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Basic Phenomenon 

From 
Wikipedia 



An Intuitive Approach to Faraday Effect 

two eigenstates: left-handed circularly polarized state and right-
handed circularly polarized state. 

The former carries +ħ angular momentum, and the later –ħ. 

hν hν 

Left-handed circularly polarized light Right-handed circularly polarized light 

hν 

Linearly polarized light 
hν 

hν 

A linearly polarized light is the superposition of two circularly 
polarized light with the same amplitude, different relative phase 
will give different polarization direction 



An Intuitive Approach to Faraday Effect 

• When interacting with the matter, the angular momentum 
carried by photons will be conveyed  to the atom due to 
angular momentum conservation  

 

 

 

 

• When the atom is in the magnetic field, there will be an 
additional energy due to the angular momentum change 

 ∆𝐸 = −∆𝝁 ∙ 𝑩0 = −
𝑒

2𝑚
∆𝑳 ∙ 𝑩0 = ∓

𝑒𝐵0ħ

2𝑚
 

• So a L-photon has effective energy of hν−𝑒𝐵0ħ 2𝑚 , and a R-
photon has effective energy of hν+ 𝑒𝐵0ħ 2𝑚  

 

 

hν atom 
Energy +hν 
Angular momentum + ħ 

atom 

excited 



An Intuitive Approach to Faraday 
Effect 

So the dispersion relation of L-photons and R-photons will 
no longer be the same. The dispersion will shift differently for 
two kinds of photons. 
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B0 

hν 

An Intuitive Approach to Faraday Effect 

hν 

hν 

hν hν hν 

hν 

hν 

hν 

hν 

polarizer 

Dielectric media in the magnetic field  



An Intuitive Approach to Faraday Effect 

• For L-photon the effective dispersion relation 

𝑛𝐿 𝜔 = 𝑛 𝜔 −
𝑒𝐵0

2𝑚
= 𝑛 𝜔 −

𝑒𝐵0

2𝑚
∙
d𝑛

d𝜔
 

• The same way 

𝑛𝑅 𝜔 = 𝑛 𝜔 +
𝑒𝐵0

2𝑚
= 𝑛 𝜔 +

𝑒𝐵0

2𝑚
∙
d𝑛

d𝜔
 

• The rotation angle ∆𝜑 of the polarization vector 

∆𝜑 =
∆𝜃

2
= 𝜔 ∙ 𝐷/𝑐(𝑛𝑅 − 𝑛𝐿) =

𝐷

2
∙
𝐵0𝑒

𝑚𝑐
∙ 𝜔

d𝑛

d𝜔
 

• Experimentalists denote it as ∆𝜑 = 𝑉 𝜆 𝐵0𝐷, where 𝑉 𝜆 is 
called the Verdet constant. 

• This explanation is intuitive but somehow vague, a restrict 
proof is attached as appendix I, using the classical point of 
view. 

 



Experimental equipment 
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Wavelength Calibration 
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Problem encountering 



Response 



The effect of inhomogeneous B 
field One problem has long bothered us: After turning on the 
magnetic field, we could not reduce the intensity to be  zero 
by rotating the second polarizer. We tried hard to explain 
that and finally came up with a reasonable explanation: the B 
field is inhomogeneous 

We suppose the magnetic field is a 
2D Gaussian function centered at 
the origin. The polarization 
direction is shown in the left figure. 
We can not eliminate the light 
every where by rotating a polarizer 



The effect of inhomogeneous B 
field 

The light intensity change when the 
polarizer is rotating 



The effect of inhomogeneous B 
field 
Now comes the question. We can only get the angle at which 
the gauge shows the minimal  value. Will that be reasonable 
to use this angle as the rotating angle? 

theta/rad 

Intensity/au. 
I have done some calculation 
I=2A  B0=544mT   D=10.1mm   λ=550nm 
Integrate over the circle centered at the 
origin with radius 5mm 
The optical axis of the polarizer is nearly 
perpendicular to polarization direction of 
the light at origin. However we find the 
minimal value occurs at θ = 0.02rad instead 
of  θ = 0. 
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The effect of inhomogeneous B field 



Appendix I: mathematical 
formulation of Faraday Effect 
In general, the transverse electromagnetic plane wave 
propagating in vacuum along z direction can be written as  

𝐸𝑥 = 𝐸𝑥0cos(𝑘𝑧 − 𝜔𝑡 + 𝜑𝑥 ) 
𝐸𝑦 = 𝐸𝑦0cos(𝑘𝑧 − 𝜔𝑡 + 𝜑𝑦 ) 

