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a b s t r a c t

Recent developments in many-body potential energy representation via deep learning have brought new
hopes to addressing the accuracy-versus-efficiency dilemma in molecular simulations. Here we describe
DeePMD-kit, a package written in Python/C++ that has been designed to minimize the effort required
to build deep learning based representation of potential energy and force field and to perform molecular
dynamics. Potential applications of DeePMD-kit span from finitemolecules to extended systems and from
metallic systems to chemically bonded systems. DeePMD-kit is interfaced with TensorFlow, one of the
most popular deep learning frameworks, making the training process highly automatic and efficient.
On the other end, DeePMD-kit is interfaced with high-performance classical molecular dynamics and
quantum (path-integral) molecular dynamics packages, i.e., LAMMPS and the i-PI, respectively. Thus,
upon training, the potential energy and force field models can be used to perform efficient molecular
simulations for different purposes. As an example of the many potential applications of the package, we
use DeePMD-kit to learn the interatomic potential energy and forces of awatermodel using data obtained
from density functional theory. We demonstrate that the resultedmolecular dynamics model reproduces
accurately the structural information contained in the original model.
Program summary
Program Title: DeePMD-kit
Program Files doi: http://dx.doi.org/10.17632/hvfh9yvncf.1
Licensing provisions: LGPL
Programming language: Python/C++
Nature of problem:Modeling themany-body atomic interactions by deep neural networkmodels. Running
molecular dynamics simulations with the models.
Solution method: The Deep Potential for Molecular Dynamics (DeePMD)method is implemented based on
the deep learning framework TensorFlow. Supports for using a DeePMD model in LAMMPS and i-PI, for
classical and quantum (path integral) molecular dynamics are provided.
Additional comments including Restrictions and Unusual features: The code defines a data protocol such
that the energy, force, and virial calculated by different third-party molecular simulation packages can be
easily processed and used as model training data.
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1. Introduction

The dilemma of accuracy versus efficiency in modeling the po-
tential energy surface (PES) and interatomic forces has confronted
the molecular simulation communities for a long time. On one
hand, ab initiomolecular dynamics (AIMD) has the accuracy of the
density functional theory (DFT) [1–3], but the computational cost
of DFT in evaluating the PES and forces restricts its typical appli-
cations to system size of hundreds to thousands of atoms and time
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scale of∼100 ps. One the other hand, a great deal of effort has been
made in developing empirical force fields (FFs) [4–6], which allows
for much larger and longer simulations. However, the accuracy
and transferability of FFs is often in question. Moreover, fitting the
parameters of an FF is usually a tedious and ad hoc process.

In the last few years, machine learning methods have been
suggested as a tool to model PES of molecular systems with DFT
data, and have achieved some remarkable success [7–16]. Some
examples (not a comprehensive list) include the Behler–Parrinello
neural network (BPNN) [9], the Gaussian approximation potentials
(GAP) [11], the Gradient-domain machine learning (GDML) [14],
and the Deep potential for molecular dynamics (DeePMD) [17,18].
In particular, it has been demonstrated for a wide variety of sys-
tems that the ‘‘deep potential’’ and DeePMD allow us to perform
molecular dynamics simulation with accuracy comparable to that
of DFT (or other fitted data) and the efficiency competitive with
empirical potential-based molecular dynamics [17,18].

Machine learning, particularly deep learning has been shown to
be a powerful tool in a variety of fields [19,20] and even has outper-
formedhumanexperts in some applications like theAlphaGo in the
board game Go [21]. A number of open source deep learning plat-
forms, e.g. TensorFlow [22], Caffe [23], Torch [24], and MXNet [25]
are available. These open source platforms have significantly low-
ered the technical barrier for the application of deep learning. Con-
sidering the potential impact that deep learning-based methods
will have on molecular simulation, it is of considerable interest to
develop open source platforms that serve as the interface between
deep neural network models and molecular simulation tools such
as LAMMPS [26], Gromacs [27] and NAMD [28], and path-integral
MD packages like i-PI [29].

