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ABSTRACT
Brain fog, also known as confusion, is one of the main reasons
for low performance in the learning process or any kind of daily
task that involves and requires thinking. Detecting confusion in a
human’s mind in real time is a challenging and important task that
can be applied to online education, driver fatigue detection and so
on. In this paper, we apply Bidirectional LSTM Recurrent Neural
Networks to classify students’ confusion in watching online course
videos from EEG data. �e results show that Bidirectional LSTM
model achieves the state-of-the-art performance compared with
other machine learning approaches, and shows strong robustness
as evaluated by cross-validation. We can predict whether or not
a student is confused in the accuracy of 73.3%. Furthermore, we
�nd the most important feature to detecting the brain confusion is
the gamma 1 wave of EEG signal. Our results suggest that machine
learning is a potentially powerful tool to model and understand
brain activity.
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1 INTRODUCTION
1.1 Motivation
Brain fog is a constellation of symptoms that include reduced men-
tal acuity and cognition, inability to concentrate and multitask, and
loss of short-term and long-term memory. It is well distributed
among not only patients with brain diseases but also healthy peo-
ple [1]. Brain confusion, which is one of the symptoms of brain
fog, can reduce people’s concentration and cognition. Detecting
and preventing brain confusion is very important and has many
bene�ts. When a driver is confused, his/her cognition is reduced.
�is is very dangerous and can cause serious consequences. An-
other example is Massive Open Online Course (MOOC), which is
an online course aiming at unlimited participation and open access
via the web. Although there are several MOOC websites, the format
still has shortcoming compared with traditional classes. Valerie et
al. [2] showed that the lack of feedback is one of the main problems
of student-teacher long distance communication. �e students may
feel confused about the lecture while the teacher doesn’t notice
and continues the lecture. If there is a practical approach to detect
student’s confusion immediately, it will help teachers understand
be�er the students’ status and react accordingly.

Electroencephalography (EEG) is an electro-physiological moni-
toring method to record electrical activity of the brain. In clinical
contexts, EEG refers to the recording of the brain’s spontaneous
electrical activity over a period of time, as recorded from multiple
electrodes placed on the scalp. It measures voltage �uctuations
resulting from ionic currents within the neurons of the brain. EEG
is most o�en used to diagnose epilepsy, which causes abnormalities
in EEG readings. It is also used to diagnose sleep disorders, coma,
encephalopathy, and brain death. Our motivation for choosing EEG
signals as the data for detecting confusion in people’s brains is
that EEG signal is continuous and contains some pa�erns of status
transitions. Our hypothesis is that when people are confused, their
EEG signal will di�er from normal. It is possible to build a model
to analyze the continuous data and predict whether the subject is
confused or not.
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Figure 1: Framework of Bidirectional LSTM model.

1.2 Related Work
�ere is a general agreement that visual inspection of EEG wave-
forms pa�erns can reliably identify driver fatigue or drowsiness.
�ere are many researchers applying machine learning methods to
EEG data to accomplish di�erent tasks, such as driver fatigue detec-
tion. Yeo et al. [3] used Support Vector Machines (SVMs) to detect
the drowsiness of car drivers. �eir results showed that extracting
features from four EEG frequency bands achieved 99.3% accuracy.
Besides drowsiness, Subashi et al. [4] applied SVM classi�ers to
predict if EEG signals represented epileptic seizures and achieved
100% accuracy. Wang et al. [5] showed the possibility of using EEG
data to detect the confusion of students when they watch MOOC
videos. �ey analyzed the EEG data using Gaussian Naive Bayes
classi�ers. �e Gaussian Naive Bayes classi�ers achieved a classi-
�cation accuracy of 57%. �e current paper explores methods to
improve this confusion classi�cation result on the same dataset.

Recently, deep learning has shown its power on many classi�cation-
related tasks compared with traditional machine learning approaches.
Boureau et al. [6] proposed a Deep Belief Network (DBN) that can
learn a high-level feature based on raw input and can capture higher-
order dependencies between observed variables. Hajinoroozi et
al. [7] applied DBNs to EEG signals to predict drivers’ cognitive
states. Classi�ers using the features learned by DBNs outperformed
those using Principal Component Analysis (PCA) features. Lee et
al. [8] introduced convolutional DBNs to learn be�er feature repre-
sentations and outperformed machine learning approaches using
raw features. Due to the fact that the EEG signal is a time-series,
however, detecting events in EEG signals using �xed-length fea-
tures may be di�cult.

Laurent et al. [2] proposed a Hidden Markov Model-based ap-
proach for mental state detection in EEG signals. Petrosiana et
al. [9] showed that Recurrent Neural Networks can identify early
signs of Alzheimer’s disease in long-term EEG recordings. Few
studies focus on detecting confusion from EEG signals using Deep
Neural Networks (DNNs). Since LSTM Recurrent Neural Networks

can easily analyze time-series data, the current study applies them
to detecting confusion in EEG signal.

