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Introduction

Fourier Transforms
I Fourier series
I Fourier integral

Orthodox statistics
I Probability distributions
I Moments, moment-generating function and central limit

theorem
I χ2 distribution and student's t distribution
I Robust estimation
I Propagation of errors

Stochastic process and noise
I Stochastic process and stationary process
I Spectral density of Poisson random process and Gaussian

random process
I Filtering
I Photon and thermal noise in black body radiation
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Orthogonal basis functions

∫ 1/2

−1/2
cos2πnxsin2πnxdx = 0 (1)

∫ 1/2

−1/2
cos2πmxcos2πnxdx =

1

2
δmn (2)

∫ 1/2

−1/2
sin2πmxsin2πnxdx =

1

2
δmn (3)

Series expansion f(x) in the range [-0.5:0.5]

f (x) =
a0

2
+
∞∑
1

(ancos2πnx + bnsin2πnx) (4)
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Fourier series

f (x) =
a0

2
+
∞∑
1

(ancos2πnx + bnsin2πnx) (5)

an = 2

∫ 1/2

−1/2
f (x)cos2πnxdx (6)

an = 2

∫ 1/2

−1/2
f (x)sin2πnxdx (7)
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Extended fourier series

f (x) =
a0

2
+
∞∑
1

(ancos2πnx/L + bnsin2πnx/L) (8)

an = 2

∫ L/2

−L/2
f (x)cos2πnx/Ldx (9)

an = 2

∫ L/2

−L/2
f (x)sin2πnx/Ldx (10)

In complex form

f (x) =
∞∑
−∞

ãne
i2πnx/L (11)

ãn =
1

2

∫ ∞
−∞

f (x)e−2πnx/Ldx (12)
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Show me an example

f (x) =
|x |
x

(13)

where 0 < |x | < π

f (x) =
4

π
(sinx +

sin3x

3
+

sin5x

5
+ ...) (14)

Hey,

Show me the picture on the board!
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Fourier integrals

L→∞
f (x) =

∫ ∞
−∞

F (x)e i2πsxds (15)

F (s) =

∫ ∞
−∞

f (x)e−i2πsxdx (16)

Points o�

Coe�cients are di�erent in di�erent �elds.
Jiachen: de�ne −i transform as the forward transform and +i as
the reverse transform
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Properties of fourier integrals

1. Symmetry properties

2. Scalar multiplication

−−−→
af (x) = a

−−→
f (x) (17)

−−−−−−−−−→
af (x) + bg(x) = a

−−→
f (x) + b

−−→
g(x) (18)
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Dirac delta function

f (x) =

∫ ∞
−∞

dse i2πsx
∫ ∞
−∞

f (x ′)e−i2πsx
′
dx ′ (19)

=

∫ ∞
−∞

dx ′f (x ′)[

∫ ∞
−∞

e i2πs(x−x ′)ds] (20)∫∞
−∞ e i2πs(x−x ′)ds = 0 when x 6= x ′

A conventional de�nition of the Dirac delta function is δ(x) = 0 for
x 6= 0 and yet the delta function integrates to unity∫ ∞

−∞
δ(x)dx = 1 (21)

where

δ(x) =

∫ ∞
−∞

e i2πsxds (22)
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Parseval's theorem and a power spectrum

Parseval's theorem

∫ ∞
−∞
|f (t)|2 =

∫ ∞
−∞

dt

∫ ∞
−∞

F (ν)e i2πνtdν

∫ ∞
−∞

F ∗(ν ′)e−2iπν
′tdν ′

(23)

=

∫ ∞
−∞

dνF (ν)F ∗ (ν) =

∫ ∞
−∞
|F (ν)|2dν (24)∫∞

−∞ |f (t)|2 in the time domain equals
∫∞
−∞ |F (ν)|2dν in the

frequency domain. And the |F (ν)|2 is the power spectrum in the
frequency domain.
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Power specturm

Exponentially decaying oscillator

f (t) = e−Γt/2sin2πν0t (25)

F (ν) =

∫ ∞
−∞

f (t)e−2iπνt =

∫ ∞
−∞

e−Γt/2e−2iπνtsin2πν0t (26)

=
1

2
(

1

2πν + 2πν0 − iΓ/2
− 1

2πν − 2πν0 − iΓ/2
) (27)

Only keep the positive frequencies near ν0 and with small damping
(Γ << 2πν0)

|F (ν)|2 ≈ 1

4

1

(2πν − 2πν0)2 + (Γ/2)2
(28)