The contribution of thiswork is to provide an implementation of
the DeePMDmethod, namely DeePMD-kit,1 which interfaces with
TensorFlow for fast training, testing, and evaluation of the PES and
forces, and with LAMMPS and i-PI for classical and path-integral
molecular dynamics simulations, respectively. In DeePMD-kit, we
implement the atomic environment descriptors and chain rules
for force/virial computations in C++ and provide an interface to
incorporate them as new operators in standard TensorFlow. This
allows the model training and MD simulations to benefit from
TensorFlow’s highly optimized tensor operations. The support of
DeePMD for LAMMPS is implemented as a new ‘‘pair style’’, the
standard command in LAMMPS. Therefore, only a slight modifica-
tion in the standard LAMMPS input script is required for energy,
force, and virial evaluation through DeePMD-kit. The support for
i-PI is implemented as a new force client communicating through
sockets with the standard i-PI server, which handles the bead in-
tegrations. Given these features provided by DeePMD-kit, training
deep neural network model for potential energy and running MD
simulations with the model is made much easier than implement-
ing everything from scratch.

The manuscript is organized as follows. In Section 2, the theo-
retical framework of the DeePMD method is provided. We show
in detail how the system energy is constructed and how to take
derivatives with respect to the atomic position and box tensor
to compute the force and virial. In Section 3, we provide a brief
introduction on how to use DeePMD-kit to train a model and run
MD simulations with the model. In Section 4, we demonstrate the
performance of DeePMD-kit by training a DeePMD model from
AIMD data. Results from the MD simulation using the trained
DeePMDmodel are compared to the original AIMD data to validate
the modeling. The paper concludes with a discussion about the
future work planed for DeePMD-kit.

2. Theory

We consider a system consisting of N atoms and denote the
coordinates of the atoms by {R1, . . . ,RN}. The potential energy E of

1 https://github.com/deepmodeling/deepmd-kit.

the system is a function with 3N variables, i.e., E = E(R1, . . . ,RN ),
with each Ri ∈ R3. In the DeepMDmethod, E is decomposed into a
sum of atomic energy contributions,

E =

∑
i

Ei, (1)

with i being the indexes of the atoms. Each atomic energy is fully
determined by the position of the ith atom and its near neighbors,

Ei = Es(i)(Ri, {Rj | j ∈ NRc (i)}), (2)

whereNRc (i) denotes the index set of the neighbors of atom iwithin
the cut-off radius Rc , i.e. Rij = |Rij| = |Ri − Rj| ≤ Rc . s(i) is the
chemical species of atom i. Themost straightforward idea tomodel
the atomic energy Es(i) through DNN is to train a neural network
with the input simply being the positions of the ith atom Ri and its
neighbors {Rj | j ∈ NRc (i)}. This approach is less than optimal as it
does not guarantee the translational, rotational, and permutational
symmetries lying in the PES. Thus, a proper preprocessing of the
atomic positions, which maps the positions to ‘‘descriptors’’ of
atomic chemical environment [30] is needed.

In the DeePMD method, to construct the descriptor for atom i,
the positions of its neighbors are firstly shifted by the position of
atom i, viz. Rij = Ri − Rj. The coordinate of the relative position Rij
under lab frame {e0x , e0y, e0z } is denoted by (x0ij, y

0
ij, z

0
ij ), i.e.,

Rij = x0ije
0
x + y0ije

0
y + z0ije

0
z . (3)

Both Rij and the coordinate (x0ij, y
0
ij, z

0
ij ) preserve the translational

symmetry. The rotational symmetry is preserved by constructing a
local frame and recording the local coordinate for each atom. First,
two atoms, indexed a(i) and b(i), are picked from the neighbors
NRc (i) by certain user-specified rules. The local frame {ei1, ei2, ei3}
of atom i is then constructed by

ei1 = e(Ria(i)), (4)
ei2 = e

(
Rib(i) − (Rib(i) · ei1)ei1

)
, (5)

ei3 = ei1 × ei2, (6)

where e(R) denotes the normalized vector of R, i.e., e(R) = R/|R|.
Then the local coordinate (xij, yij, zij) (under the local frame) is
transformed from the global coordinate (x0ij, y

0
ij, z

0
ij ) through

(xij, yij, zij) = (x0ij, y
0
ij, z

0
ij ) · R(Ria(i),Rib(i)), (7)

where

R(Ria(i),Rib(i)) = [ei1, ei2, ei3] (8)

is the rotation matrix with the columns being the local frame
vectors. The descriptive information of atom i given by neighbor
j is constructed by using either full information (both radial and
angular) or radial-only information:

{Dα
ij } =

⎧⎪⎪⎨⎪⎪⎩
{ 1
Rij

,
xij
Rij

,
yij
Rij

,
zij
Rij

}
, full information;{ 1

Rij

}
, radial-only information.

