# -*- coding: utf-8 -*- # 3.0 # # Concerned third party import pandas as pd from pandas import DataFrame from pandas import Series import numpy as np import math import copy import QSTK.qstkutil.qsdateutil as du import datetime as dt import QSTK.qstkutil.DataAccess as da import QSTK.qstkutil.tsutil as tsu import matplotlib.pyplot as plt import os # Preliminary preparation dt_start = dt.datetime(2007, 1, 1) dt_end = dt.datetime(2010, 12, 31) ldt_timestamps = du.getNYSEdays(dt_start, dt_end, dt.timedelta(hours = 16)) #ls_symbols = ['A', 'AA', 'AAPL', 'ABC', 'ABT', 'ACE', 'ACN', 'ADBE', 'ADI', 'ADM', 'ADP', 'ADSK', 'AEE', 'AEP', 'AES', 'AET', 'AFL', 'AGN', 'AIG', 'AIV', 'AIZ', 'AKAM', 'ALL', 'ALTR', 'ALXN', 'AMAT', 'AMD', 'AMGN', 'AMP', 'AMT', 'AMZN', 'AN', 'ANF', 'ANR', 'AON', 'APA', 'APC', 'APD', 'APH', 'APOL', 'ARG', 'ATI', 'AVB', 'AVP', 'AVY', 'AXP', 'AZO', 'BA', 'BAC', 'BAX', 'BBBY', 'BBT', 'BBY', 'BCR', 'BDX', 'BEAM', 'BEN', 'BF.B', 'BHI', 'BIG', 'BIIB', 'BK', 'BLK', 'BLL', 'BMC', 'BMS', 'BMY', 'BRCM', 'BRK.B', 'BSX', 'BTU', 'BWA', 'BXP', 'C', 'CA', 'CAG', 'CAH', 'CAM', 'CAT', 'CB', 'CBE', 'CBG', 'CBS', 'CCE', 'CCI', 'CCL', 'CELG', 'CERN', 'CF', 'CFN', 'CHK', 'CHRW', 'CI', 'CINF', 'CL', 'CLF', 'CLX', 'CMA', 'CMCSA', 'CME', 'CMG', 'CMI', 'CMS', 'CNP', 'CNX', 'COF', 'COG', 'COH', 'COL', 'COP', 'COST', 'COV', 'CPB', 'CRM', 'CSC', 'CSCO', 'CSX', 'CTAS', 'CTL', 'CTSH', 'CTXS', 'CVC', 'CVH', 'CVS', 'CVX', 'D', 'DD', 'DE', 'DELL', 'DF', 'DFS', 'DGX', 'DHI', 'DHR', 'DIS', 'DISCA', 'DLTR', 'DNB', 'DNR', 'DO', 'DOV', 'DOW', 'DPS', 'DRI', 'DTE', 'DTV', 'DUK', 'DV', 'DVA', 'DVN', 'EA', 'EBAY', 'ECL', 'ED', 'EFX', 'EIX', 'EL', 'EMC', 'EMN', 'EMR', 'EOG', 'EQR', 'EQT', 'ESRX', 'ESV', 'ETFC', 'ETN', 'ETR', 'EW', 'EXC', 'EXPD', 'EXPE', 'F', 'FAST', 'FCX', 'FDO', 'FDX', 'FE', 'FFIV', 'FHN', 'FII', 'FIS', 'FISV', 'FITB', 'FLIR', 'FLR', 'FLS', 'FMC', 'FOSL', 'FRX', 'FSLR', 'FTI', 'FTR', 'GAS', 'GCI', 'GD', 'GE', 'GILD', 'GIS', 'GLW', 'GME', 'GNW', 'GOOG', 'GPC', 'GPS', 'GS', 'GT', 'GWW', 'HAL', 'HAR', 'HAS', 'HBAN', 'HCBK', 'HCN', 'HCP', 'HD', 'HES', 'HIG', 'HNZ', 'HOG', 'HON', 'HOT', 'HP', 'HPQ', 'HRB', 'HRL', 'HRS', 'HSP', 'HST', 'HSY', 'HUM', 'IBM', 'ICE', 'IFF', 'IGT', 'INTC', 'INTU', 'IP', 'IPG', 'IR', 'IRM', 'ISRG', 'ITW', 'IVZ', 'JBL', 'JCI', 'JCP', 'JDSU', 'JEC', 'JNJ', 'JNPR', 'JOY', 'JPM', 'JWN', 'K', 'KEY', 'KFT', 'KIM', 'KLAC', 'KMB', 'KMI', 'KMX', 'KO', 'KR', 'KSS', 'L', 'LEG', 'LEN', 'LH', 'LIFE', 'LLL', 'LLTC', 'LLY', 'LM', 'LMT', 'LNC', 'LO', 'LOW', 'LRCX', 'LSI', 'LTD', 'LUK', 'LUV', 'LXK', 'LYB', 'M', 'MA', 'MAR', 'MAS', 'MAT', 'MCD', 'MCHP', 'MCK', 'MCO', 'MDT', 'MET', 'MHP', 'MJN', 'MKC', 'MMC', 'MMM', 'MNST', 'MO', 'MOLX', 'MON', 'MOS', 'MPC', 'MRK', 'MRO', 'MS', 'MSFT', 'MSI', 'MTB', 