Hey,

Show me the picture on the board!
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Power spectrum

The power is proportional to |f (t)|2 and according to Parseval's
theorem to |F (ω)|2
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Properties of Fourier transform

1. A narrow function in the time domain coreesponds to a broad
function in the spectral domain, and vice versa.
2. And additional scaling in amplitude is required with similarity
properties.
3. Translation in the time domain corresponds to a phase winding,
and vice versa.
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Properties of Fourier transform
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Convolution

The convolution of two functions are de�ned as

g(x) =

∫ ∞
−∞

f1(u)f2(x − u)du (29)

g = f1 ∗ f2 (30)

Properties
f ∗ g = g ∗ f (31)

f ∗ (g + h) = f ∗ g + f ∗ h (32)

f1(x) ∗ f2(x)↔ F1(s)F2(s) (33)

f1(x)f2(x)↔ F1(s) ∗ F2(s) (34)
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Autocorrelation and Wiener-Khinchin theorem

Cross correlation of two functions are de�ned as

g(x) =

∫ ∞
−∞

f1(u)f2(x + u)du (35)

g(x) = f1(x) ? f2(x) (36)

Hey,

Show me an di�erence from the convolution on the board!
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Autocorrelation and Wiener-Khinchin theorem

Cross correlations are not commutative
However,

f1(x) ? f2(x)↔ F ∗1 (s)F2(s) (37)

Particular, the autocorrelation is

f (x) ? f (x)↔ |F (s)|2 (38)

which peaks at s = 0.
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Common functions and Fourier pairs

I Boxcar Π (|x | < 1/2) ↔ δ(s)

I Triangle Λ (|x | < 1) ↔ sinc2(s)

I Step function H (x > 0) ↔ 1/2δ(s)− i/(2πs)

I Even impulse pair II ( δ(x+1/2)+δ(x−1/2)
2

) cosπx

I Odd impulse pair II ( δ(x+1/2)−δ(x−1/2)
2

) sinπx

I Shah
∑
δ(x − n) Shah(s)
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Aliasind and Shannon's sampling theorem

Most common method to measure a continuous function is at
regular intervals ∆t

G (ν) = F (ν) ∗ shah(ν∆t) (39)

If (∆t)−1 < 2νmax , replicas overlap and information is lost, which
is known as the aliasing.
If (∆t)−1 > 2νmax , there is no loss.
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2.1 Probability distributions

Get me prepared,
Both discrete and continuous random variables may be correlated
with probability distributions.∑

i
Pi (xi ) = 1 (40)
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2.1 Probability distributions

If xi are real valued, a cumulative or integral probability P(x) can
be de�ned as

P(x) =

xi<x∑
i

pi (41)

and the derivative of the function is the probability density

p(x) =
dP(x)

dx
(42)

I For a discrete random variable, p(x) consists of a set of delta
functions

p(x) =
∑

j
piδ(x − xj) (43)

I The quantity p(x)dx (p(x)) corresponds to of having an event
within the integral dx at x .

Jiachen Jiang Statistical Analysis



Introduction Fourier transform Orthodox statistic Moments Stochastic process and noise Conclusion

2.1 Probability distributions

Binomial distribution
The number of combinations of n things taken k at a time

C k
n =

n!

k!(n − k)!
(44)

Let's �ip a coin, which has 50/50 chance of coming up heads, there
is a total of 2n possible outcomes. The probability of obtaining k
heads is

pk = C k
n

1

2n
(= C k

n f
k(1− f )k) (45)
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2.1 Probability distributions

Poisson distribution
Extend the concept of probability to MULTIPLE and DISCRETE
outcomes by taking a limiting case. n→∞ while f → 0 in a wa
that nf = a. Then,

lim
n→+∞

C k
n = lim

n→+∞

n!

k!(n − k)!
=

nk

k!
(46)

lim
n→+∞

(1− f )n−k = lim
n→+∞

(1− f )n = lim
n→+∞

(1− f )a/f = e−a (47)

In terms of probability density,

p(k) = e−a
∞∑
k=0

ak

k!
δ(x − k) (48)

The cumulative probability distribution function for the Poisson
case is related to the incomplete gamma function.
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2.1 Probability distribution

radioactive decay at the average rate r

Figure: Subdivide the time from 0 to t into narrow bins with width
of ∆t in order that no two pulses are in the same bin.One expects to
see a = rt events. (Credit: E. C. Sutton)