We utilize batch normalization, which has been shown to speed
training of DNNs. Io�e et al. [10] proposed a batch normalization
layer, which uses mini-batch statistics to standardize features in
deep neural networks which can achieve the same accuracy in much
less time. Laurent et al. [11] showed that applying batch normaliza-
tion, to Recurrent Neural Networks leads to a faster convergence
of training.

1.3 Problem Statement
Given EEG data from 10 college students, our task is to predict their
confusion using machine learning methods. �e data is from the
“EEG brain wave for confusion” data set, an EEG data from a Kaggle
challenge [12]. 10 students were assigned to watch 20 videos, 10 of
which were pre-labeled as “easy” and 10 as“di�cult”. Each video
was about 2 minutes long. For “di�cult” videos, the two-minute
clip was taken abruptly from the middle of a topic to make the
videos more confusing.

�e students wore a single-channel wireless MindSet EEG device
that measured activity over the frontal lobe. �e MindSet measures
the voltage between an electrode resting on the forehead and two
electrodes (one ground and one reference) each in contact with an
ear [13]. A�er each session, the student rated his/her confusion
level on a scale of 1-7, where one corresponded to the least confused
and seven corresponded to the most confused. �ese labels were
quantized into two classes representing whether the students were
confused or not. �e two-class label serves as the target of our
prediction task.

Since the confusion label is true or false, our problem is a two-
class classi�cation problem. In theory, many machine learning
approaches can be applied to this task. To take advantage of EEG
data’s properties, we propose a confusion detection framework
using LSTM Recurrent Neural Networks.
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Table 1: Features extracted from MindSet. Table from [5]

Features Description Sampling rate Statistic
A�ention Proprietary measure of mental focus 1 Hz Mean
Meditation Proprietary measure of calmness 1 Hz Mean
Raw Raw EEG signal 512 Hz Mean
Delta 1-3 Hz of power spectrum 8 Hz Mean
�eta 4-7 Hz of power spectrum 8 Hz Mean
Alpha1 Lower 8-11 Hz of power spectrum 8 Hz Mean
Alpha 2 Higher 8-11 Hz of power spectrum 8 Hz Mean
Beta1 Lower 12-29 Hz of power spectrum 8 Hz Mean
Beta 2 Higher 12-29 Hz of power spectrum 8 Hz Mean
Gamma1 Lower 30-100 Hz of power spectrum 8 Hz Mean
Gamma2 Higher 30-100 Hz of power spectrum 8 Hz Mean

2 CONFUSION DETECTION FRAMEWORK
Based on the consideration that these data are continuous in time
and the detection sample should not be too long to permit real-time
processing, we propose a confusion detection framework as shown
in Figure 1. �e dataset provides EEG features organized by time.
We then use Batch Normalization to normalize the value of each
feature to have a mean of 0 and standard deviation of 1. We then
train a Bidirectional LSTM model and evaluate its performance
using 5-fold cross validation. We also test the contribution of each
variable to the model and rank these contributions. �e framework
is designed as followed:

2.1 Feature Extraction
�e EEG data can be downloaded from the Kaggle website [12],
which provides open source data for various challenges. In the EEG
dataset, 10 college students are asked to wear a wireless single-
channel MindSet EEG device [13] that measured activity over the
frontal lobe and to watch 10 2-minute long videos. �e MindSet
extracted the features that are shown in Table 1. “A�ention” mea-
sures the mental focus of the student, and “Meditation” measures
calmness. “Raw” is the average of the original EEG signals. �e
following features are values in di�erent frequency regions of the
power spectrum. �e sampling frequency for the features extracted
from the MindSet is 2 Hz. For each sample point, there are 14
features extracted from EEG signals, shown in Table 2.

“Subject id” ranges from 0 to 9, representing the subject of each
recording, “video id” is the same for videos. We don’t use them as
features in our model. In the feature representations, we also have
power spectrum for speci�c frequencies, which are all continuous
data.

For each subject watching a video, features are extracted at a
sampling frequency of 2 Hz. �e �nal features are truncated to
around one-minute long. So there are around 120 sample features
for each data point. For models the only accept �xed-length features,
we took the minimum number of samples (112 samples at last) and
concatenated all the time steps to create a single feature vector. For
the LSTM, the length of the time-series data is 112, each with a
12-dimension feature. In the end there are 100 data points, each
with 112 × 12 features in total.

Table 2: Features with index.

