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1
Introduction

The first documented observation of surface plasmons dates back to 1902,
when Wood illuminated a metallic diffraction grating with polychromatic
light and noticed narrow dark bands in the spectrum of the diffracted light,
which he referred as to anomalies [1]. Theoretical work by Fano [2] con-
cluded that these anomalies were associated with the excitation of electro-
magnetic surface waves on the surface of the diffraction grating. In 1958
Thurbadar observed a large drop in reflectivity when illuminating thin metal
films on a substrate [3], but did not link this effect to surface plasmons. In
1968 Otto explained Turbadar’s results and demonstrated that the drop in the
reflectivity in the attenuated total reflection method is due to the excitation of
surface plasmons [4]. In the same year, Kretschmann and Raether reported
excitation of surface plasmons in another configuration of the attenuated
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total reflection method [5]. The pioneering work of Otto, Kretschmann, and
Raether established a convenient method for the excitation of surface plas-
mons and their investigation, and introduced surface plasmons into modern
optics (see, for example [6], and [7]). In the late 1970s, surface plasmons were
first employed for the characterization of thin films [8] and the study of pro-
cesses at metal boundaries [9].

In this chapter we present an electromagnetic theory of surface plasmons
based on theoretical analysis of light propagation in planar metal/dielectric
waveguides. The main characteristics of surface plasmons propagating along
metal–dielectric and dielectric–metal–dielectric waveguides are introduced
and methods for optical excitation of surface plasmons are discussed.

2
Theory of Planar Metal/Dielectric Waveguides

In this section, we present an electromagnetic theory of optical waveguides
based on solving Maxwell’s equations using the modal method [10–12]. In
this approach, the electric and magnetic field vectors E and H are each ex-
pressed as a sum of field contributions, one part representing power that is
guided along the waveguide, the remaining part representing power that is
radiated from the waveguide [10]:

E(r, t) = EG(r, t) + ER(r, t) , (1)

H(r, t) = HG(r, t) + HR(r, t) , (2)

where subscript G and R denote the guided and radiation fields, r is space vec-
tor and t is time. The guided, or bound, portion can be expressed as a finite
sum of guided modes:

EG(r, t) =
∑

j

αjEj(r, t) , (3)

HG(r, t) =
∑

j

αjHj(r, t) , (4)

where j is a mode number ( j = 1, 2, ..., M) and αj are modal amplitudes. The
modal fields Ej(r, t) and Hj(r, t) are solutions to source-free Maxwell equa-
tions:

∇ ×E(r, t) + µ
∂H(r, t)

∂t
= 0 , (5)

∇ · (µH(r, t)
)

= 0 , (6)

∇ ×H(r, t) – ε0ε(r)
∂E(r, t)

∂t
= 0 , (7)

∇ · (ε0ε(r)E(r, t)
)

= 0 , (8)
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where µ is magnetic permeability, ε is relative permittivity (dielectric con-
stant) of the medium, and ε0 is the free-space permittivity. For non-magnetic
materials, which commonly constitute an optical waveguide, the magnetic
permeability µ is equal to the free-space permeability µ0. Assuming a wave-
guide consisting of linear isotropic media, we can reduce Maxwell’s (Eqs. 5–8)
to the vector wave equations:

∆E(r, t) – ε0ε(r)µ0
∂2E(r, t)

∂t2 = ∇ (
E(r, t) ·∇ ln ε0ε(r)

)
, (9)

∆H(r, t) – ε0ε(r)µ0
∂2H(r, t)

∂t2 = (∇ ×H)× (∇ ln ε0ε(r)
)

, (10)

where the vector differential operators ∇ and ∆ are defined as follows:

∇f =
δf
δx

x0 +
δf
δy

y0 +
δf
δz

z0 , (11)

∇ ·A =
δAx

δx
+

δAy

δy
+

δAz

δz
, (12)

∇ ×A =
(

δAy

δz
–

δAz

δy

)
x0 +

(
δAz

δx
–

δAx

δz

)
y0 +

(
δAx

δy
–

δAy

δx

)
z0 , (13)

∆A =
(

∂2Ax

∂x2 +
∂2Ax

∂y2 +
∂2Ax

∂z2

)
x0 +

(
∂2Ay

∂x2 +
∂2Ay

∂y2 +
∂2Ay

∂z2

)
y0

+
(

∂2Az

∂x2 +
∂2Az

∂y2 +
∂2Az

∂z2

)
z0 , (14)

and f and A = (Ax, Ay, Az) are scalar and vector functions on cartesian coor-
dinates (x, y, z) and x0, y0 and z0 are unit vectors. If we assume translational
invariance of the waveguide in the z-direction, propagation along the z-
direction, and time dependence of the field vectors in the form of exp(– iωt),
where ω is the angular frequency and i =

√
– 1, the modal fields can be ex-

pressed in the separable form:

E = e (x, y) exp
(
i(βz – ωt)

)
=

{
et(x, y) + ez(x, y)z0

}
exp

(
i(βz – ωt)

)
, (15)

H = h (x, y) exp
(
i(βz – ωt)

)
=

{
ht(x, y) + hz(x, y)z0

}
exp

(
i(βz – ωt)

)
,

(16)

where β denotes the propagation constant of a mode and subscript t denotes
the transversal component of field vectors. For the modal fields described by
Eqs. 15 and 16, the vector wave equations can be reduced to:

{
∆t + ω2εε0µ0 – β2} e = – {∇t + iβz} {

et∇t ln εε0
}

, (17)
{
∆t + ω2εε0µ0 – β2} h = – (∇t ln εε0)× ({∇t + iβz}×h

)
. (18)
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These vector wave equations are a restatement of Maxwell’s equations for an
arbitrary refractive index profile. Subject to the requirements that the modal
fields are bounded everywhere and decay sufficiently fast at large distances
from the waveguide, these equations contain all of the information necessary
to determine the modal fields and propagation constants of all the guided
modes of the waveguide.

Let us consider an optical waveguide consisting of three homogeneous me-
dia (Fig. 1) with a permittivity profile:

ε(x) = ε3 = n2
3 , x > d , (19)

ε(x) = ε2 = n2
2 , – d ≤ x ≤ d , (20)

ε(x) = ε1 = n2
1 , x < – d , (21)

where d is the waveguiding layer half-width and εi and ni (i = 1, 2, 3) are gen-
erally complex permittivities and refractive indices (hereafter, we shall be
using ε for the relative permittivity unless stated otherwise).

