Y

m
l (θr, ϕr))). (A5)

The integral over the unit sphere in k-space can be done by applying the formula∫
dΩ Y m3∗

l3
Y m1
l1
Y m2
l2

=

√
(2l1 + 1)(2l2 + 1)

4π(2l3 + 1)
⟨l3,m3|l1, l2,m1,m2⟩⟨l1, l2, 0, 0|l3, 0⟩, (A6)

which indicates only the terms with l = 0 or 2 survive in the summation of Eq. A5. The

final result is given in Eq. 41.

The deduction for I22q,q′ is similar. The only difference is a change of sign. I12q,q′ and I
21
q,q′

give zeros because

sin(k · r/2) cos(k · r/2) = 1

2
sin(k · r) = 2πIm(

∞∑
l=0

m=l∑
m=−l

iljl(kr)Y
m∗
l (θk, ϕk)Y

m
l (θr, ϕr)),

(A7)

and taking imaginary part gives odd l.

Appendix B: k-Integral

The integrals we need to calculate takes the form∫ ∞

0

dωk (
ωk

ω0

)3P (
1

ω0 − ωk

)jl(
ωk

c
r). (B1)
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According to [17], if we change the lower limit in the integral to −∞ and use counter

integration, we have ∫ ∞

−∞
dωk (

ωk

ω0

)3P (
1

ω0 − ωk

)j0(
ωk

c
r) =πn0(k0r) (B2)∫ ∞

−∞
dωk (

ωk

ω0

)3P (
1

ω0 − ωk

)j2(
ωk

c
r) =πn2(k0r), (B3)

which gives the result in Eq. 47.
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