(9)

When α = 0, 1, 2, 3, full (radial plus angular) information is
provided. When α = 0, only radial information is used. Physical
intuition suggests that covalent bonding interactions, such as bond
stretching and bending, and dihedral angle forces, are described
by the full coordinate information of the first two neighboring
shells in the input data. Longer range interactions like the Van
der Waals effects are sufficiently accurately captured by the radial
information of more distant neighbors. Therefore, for the sake
of efficiency, it is usually enough to take into account the full

https://github.com/deepmodeling/deepmd-kit
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information for the closest neighbors up to a certain neighbor
shell but radial-only information for the rest of the neighbors
within the cut-off radius. It is noted that the order of the neighbor
indexes j’s in {Dα

ij } is fixed by sorting them firstly according to their
chemical species and then,within each chemical species, according
to their inversed distances to atom i, i.e., 1/Rij. The permutational
symmetry is naturally preserved in this way. Following the afore-
mentioned procedures, we have constructed the mapping from
atomic positions to descriptors, which is denoted by

Di = Di(Ri, {Rj | j ∈ NRc (i)}). (10)

The components Dα
ij = Dα

ij (Rij,Ria(i),Rib(i)) are given by Eqs. (3)–
(9). The descriptors Di preserve the translational, rotational, and
permutational symmetries and are passed to a DNN to evaluate
the atomic energy. We refer to the Supplementary Materials of
Ref. [18] for further details in selection of axis atoms and standard-
ization of input data.

The DNN that maps the descriptors Di to atomic energy is
denoted by

Es(i) = Ns(i)(Di). (11)

It is a feedforward network in which data flows from the input
layer as Di, through multiple fully connected hidden layers, to the
output layer as the atomic energy Es(i). Mathematically, DNN with
Nh hidden layers is a mapping

Ns(i)(Di) = Lout
s(i) ◦ LNh

s(i) ◦ LNh−1
s(i) ◦ · · · ◦ L1

s(i)(Di), (12)

where the symbol ‘‘◦’’ denotes function composition. Here Lp
s(i) is

the mapping from layer p − 1 to p, which is a composition of
a linear transformation and a non-linear transformation, the so-
called activation function:

dp
i = Lp

s(i)(d
p−1
i ) = ϕ

(
W p

s(i)d
p−1
i + bp

s(i)

)
, (13)

where dp
i ∈ RMp denotes the value of neurons in layer p andMp the

number of neurons. The weight matrix W p
s(i) ∈ RMp×Mp−1 and bias

vector bp
s(i) ∈ RMp are free parameters of the linear transformation

that are to be optimized. The non-linear activation function ϕ is in
general a component-wise function, and here it is taken to be the
hyperbolic tangent, i.e.,

ϕ(d1, d2, . . . , dM ) = (tanh(d1), tanh(d2), . . . , tanh(dM )). (14)

The output mapping Lout
s(i) is a linear transformation

Es(i) = Lout
s(i) (d

Nh
i ) = W out

s(i) d
Nh + bouts(i) , (15)

where weight vector W out
s(i) ∈ R1×MNh and bias bouts(i) ∈ R are free

parameters to be optimized as well.
The force on the ith atom is computed by taking the negative

gradient of the system energy with respect to its position, which is
given by

Fi = −

∑
j∈N(i),α

∂Ns(i)

∂Dα
ij

∂Dα
ij

∂Ri
−

∑
j̸=i

∑
k∈N(j),α

δi,a(j)
∂Ns(j)

∂Dα
jk

∂Dα
jk

∂Ri

−

∑
j̸=i

∑
k∈N(j),α

δi,b(j)
∂Ns(j)

∂Dα
jk

∂Dα
jk

∂Ri
−

∑
j̸=i

∑
k∈Ñ(j),α

δi,k
∂Ns(j)

∂Dα
jk

∂Dα
jk

∂Ri
,

(16)

where Ñ(j) = N(j)− {a(j), b(j)}. The virial of the system is given by

Ξ = −

∑
i̸=j

Rij

∑
α

∂Ns(i)

∂Dα
ij

∂Dα
ij

∂Rij
−

∑
i̸=j

δj,a(i)Rij

∑
q,α

∂Ns(i)

∂Dα
iq

∂Dα
iq

∂Rij

−

∑
i̸=j

δj,b(i)Rij

∑
q,α

∂Ns(i)

∂Dα
iq

∂Dα
iq

∂Rij
.