By orienting cartesian axes as shown in Fig. 1, the field vectors depend on
x and z only and Eqs. 15 and 16 can be written as:

E = e (x) exp
(
i(βz – ωt)

)
, (22)

H = h (x) exp
(
i(βz – ωt)

)
, (23)

In each medium the ∇t ln ε term vanishes and each cartesian field component
satisfies a simplified wave equation:

{
∆t + ω2εε0µ0 – β2} ei = 0 , (24)

{
∆t + ω2εε0µ0 – β2} hi = 0 , (25)

where i = x, y, z.
The solution of Eqs. 24 and 25 yields two linearly independent sets of

modes. One set with hz = 0 everywhere, referred as to transverse magnetic
(TM); the other with ez = 0 everywhere, referred as to transverse electric (TE).
Substitution of the field profiles Eqs. 22 and 23 into Eqs. 24 and 25, respec-

Fig. 1 Section of a planar waveguide with a step refractive index profile
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tively, yields for the transversal components of the field vectors:

∂2ey(x)

∂x2 + (ω2εε0µ0 – β2)ey(x) = 0 ; for the TE modes , (26)

∂2hy(x)

∂x2 + (ω2εε0µ0 – β2)hy(x) = 0 ; for the TM modes . (27)

In each medium the solution of wave Eqs. 26 and 27 can be expressed as
a linear combination of functions: exp(iκix) and exp(– iκix), where κ2

i =
ω2εiε0µ0 – β2 (i = 1, 2, 3). The other non-zero components of the field vectors
can be determined from Eqs. 5 and 7. This yields:

TE modes: ey(x) = a+
i exp(iκix) + a–

i exp(– iκix) , (28)

hx(x) =
β

µ0ω

[
a+

i exp(iκix) + a–
i exp(– iκix)

]
, (29)

hz(x) = –
κi

µ0ω

[
a+

i exp(iκix) – a–
i exp(– iκix)

]
, and (30)

TM modes: hy(x) = b+
i exp(iκix) + b–

i exp(– iκix) , (31)

ex(x) = –
β

εiε0ω

[
b+

i exp(iκix) + b–
i exp(– iκix)

]
, (32)

ez(x) =
κi

εiε0ω

[
b+

i exp(iκix) – b–
i exp(– iκix)

]
. (33)

Outside the waveguiding layer, modal fields bound to the waveguide are
described by only one of these solutions and decay exponentially with an
increasing distance from the waveguide. Consequently, in each pair of ampli-
tudes a+

1 and a–
1 and a+

3 and a–
3, one amplitude is equal to zero for TE modes,

and in each pair of amplitudes b+
1 and b–

1 and b+
3 and b–

3, one amplitude is
equal to zero for TM modes. The boundary conditions of Maxwell’s equa-
tions require that the components of the electric and magnetic field intensity
vectors parallel to the boundaries of the waveguiding layer are continuous
at the boundaries (x = d and x = – d). These boundary conditions present
a homogenous series of four linear equations for four unknown amplitudes,
which yields a non-zero solution only if the determinant of the matrix of co-
efficients is equal to zero. This requirement leads to the eigenvalue equations:

tan(κd) =
γ1/κ + γ3/κ

1 – (γ1/κ)(γ3/κ)
; for the TE modes , (34)

tan(κd) =
γ1ε2/κε1 + γ3ε2/κε3

1 – (γ1ε2/κε1)(γ3ε2/κε3)
; for the TM modes , (35)

where κ2 = ω2ε2ε0µ0 – β2 and γ 2
1,3 = β2 – ω2ε1,3ε0µ0.
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The eigenvalue Eqs. 34 and 35 are transcendental equations for unknown
modal propagation constants. After solving the eigenvalue equations, the field
profiles can be determined by substituting the values of modal propagation
constants β into the boundary conditions and calculating the amplitudes a+

i
and a–

i for TE modes and b+
i and b–

i for TM modes (i = 1, 2, 3).
If the media constituting the waveguide are lossless (ε1, ε2, and ε3 are real

positive numbers), the propagation constants are also real. Propagation con-
stants of modes of a waveguide containing absorbing media (e.g., metal) are
complex. The propagation constant is related to the modal effective index nef
and modal attenuation b as follows:

nef =
c
ω

Re {β} , (36)

b = Im{β} 0.2
ln 10

, (37)

where Re{} and Im{} denote the real and imaginary parts of a complex num-
ber, respectively, and c denotes the speed of light in vacuum; the modal
attenuation b is in dB cm–1 if β is given in m–1.

2.1
Surface Plasmons on Metal–Dielectric Waveguides

A waveguide consisting of a semi-infinite metal with a complex permittivity
εm = ε′

m + iε′′
m, and a semi-infinite dielectric with permittivity εd = ε′

d + iε′′
d,

where ε′
i and ε′′

i are real and imaginary parts of εi (i is m or d), see Fig. 2, can
be treated as a limiting case of a three-layer waveguide (Fig. 1) with a metal
substrate, a dielectric superstrate, and a waveguiding layer with a thickness
equal to zero.

The propagation constants of the guided modes propagating along such
a structure are the solutions of Eqs. 34 and 35, which for d = 0 can be rewrit-
ten as:

γm = – γd ; for the TE modes , (38)
γm

εm
= –

γd

εd
; for the TM modes , (39)

where γ 2
i = β2 – ω2µ0ε0εi (i is m or d). The eigenvalue equation for TE modes

(1.38) yields no solution that would represent a bounded mode. The TM

Fig. 2 A metal–dielectric waveguide
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mode eigenvalue (Eq. 39) can be reduced to:

β =
ω

c

√
εdεm

εd + εm
= k

√
εdεm

εd + εm
, (40)

where c is the speed of light in vacuum and k = 2π/λ is the free-space
wavenumber, where λ is the free-space wavelength [6, 7]. For lossless metal
and dielectric (ε′′

m = ε′′
d = 0), Eqs. 39 and 40 represent a guided mode, provid-

ing that the permittivities ε′
m and ε′

d are of opposite signs, and that ε′
m < – ε′

d.
This guided mode is sometimes referred as to the Fano mode [7]. As the per-
mittivity of dielectric materials is usually positive, for the Fano mode to exist,
the real part of the permittivity of the metal needs to be negative. For metals
following the free-electron model [13]:

εm = ε0

(
1 –

ω2
p

ω2 + iων

)
, (41)

where ν is the collision frequency and ωp is the plasma frequency:

ωp =

√
Ne2

ε0me
, (42)

where N is the concentration of free electrons, and e and me are the electron
charge and mass, respectively, this requirement is fulfilled for frequencies
lower than the plasma frequency of the metal. As shown in Fig. 3 metals such
as gold, silver and aluminum exhibit a negative real part of permittivity in
visible and near infrared region of the spectrum.

Absorption, which in reality always exists, introduces a non-zero imagi-
nary part into the permittivity of metals (Fig. 3, lower plot) and permits the
existence of guided modes even for ε′

m >– εd. These modes, sometimes re-
ferred as to evanescent modes [7], exhibit a very high attenuation and are
therefore less practically important. In this work, we shall refer to all of the
guided modes described by eigenvalue (Eq. 40) as surface plasmons (SP).

If the real part of the permittivity of the metal is negative and its magni-
tude is much larger than the imaginary part

∣∣ε′
m

∣∣ � ε′′
m, the complex propa-

gation constant of the surface plasmon given by Eq. 40 can be expressed as:

β = β′ + iβ′′ .
=

ω

c

√
ε′

mεd

ε′
m + εd

+ i
ε′′

m

2(ε′
m)2

ω

c

(
ε′

mεd

ε′
m + εd

)3/2

, (43)

where β′ and β′′ denote the real and imaginary parts of the propagation con-
stant β [6]. As follows from Eq. 43, the imaginary part of the permittivity
of metal ε′′

m causes the propagation constant of a surface plasmon to have
a non-zero imaginary part, which is associated with attenuation of the sur-
face plasmon. The attenuation is sometimes characterized by the propagation
length L, which is defined as the distance in the direction of propagation at
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Fig. 3 Permittivity of gold, silver and aluminum as a function of wavelength. Real part
of permittivity (upper plot) and imaginary part of permittivity (lower plot). Data deter-
mined ellipsometrically or taken from [14]

which the energy of the surface plasmon decreases by a factor of 1/e:

L = 1/
[
2β′′] . (44)

Spectral dependencies of the effective index, attenuation, and propagation
length of a surface plasmon supported by gold, silver and aluminum are
shown in Fig. 4.