When using the complex amplitude , it can be written as 

𝑬 =
𝐸𝑥0e

𝑖𝜑𝑥

𝐸𝑦0e
𝑖𝜑𝑦

e𝑖(𝑘𝑧−𝜔𝑡) 

We can use two set of basis, say,  

 𝒆1 = 1
0

, 𝒆2 = 0
1

; 𝒆′1 =
1

2

1
𝑖

, 𝒆′2 =
1

2

1
−𝑖

 

 𝒆1, 𝒆2 are related to linear polarization modes and 𝒆′1, 𝒆′1 are 
related to circular polarization modes. 
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Appendix I 

 𝑬 = 𝐸𝒆1e
𝑖(𝑘𝑧−𝜔𝑡) 

linearly polarized light 

x 

y 

z 
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y 

z 

x 

y 

z 

x 

y 
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 𝑬 = 𝐸𝒆2e
𝑖(𝑘𝑧−𝜔𝑡) 

linearly polarized light 

 𝑬 = 𝐸𝒆′1e
𝑖(𝑘𝑧−𝜔𝑡) 

left-hand circularly polarized light 

 𝑬 = 𝐸𝒆′2e
𝑖(𝑘𝑧−𝜔𝑡) 

right-hand circularly polarized light 



Decomposition of linearly polarized light 

 𝒆1 =
1

2
(𝒆′

1 + 𝒆′
2), 𝒆2 =

−𝑖

2
𝒆′

1 − 𝒆′
2  

 
Now, we consider the propagation of  electromagnetic wave  in 
a dielectric, a uniform magnetic field B0 is parallel to the wave 
vector. Combine Newton’s second law with Lorentz force 
formulation we get (assume e <0),   

𝑚
d𝒗

d𝑡
= −𝑒(𝑬 + 𝒗 × 𝑩) 

This equation governs the motion of the electrons in the 
dielectric. Suppose B0 is much larger than the magnet 
component of the electromagnetic wave, therefore 𝑩 = 𝑩𝟎 =
𝐵0𝒛. And E  is the electric component, 𝑬 = 𝑬0e

−𝑖𝜔𝑡 . 
Take the testing solution as the form of  𝒗 = 𝒗0e

−𝑖𝜔𝑡 . This 
makes sense, because in the case of forced oscillations, 
electrons will the transient part of a solution will decay and 
leave the steady part as time goes on. 
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Substitute the testing solution into the equations 

−𝑖𝜔𝑣0𝑥 =
−𝑒

𝑚
𝐸0𝑥 +

−𝑒

𝑚
𝑣0𝑦𝐵0 

−𝑖𝜔𝑣0𝑦 =
−𝑒

𝑚
𝐸0𝑦 −

−𝑒

𝑚
𝑣0𝑥𝐵0 

−𝑖𝜔𝑣0𝑧 =
−𝑒

𝑚
𝐸0𝑧 

Use the Cyclotron motion frequency 𝜔𝐵 = 𝑒𝐵0/𝑚 to simplify the 
equations 

𝑣0𝑥 =
−𝑒

𝑚

1

𝜔2 − 𝜔𝐵
2

𝑖𝜔𝐸0𝑥 + 𝜔𝐵𝐸0𝑦  

𝑣0𝑦 =
−𝑒

𝑚

1

𝜔2 − 𝜔𝐵
2

𝜔𝐵𝐸0𝑥 − 𝑖𝜔𝐸0𝑦  

𝑣0𝑧 = −
𝑒

𝑖𝑚𝜔
𝐸0𝑧 

Combine  𝒋 = 𝑛𝑒𝒗 and 𝒋 = 𝜎 𝑬 , we can then get the conductivity 

tensor from 𝒗 =
1

−𝑛𝑒
𝜎 𝑬.  
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If we combine the Maxwell equation in the dielectric and 
𝑬 = 𝑬0e

−𝑖𝜔𝑡 we will get  

𝛻 × 𝑯 = 𝜎 − 𝑖𝜔𝜀0𝐼 𝑬 

𝜀0is the intrinsic permittivity of the dielectric,   𝑫 = 𝜀0𝑬 
The effective  permittivity tensor satisfies 𝛻 × 𝑯 = −𝑖𝜔𝜀  𝑬 