(17)

Fig. 1. Schematic plot of the DeePMD-kit architecture and the workflow. The gray
arrows present the workflow. The data, including energy, force, virial, box, and
type, are passed from the Data Generator to the DeePMD-kit Train/Test module to
perform training. After training, the DeePMD model is passed to the DeePMD-kit
MD support module to perform MD. The TensorFlow and DeePMD-kit libraries are
used for supporting different calculations. See text for detailed descriptions.

The derivation of the force and virial formula Eqs. (16)–(17) is given
in Appendix.

The unknown parameters {W p
s , bp

s } in the linear transforma-
tions of the DNN are determined by a training process that min-
imizes the loss function L, i.e.,

min
{W p

s ,bps }
L(pϵ, pf , pξ ). (18)

The L is defined as a sumof differentmean square errors of theDNN
predictions

L(pϵ, pf , pξ ) =
pϵ

N
∆E2

+
pf
3N

∑
i

|∆Fi|2 +
pξ

9N
∥∆Ξ∥

2, (19)

where ∆E, ∆Fi and ∆Ξ denote root mean square (RMS) error in
energy, force, and virial, respectively. The prefactors pϵ , pf , and pξ

are free to change even during the optimization process. In this
work, the prefactors are given by

p(t) = plimit
[
1 −

rl(t)
r0l

]
+ pstart

[ rl(t)
r0l

]
, (20)

where rl(t) and r0l are the learning rate at training step t and the
learning rate at the beginning, respectively. The prefactor varies
from pstart at the beginning and goes to plimit as the learning ends.
We adopt an exponentially decaying learning rate

rl(t) = r0l × d t/ds
r , (21)

where dr and ds are the decay rate and decay steps, respectively.
The decay rate dr is required to be less than 1.

3. Software

The DeePMD-kit is composed of three parts: (1) a library that
implements the computation of descriptors, forces, and virial in
C++, including interfaces to TensorFlow and third-party MD pack-
ages; (2) training and testing programs built on TensorFlow’s
Python API; (3) supports for LAMMPS and i-PI. This section il-
lustrates the usage of DeePMD-kit along a typical workflow:
preparing data, training the model, testing the model, and run-
ning classical/path-integral MD simulations with the model. A
schematic plot of the DeePMD-kit architecture and the workflow
is shown in Fig. 1.
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3.1. Data preparation

The data for training/testing a DeePMD model is composed of
a list of systems. Each system contains a number of frames. Some
of the frames are used as training data, while the others are used
as testing data. Each frame records the shape of simulation region
(box tensor) and the positions of all atoms in the system. The
order of the frames in a system is not relevant, but the number
of atoms and the atom types should be the same for all frames in
the same system. Each frame is labeled with the energy, the forces,
and the virial. Any one or two of the labels can be absent. When
a label is absent, its corresponding prefactor in the loss function
Eq. (19) is set to zero. The labels can be computed by anymolecular
simulation package that takes in the atomic positions and the
box tensor and returns the energy, the forces, and/or the virial.
The DeePMD-kit defines a data protocol called RAW format. The
labels computed bydifferent packages should be converted to RAW
format to serve as training/testing data. The box tensor, atomic
coordinates (under lab frame), and the labels are stored in sep-
arate text files, with names box.raw, coord.raw, energy.raw,
force.raw, andvirial.raw, respectively. Each line of a RAW file
corresponds to one frame of the data, with the properties of each
atom presented in succession. For example, consider a coord.raw
file that has two frames of a two-atom system. It has the following
content