As follows from Fig. 4, the existence of a surface plasmon on a metal–
dielectric interface is confined to wavelengths longer than a certain critical
wavelength, which depends on the plasma frequency and is specific to the
metal. For metals such as gold, silver, and aluminum this critical wavelength
lies in the UV or visible region. The effective index of a surface plasmon
is larger than the effective index of a light wave in the dielectric medium
and decreases with increasing wavelength. Attenuation of a surface plasmon
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Fig. 4 Effective index, attenuation and propagation length of a surface plasmon prop-
agating along the interface between a dielectric (refractive index 1.32) and a metal as
a function of wavelength calculated for gold (Au), silver (Ag), and aluminum (Al)
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follows the same trend. As the attenuation of a surface plasmon is propor-
tional to ε′′

m/ε′2
m, the effect of the imaginary part of the permittivity of the

metal can be outweighed by the real part of the permittivity. For instance,
aluminum exhibits a much larger imaginary part of permittivity than silver.
However, the surface plasmons on silver and aluminum suffer approximately
the same attenuation at a wavelength of 600 nm as the real part of the per-
mittivity of aluminum is much larger than that of silver. In the wavelength
range 550–1000 nm, typical propagation lengths of surface plasmons are
0.6–50 µm, 4–50 µm, and 6–14 µm, for gold, silver and aluminum, respec-
tively.

The distribution of electric and magnetic intensity vectors of a surface
plasmon can be obtained from Eqs. 31–33:

hy(x) = A exp(γmx) for x < 0 and

hy(x) = A exp(– γdx) for x > 0 (45)

ex(x) = A
β

ωεmε0
exp(γmx) for x < 0 and

ex(x) = A
β

ωεdε0
exp(– γdx) for x > 0 (46)

ez(x) = A
γm

ωεmε0
exp(γmx) for x < 0 and

ez(x) = – A
γd

ωεdε0
exp(– γdx) for x > 0 , (47)

where:

γm = ik
εm√

εm + εd
and γd = ik

εd√
εm + εd

, (48)

and the signs of the square roots in Eq. 48 are chosen so that the real parts of
γm and γd are positive. A denotes the modal field amplitude.

As follows from Fig. 5, the electromagnetic field of a surface plasmon
reaches its maximum at the metal–dielectric interface and decays into both
media. The field decay in the direction perpendicular to the metal–dielectric
interface is characterized by the penetration depth Lp, which is defined as the
distance from the interface at which the amplitude of the field decreases by
a factor of 1/e:

Lpm = 1/ Re {γm} and Lpd = 1/ Re {γd} (49)

The spectral dependence of the penetration depth of a surface plasmon at
the interface between gold and a non-dispersive medium with a refractive
index of 1.32 is shown in Fig. 6. As follows from Fig. 6, with an increasing
wavelength, the portion of the electromagnetic field carried in the dielec-
tric increases and the field of the surface plasmon extends farther into the
dielectric.
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Fig. 5 Distribution of electric and magnetic field of a surface plasmon at the interface of
gold (εm = – 25 + 1.44i) and dielectric (refractive index 1.32), wavelength 800 nm



14 J. Homola

Fig. 6 Penetration depth of a surface plasmon into the metal (upper plot) and dielectric
(lower plot) as a function of wavelength for a surface plasmon propagating along the in-
terface of gold and a dielectric (refractive index 1.32)

2.2
Surface Plasmons on Dielectric–Metal–Dielectric Waveguides

Another example of a planar waveguide supporting surface plasmons is a thin
metal film sandwiched between two semi-infinite dielectric media (Fig. 7).
If the metal film is much thicker than the penetration depth of a surface
plasmon at each metal–dielectric interface, this waveguide supports two TM
modes, which correspond to two surface plasmons at the opposite boundaries
of the metal film. When the metal thickness decreases, coupling between the
two surface plasmons occurs, giving rise to mixed modes of electromagnetic
field.
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The modes of a dielectric–metal–dielectric waveguide can be found by
solving the eigenvalue (Eq. 35). Numerical solutions of this eigenvalue equa-
tion for a symmetric waveguide structure (nd1 = nd2) are shown in Fig. 8.
For any thickness of the metal film, there are two coupled surface plasmons,
which are referred as to the symmetric and antisymmetric surface plasmons,

Fig. 7 Thin metal layer sandwiched between two dielectrics

Fig. 8 Effective index and modal attenuation of surface plasmons propagating along a thin
gold film (εm = – 25 + 1.44i) sandwiched between two identical dielectrics (nd1 = nd2 =
1.32) as a function of the thickness of the gold film; wavelength 800 nm
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based on the symmetry of the magnetic intensity distribution [14, 15]. The
symmetric surface plasmon exhibits effective index and attenuation, which
both increase with an increasing metal film thickness. The effective index
and attenuation of the antisymmetric surface plasmon decrease with an in-
creasing thickness of the metal film. If the waveguide is asymmetric, the
effective index of the symmetric surface plasmon decreases with a decreas-
ing metal film thickness and at a certain metal film thickness, the symmetric
surface plasmon ceases to exist as a guided mode, Fig. 9, (this phenomenon
is referred as to the mode cut-off). The symmetric surface plasmon exhibits
a lower attenuation than its antisymmetric counterpart and therefore it is
sometimes referred as to a long-range surface plasmon [16], while the anti-
symmetric mode is referred as to a short-range surface plasmon [14, 15].

Figures 10 and 11 show the field vector profiles of the symmetric and anti-
symmetric surface plasmons on a thin gold film surrounded by two identical
dielectrics. The profiles of magnetic intensity hy of symmetric and antisym-
metric plasmons are symmetric or antisymmetric with respect to the center

Fig. 9 Effective index and modal attenuation of surface plasmons propagating along
a thin gold film (εm = – 25 + 1.44i) sandwiched between two dielectrics (nd1 = 1.32 and
nd2 = 1.35) as a function of the thickness of the gold film; wavelength 800 nm
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Fig. 10 Field profile of a symmetric surface plasmon on a thin gold film (εm = – 25 + 1.44i)
sandwiched between two identical dielectrics (nd1 = nd2 = 1.32), thickness of the gold film
20 nm, wavelength 800 nm
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Fig. 11 Field profile of an antisymmetric surface plasmon on a thin gold film (εm = – 25 +
1.44i) sandwiched between two identical dielectrics (nd1 = nd2 = 1.32), thickness of the
gold film 20 nm, wavelength 800 nm
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of the metal. The field of the symmetric surface plasmon penetrates deeper
into the dielectric media than that of the antisymmetric surface plasmon.

