Identifying the Crystalline Orientation of BP

by Guo Shuaifei

Zhang Zhongyu
Zhang Yu
＜页脚〉

Purpose of the project

As a layered material, BP has a great anisotropic nature because of its structure (figure 1). Our final purpose is to find the electronic property of a BP device under stretching or compressing (figure 2). While the first step is to identify the crystal orientation of few layer BP.

Figure1.structure of few-layer BP Li et al.

figure 2. our experiment configuration

I. Utilizing the angle resolve Raman spectrum

Raman peaks of black phosphorus

- Among the many ways to identify the crystal orientation the optical method is quick, easy and nondustuctive.
- One can observe 3 typical Raman peaks, that is, $\mathrm{A}_{\mathrm{g}}{ }^{1}$ at 363 $\mathrm{cm}^{-1}, \mathrm{~B}_{2 \mathrm{~g}}$ at $440 \mathrm{~cm}^{-1}$, and $\mathrm{A}_{\mathrm{g}}{ }^{2}$ at $467 \mathrm{~cm}^{-1}$. And the corresponding vibration modes are as follows:

figure4. vibration modes

Device setup -- first generation

Method I : using one quarter wave plate and two polarizers to creat a polarized light with constant light intensity and changable polarization direction. (Figure 5) In this configuration we can only measure the parallel component of the scattered light.

Failed - Difficulties in producing and maintaining circular polarized light

Polarizer
HWP

Raman
Scattered Light

Figure 5.in this figure, polaroid2 is only the one we use to control the direction.the angle between fast axis of the QWP and the polarization direction is 45°, which could create circle polarized light.

ResultS

We rotated the polariod2 from 0° to 180°, and gained the data of bp raman peak intensity. (Fig 6a) To indicate the circle polarized light is accurate, we do the same operation to the Si substrate. The data was shown in figure $6 b$.

Figure 6a shows the angular-dependence of the blackphorsphorus layers. As we have mentioned, this is the parallel configuration data.As the Raman tensor theory can predict, the parallel confoguration of Ag 1 and Ag 2 changes following the same law. Unfortunately, we gained the data of the $\mathrm{Si}($ Fig. 6b),which shows our divice did not perform well. Because the lattice plane of the Si is (100),which should result in four identical local maximun in a round. So it's too difficult to creat a ideal polarized light㧴his mathod should be reformed.

Device setup -- second generation

Method II: As prof. Wang suggested, we finally use a polariod and a half wave plate(HWP) to create the polarized light. HWP can change the direction of polaried light without changing the intensity. (Fig 7)

Figure 7. The divice we final used. The linely polarized light changed it's direction for 2θ as the HWP rotated θ. In case the polarization light in other direction would appear, we put the polariod along the horizontal direction. And we rotate the HWP with a rotation stage drived by a computer program.

Results

We carryed out this experiment, and get a group of data. We plot them as Fig 8

a

b

c

d

Figure 8.a\&b shows the Si peak of this system, the angle this picture rotated is exactly that we rotated the sample,so the peak change has nothing to do with the light and divice. so the data of bp is reliable. c\&d shows the angular dependence of the bp,that's what we want to explore. Clearly,the Ag2 peak shows the most strong anisotropy nature, we can use it to identify the crystalline orientation.

armchair direction

Data fitting

- Theories of Raman scattering gives the following result about the intensity versus the direction of polarization of the incident beam

$$
\begin{gathered}
S_{A_{g}^{2}}=\frac{1}{2}\left(a^{2}+c^{2}\right)+\frac{1}{2}\left(c^{2}-a^{2}\right) \cos (2 \theta) \\
S_{B_{2 g}}=f^{2}
\end{gathered}
$$

- where a, c and f are all Raman tensor elements. And θ is the angle between incident beam polarization direction and zigzag direction (10.1021/acsnano.5b00698)
- $\mathrm{A}_{\mathrm{g}}{ }^{2}$ peak maximum \leftrightarrow polarization along zigzag direction
- $\mathrm{A}_{\mathrm{g}}{ }^{2}$ peak minimum \leftrightarrow polarization along armchair direction

Data fitting

- We fitted the data of $\mathrm{A}_{\mathrm{g}}{ }^{2}$ peak with sum of sin mode in matlab

$$
\text { - } y=4342+2075 \sin (2.17 x-1.52)
$$

- The parameter before x is supposed to be 2 . The discrepancy may due to imprecise of the rotation stage

Figure 6.the red " + " is the experimential data of Ag 2 peak, the dotted line is the fitted curve,Data fitting gives $y=4342+2075 \sin (2.17 x-1.52)$ the phrase difference and the angular velocity.

Conclusion and unsolved problems

- At the very beginning the incident beam is polarized horizontally in the vision field. As the stage rotates, the polarization direction rotates anticlockwise.
- The $\mathrm{A}_{\mathrm{g}}{ }^{2}$ peak reaches the maximum at $x=0.700 \mathrm{rad}=40.1^{\circ}$ that is the zigzag direction.
- The precision of the system is limited by the rotation stage
3.0 AG-PR100 Rotation Stage

Supplementary Information

- To ensure that the intensity of the beam remains unchanged when the HWP is rotating, we took the angle-resolved Raman spectrum of graphene and the silicon substrate.
- The result indicated that for material with high symmetry like graphene, the Raman peaks show little anisotropic characters.
- For Silicon, when the incident beam is perpendicular to the [1,0,0] face

II. Utilizing the anisotropic transmission rate and reflection rate of IR

Theory

The anisotropy in optical conductivity arises from the directional dependece of the interband transition strength in the anisotropic BP bands.

Optical conductivity of BP peaks at the x -direction at the band edge.

- For all polarizations, the extinction shows a sharp increase at around 2400(cm-1), indicating a band gap of around 0.3 eV .

Reference:

'Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics 'Fengnian Xia1,*, Han Wang2,* \& Yichen Jia1

transmission

70,125,220,310
After rotation of 33 degree

50,105,190,290

reflection

Contrast

Background

Sample

THANK YOU