7.726 1.886 4.640 8.998 5.513 11.071
8.229 1.621 4.164 7.110 5.970 10.351

The first line stores the atomic coordinates of the first frame,
while the second line stores those of the second frame. The coordi-
nate of the first atom in the first frame is (7.726, 1.886, 4.640),while
that of the second atom in the first frame is (8.998, 5.513, 11.071).
Similarly, the coordinate of the first atom in the second frame is
(8.229, 1.621, 4.164), while that of the second atom in the second
frame is (7.110 5.970 10.351). The order of the frames appearing
in a RAW files and the order of atoms in each frame should be
consistent across all the RAW files. The units of length, energy, and
force in the RAW files are Å, eV, and eV/Å, respectively. The data
is organized in this way because the frames can be combined or
split in a convenient way using standard text processing tools such
as cat, sed, and awk provided by Unix-like operating systems, and
the files can also bemanipulated and analyzed as array text data by
the NumPy module of Python. The atom types are recorded in the
file type.raw, which has only one linewith atom types as integers
presented in succession. Again, it is addressed that the atom types
should be consistent in all frames of the same system.

The data is composed of several systems. The RAW files of
the different systems should be placed in different folders, and
the number of atoms and the atom types are NOT required to
be the same for different systems. Frequent loading of the RAW
text files from hard disk may become the bottleneck of efficiency.
Therefore, the RAW files except thetype.raw are firstly converted
to NumPy binary files and then used by the training and testing
programs in DeePMD-kit. DeePMD-kit provides a Python script for
this conversion.

3.2. Model training

The computation of atomic energy Es(i) (see Eq. (2)) consists
of two successive mappings: first, from the positions of the atom
i and its neighbors to its descriptors, i.e., Eq. (10); second, from
the descriptors to the atomic energy through DNN, i.e., Eq. (11).
The DNN part is implemented by standard tensor operations pro-
vided by the TensorFlow deep learning framework. However, the
descriptor part is not a standard operation in TensorFlow, thus
it is implemented with C++ and is interfaced to TensorFlow as a

new ‘‘operator’’. The force and virial computation requires deriva-
tives of system energy with respect to atomic position and box
tensor, respectively. This is done with the chain rule in Eqs. (16)
and (17), respectively. The gradient of the DNN, i.e., ∂Es(i)/∂Dα

jk, is
implemented by the tf.gradients operator provided by Ten-
sorFlow. The derivatives ∂Dα

jk/∂Rl and the chain rules defined in
Eqs. (16) and (17) are implemented in C++ and then interfacedwith
TensorFlow. By using the TensorFlow with the user implemented
operators, we are now able to compute the system energy, the
atomic forces, and the virial, thus we are able to evaluate the loss
function (forwardpropagation). The derivatives of the loss function
with respect to the parameters {W p

s , bp
s } (backward propagation)

are automatically computed by TensorFlow.
The optimization problem (18) is currently solved by the Ten-

sorFlow’s implementation of the Adam stochastic gradient descent
method [31]. At each step of optimization (equivalent to training
step), the value and gradients of the loss function is computed
against only a subset of the training data, which is called a batch.
The number of frames in a batch is called the batch size. Taking the
RMS energy error ∆E for instance, it is evaluated by

∆E2
=

1
Sb

Sb∑
k=1

|Ek
− E(Rk

1, . . . ,R
k
N )|

2
(22)

where {Rk
}, Ek, and Sb denote the atomic positions, system energy

of the kth frame in the batch, and the batch size, respectively. The
errors |∆Fi|2 and ∥∆Ξ∥

2 are evaluated analogously. It is noted
that the evaluation of the loss function for different frames in
the batch is embarrassingly parallel. Therefore, ideally, the batch
size Sb should be divisible by the number of CPU cores in the
computation.

We denote the systems in the training data by {Ω1, . . . , ΩSs}

with Ss being the total number of systems and denote the number
of frames in Ωi by |Ωi|. The systems {Ω1, . . . , ΩSs} are used in
the training in a cyclic way. First, the model is trained for |Ω1|/Sb
steps by using |Ω1|/Sb batches randomly taken from Ω1 without
replacement. Next, the model is trained for |Ω2|/Sb steps by using
|Ω2|/Sb batches randomly taken from Ω2 without replacement.
In such a way, the systems in the set {Ω1, . . . , ΩSs} are used in
training successively.