3
Surface Plasmons on Waveguides with a Perturbed Refractive Index Profile

Surface plasmons are characterized by a (complex) propagation constant and
a distribution of their electromagnetic field. The propagation constant is a so-
lution of an appropriate eigenvalue equation and depends on the refractive
index profile of the waveguide and angular frequency of surface plasmon.
If the refractive index profile of the waveguide is perturbed, the propaga-
tion constant of the surface plasmon changes. The relationship between the
change in the propagation constant of a surface plasmon and a perturba-
tion in the refractive index profile can be analyzed using the perturbation
theory [10].

In the perturbation theory, we assume that the magnetic field vector hy of
a surface plasmon supported by a general planar waveguide with and with-
out the refractive index profile perturbation is described by Eq. 18. For the
unperturbed and perturbed waveguide with permittivity profiles ε(x) and
ε̄(x) = ε(x) + δε(x), respectively, this equation can be rewritten as:

{
∂2

∂x2 + ω2εµ – β2
}

hy =
∂ ln ε

∂x
∂

∂x
hy for the unperturbed waveguide, and

(50)
{

∂2

∂x2 + ω2εµ – β
2
}

hy =
∂ ln ε

∂x
∂

∂x
hy for the unperturbed waveguide,

(51)

where β and hy denote the perturbed modal propagation constant and modal
field, respectively. If we multiply Eq. 50 with hy/ε̄, Eq. 51 with hy/ε, subtract
the two equations, and integrate the resulting equation over the cross-section
of the waveguide A∞, we obtain [17]:

β2 – β
2

=

β2
∫

A∞

( 1
ε̄

– 1
ε

)
hyh̄y dA +

∫
A∞

( 1
ε̄

– 1
ε

) ∂hy
∂x

∂h̄y
∂x dA

∫
A∞

1
ε̄

hyh̄y dA
. (52)

For a small permittivity profile perturbation |δε(x)| � |ε(x)|, we can assume
that the modal field remains unchanged (hy

.
= h̄y) and the modal propagation

constant is altered only slightly
(∣∣β – β

∣∣ � |β|). Then, Eq. 52 can be reduced



20 J. Homola

to:

δβ =

β2
∫

A∞

δε
ε2 h2

y dA +
∫

A∞

δε
ε2

(
∂hy
∂x

)2
dA

2β
∫

A∞

1
ε

h2
y dA

. (53)

Furthermore, we shall apply this perturbation formula to the investigation of
the effect of selected types of refractive index changes on (a) surface plasmons
propagating along a single metal–dielectric interface (metal–dielectric wave-
guide) and (b) coupled surface plasmons propagating along a thin metal film
(dielectric–metal–dielectric waveguide), Fig. 12.

Two main types of refractive index perturbations will be discussed here
in detail. The first type is a homogeneous change in the refractive index
in the whole superstrate, Fig. 13, (herein referred as to bulk refractive in-
dex change), which can be described by a change in the permittivity profile,
ε(x) → ε(x), where:

ε(x) =
{
εd
εm

and ε̄(x) =
{
εd + δε

εm
for

x > 0
x ≤ 0 . (54)

The second type of perturbation is a homogenous change in the refractive
index that occurs within a limited distance h from the surface of the metal
film which is smaller than the penetration depth of a surface plasmon, Fig. 14,
(herein referred as to surface refractive index change). Such a refractive index
perturbation is characterized by a permittivity profile change ε(x) → ε(x),
where:

ε(x) =

⎧
⎨

⎩

εd
εd
εm

and ε̄(x) =

⎧
⎨

⎩

εd
εd
εm

+ δε for
x ≥ h
0 < x < h
x ≤ 0

, (55)

Fig. 12 Surface plasmons on a metal–dielectric waveguide (left) and a dielectric–metal–
dielectric waveguide (right) with a perturbed refractive index of superstrate
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Fig. 13 Refractive index change occurring within a whole superstrate

Fig. 14 A homogeneous refractive index change occurring within a short distance from
the metal surface

3.1
Perturbed Surface Plasmons on Metal–Dielectric Waveguides

A change in the propagation constant of a surface plasmon on a metal–
dielectric interface produced by a bulk refractive index change can be calcu-
lated by substituting the perturbation of the permittivity profile (Eq. 54) and
the field distribution of the surface plasmon (Eq. 48) into the perturbation
formula (Eq. 53). After a straightforward manipulation, the following analyt-
ical expressions for the perturbations in the propagation constant δβ, and the
effective refractive index δnef can be obtained:

δβ =
β3

2k2ε2
d

δε =
β3

k2n3
d

δn , (56)

δnef =
n3

ef

n3
d

δn . (57)

where the perturbation in the refractive index and permittivity are related as
δε = 2ndδn. As the effective index of the surface plasmon at a metal–dielectric
interface nef is always larger than the refractive index of the dielectric nd, the
bulk refractive index sensitivity of the effective index of the surface plasmon
(δnef/δn)B is always larger than the sensitivity of a free space plane wave in
the infinite dielectric medium (which is equal to one). For metals with a nega-
tive real part of the permittivity ε′

m < 0 and a magnitude much larger than the
imaginary part

∣∣ε′
m

∣∣ � ε′′
m, the sensitivity of the effective index of the surface

plasmon to a bulk refractive change can be expressed as:

(
δnef

δn

)

B

.
=

(
ε′

m

ε′
m + n2

d

)3/2

. (58)
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Equation 58 suggests that the sensitivity depends on the real part of the per-
mittivity of the metal and decreases with its increasing magnitude. As the
magnitude of the real part of the permittivity of gold decreases with an in-
creasing wavelength (Fig. 3), the dependence of (δnef/δn)B on the wavelength
follows the same trend, Fig. 15. For gold as a surface plasmon-supporting
metal, both the results of the perturbation theory (Eq. 57) and its approx-
imation (Eq. 58) agree very well with the rigorous approach based on the
numerical calculation of the effective index of surface plasmon for the per-
turbed and unperturbed waveguide.

A change in the surface plasmon propagation constant induced by a sur-
face refractive index change occurring within a layer with a thickness h can be
calculated by substituting the perturbation of the permittivity profile Eq. 55
and the field distribution of the surface plasmon Eq. 48 into Eq. 53. After
a straightforward mathematical manipulation we obtain:

δβ =
β3

2k2ε2
d

[
1 – exp(– 2γdh)

]
δε =

β3

k2n3
d

[
1 – exp(– 2γdh)

]
δn , (59)

where γd =
√

β2 – ω2µ0ε0εd (a sign of the square root is selected so that
Re {γd} > 0). For the perturbation of the effective index of the surface plas-
mon, this equation yields:

δnef =
Re

{
β3

[
1 – exp(– 2γdh)

]}

k3n3
d

δn . (60)

Fig. 15 Sensitivity of the real propagation constant (—) and effective index (- - -) of
a surface plasmon on a metal–dielectric interface to a bulk refractive index change as
a function of wavelength calculated rigorously from eigenvalue equation and using the
perturbation theory. Waveguiding structure: gold–dielectric (nd = 1.32)
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The perturbation of the effective index of a surface plasmon depends ex-
ponentially on the thickness of the layer within which the refractive index
change occurs. For a thicknesses much larger than the penetration depth of
the surface plasmon (h � Lpd = 1/ Re {γd}), the exponential term can be neg-
lected and Eq. 60 simplifies to Eq. 57. For refractive index changes occurring
within a layer thinner than the penetration depth of the field of the surface
plasmon (h � Lpd = 1/ Re {γd}), the expressions for the perturbations in the
propagation constant and the effective refractive index can be reduced to:

δβ =
2γdβ

3

k2n3
d

hδn , (61)

δnef =
2 Re

{
γdβ

3
}

k3n3
d

hδn . (62)

Figure 16 shows the sensitivity of the propagation constant (Re(δβ)/δn)S and
effective index (δnef/δn)S to a surface refractive index change calculated for
a surface plasmon supported on gold and a refractive index change occurring
within a 5 nm thick layer at the surface of the metal supporting a surface plas-
mon. As the layer thickness is much smaller than the penetration depth of
the field of the surface plasmon on the considered structure, the sensitivity is
a linear function of the thickness of the layer h.