Therefore, 𝜀 = 𝜀0𝐼 −
1

𝑖𝜔
𝜎  

We can denote it as 𝜀  = 𝜀0𝜀𝑟 = 𝜀0

𝜀1 𝑖𝜀2 0
−𝑖𝜀2 𝜀1 0

0 0 𝜀3

 

where 𝜀1 = 1 −
𝜔𝑝

2

𝜔2−𝜔𝐵
2, 𝜀2 =

𝜔𝑝
2𝜔𝐵

(𝜔2−𝜔𝐵
2
)𝜔

, 𝜀3 = 1 −
𝜔𝑝

2

𝜔
,and 

𝜔𝑝
2 =

𝑛𝑒2

𝑚𝜀0
. We assume ω > 𝜔𝑝 ≫ 𝜔𝐵, so that𝜀1 ≫ 𝜀2. 

We see the magnetic field contributes to the off-diagonal 
element of the permittivity tensor, and it is pure imaginary. 
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Having got the permittivity tensor , let us find the plane wave 
solution of the Maxwell equation. We are interested in the 
plane wave propagating along z direction𝒌 = 𝑘𝑧 , i.e. the 
direction of the external magnetic field. Substitute 𝑬 =
𝑬0e

𝑖(𝑘𝑧−𝜔𝑡) and 𝑯 = 𝑯0e
𝑖(𝑘𝑧−𝜔𝑡)into the Maxwell equation 

𝛻 ∙ 𝑫 = 0

𝛻 × 𝑬 = −
𝜕𝑩
𝜕𝑡

𝛻 ∙ 𝑩 = 0

𝛻 × 𝑯 =
𝜕𝑫
𝜕𝑡

 

We get 
𝒌 ∙ (𝜀 ∙ 𝑬0) = 0

𝒌 × 𝑬0 = 𝜔𝜇0𝑯0

𝒌 ∙ 𝑯0= 0

𝒌 × 𝑯0 = −𝜔𝜀 ∙ 𝑬0

 

From the first equation we know that 𝐸𝑧 = 0 , therefore the 
electromagnetic wave is transverse. 
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Combining the second and the fourth equations, as well as the 
condition that 𝒌 = 𝑘𝑧   we know that 

𝑘2𝑬0 = 𝜔2𝜇0𝜀0𝜀𝑟 ∙ 𝑬0 
Noting the wave vector in vacuum is 𝑘0 = 𝜔 𝑐 = 𝜔 𝜇0𝜀0 

(𝑘0
2𝜀𝑟 − 𝑘2𝐼 )𝑬0 = 0 

𝑘2is the eigenvalue of 𝑘0
2𝜀𝑟 , solving the secular equation brings 

us with  

𝑘1 = 𝑘0 𝜀1 + 𝜀2, 𝑘2 = 𝑘0 𝜀1 − 𝜀2, 𝑘3 = 𝑘0 𝜀3 

the corresponding eigenvector should be  

𝒆1 =
1

2

1
−𝑖
0

, 𝒆2 =
1

2

1
𝑖
0

, 𝒆3 =
0
0
1

 

The z component of the electric field is 0, so 𝑬0 = 𝐸1𝒆1 + 𝐸2𝒆2, 
these two components are just right-handed polarized light and 
the left-handed polarized light. They have different phase 
velocity in the media.  
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Before entering the media, a linearly polarized light can also be 
viewed as the superposition of two circularly polarized light 

𝑬 = 𝐸0𝒆𝑥𝑒𝑖(𝑘0𝑧−𝜔𝑡) = 𝐸0 2 (𝒆1 + 𝒆2)𝑒
𝑖(𝑘0𝑧−𝜔𝑡) 

After entering the media, the two components of circular 
polarized light begin to propagate in different phase velocity. 

𝑬 = 𝐸0 2 𝒆1𝑒
𝑖𝑘1𝑧 + 𝒆2𝑒

𝑖𝑘2𝑧 𝑒−𝑖𝜔𝑡 

= 𝐸0 2 𝒆1𝑒
−𝑖∆𝑘𝑧/2 + 𝒆2𝑒

𝑖∆𝑘𝑧/2 𝑒𝑖(𝑘 𝑧−𝜔𝑡) 

= 𝐸0 2 𝒆𝑥(𝑒−
𝑖∆𝑘𝑧

2 + 𝑒
𝑖∆𝑘𝑧

2 ) + 𝒆𝑦(𝑒−
𝑖∆𝑘𝑧

2 − 𝑒
𝑖∆𝑘𝑧

2 ) 𝑒𝑖(𝑘 𝑧−𝜔𝑡) 