The training program in the DeePMD-kit is called dp_train.
It reads a parameter file in JSON format that specifies the training
process. Some important settings in the parameter file are

{
"n_neuron": [240, 120, 60, 30, 10],
"systems": ["/path/to/water", "/path/to/ice"],
"stop_batch": 1000000,
"batch_size": 4,
"start_lr": 0.001,
"decay_steps": 5000,
"decay_rate": 0.95,
}

In this file, the item n_neuron sets the number of hidden lay-
ers to 5, and the number of neurons in each layer is set to
(M1,M2,M3,M4,M5) = (240, 120, 60, 30, 10), from the inner-
most to the outermost layer. The training has two systems, with
Ω1 stored in the folder /path/to/water and Ω2 in the folder
/path/to/ice. The batch size is set to 4. In total the model is
optimized for 106 steps (set by stop_batch), i.e., 106 batches
are used in the training. The starting learning rate, decay steps,
and decay rate (see Eq. (21)) are set to 0.001, 5000, and 0.95,
respectively.

The parameters of the DeePMD model are saved to TensorFlow
checkpoints during the training process, thus one can break the
training at any time and restart it from any of the checkpoints.
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Fig. 2. Schematic illustration of over-fitting. The blue squares denote the training
data, while the pink filled circles denote the testing data. Only the training data is
used in training models. Both the over-fitting model and the well-trained model
have small training error, however, the over-fitting model presents a significantly
larger testing error.

Once the training finishes, the model parameters and the net-
work topology are frozen from the checkpoint file by the tool
dp_frz. The frozen model can be used in model testing and MD
simulations.

3.3. Model testing

DeePMD-kit provides two modes of model testing. (1) During
the training, the RMS energy, force and virial errors and the loss
function are evaluated by both the training batch data and the
testing data and displayed on the fly. Sometimes, for the sake of
efficiency, only a subset of the testing data is used to test themodel
on the fly. (2) After the model is frozen, it can be tested by the tool
dp_test. Ideally the training error and the testing error should be
roughly the same. A signal of overfitting is indicated by a much
lower training error compared to the testing error, see Fig. 2 for an
illustration. In this case, it is suggested to either reduce the number
of layers and/or the number of neurons of each layer, or increase
the size of the training data.

3.4. Molecular dynamics

Once the model parameters are frozen, MD simulations can be
carried out.We provide an interface that inputs the atom types and
positions and returns energy, forces, and virial computed by the
DeePMD model. Therefore, in principle, it can be called in any MD
package duringMD simulations. In the current release of DeePMD-
kit, we provide supports for the LAMMPS and i-PI packages.

The evaluation of interactions is implemented by using the
TensorFlow’s C++ API. First, the model parameters are loaded, then
thenetwork operations defined in the frozenmodel are executed in
exactly the sameway as the evaluation in themodel training stage,
see Section 3.2. The DeePMD-kit’s implementation of descriptors,
derivatives of descriptors, chain rules for force and virial computa-
tions are called as non-standard operators by the TensorFlow.

LAMMPS support.
The LAMMPS support for DeePMD is shipped as a third-party

package with the DeePMD-kit source code. The installation of
package is similar to other third-party packages for LAMMPS and
is explained in detail in the DeePMD-kit manual. In the current
release, only serial MD simulations with DeePMD model are sup-
ported. To enable the DeePMD model, only two lines are added in
the LAMMPS input file.

pair_style deepmd graph.pb
pair_coeff

The command deepmd in pair_stylemeans to use the DeePMD
model to compute the atomic interactions in the MD simulations.
The parameter graph.pb is the file containing the frozen model.
The pair_coeff should be left blank.

i-PI support.
The i-PI is implemented based on a client–servermodel. The i-PI

works as a server that integrates the trajectories of the nucleus. The
DeePMD-kit provides a client called dp_ipi that gets coordinates
of atoms from the i-PI server and returns the energy, forces, and
virial computed by the DeePMD model to the i-PI server. The
communication between the server and client is implemented
through either the UNIX domain sockets or the Internet sockets.
It is noted that multiple instances of the client are allowed, thus
the computation of the interactions inmultiple path-integral repli-
cas is embarrassingly parallelized. The parameters of running the
client are provided by a JSON file. An example for a water system
is

{
"verbose": false,
"use_unix": true,
"port": 31415,
"host": "localhost",
"graph_file": "graph.pb",
"coord_file": "conf.xyz",
"atom_type" : {"OW": 0, "HW1": 1, "HW2": 1}

}

In this example, the client communicates with the server through
the UNIX domain sockets at port 31415. The forces are computed
according to the frozenmodel stored in graph.pb. The conf.xyz
file provides the atomic names and coordinates of the system. The
dp_ipi ignores the coordinates in conf.xyz and translates the
atomnames to types according to the rule providedbyatom_type.