If the real part of the permittivity of the metal is much larger than the
imaginary part

∣∣ε′
m

∣∣ � ε′′
m, the sensitivity of the effective index of a surface

Fig. 16 Sensitivity of the propagation constant and effective index of a surface plasmon
on a metal–dielectric interface to a surface refractive index change as a function of wave-
length. Waveguiding structure: gold–thin dielectric film (h = 5 nm), dielectric superstrate
(nd = 1.32)
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plasmon to a surface refractive index change can be expressed as:

(
δnef

δn

)

S
= 2

n3
ef

n3
d

h
Lpd

=
(

δnef

δn

)

B

2h
Lpd

. (63)

By employing the approximate expressions for the bulk refractive index sen-
sitivity of the effective index Eq. 58 and low-loss metal approximation of Lpd
(Eq. 48), Eq. 63 can be reduced to:

(
δnef

δn

)

S

.
=

(
ε′

m

ε′
m + n2

d

) 3
2 2n2

d√
– ε′

m – n2
d

hk . (64)

As follows from Eq. 63, the sensitivity of the effective index to a surface refrac-
tive index change is proportional to the bulk refractive index sensitivity and
the thickness of the layer within which the surface refractive index change
occurs, and is inversely proportional to the penetration depth of the surface
plasmon. As the penetration depth of a surface plasmon on gold increases
with increasing wavelength, the surface refractive index sensitivity of the ef-
fective index (Fig. 16) decreases with the wavelength faster than the bulk
refractive index sensitivity (Fig. 15). As illustrated in Fig. 16, the approxi-
mate equation for the sensitivity to as surface refractive index change (Eq. 63)
yields results that are in a good agreement with the rigorous approach based
on the numerical calculation of the effective index of surface plasmon for
the perturbed and unperturbed waveguide from the appropriate eigenvalue
equations.

3.2
Perturbed Surface Plasmons on Dielectric–Metal–Dielectric Waveguides

Perturbation of symmetric and antisymmetric surface plasmons (Sect. 2.2)
propagating along a thin metal film with a thickness 2d can be calculated
by determining the propagation constants of the surface plasmons supported
by the unperturbed and perturbed waveguides as solutions to the eigenvalue
(Eq. 35). The sensitivity of the effective index (δnef/δn)B to bulk refractive
index changes in the superstrate as a function of metal layer thickness is
shown in Fig. 17. For the considered structure and thicknesses of the metal
film, the sensitivity of the antisymmetric surface plasmon is higher than that
of its symmetric counterpart. The sensitivity of the symmetric surface plas-
mon increases with the thickness of the metal film, while the sensitivity of
the antisymmetric surface plasmon follows an opposite trend. For thick metal
films, the coupled surface plasmons consists of two weakly coupled surface
plasmons propagating on opposite surfaces of the metal film and therefore
the sensitivities of both the symmetric and antisymmetric surface plasmons
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approach the value of one half of the sensitivity of the surface plasmon at
a single metal–dielectric interface.

Figure 18 shows the sensitivity of the effective index (δnef/δn)B to bulk re-
fractive index changes for symmetric and antisymmetric surface plasmons on
a thin gold film. While the sensitivity of the effective index of the antisymmet-
ric surface plasmon decreases with an increasing wavelength, sensitivity of
its symmetric counterpart varies only slightly over the considered wavelength
range.

The sensitivity of the effective index of the symmetric and antisymmetric
surface plasmons to a surface refractive index change, Figs. 19 and 20, follows
basically the same trends as the sensitivity to bulk refractive index changes.

Fig. 17 Sensitivity of the effective index of symmetric and antisymmetric surface plas-
mons to bulk refractive index changes as a function of the thickness of metal layer.
Waveguide configuration: dielectric (n1 = 1.32)–gold (εm = – 25 + 1.44i)–dielectric super-
strate (nd = 1.32), wavelength 800 nm

Fig. 18 Sensitivity of the effective index of symmetric and antisymmetric surface plas-
mons to bulk refractive index changes as a function of wavelength. Waveguide configu-
ration: dielectric (n1 = 1.32)–gold (2d = 20 nm)–dielectric superstrate (nd = 1.32)
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Fig. 19 Sensitivity of the effective index of symmetric and antisymmetric surface plas-
mons to surface refractive index changes as a function of the thickness of metal film.
Waveguide configuration: dielectric (n1 = 1.32)–gold (εm = – 25 + 1.44i)–thin dielectric
film (h = 5 nm), dielectric superstrate (nd = 1.32), wavelength 800 nm

Fig. 20 Sensitivity of the effective index of symmetric and antisymmetric surface plas-
mons to surface refractive index changes as a function of wavelength. Waveguide configu-
ration: dielectric (n1 = 1.32)–gold (2d = 20 nm)–thin dielectric film (h = 5 nm), dielectric
superstrate (nd = 1.32)

4
Excitation of Surface Plasmons

4.1
Prism Coupling

The most common approach to excitation of surface plasmons is by means
of a prism coupler and the attenuated total reflection method (ATR). There
are two configurations of the ATR method – Kretschmann geometry [5] and
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Otto geometry [4]. In the Kretschmann geometry of the ATR method, a high
refractive index prism with refractive index np is interfaced with a metal–
dielectric waveguide consisting of a thin metal film with permittivity εm and
thickness q, and a semi-infinite dielectric with a refractive index nd(nd < np),
Fig. 21.

When a light wave propagating in the prism is made incident on the metal
film a part of the light is reflected back into the prism and a part propagates
in the metal in the form of an inhomogeneous electromagnetic wave [13].
This inhomogeneous wave decays exponentially in the direction perpendicu-
lar to the prism–metal interface and is therefore referred as to an evanescent
wave. If the metal film is sufficiently thin (less than 100 nm for light in visible
and near infrared part of spectrum), the evanescent wave penetrates through
the metal film and couples with a surface plasmon at the outer boundary of
the metal film. The propagation constant of the surface plasmon propagating
along a thin metal film βSP is influenced by the presence of the dielectric on
the opposite side of the metal film and can be expressed as

βSP = βSP0 + ∆β =
ω

c

√
εdεm

εd + εm
+ ∆β , (65)

where βSP0 is the propagation constant of the surface plasmon propagating
along the metal–dielectric waveguide in the absence of the prism and ∆β ac-
counts for the finite thickness of the metal film and the presence of the prism.
In order for the coupling between the evanescent wave and the surface plas-
mon to occur, the propagation constant of the evanescent wave βEW and that
of the surface plasmon βSP have to be equal:

2π
λ

np sin θ = kz = βEW = Re
{
βSP}

= Re
{

2π
λ

√
εdεm

εd + εm
+ ∆β

}
. (66)

In terms of effective index, this coupling condition can be written as follows:

np sin θ = nEW
ef = nSP

ef = Re
{√

εdεm

εd + εm

}
+ ∆nSP

ef , (67)

Fig. 21 Excitation of surface plasmons in the Kretschmann geometry of the attenuated
total reflection (ATR) method
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where nEW
ef is the effective index of the evanescent wave, nSP

ef is the effective
index of the surface plasmon, and ∆nSP

ef = Re {∆βλ/2π}. The coupling condi-
tion between the light wave and the surface plasmon is illustrated in Fig. 22,
which shows the spectral dependencies of effective indices of a surface plas-
mon on a gold–water interface and an evanescent light wave produced by
a light wave incident on the gold film from a BK7 glass prism. For each wave-
length, the matching condition is satisfied for a single angle of incidence, the
coupling angle, which increases with decreasing wavelength.