'MU', 'MUR', 'MWV', 'MYL', 'NBL', 'NBR', 'NDAQ', 'NE', 'NEE', 'NEM', 'NFLX', 'NFX', 'NI', 'NKE', 'NOC', 'NOV', 'NRG', 'NSC', 'NTAP', 'NTRS', 'NU', 'NUE', 'NVDA', 'NWL', 'NWSA', 'NYX', 'OI', 'OKE', 'OMC', 'ORCL', 'ORLY', 'OXY', 'PAYX', 'PBCT', 'PBI', 'PCAR', 'PCG', 'PCL', 'PCLN', 'PCP', 'PCS', 'PDCO', 'PEG', 'PEP', 'PFE', 'PFG', 'PG', 'PGR', 'PH', 'PHM', 'PKI', 'PLD', 'PLL', 'PM', 'PNC', 'PNW', 'POM', 'PPG', 'PPL', 'PRGO', 'PRU', 'PSA', 'PSX', 'PWR', 'PX', 'PXD', 'QCOM', 'QEP', 'R', 'RAI', 'RDC', 'RF', 'RHI', 'RHT', 'RL', 'ROK', 'ROP', 'ROST', 'RRC', 'RRD', 'RSG', 'RTN', 'S', 'SAI', 'SBUX', 'SCG', 'SCHW', 'SE', 'SEE', 'SHLD', 'SHW', 'SIAL', 'SJM', 'SLB', 'SLM', 'SNA', 'SNDK', 'SNI', 'SO', 'SPG', 'SPLS', 'SRCL', 'SRE', 'STI', 'STJ', 'STT', 'STX', 'STZ', 'SUN', 'SWK', 'SWN', 'SWY', 'SYK', 'SYMC', 'SYY', 'T', 'TAP', 'TDC', 'TE', 'TEG', 'TEL', 'TER', 'TGT', 'THC', 'TIE', 'TIF', 'TJX', 'TMK', 'TMO', 'TRIP', 'TROW', 'TRV', 'TSN', 'TSO', 'TSS', 'TWC', 'TWX', 'TXN', 'TXT', 'TYC', 'UNH', 'UNM', 'UNP', 'UPS', 'URBN', 'USB', 'UTX', 'V', 'VAR', 'VFC', 'VIAB', 'VLO', 'VMC', 'VNO', 'VRSN', 'VTR', 'VZ', 'WAG', 'WAT', 'WDC', 'WEC', 'WFC', 'WFM', 'WHR', 'WIN', 'WLP', 'WM', 'WMB', 'WMT', 'WPI', 'WPO', 'WPX', 'WU', 'WY', 'WYN', 'WYNN', 'X', 'XEL', 'XL', 'XLNX', 'XOM', 'XRAY', 'XRX', 'XYL', 'YHOO', 'YUM', 'ZION', 'ZMH'] ls_symbols = ['R'] sym = ls_symbols[0] check = {} check[sym]=[ ] ls_keys = ['close', 'actual_close'] dataobj = da.DataAccess('Yahoo') ldf_data = dataobj.get_data(ldt_timestamps, ls_symbols, ls_keys) d_data = dict(zip(ls_keys, ldf_data)) for s_key in ls_keys: d_data[s_key] = d_data[s_key].fillna(method='ffill') d_data[s_key] = d_data[s_key].fillna(method='bfill') d_data[s_key] = d_data[s_key].fillna(1.0) df_close = d_data['close'] ldt_timestamps = df_close.index ma5 = pd.rolling_mean(df_close, 5) ma20 = pd.rolling_mean(df_close, 20) for s_sym in ls_symbols: for i in range(1, len(ldt_timestamps)): if (ma5[s_sym].ix[ldt_timestamps[i]] >= ma20[s_sym].ix[ldt_timestamps[i]]) & (ma5[s_sym].ix[ldt_timestamps[i-1]] <= ma20[s_sym].ix[ldt_timestamps[i-1]]): check[s_sym].append((i, -1)) if (ma5[s_sym].ix[ldt_timestamps[i]] <= ma20[s_sym].ix[ldt_timestamps[i]]) & (ma5[s_sym].ix[ldt_timestamps[i-1]] >= ma20[s_sym].ix[ldt_timestamps[i-1]]): check[s_sym].append((i, 1)) if check[s_sym][0][1] == 1: del check[s_sym][0] if len(check[s_sym]) % 2 == 1: del check[s_sym][-1] ldt_timestamps = df_close.index # Start wih $100000 for sym in ls_symbols: sta = [] for i in xrange((len(check[sym]))/2): b = df_close[sym][check[sym][2*i+1][0]] a = df_close[sym][check[sym][2*i][0]] sta.append(b/a) win = [] loose = [] for i in range(len(sta)): if (sta[i] - 1) >=0: win.append(sta[i] - 1) else: loose.append(1 - sta[i]) p = len(win) / float(len(win) + len(loose)) b = np.mean(win) d = np.mean(loose) kelly = (( b * p - d * ( 1 - p ) )/( b * d )) fraction = [kelly, 0.2, 1] data = DataFrame(0, columns = fraction, index = ldt_timestamps) for j in fraction: wealth = Series(0, index = ldt_timestamps) portfolio = Series(0, index = ldt_timestamps) holding = Series(0, index = ldt_timestamps) ts = Series(0, index = ldt_timestamps) order = check[sym] ts[0: order[0][0]+1] = 100000 for i in xrange(len(order)/2): position = ts[order[2*i][0]] * j / df_close[sym][order[2*i][0]] position = round(position) holding[order[2*i][0]:order[2*i+1][0]] = position ts[order[2*i][0]] -= position * df_close[sym][order[2*i][0]] ts[order[2*i][0]+1:order[2*i+1][0]+1] += ts[order[2 * i][0]] ts[order[2*i+1][0]] += position * df_close[sym][order[2*i+1][0]] try: ts[order[2*i+1][0]+1:order[2*i+2][0]+1] += ts[order[2*i+1][0]] except IndexError: ts[order[2*i+1][0]+1:] = ts[order[2*i+1][0]] for i in xrange(len(ldt_timestamps)): portfolio[i] = holding[i] * df_close[sym].ix[ldt_timestamps[i]] wealth[i] = portfolio[i] + ts[i] data[j] = wealth (a, b, c) = list(data) #plt.plot(data[a]) #plt.plot(data[b]) #plt.plot(data[c]) #plt.show() cut = [] for i in xrange(len(data) - 1 ): if data[a][len(data) -1 - i] == data[a][len(data)-2-i]: ind = data.index[len(data)-1-i] cut.append(ind) for i in cut: data = data.drop(i) plt.plot([100000 for i in xrange(len(data[a]))], 'k--' , alpha = 0.5) plt.plot(data[a], label = a) plt.plot(data[b], label = b) plt.plot(data[c], label = c) #plt.plot(data[d], label = d) #plt.plot(data[e], label = e) plt.title("Trading '%s' during 2007/1/1 to 2010/12/31" %sym) plt.xlabel('Trading days') plt.ylabel('Money') plt.legend(loc = 'best') plt.show() # import random import matplotlib.pyplot as plt import pandas as pd import numpy as np from pandas import* def kelly(win_pro, loose_pro, win_bet, loose_bet): return (win_pro*win_bet - loose_pro*loose_bet)/(win_bet*loose_bet) N = 500 kelly = kelly(0.45,0.55,0.54,0.34) fraction = [kelly, 0.1, 0.5, 0.8] coin = [] for i in xrange(N): c = random.random() if c <= 0.45: coin.append(1) else: coin.append(-1) data = DataFrame(0, columns = fraction, index = [i for i in xrange(N+1)]) for j in fraction: cash = [10000] for i in xrange(N): if coin[i] == 1: cash.append(cash[i]*(1 + j * 0.54)) else: cash.append(cash[i]*(1 - j * 0.34)) data[j] = cash (a,b,c,d) = list(data) plt.plot([10000 for i in xrange(len(data[a]))], 'k--' , alpha = 0.5) plt.plot(data[a], label = a) plt.plot(data[b], label = b) plt.plot(data[c], label = c) plt.plot(data[d], label = d) #plt.plot(data[e], label = e) plt.title("Simulation by tossing baised coins") plt.xlabel('times') plt.ylabel('Money') plt.legend(loc = 'best') plt.show() # # coin[:20] #