4. Example

The performance of the DeePMD-kit package is demonstrated
by a bulk liquid water system of 64 molecules subject to periodic
boundary conditions.2 The dataset is generated by a 20 ps, 330
K NVT AIMD simulation with PBE0+TS exchange–correlation func-
tional. The frames are recorded from the trajectory in each time
step, i.e., 0.0005 ps. Thus in total we have 40000 frames. The order
of the frames is randomly shuffled. 38 000 of them are used as
training data, while the remaining 2000 are used as testing data.

The cut-off radius of neighbor atoms is 6.0 Å. The network
input (descriptors) contains both radial and angular information
of 16 closest neighboring oxygen atoms and 32 closest neighboring
hydrogen atoms, while contains only the radial information of the
rest of neighbors.

The first and second neighboring shells of a water molecule
have on average 4 and 12 molecules, respectively, and thus our
setting roughly considers the angular information of neighbors
up to the second neighboring shell. The DNN contains 5 hid-
den layers. The size of each layer is (M1,M2,M3,M4,M5) =

(240, 120, 60, 30, 10), from the innermost to the outermost layer.
The model is trained by the Adam stochastic gradient descent
method, with the learning rate decreasing exponentially. The de-
cay rate and decay step are set to 0.95 and 5000, respectively. The
prefactors in the loss function are taken as pstarte = 0.02, plimit

e = 8,
pstartf = 1000, and plimit

f = 1. No virial is available in the data, so
the virial prefactors are set to 0, i.e., pstartv = plimit

v = 0.
The model is trained on a desktop machine with an Intel Core

i7-3770 CPU and 32 GBmemory using 4 OpenMP threads. The total
wall time of the training is 16 h. The learning curves of the RMS
energy and force errors as functions of training step are plotted
in Fig. 3. The errors are tested on the fly by 100 frames randomly

2 For this example, the rawdata and the JSON parameter files for training andMD
simulation are provided in the online package. More details on how to use them are
explained in the manual.
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Fig. 3. The learning curves of the liquid water system. The root mean square energy
and force testing errors are presented against the training step. The energy error is
given in the unit of eV, while the force error is given in unit of eV/Å. The axes of the
plot are logscaled.

Fig. 4. The radial distribution functions of the DeePMD comparedwith the PBE0+TS
DFT water model.

picked from the testing set. At the beginning, themodel parameters
{W p

s , bp
s } are randomly initialized, and the RMS energy and force

errors are 3.7 × 102 eV and 8.4 × 10−1 eV/Å, respectively. At the
end of training, the RMS energy and force errors over the whole
testing set are 2.8 × 10−2 eV and 2.4 × 10−2 eV/Å, respectively.
The standard deviation of the energy and the forces in the data are
6.5 × 10−1 eV and 8.1 × 10−1 eV/Å, respectively. Therefore, the
relative errors of energy and forcewith respect to the data standard
deviation are 4.3% and 2.9%, respectively.

The trained DeePMD model is frozen and passed to LAMMPS
to run NVT MD simulation of 64 water molecules. The simulation
cell is of size 12.4447 Å × 12.4447 Å × 12.4447 Å under periodic
boundary conditions. The simulation lasts for 200 ps. Snapshots
in the first 50 ps are discarded, while the rest snapshots in the
trajectory are saved in every other 0.01 ps for structural analysis.
The oxygen–oxygen, oxygen–hydrogen, and hydrogen–hydrogen
radial distribution functions are presented in Fig. 4. The distri-
bution of the tetrahedral packing parameter [32] is presented in
Fig. 5. These results show that the DeePMDmodel is in satisfactory
agreement with the DFT model in generating structure properties.