In the Otto geometry, a high refractive index prism with refractive index
np is interfaced with a dielectric–metal waveguide consisting of a thin dielec-
tric film with refractive index nd(nd < np) and thickness q, and a semi-infinite
metal with permittivity εm, Fig. 23.

In Otto geometry, a light wave incident on the prism–dielectric film inter-
face at an angle of incidence larger than the critical angle of incidence for
these two media produces an evanescent wave propagating along the interface
between the prism and the dielectric film. If the thickness of the dielectric
layer is chosen properly (typically few microns), the evanescent wave and
a surface plasmon at the dielectric–metal interface can couple. For the coup-
ling to occur, the propagation constant of the evanescent wave and that of the
surface plasmon have to be equal.

The attenuated total reflection method can be also used to excite coupled
surface plasmons on thin metal films. The coupling of a light into a symmetric
or antisymmetric surface plasmon supported by a thin film (Sect. 2.2) can be
in principle achieved in a geometry similar to the Otto geometry (Fig. 23) in
which the semi-infinite metal is replaced by a thin metal film [20].

Fig. 22 Spectral dependence of the effective index of a surface plasmon on the interface of
gold–water and the effective index of the evanescent light wave produced by a plane light
wave incident on the gold film from an optical prism (BK 7 glass) under nine different
angles of incidence
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Fig. 23 Excitation of surface plasmons in the Otto geometry of the attenuated total reflec-
tion (ATR) method

The interaction between a light wave and a surface plasmon in the
ATR method can be investigated using the Fresnel multilayer reflection
theory [18]. Herein, we shall present analysis of the reflectivity for the
Kretschmann geometry of the ATR method.

Assuming an incident plane wave and a structure prism–metal–dielectric
infinite in the y-z plane (Fig. 24), the amplitude of reflected light AR can be
expressed as:

AR = rpmdAI =
∣∣rpmd

∣∣ eiφAI , (68)

where AI is the amplitude of the incident light wave, rpmd is an amplitude re-
flection coefficient and φ is a phase shift. The amplitude reflection coefficient
is:

rpmd =
rpm + rmd exp(2ikmxq)

1 + rpmrmd exp(2ikmxq)
, (69)

Fig. 24 Light reflection in the Kretschmann geometry of the ATR method
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where:

kix =

√(
2π
λ

)2

εi – k2
z , (70)

rij =
εjkix – εikjx

εjkix + εikjx
for the TM polarization , (71)

rij =
kix – kjx

kix + kjx
for the TE polarization , (72)

and where subscripts i and j are p, m, or d [19]. Reflectivity (power reflection
coefficient) of the structure R is then:

R =
∣∣rpmd

∣∣2 . (73)

Figure 25 shows typical dependencies of the reflectivity and phase on the
angle of incidence calculated for four different thicknesses of the metal film.

Fig. 25 Reflectivity (upper plot) and phase shift (lower plot) as a function of the angle of
incidence for four different thicknesses of the metal film and TM polarization. Configu-
ration: BK7 glass (np = 1.51), gold film (εm = – 25 + 1.44i), water (nd = 1.329), wavelength
800 nm, reflectivity and phase of the TE polarization are shown for comparison



Electromagnetic Theory of Surface Plasmons 31

The angular reflectivity spectra exhibit distinct dips that are associated
with the transfer of energy from the incident light wave into a surface plas-
mon and its subsequent dissipation in the metal film (Fig. 25, upper plot). The
interaction between the incident light wave and the surface plasmon also af-
fects the phase of the reflected light, which exhibits an abrupt phase jump [20]
(Fig. 25, lower plot). Angular dependencies of the reflectivity and phase of the
TE-polarized light contain no resonant features, as no guided modes can be
excited by the TE-polarized light in this geometry.

As follows from Fig. 25 (upper plot), the resonant angle of incidence de-
creases with an increasing metal film thickness and approaches the value θSP0

corresponding to the coupling of light to a surface plasmon propagating along
an isolated metal–dielectric waveguide (Eq. 65, q → ∞, ∆β = 0). The depth of
the reflectivity dip depends on the thickness of the metal film. The strongest
excitation of a surface plasmon (R = 0) occurs for a single metal film thick-
ness (for the considered geometry and wavelength, the optimum coupling
thickness was about 50 nm). The width and asymmetry of the reflectivity dip
increase with a decreasing metal film thickness.

Assuming that the permittivity of metal εm obeys
∣∣ε′

m

∣∣ � nd and
∣∣ε′

m

∣∣ �
ε′′

m, the reflectivity Eq. 69 can be expanded around the resonant value of
kz yielding a Lorentzian (with respect to kz) approximation of the reflectiv-
ity [6]:

R(kz)
.
= 1 –

4 Im
{
βSP0

}
Im {∆β}

[
kz – Re

{
βSP

}]2 + (Im
{
βSP0

}
+ Im {∆β})2

, (74)

where:

βSP = βSP0 + ∆β , (75)

βSP0 =
ω

c

√
εdεm

εd + εm
, (76)

∆β = rpm e2ikzmq2
ω

c

(
εdεm

εd + εm

)3/2 1
εd – εm

. (77)

The term ∆β describes the effect of the prism and, as a complex quantity, has
a real part, which perturbs the real part of the propagation constant of a sur-
face plasmon on the interface of semi-infinite dielectric and metal, and an
imaginary part, which causes an additional damping of the surface plasmon
due to the outcoupling of a portion of the field into the prism [6]. In terms of
effective index, the reflectivity (Eq. 74) can be rewritten as follows:

R(θ, λ)
.
= 1 –

4γiγrad

(np sin θ – nSP
ef )2 + (γi + γrad)2

, (78)

where γi = Im
{
βSP0

}
λ/2π and γrad = Im {∆β} λ/2π. As follows from Eq. 78,

the dip in the reflectivity spectrum is centered at the angle of incidence de-
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scribed by the coupling condition Eq. 67 with ∆β given by Eq. 77. Figure 26
shows the angular reflectivity calculated using the rigorous approach (Eq. 69)
and the Lorentzian approximation (Eq. 78) with the propagation constant of
a surface plasmon approximated by βSP0 for a model structure: BK7 glass
prism, gold film, and water. The approximation provides a good estimate of
the position of the reflectivity dip (which would be even closer if the term
∆β was not neglected) and predicts well the shape of the reflectivity curve
in the neighborhood of the minimum. In addition, the Lorentzian curve ex-
hibits approximately the same width as the dips calculated using the rigorous
approach.

