Homework Assignment1 (for Astronomy Candidate)

Jiachen Jiang

Department of Physics, Fudan University, Shanghai and

jcjiang12@fudan.edu.cn

(Dated: June 28, 2016)

0. PRE-UP

Initilization

Please do following steps by typing commands.

- 1. to initialize lmod
- > xspec

 $xspec > lmod\ relxill$.

2. to go to your working directory

 $xspec > cd\ your/working/directory/$

3. load model iron line

 $xspec > model\ relline$

You may need to pick up some other useful commands for copying, pasting files, making directory etc. Please refer to following short guide.

http://mally.stanford.edu/sr/computing/basic-unix.html

1. COMPILE YOUR CODES

Load model *RELLINE* as above with default model parameters. Using your favorite plotting tool to plot following two pictures.

plot 1.1

3 lines $a_* = 0$, i = 10, 30, 70 deg

plot 1.2

11 lines $a_* = 0.0, 0.2, 0.5, 0.8, 0.9, 0.99, i = 30 deg$

Hint 1.1:

1. to change parameter

xspec > newpar [parameter number]

- > [double] [double]
- 2. to open a plotting window
- xspec > cpd / xs
- 3. to output data

 $xspec > iplot\ model$

PLT > wdata [filename]

4. open plotting window /xs

xspec > cpd / xs

5. to plot model

 $xspec > plot \ model$

2. SPECTRUM OUTPUT AND EMISSIVITY INDEX

Read Chap 2.1, 2.2, 2.4 in T. Dauser(2013) and following page. http://www.sternwarte.uni-erlangen.de/dauser/research/relline/

2.1 Emissivity index

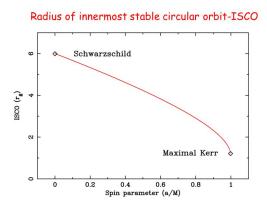
Find out which variable in RELLINE is this so called emissivity index in T. Dauser (2013). Redefine it as a broke powerlaw, replot 1.1 with q1 = 10, $r_{break} = 9m$ and explain why when r is very large, the emissivity q = 3.

Hint 2.1.1

Broke powerlaw index is defined as

$$q = \begin{cases} q1, & r < r_{break} \\ 3, & r > r_{break} \end{cases}$$
 (1)

Hint 2.1.2


when r is very large, the spacetime is approximated as flat.

3. $\mathbf{K}\alpha$ IRON LINE

3.1 Innermost stable circular orbit(ISCO)

- 1. Please refer to the top panel of FIG.1.
- 2. Explain the difference among different models with different spin parameters.

Hint 3.1

Assumption: measurements of $r_{\text{\tiny ISCO}}$ determine (or constrain) a

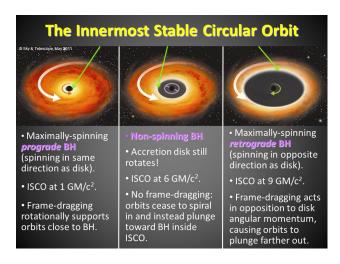


FIG. 1. ISCO vs. spin

3.2 Viewing angle

1. Recall the X-ray emission line you detected in your lab course. Scratch an iron line from a static source in your reference frame.

Refer to http://phylab.fudan.edu.cn/doku.php?id=exp:xray

- 2. When the source is moving fast enough in flat spacetime, what the emission line should look like? Scratch an iron line from this source.
- 3. When the source is moving fast near black hole, what the emission line should look like? Compare your results with plot 1.1 and try to explain the difference.