F1 A�ention
F2 Meditation
F3 Raw
F4 Delta
F5 �eta
F6 Alpha1
F7 Alpha2
F8 Beta1
F9 Beta2
F10 Gamma1
F11 Gamma2
F12 Prede�ned Label
F13 Subject id
F14 Video id

2.2 RNN-LSTM and Bidirectional LSTM
In RNNs, back propagation �ows through many layers, passing
through many stages of multiplication. During the training process,
error messages �owing backward in time tend to either blow up,
which may lead to oscillating weights, or vanish in which case they
become too small to provide a learning signal.

Exploding gradients can be mitigated via truncation or squashing.
Vanishing gradients are more di�cult to �x. �e Long Short-Term
Memory RNN (LSTM) addresses this problem by introducing mem-
ory units to RNNs. �e memory units help preserve the error signal
so that it is large enough to be back propagated through time and
layers, thereby opening a channel that links remote causes and
e�ects. �e architecture of the LSTM is shown in Figure 2.

Given an input sequence X = (x1,x2,x3, . . . ,xT ), the hidden
state in time t in RNN is de�ned as followed:

ht = Φ(Whht−1 +Wxxt + b), (1)

whereWh ∈ Rdh×dh ,Wx ∈ Rdx×dx , b ∈ Rdh .
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Figure 2: Architecture inside LSTM cell.

�e architecture of the LSTM is de�ned as followed:©­­­«
f̃t
˜it
õt
д̃t

ª®®®¬ =Whht−1 +Wxxt + b, (2)

ct = σ ( f̃t ) � ct−1 + σ ( ˜it ) � tanh(д̃t ), (3)
ht = σ (õt ) � tanh(ct ), (4)

where Wh ∈ Rdh×4dh , Wx ∈ Rdx×4dx , σ is the logistic function,
and the � operation is the Hadamard product.

LSTM RNNs can learn long-term temporal dynamics that tra-
ditional RNNs cannot. Using its memory cells, it learns to forget
previous memories and considering the current input, determines
how much of the memory to be transferred to the next hidden state.
In our case, since EEG features arrive over time, the LSTM can in-
corporate context information across time to improve performance.

While LSTMs predict the current output based on previous in-
puts, bidirectional LSTMs predict the current output based on both
the past and the future. �e basic idea is to predict the future based
on the past and predict the past based on the future, then take
the average of these two outputs as the �nial output. In this way
both future and past context information can be utilized to improve
performance.

In our framework, we set the Bidirectional LSTM layer to have
50 neural units. �e activation function in the LSTM layer is tanh.
A�er the LSTM layer, the hidden states are fed into a fully connected
layer with a sigmoid activation function, which produces output
value between 0 and 1.

2.3 Batch Normalization
Training Deep Neural Networks is complicated by the fact that the
distribution of the inputs to each layer changes during training,
as the parameters of the previous layers change [14]. �is slows
down the training by requiring lower learning rates and careful
parameter initialization, and makes it notoriously di�cult to train
models with saturating nonlinearities.

Recently, Io�e et al. [10] proposed a Batch Normalization method
which can be built as a sub-architecture into a model. Batch Nor-
malization allows us to use much higher learning rates and be less
careful about initialization. �ey showed that adding Batch Nor-
malization to a state-of-the-art image classi�cation model yields a
substantial speedup in training. By further increasing the learning
rates, removing Dropout, and applying other modi�cations a�orded
by Batch Normalization, their model matches the previous state of
the art in only a small fraction of the number of training steps and
then beats the state of the art in single-network image classi�cation.
Batch Normalization is de�ned as:

BN (x ,γ , β) = β + γ x − Ê(x)√
ˆVar (x) + ϵ

(5)

where x is the vector that needs to be normalized. Ê(x) and ˆVar (x)
are the expectation and variance of the current mini-batch of x ,
respectively, ϵ is a constant added to the mini-batch variance for
numerical stability, and β is a parameter to shi� the normalized
value.

In our framework, we normalize the training data in a feature-
wise fashion (i.e., each feature dimension is normalized to have a
mean of 0 and standard deviation of 1 across each batch of samples).
�e batch size is set to 20, which corresponds to our test data size.
A�er Batch normalization, we put the normalized features into our
Bidirectional LSTM model.

3 EXPERIMENTS
3.1 Baseline Models
To evaluate our framework’s performance, we designed several
baseline machine learning approaches, listed in Table 3.

Table 3: Baseline classi�cation methods for classifying con-
fusion.