The coupling strength and subsequently the depth of the dip reach the
maximum if the radiation and absorption losses of a surface plasmon are
equal: γi = γrad = γ . As γrad decreases with an increasing metal film thick-
ness (as can be deduced from Eq. 77), the condition γi = γrad is satisfied only
for a single thickness of the metal film, as predicted by the Fresnel reflec-
tion theory (Fig. 25). The optimum coupling metal thickness depends on the
wavelength and materials involved. For a gold film and wavelengths between
600 and 1000 nm, the optimum coupling thickness varies between 44 nm and
50 nm.

When the optimum coupling occurs (γi = γrad = γ ), the angular half-width
of the dip ∆θ1/2 (angular width of the dip at R = 0.5) can be expressed from
Eq. 78 as:

∆θ1/2 =
4γ

np cos θ
, (79)

Fig. 26 TM reflectivity as a function of angle of incidence calculated for two different
wavelengths using the rigorous Fresnel reflection theory and its Lorentzian approxima-
tion. Configuration: BK7 glass, gold film (thickness 48 nm for wavelength 650 nm, and
50 nm for wavelength 850 nm), water
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where θ denotes the coupling angle. Equation 79 suggests that the angular
width of the dip is proportional to the attenuation of the surface plasmon. As
the attenuation coefficient γ decreases rapidly with an increasing wavelength,
while the factor cos θ changes with the wavelength only slowly, reflectivity
dips associated with the excitation of surface plasmons at longer wavelengths
(and smaller angles of incidence) are narrower than the dips associated with
the excitation of surface plasmons at shorter wavelengths (and higher angles
of incidence), Fig. 26.

The characteristic absorption dip can be observed not only in the angu-
lar domain, but also when the angle of incidence is kept constant and the
wavelength is varied, Fig. 27.

The spectral reflectivity is also described by Eqs. 69 and 74. For low-loss
metals (

∣∣ε′
m

∣∣ � ε′′
m) with a large real part of the permittivity (

∣∣ε′
m

∣∣ � εd), the
spectral half-width of the dip ∆λ1/2 for the optimum coupling (γi = γrad = γ )

Fig. 27 Reflectivity (upper plot) and phase (lower plot) of reflected light as a function of
wavelength for four different thicknesses of the metal film. Configuration: BK7 glass, gold
film, water, angle of incidence 66 deg. Reflectivity and phase for TE polarization are given
for comparison



34 J. Homola

can be calculated from Eq. 74 as:

∆λ1/2 =
4γ∣∣∣∣

dnp

dλ
sin θ –

dnSP
ef

dλ

∣∣∣∣
, (80)

where dnp/dλ is the dispersion of the prism and dnSP
ef /dλ is the dispersion

of the effective index of the surface plasmon. While the attenuation coeffi-
cient γi decreases with an increasing wavelength, the difference in dispersions

Fig. 28 Spectral dependence of the effective refractive index of a surface plasmon on gold–
water interface and the effective index of the evanescent light wave produced in a gold
film by a plane light wave incident on the gold film from a BK7 glass prism under two
different angles of incidence

Fig. 29 TM reflectivity as a function of wavelength calculated for two different angles of
incidence using the rigorous Fresnel reflection theory. Configuration: BK7 glass, gold film
(thickness 48 nm for the wavelength of 650 nm and 50 nm for the wavelength of 850 nm),
water
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of the effective indices of the evanescent wave and the surface plasmon de-
creases (Fig. 28) and therefore these two effects can compensate each other.
This phenomenon is illustrated in Fig. 29, which shows reflectivity dips pro-
duced by the excitation of surface plasmons at the wavelengths of 650 and
850 nm. These dips exhibit approximately the same width although γi is about
five times larger at the wavelength of 650 nm than at 850 nm.

4.2
Grating Coupling

Another approach to optical excitation of surface plasmons is based on the
diffraction of light on a diffraction grating. In this method, a light wave is
incident from a dielectric medium with the refractive index nd on a metal
grating with the dielectric constant εm, the grating period Λ and the grating
depth q, Fig. 30.

When a light wave with the wavevector k is made incident on the sur-
face of the grating, diffraction gives rise to a series of diffracted waves. The
wavevector of the diffracted light km is:

km = k + mG , (81)

where m is an integer and denotes the diffraction order and G is the grating
vector [21]. The grating vector lies in the plane of the grating (plane y-z in
Fig. 30) and is perpendicular to the grooves of the grating. Its magnitude is
inversely proportional to the pitch of the grating and therefore, for the grating
geometry considered herein, it can be expressed as:

G =
2π
Λ

z0 . (82)

Therefore the component of the wavevector of the diffracted light perpen-
dicular to the plane of the grating kxm is equal to that of the incident wave
while the component of the wavevector in the plane of the grating kzm is
diffraction altered:

kzm = kz + m
2π
Λ

. (83)

Fig. 30 Excitation of surface plasmons by the diffraction of light on a diffraction grating
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The diffracted waves can couple with a surface plasmon when the propaga-
tion constant of the diffracted wave propagating along the grating surface kzm
and that of the surface plasmon βSP are equal:

2π
λ

nd sin θ + m
2π
Λ

= kzm = ± Re
{
βSP}

, (84)

where:

βSP = βSP0 + ∆β =
ω

c

√
εdεm

εd + εm
+ ∆β , (85)

and βSP0 denotes the propagation constant of the surface plasmon propagat-
ing along the smooth interface of a semi-infinite metal and a semi-infinite
dielectric, and ∆β accounts for the presence of the grating. In terms of effect-
ive index, the coupling condition can be rewritten as:

nd sin θ + m
λ

Λ
= ±

(
Re

{√
εdεm

εd + εm

}
+ ∆nSP

ef

)
, (86)

where ∆nSP
ef = Re {∆βλ/2π}.

The coupling condition between a diffracted light wave and a surface plas-
mon is illustrated in Fig. 31. The effective index of light diffracted on two
different gratings (Λ = 540 nm and Λ = 672 nm) is diffraction enhanced to
match the effective index of a surface plasmon on a gold–water interface. As
illustrated in Fig. 31, different orders of diffraction (first order for the grating
with Λ = 672 nm and minus first order for the grating with Λ = 540 nm) can
be used to fulfill the matching condition. The effective index of the inhomoge-

Fig. 31 Spectral dependence of the effective index of a surface plasmon on gold–water
interface and the effective index of the light wave produced by a diffraction of light on
a diffraction grating calculated for two different grating periods and three different angles
of incidence
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neous light wave is approximately a linear function of wavelength with a slope
equal to m/Λ, which is positive for m > 0 and negative for m < 0. The coupling
condition Eq. 86 can be fulfilled for various combinations of the angle of inci-
dence, grating pitch, and diffraction order. For the positive diffraction orders,
the coupling wavelength increases with a decreasing angle of incidence, while
for the negative diffraction orders, the coupling wavelength increases with an
increasing angle of incidence.