5. Conclusion and future work

We introduced the software DeePMD-kit, which implements
DeePMD, a deep neural network representation for atomic inter-
actions, based on the deep learning framework TensorFlow. The
descriptors and chain rules for force/virial computation of DeePMD
are implemented in C++ and interfaced to TensorFlow as new
operators for model training and PES evaluation. Therefore, the

Fig. 5. The distribution of the tetrahedral packing parameter of the DeePMD
compared with the PBE0+TS DFT water model.

training, testing, and MD simulations benefit from TensorFlow’s
state-of-the-art training algorithms and highly optimized tensor
operations. Supports for third-party MD packages, LAMMPS and
i-PI, are provided such that these softwares can do classical/path-
integral MD simulations with the atomic interactions modeled by
DeePMD.

In addition, we also provided the analytical details needed
to implement the DeePMD method, including the definition of
the chemical environment descriptors, the deep neural network
architecture, the formula for force and virial calculation, and the
definition of the loss function. We explained the RAW data format
defined by DeePMD-kit, which provides a protocol for utilizing
simulation data generated by othermolecular simulation packages
and can be easilymanipulated by text processing tools in theUNIX-
like systems and Python. We provided brief instructions on the
model training, testing, and how to set up DeePMD simulation
under LAMMPS and i-PI. Finally the accuracy and efficiency of the
DeePMD-kit package is illustrated by an example of bulk liquid
water system.

The current version of DeePMD-kit only provides CPU imple-
mentation of the descriptor computation. In the training stage this
computation is embarrassingly parallelized by OpenMP. However,
during the evaluation of energy, force, and virial inMD simulations,
this computation is not parallelized. In the future we will provide
support on the parallel computation of descriptors via CPU multi-
core and GPU multithreading mechanisms.
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Appendix. Derivation of force and virial

By using Eqs. (10) and (11), the force of the ith atom is given by

Fi = −
∂

∂Ri

∑
j

Es(j)

= −

∑
j,k,α

∂Es(j)
∂Dα

jk

∂Dα
jk(Rjk,Rja(j),Rjb(j))

∂Ri
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= −

∑
k∈N(i),α

∂Es(i)
∂Dα

ik

∂Dα
ik(Rik,Ria(i),Rib(i))

∂Ri

−

∑
j̸=i
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k∈N(j),α

δi,a(j)
∂Es(j)
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jk
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∂Ri

−
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k∈N(j),α

δi,b(j)
∂Es(j)
∂Dα

jk

∂Dα
jk(Rjk,Rja(j),Rjb(j))

∂Ri

−

∑
j̸=i

∑
k∈Ñ(j),α

δi,k
∂Es(j)
∂Dα

jk

∂Dα
jk(Rjk,Rja(j),Rjb(j))

∂Ri
.

The virial of the system is given by

Ξ =

∑
i

RiFi

= −

∑
i

Ri
∂Es(i)
∂Ri

−

∑
i

Ri

∑
j̸=i

∂Es(j)
∂Ri

= −

∑
i

Ri

∑
j̸=i

∂Es(i)
∂Rij

+

∑
i

Ri

∑
j̸=i

∂Es(j)
∂Rji

= −

∑
i

Ri

∑
j̸=i

∂Es(i)
∂Rij

+

∑
j

Rj

∑
i̸=j

∂Es(i)
∂Rij

= −

∑
i̸=j

Rij
∂Es(i)
∂Rij

.

By using Eq. (10) and Eq. (11), it reads

Ξ = −

∑
i̸=j

Rij
∂Es(i)
∂Rij

= −

∑
i̸=j

Rij

∑
q,α

∂Es(i)
∂Dα

iq

∂Dα
iq(Riq,Ria(i),Rib(i))

∂Rij

= −

∑
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Rij

∑
α

∂Es(i)
∂Dα

ij

∂Dα
ij (Rij,Ria(i),Rib(i))

∂Rij

−

∑
i̸=j

Rijδj,a(i)
∑
q,α

∂Es(i)
∂Dα

iq

∂Dα
iq(Riq,Ria(i),Rib(i))

∂Rij

−

∑
i̸=j

Rijδj,b(i)
∑
q,α

∂Es(i)
∂Dα

iq

∂Dα
iq(Riq,Rib(i),Rib(i))

∂Rij
.
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