The probability of k events is

p(k) = e−a
ak

k!
(49)
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Poisson noise in image

Figure: Poisson noise with di�erent mean a= 1, 5, 99
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2.1 Probability distribution

Gaussian (normal) distribution
n→∞ but with �nite f so that nf →∞. The probability will peak
near k = nf →∞. Stirling's formula,

n! ≈
√
2πn(

n

e
)n(1 +

1

12n
+ ...) (50)

pk = C k
n f

k(1−f )n−k ≈ 1√
2πn

(
k

n
)−k−

1
2 (
n − k

n
)−n+k+ 1

2 f k(1−f )n−k

(51)
Consider at small deviations ε around nf , let k = nf + ε where
ε << nf ,

pk ≈
1√
2πn

1√
f (1− f )

exp[− ε2

2nf (1− f )
] (52)
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2.1 Probability distribution

Conventional form σ2 = nf (1− f ) and a mean value µ and pass
from the discrete to the continuous,

p(x) =
1√
2πσ

e−(x−µ)2/2σ2 (53)

Cumulative probability

P(x) =

∫ x

−∞
p(k)dk =

1

2
[1 + erf (

x − µ√
2σ

)] (54)

where the error function is de�ned as

erf (x) =
2√
π

∫ x

0

e−t
2

dt (55)
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2.1 Probability distributions

Figure: Probability density of Gaussian distributions for di�erent µ and
σ.
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Gaussian noise in image

Figure: Gaussian noise with zero mean and di�erent deviation
σ = 0.5, 1, 5.
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2.2.1 Moments of a distribution

Known distribution p(x)

0th order

The law of probability distributions

1 =

∫ +∞

−∞
p(x)dx (56)

1st order

The mean of the distribution is

µ =< x >=

∫ +∞

−∞
xp(x)dx (57)
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2nd order

The variance of the distribution is

σ2 =

∫ +∞

−∞
(x − µ)2p(x)dx (58)

I The normal distribution is a two independent parameter
distribution with a mean µ and a standard deviation σ.

I The Poisson distribution is a one parameter distribution
with a mean µ = a and a standard deviation σ =

√
a.

CAUSE SOME PROBLEM → Student's t distribution

higher order

Higher orders are no longer robust indicators. (Don't hurry! We
will talk about it in minutes!)
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2.2.2 Moment-generating function

Let's do Fourier transform!

φ(k) =

∫ +∞

−∞
p(x)e ikxdx (59)

=

∫ +∞

−∞
p(x)[1 + ikx − 1

2
k2x2 − i

3!
k3x3 + ...]dx (60)

= i + ik < x > +
(ik)2

2!
< x2 > +

(ik)3

3!
< x3 > +... (61)

φ(k) generates the moments of the distribution, known as the
moment-generating function.
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2.2.2 Moment-generating function

Normal distribution

φ(k) =

∫ +∞

−∞

1√
2πσ

e−(x−µ)2/2σ2e ikxdx (62)

Gaussian's Fourier transform is still a Gaussian multiplied by a
complex factor.

f (x + y) = x + y

φz(k) =

∫ ∫
e ik(x+y)p(x)dxp(y)dy = φx(k)φy (k) (63)

Moment-generating function of the sum of two independent ran-
dom variables is the product of their individual functions.
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2.2.3 Central limit theorem

Consider a random variable x with a probability density p(x), mean
µ, variance σ2x and unspeci�ed higher moments.

φx−µx (k) =

∫
e ik(x−µx )p(x)dx (64)

Zero mean?!
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2.2.3 Central limit theorem

n measurements of x and form the sum and average, from the
transform of f (x + y) = x + y

a =
s

n
=

x1 + x2 + ...

n
(65)

φa−µx (k) = [φx−µx (
k

n
)]n = [1− 1

2

k2σ2x
n2

+ O(
k3

n3
)]n (66)

When n→∞
φa−µx (k) = e−k

2σ2x/2n (67)

p(a) =

√
n√

2πσx
e−n(a−µx )2/2σ2x (68)

This is normal distribution with mean µa = µx and a standard
deviation σa = σx/

√
n, no matter the initial distribution p(x).