= 𝐸0 𝒆𝑥cos (∆𝑘𝑧/2) + 𝒆𝑦sin (∆𝑘𝑧/2) 𝑒𝑖(𝑘 𝑧−𝜔𝑡) 

Where ∆𝑘 = 𝑘1 − 𝑘2, 𝑘 = (𝑘1 + 𝑘2)/2 
The last equation indicates that for each point in the media, the 
electromagnetic wave vector is rotating in an angular velocity of 
𝜔.   
Compare the point 𝑧 = 0 and 𝑧 = 𝐷, we get the angle rotated 

 ∆𝜑 = ∆𝑘𝐷/2 = 𝑘0𝐷( 𝜀1 + 𝜀2 − 𝜀1 − 𝜀2)/2 = 𝑘0𝐷𝜀2/ 𝜀1 
Now let’s prove it’s consistent with the result we got through the 
simple picture at the beginning.   

Appendix I 



Appendix I 

What we get at the beginning was ∆𝜑 =
𝐷

2
∙
𝐵0𝑒

𝑚𝑐
∙ 𝜔

d𝑛

d𝜔
 

Noting that 𝑛 =
𝑐

𝑣
= 𝑐 𝜀𝜇 =

𝜀𝜇

𝜀0𝜇0
= 𝜀𝑟𝜇𝑟 ≈ 𝜀𝑟 

d𝑛

d𝜔
=

d 𝜀𝑟

d𝜔
=

1

2 𝜀𝑟

d𝜀𝑟

d𝜔
 

Substitute 𝜀𝑟 = 1 −
𝜔𝑝

2

𝜔2−𝜔𝐵
2 into the equation we get 

d𝑛

d𝜔
=

d 𝜀𝑟

d𝜔
=

1

𝜀𝑟

𝜔𝑝
2𝜔

(𝜔2 − 𝜔𝐵
2)2

 

So 

∆𝜑 =
𝐷

2
∙
𝐵0𝑒

𝑚𝑐
∙

1

𝜀𝑟

𝜔𝑝
2𝜔2

(𝜔2 − 𝜔𝐵
2)2

≈
𝐷

2
∙
𝐵0𝑒

𝑚𝑐
∙

1

𝜀𝑟
∙
𝜔𝑝

2

𝜔2
 

 



On the other hand, we have just get 
∆𝜑 = ∆𝑘𝐷/2 

∆𝑘 is the difference between 𝑘1 = 𝑘0 𝜀1 + 𝜀2 and 𝑘2 = 𝑘0 𝜀1 − 𝜀2 
Expand the function 𝑘 𝜔 = 𝑘(𝜀𝑟) = 𝑘0 𝜀𝑟 near 𝜀𝑟 = 𝜀1 

∆𝑘 ≈
d𝑘

d𝜀𝑟
 
𝜀𝑟=𝜀1

∙ ∆𝜀𝑟 =
𝑘0

2 𝜀𝑟
∙ 2𝜀2 

Substitute 𝜀2 =
𝜔𝑝

2𝜔𝐵

(𝜔2−𝜔𝐵
2
)𝜔

 and 𝜔𝐵 =
𝑒𝐵0

𝑚
 into the equation 

∆𝜑 =
∆𝑘𝐷

2
=

𝑘0𝐷

2 𝜀𝑟
∙
𝑒𝐵0

𝑚
∙

𝜔𝑝
2

(𝜔2 − 𝜔𝐵
2
)𝜔

 

≈
𝐷

2 𝜀𝑟
∙
𝑒𝐵0

𝑚𝑐
∙
𝜔𝑝

2

𝜔2
 

The two pictures give the same result.  
 
Reference: Prof. Lei Zhou’s lecture notes 
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Appendix II: Refractive Index in the 
view of Lorentz Model 

Appendix II 

In the view of classical physics, Lorentz assumes the nucleus 
of the atom is much more massive than the electron, then 
electrons can treated as connected to an infinite mass through 
a spring. In the external field of  the light shed on the  atom, 
the motion of the electron is described an forced oscillator 