Baseline Classi�cation Methods
SVM (linear kernel)
SVM (rbf kernel)
SVM (sigmoid kernel)
K-Nearest Neighbors
Convolutional Neural Network
Deep Belief Network
RNN-LSTM

We apply three SVM classi�ers using di�erent kernel functions.
We use grid search to tune the parameters C ranging in (1, 10, 100,
1000) and γ ranging in (10−3, 104) for each kernel, respectively.
We also apply a K Nearest Neighbor classi�er as another baseline
method. We use di�erent K parameter values ranging from 2 to 5
and choose the highest accuracy as the �nal result. To compare the
results of di�erent neural networks, we use Convolutional Neural
Network, Deep Belief Network, and a single-layer LSTM Recurrent
Neural Network (RNN-LSTM) to classify the EEG data.
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3.2 Variable Selection
To test which feature of the EEG dataset contributes the most to
our model, we propose a variable selection method to �nd the most
important feature in our Bidirectional LSTM model. Not pu�ing all
the features into the model, instead we leave one single feature out.
�en we run the experiments with the remaining features. A�er we
get the average accuracy across cross validation folds, we rank the
accuracy from lowest to highest, providing the feature importance
from highest to lowest.

4 RESULTS
4.1 Cross-Validation Results
To evaluate the models, we perform 5-fold cross validation. �e
result is shown in Table 4.

Table 4: Average accuracy for 5-fold cross validation.

Classi�cation methods Accuracy(%)
SVM (linear kernel) 67.2
SVM (rbf kernel) 51.3
SVM (sigmoid kernel) 51.0
K-Nearest Neighbors 51.9
Convolutional Neural Network 64.0
Deep Belief Network 52.7
RNN-LSTM 69.0
Bidirectional LSTM 73.3

�e results show that the Bidirectional LSTM achieves the best
performance compared to the other methods. Due to the nature
of the dataset, the Deep Belief Network cannot approximate the
data distribution with only 100 data points. Neither can the Con-
volutional Neural Network or K-Nearest Neighbors classi�er. �e
SVM with linear kernel performs similarly to the RNN-LSTM, and
outperforms the SVMs with more complex kernels. �is result im-
plies that the feature space is almost linearly separable. Classifying
the data in this linear space is be�er than other spaces, which may
cause over��ing.

�en we evaluated the robustness of the RNN-LSTM model and
the Bidirectional LSTM model by analyzing the accuracy of each
iteration of cross validation. �e results are shown in Figures 3 and
4

�e accuracy across the �ve folds of the RNN-LSTM model varies
from 60 percent to 85 percent, while that of the Bidirectional LSTM
model varies from 71 percent to 74 percent. �ese results show that
the Bidirectional LSTM model not only outperforms all the other
methods, but also is consistent.

4.2 Variable Selection
To �nd the feature that makes the most contribution to the model,
we ran 12 experiments, each leaving out one feature. �e accuracy
of each of these classi�ers is shown in Figure 5. From the rank
among accuracies, we can see that losing feature 10, which is the
gamma-1 feature, decreases the accuracy the most. �e beta-2
and a�ention features also lead to large decreases in performance.

Figure 3: Accuracy variation of RNN-LSTM model.

Figure 4: Accuracy variation of Bidirectional LSTM model.

Based on the rank of the features, we can select the most important
features for the confusion detection system. In this way we can still
maintain high accuracy and also make it possible for the system to
detect confusion in real time.

We also found that the pre-de�ned video label contributed the
least to our Bidirectional LSTM model’s accuracy. �e subjective
judgment of video di�culty of the experiment designer is di�erent
from that of the students, a very interesting point. �is can help
teachers identify topics that students don’t understand, while the
teachers may think the class is easy for students.

For this speci�c dataset, it is hard to build a model from so
few examples. Hence for deep neural networks such as the DBN
and CNN it is hard to tune the parameters perfectly and easy to
over�t. However, for the LSTM, though di�erent time steps (i.e.
feature for each 0.5 second) input to the LSTM share the same
weights in the neural network, the forget gate can learn how to
make use of previous hidden states. Bidirectional LSTMs make
use of sequential information in both directions and learn a be�er
representation. Adding context information helps us build a more
robust and accurate model.
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Figure 5: Accuracy without speci�c feature from 12 features.
Ranked from lowest accuracy to highest.

5 CONCLUSIONS
We have proposed a Bidirectional LSTM Recurrent Neural Network
framework to detect students’ confusion when watching online
course videos. �e accuracy achieved by our model is higher than
other machine learning approaches including a single-layer RNN-
LSTM model and achieves the state-of-the-art result. �e architec-
ture of the Bidirectional LSTM model takes advantage of time-series
features and helps improve performance. By analyzing the contri-
bution of each feature to the model, we �nd the “gamma-1” and
“a�ention” features are the most important in this task. We plan to
validate our model on a larger EEG dataset. We also plan to apply
our Bidirectional LSTM model on other EEG-related tasks, such as
driver drowsiness detection.
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