Jiachen Jiang Statistical Analysis



Introduction Fourier transform Orthodox statistic Moments Stochastic process and noise Conclusion

2.2.3 Central limit theorem

Rainfall

Figure: Left panel: 0.74 days in 1995 Urbana, Illinois had less than
0.1 inches of rain. Six days had more than 1.5 inches. Right panel:
Monthly rainfall statistics for 25 years (1984-2008) is �t using
Gaussian shown in a dashed line. (Credit: E. C. Sutton)
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2.2.3 Central limit theorem

I Well-de�ned mean and standard deviation

I Whenever you add or average large numbers of data, the sum
or average of measurement approaches a normal distribution.
The width gets narrower with variance reduced by n and the
standard deviation reduced by

√
n.

I It only works for random errors but not systematic errors,
generated by some speci�ed physics process. And other
mathematical operators such as power, exponentiation or even
multitude doesn't work.
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2.3.1 χ2 distribution

Consider a variable x is described by a probability distribution p(x)
with known µ and σ. We make n measurements of x. De�ne a
quantity known as

χ2 =
n∑

i=1

(
xi − µ
σ

)2 (69)

to how well this set of data is described by a normal distribution.
Also de�ned reduced χ2 as

χ2υ =
χ2

υ
(70)

where υ = n −m and m is the number of degree.
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2.3.1 χ2 distribution

If we assume p(x) is a Gaussian, we can calculate the probability
density of χ2

pnχ
2 =

1

2n/2Γ(n/2)
(χ2)n/2−1e−χ

2/2 (71)

The expectation value of χ2 is the mean of the distribution

< χ2 >= n (72)

m=2 if the mean and the standard deviation are derived from the
data instead od being assumed a priori. Then

< χ2υ >=
< χ2 >

υ
=
υ

υ
= 1 (73)

and the variance
σ2(χ2) = 2υ (74)
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Figure: Values of χ2υ for which the probability of χ2υ exceeding that
probability at the top of each column.
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χ2 distribution

χ2 is also used to �t a function to a set of data. Consider
independent variable xi to be error free and variable yi to have
uncertainties σi .

χ2 =
n∑

i=1

(
f (xi )− yi

σ
)2 (75)

The functional parameters are chosen to minimize χ2.

Jiachen Jiang Statistical Analysis



Introduction Fourier transform Orthodox statistic Moments Stochastic process and noise Conclusion

χ2 distribution

Linear �tting

S = Σ
(Nj − αN ′j )2

σ
(76)

α is used to minimize Lr .

α =
ΣN ′jNj

Σ
(N′

j
)2

σ

(77)
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χ2 distribution

Figure: Values of χ2 for which the probability of χ2 exceeding that
probability at the top of wach column.

Large χ2 value probably means the incorrect choice of the func-
tion.
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Wait a minute!

More generally, we have variable xi described by probability density
p(x) with unknown moments µ and σ.

If we know, why we need to measure it...

Do n measurements xi , i = 1, 2, 3...n. Then, Best estimate of mean

µ is x̄ =

∑
n
xi

n
, which we call sample mean. Best estimate is

variance σ2 is s2 =

∑
n

(xi−x̄)2

n−1 , which we can sample variance.

A set of measurement2, 3, 4

Sample mean: x̄ =

∑
n
xi

n
= 3. Sample variance: s2 =

∑
n

(xi−x̄)2

n−1 =
1 What is the probability that the mean of this distribution µ > 4?
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∫ +∞

4

e−(x−3)2/2s2

√
2πs

dx = 0.159 (78)

∫ +∞

4

√
3× e−3×(x−3)2/2s2

√
2πs

dx = 0.159 (79)

WRONG!
Cause s is the only estimate of σ.
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Student's t distribution

t =
x̄ − µ
x/
√
n

(80)

p(t, υ) =
Γ(υ+1

2
)

√
υπΓυ/2

(1 +
t2

υ
)−(υ+1)/2 (81)
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2.4 Robust estimation

What about the sample mean x̄? Is it the best estimator of the
central moment µ? It is the best if we assume the probability
distribution is a Gaussian. (minimum χ2). However it is NOT when
there are large �uctuations. Errors which are not Gaussian
distributed are called "outliers".

Figure: An outlier may greatly a�ect the average. Credit: E. C. Sutton
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2.4 Robust estimation

 0

 0.005

 0.01

 0  0.005  0.01

N
' jk

Njk

Figure: If there are large �uctuations, it will lead to improper functional
parameter by minimizing χ2. Left panel: Straight line �ts with or without
outlier. Right panel: Linear �tting with large group of data.