The grating-moderated interaction between a light wave and a surface
plasmon can be investigated by solving Maxwell’s equations in differential or
integral form. In the differential method, the grating profile is approximated
with a stack of layers in which a solution of the Maxwell equations is calcu-
lated in the form of a Rayleigh series and the total solution of the diffraction
problem is found by applying boundary conditions at each interface [22, 23].
The integral method assumes a certain current flow at the grating surface

Fig. 32 Reflectivity (upper plot) and phase (lower plot) as a function of the angle of in-
cidence for four different depths of a metallic sinusoidal grating and TM polarization.
Configuration: gold (εm = – 25 + 1.44i), water (nd = 1.329), wavelength 800 nm, grating
period 540 nm, angle of incidence taken in air. Reflectivity and phase of the TE polariza-
tion are shown for comparison
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Fig. 33 Reflectivity (upper plot) and phase (lower plot) as a function of the angle of
incidence for four different depths of metallic sinusoidal grating and TM polarization.
Configuration: gold (εm = – 25 + 1.44i), water (nd = 1.329), wavelength 800 nm, grating
period 672 nm, angle of incidence taken in air. Reflectivity and phase of the TE polariza-
tion are shown for comparison

and reduces the problem to the calculation of the Helmholtz–Kirchhoff inte-
gral [24]. Figures 32 and 33 show the dependence of the reflectivity and phase
on the angle of incidence for light incident from water onto a gold grating and
two different grating pitches, Λ = 540 nm (Fig. 32) and Λ = 672 nm (Fig. 33),
and four different grating depths. These spectra were calculated using the in-
tegral method. The angular reflectivity spectra (upper plots in Fig. 32 and
Fig. 33) exhibits a characteristic dip caused by the transfer of energy of the
incident light into a surface plasmon. On shallow diffraction gratings, surface
plasmons are excited at the angles of incidence close to the coupling angles
predicted from the matching condition, neglecting the effect of the grating
(q → 0 and ∆nSP

ef = Re {∆β} = 0), Fig. 31. The coupling angle of incidence de-
creases with an increasing depth of the grating when the surface plasmons are
excited by a negative order of diffraction, and follows an opposite trend when
the surface plasmons are excited by a positive order of diffraction. The depth
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of the reflectivity dip depends on the depth of the grating and the strongest
excitation of a surface plasmon (R = 0) occurs for a single depth of the grating
(for the considered geometry and wavelength, the optimum grating depth is
about 30 nm). The width and asymmetry of the reflectivity dip increase with
an increasing depth of grating. The interaction between the light wave and the
surface plasmon results also in a change in the phase of the reflected light,
Fig. 32 and Fig. 33 (lower plot).

The characteristic absorption dip can be observed not only in the angu-
lar domain, but also when the angle of incidence is kept constant and the
wavelength is varied, as illustrated in Fig. 34 and Fig. 35.

Figure 36 shows the angular reflectivity for light incident from water onto
a gold grating. The dips produced at the wavelength of 850 nm are about five
times narrower than those occurring at 650 nm. The ratio of the dip widths
corresponds to the ratio of the attenuation coefficients for surface plasmons

Fig. 34 Reflectivity (upper plot) and phase (lower plot) as a function of the wavelength
for four different modulation depths of metallic sinusoidal grating and TM polarization.
Configuration: gold–water, angle of incidence 6 degrees, grating period 540 nm, angle
of incidence taken in air. Reflectivity and phase of the TE polarization are shown for
comparison
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Fig. 35 Reflectivity (upper plot) and phase (lower plot) as a function of the wavelength
for four different modulation depths of metallic sinusoidal grating and TM polarization.
Configuration: gold–water, angle of incidence 10.7 degrees, grating period 672 nm, angle
of incidence taken in air. Reflectivity and phase of the TE polarization are shown for com-
parison

Fig. 36 Reflectivity as a function of angle of incidence calculated for two wavelengths.
Configuration: gold–water interface, grating period 672 nm, angle of incidence taken in air
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Fig. 37 Reflectivity as a function of wavelength calculated for two different angles of in-
cidence. Configuration: gold–water interface, grating period 672 nm, angle of incidence
taken in air

at 650 and 850 nm, as in the case of prism coupling (Sect. 4.1). However, the
width of the dips observed in the wavelength spectrum (Fig. 37) varies with
the wavelength, which contrasts with the weak dependence of the width of
spectral dips in the case of prism coupling. This effect can be attributed to the
fact that the difference in the dispersions of the effective indices of the evanes-
cent wave and surface plasmon is large (Fig. 31) and varies relatively little over
the considered wavelength range.

4.3
Waveguide Coupling

Surface plasmons can be also excited by modes of a dielectric waveguide. An
example of a waveguiding structure integrating a dielectric waveguide and
a metal–dielectric waveguide is shown in Fig. 38. A mode of the dielectric
waveguide propagates along the waveguide and when it enters the region with

Fig. 38 Excitation of surface plasmons by a mode of a dielectric waveguide
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a thin metal film, it penetrate through the metal film and couples with a sur-
face plasmon at the outer boundary of the metal.

The coupling between the waveguide mode and a surface plasmon can
occur when the propagation constant of the mode βM is equal to the real part
of the propagation constant of the surface plasmon βSP:

βM = Re {βSP} . (87)

The coupling between the waveguide mode and a surface plasmon can be in-
vestigated by analyzing hybrid modes, which are solutions of the vector wave
(Eq. 18) for the coupled waveguides [25]. The propagation of light through
the entire waveguiding structure can be simulated using the mode expan-
sion and propagation method [26]. In this method, the simulated waveguide
is subdivided into longitudinally uniform sections and, in each section, a set
of eigenmodes is calculated. The mutual relationships among modal ampli-
tudes at both sides of the interface between the longitudinal sections are
obtained from the continuity of the transversal field components by mode
matching [26].

As surface plasmons are typically much more dispersive than modes of
common dielectric waveguides, the coupling condition Eq. 87 is fulfilled only
for a narrow range of wavelengths. Therefore, the excitation of a surface plas-
mon can be observed as a narrow dip in the spectrum of transmitted light,
Fig. 39. The strength of the coupling depends on the metal thickness (Fig. 39)
and the length of the interaction region (Fig. 40). The effect of the metal film
thickness and interaction length is depicted in Figs. 39 and 40 for a model
structure consisting of substrate (refractive index 1.514), a waveguiding layer
(refractive index 1.517, thickness 3 µm), a thin gold layer, and superstrate
(refractive index 1.40).

Fig. 39 Spectral dependence of the transmission of a slab waveguide with a thin metal
strip for different thicknesses of the metal film, metal strip length L = 1 mm
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Fig. 40 Spectral dependence of the transmission of a slab waveguide with a thin metal
strip for different lengths of the metal strip, metal film thickness q = 60 nm

5
Summary

Surface plasmons are special modes of electromagnetic field in metal–
dielectric waveguides. They are characterized by the field distribution and
complex propagation constant, which can be determined from an appro-
priate eigenvalue equation. The propagation constant of surface plasmons
is highly sensitive to changes in the refractive index distribution, as can
be demonstrated using the perturbation theory. Surface plasmons can be
excited by light waves using (i) prism coupling and the attenuated total reflec-
tion, (ii) diffraction on a metal diffraction grating, and (iii) coupling among
parallel optical waveguides.
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