𝑚𝑟 + 𝑔𝑟 + 𝑘𝑟 = −𝑒𝐸0e
−𝑖𝜔𝑡 

We can simplify it as 

𝑟 + 𝛾𝑟 + 𝜔0
2𝑟 = −

𝑒𝐸0

𝑚
e−𝑖𝜔𝑡 

Where 𝜔0 =
𝑘

𝑚
 is the intrinsic angular frequency.  𝛾 =

𝑔

𝑚
 is 

the damping constant, the steady solution of the equation is 

𝑟 = −
𝑒𝐸0

𝑚

1

𝜔2 − 𝜔0
2 + 𝑖𝛾𝜔

e−𝑖𝜔𝑡 
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The displacement of the electron will cause the polarization of 
the dielectric 

𝑃 = −𝑁𝑍𝑒𝑟   
𝑃  and 𝑟  contain the phase factor so we use tilde t denote them.  
The complex permittivity is given by 

𝜀 = 1 + 𝜒𝑒 = 1 +
𝑃 

𝑟 
= 1 −

𝑁𝑍𝑒2

𝜀0𝑚

1

𝜔2 − 𝜔0
2 + 𝑖𝛾𝜔

 

This is the case for unique intrinsic angular frequency. 
Generally the atom has several kinds of oscillators with intrinsic 
angular frequency of 𝜔1, 𝜔2, 𝜔3 … and the corresponding 
damping constant are 𝛾1, 𝛾2, 𝛾3 …the number of the oscillators 
are𝑓1, 𝑓2, 𝑓3 … 

𝜀 = 1 −
𝑁𝑒2

𝜀0𝑚
 

𝑓𝑗

𝜔2 − 𝜔𝑗
2 + 𝑖𝛾𝑗𝜔𝑗

𝑗

 

Where Σ𝑓𝑗 = 𝑍. the complex refractive index which describes 

both refraction and absorption can be get through 𝑛 = 𝜀  
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𝑛 = 𝜀 ≈ 1 −
𝑁𝑒2

2𝜀0𝑚
 

𝑓𝑗

𝜔2 − 𝜔𝑗
2 + 𝑖𝛾𝑗𝜔𝑗

𝑗

 

Refractive Index 

𝑛 𝜔 = Re 𝑛 = 1 −
𝑁𝑒2

2𝜀0𝑚
 

𝑓𝑗(𝜔
2 − 𝜔0𝑗

2)

(𝜔2 − 𝜔𝑗
2)2+𝛾𝑗𝜔𝑗

2
𝑗

 

Use the wavelength 𝜆 = 2𝜋𝑐 𝜔  and define 𝜆𝑗 = 2𝜋𝑐 𝜔𝑗 , n can 

be written as   

𝑛 𝜆 = 1 +
𝑁𝑒2

2𝜀0𝑚
 

𝑓𝑗(𝜆
2 − 𝜆𝑗

2)𝜆2𝜆𝑗
2

(2𝜋𝑐)2(𝜆2 − 𝜆𝑗
2)2 + 𝛾𝑗

2𝜆2𝜆𝑗
4
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At normal dispersion region 𝜆𝑗
4 term can be omitted in the 

denominator 
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Where 𝑎𝑗 = 𝑁𝑒2𝜆2𝜆𝑗
2 2𝜀0𝑚(2𝜋𝑐)2  is a constant 
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Refractive Index 

𝑛 𝜔 = Re 𝑛 = 1 −
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Use the wavelength 𝜆 = 2𝜋𝑐 𝜔  and define 𝜆𝑗 = 2𝜋𝑐 𝜔𝑗 , n can 

be written as   

𝑛 𝜆 = 1 +
𝑁𝑒2
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At normal dispersion region 𝜆𝑗
4 term can be omitted in the 

denominator 

1 +
𝑁𝑒2
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Whole spectrum refractive index 
From http://physics.stackexchange.com 
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At normal dispersion region 𝜆1, 𝜆2, … , 𝜆𝑗 < 𝜆 < 𝜆𝑗+1, 𝜆𝑗+2, … 

𝑛 = 1 + 𝑎1 + 𝑎2 + ⋯+ 𝑎𝑗−1 +
𝑎𝑗𝜆

2

𝜆2 − 𝜆𝑗
2 

≈ 1 + 𝑎1 + 𝑎2 + ⋯+ 𝑎𝑗−1 + 𝑎𝑗 1 +
𝜆𝑗

𝜆

2

+
𝜆𝑗

𝜆

4

+ ⋯  

= 𝐶 +
𝐹

𝜆2
+

𝐺

𝜆4
+ ⋯ 

The last equation is known as the Cauchy equation 
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The variation of refractive index 
with wavelength 
From Wikipedia 