We need a penalty function, which re�ects the outliers' probability.
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2.4 Robust estimation

Possible choices are ∑
i

|xi − x̄

σi
| (82)

∑
i

log(1 +
1

2
(
xi − x̄

σi
)2) (83)
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2.5 Propagation of errors

x=f(u,v...)

σ2x = σ2u(
∂x

∂u
)2 + σ2v (

∂x

∂v
)2 + 2× σ2uv (

∂x

∂u
)(
∂x

∂v
) (84)

If u and v are uncorrelated, cross term vanishes.

σ2x = σ2u(
∂x

∂u
)2 + σ2v (

∂x

∂v
)2 (85)

Show me examples

I x=au+bv
σ2x = a2σ2u + b2σ2v (86)

I x=auv
σ2x/x

2 = σ2u/u
2 + σ2v/v

2 (87)
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3.1 Stochastic process

Time-dependent random variable x(ε, t), where ε is the possible
realization of x .

We cannot assign p(ε) or p(ε)dε!

Instead, for a �xed time t, we have p(x , t)
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3.1.1 Stochastic process

Get me prepared The ensemble mean (mean over the ensemble ε)

η(t) = Ex(t) =

∫ +∞

−∞
x(ε, t)p(x , t)dx (88)

The ensemble variance

σ2(t) = E (x(t))2 − (Ex(t))2 =

∫ +∞

−∞
[x(ε, t)]2p(x , t)dx − (η(t))2

(89)
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The autocorrealton

R(t1, t2) = Ex(t1), x(t2) =

∫ ∫ +∞

−∞
x1x2p(x1, x2, t1, t2)dx1dx2

(90)
The autocovariance

C (t1, t2) = E [x(t1)− η1][x(t2)− η2] (91)

=

∫ ∫ +∞

−∞
(x1 − η1)(x2 − η2)p(x1, x2, t1, t2)dx1dx2 (92)

= R(t1, t2)− η(t1)η(t2) (93)

σ2(t) = C (t, t) = R(t, t)− η2(t) (94)
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3.1.2 Stationary Process p(x)

R(t1, t2) = R(τ) (95)

Even function!
R(0) corresponds the average power of the process;
C(t,t) corresponds the covariance.
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3.2 Poisson random process

Recall the realization of Poisson process
τ > 0

R(τ) = c1 (96)

τ = 0
R(τ) = c1 + c2δ(τ) (97)
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3.2 Poisson random process

Autocorrelation of poisson random process to be taken in the limit
δt → 0
SHOW ME AN EXAMPLE!

R(t1, t2) =

∫ ∫ +∞

−∞
x1x2p(x1, x2, t1, t2)dx1dx2 (98)

τ > 0
R = ΣΣ(∆t)−1(∆t)−1(r∆t)2 = r2 (99)

τ = 0
R = ΣΣ(∆t)−1(∆t)−1(r∆t) = r(∆t)−1 (100)

Finally in the limit of ∆t → 0,

R(τ) = r2 + rδ(τ) (101)

S(ν) = r2δν + r (102)
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White noise

S(ν) = r2δν + r (103)

The spectrum of a Poisson random noise (short noise) is white
(�at) except ν = 0.
Cosmic noise...

Help focus? Yes it does to me!
Help sleep? Yes it does to me!
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Filtering

Let's skip something!

y(f ) = x(f )h(f ) (104)

For example,
low pass �lter h(f ) = Π( f

2fc
)
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Noise

Blackbody radiation intensity

Iν =
2hν3

c2(ehν/kT − 1)
(105)

dE = IνdAdtdΩdν (106)
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Noise

Consider etendue of AΩ = λ2 and a single polarization equivalent
to considering a single mode, the mean power is

< P(ν) >=
hν

ehν/kT − 1
(107)

,energy per photon times the photon occupation number.

< [P(ν)− < P(ν) >]2 >=< P > hν[1 +
1

ehν/kT − 1
] (108)
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Noise

Photon noise hν >> kT

< ∆P2 >=< p > hν (109)

�uctuation
< ∆n2 >=< n > (110)

Thermal noise hν << kT

< ∆P2 >=< p > kT =< p >2 (111)

�uctuation
< ∆n2 >=< n >2 (112)
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The blackbody power spectral (power per mode) of thermal noise is
P(ν) ≈ kT In real life, an RC �lter

h(ν) =
1

1 + ( ννc )2
(113)

σ2 = kTπνc (114)

Johnson noise...
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Thank you!
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