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Abstract. The recoil of an atom due to the absorption of 
up to 64 photons is measured, using laser-cooled cesium 
atoms which are made to interfere in an atomic fountain. 
Measurement of the photon recoil allows a determina- 
tion of h/mcs, and hence the fine-structure constant. The 
measurement is described and a detailed theoretical and 
experimental study of potential systematic errors is 
presented. A relative precision in the photon recoil mea- 
surement of 0.1 ppm is obtained in two hours of data 
collection. The measurement is currently 0.85 ppm below 
the accepted value of h/mcs. We cannot now formally 
ascribe a systematic error, but suspect that the bulk of the 
discrepancy is due to imperfections of the interferometer 
beams used to induce the Raman transitions. 

PACS: 32.00, 35.00, 42.50 

The recoil of an atom when it absorbs a photon was first 
observed spectroscopically in the doubling of certain 
spectral peaks in saturation spectroscopy[l]. The authors 
pointed out at the time that the splitting of these peaks 
lets one measure him in frequency units, which could be 
accomplished with high precision. In recent years, intense 
research in laser cooling and atom interferometry has led 
to a proliferation of new, powerful techniques. These 
advances have allowed us to precisely measure the recoil 
shift [2], in an experiment that is the first precision mea- 
surement of a fundamental constant using atomic inter- 
ferometry. 

1 Introductory remarks 

The quantity him can be determined from the mea- 
surement of a recoil splitting when it is combined with 
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accurate knowledge of the photon wavelength. Mass 
ratios of atoms to the proton and the proton to the 
electron can be measured to high precision, so that the 
particular mass in the ratio film is of secondary impor- 
tance. Recently, h/m,eutron has been measured to an acc- 
uracy of 8 x 10 -7  by diffracting neutrons from a silicon 
crystal [3]. In this paper we describe in detail a mea- 
surement of h/mc~ that obtains a precision of 1 x 10-7 in 
a few hours, and appears to have the potential to yield 
precisions near 1 x 10 -9  in a comparable time. 

The ratio h/m is significant in quantum mechanics 
because both the particle mass and h appear in the basic 
quantum mechanical equations of motions only in that 
ratio. Alternately, mass appears in the de Broglie wave 
function in that ratio, and a particle's wavefunc, tion con- 
tains the complete description of its position and momen- 
tum. Thus for the purposes of comparing quantum theo- 
ries to experiments one often need only know this ratio, 
and not m independently. The most important example 
of this is that h/me can be combined with R~, the Ryd- 
berg constant, to obtain e, the fine-structure constant, 

~2 _ 2R~ h (1) 
C m e " 

There are currently five distinct kinds of  experiments that 
can measure the fine-structure to an accuracy of 0.4 ppm 
or better [4]. These measurements are: the electron 9-2; 
the muon hyperfine splitting; the quantum Hall resis- 
tance (Rn); the proton gyromagnetic ratio (Tp); and him 
measurements. The current accuracies of the c~ mea- 
surements and their constituent components are shown 
in Table 1. The first two depend on the correctness of 
QED to yield c~, which means that they alone are not 
sufficient to test QED. The next two may be approaching 
the final limits of  their accuracy, at a relative precision 
of 1 to 2 x 10 .8 [5]. They appear to have almost reached 
their limit because each requires a highly accurate 
characterization of a macroscopic object, either the cal- 
culable capacitor that enables Rn to be expressed in SI 
units or the giant solenoid used to create the N M R  bias 
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Table 1. Some of the current best methods for determining the 
fine-structure constant, c~. The table items are separated into 
groups of physical quantities that can be combined to yield ~. 
The relative accuracy of each quantity is given in the first col- 
umn of numbers. The sensitivity of the determinations of c~ to 

the uncertainties in each quantity are indicated by the depen- 
dences on e in the second column. The resulting relative ac- 
curacy of each determination of e is given in the third column. 
The relative accuracy of the Cs photon recoil measurement has 
not yet been assigned 

Physical quantities measured Relative 
accuracy [ppb] 

Dependence Relative Ref. 
on ~ accuracy 

of e [ppb] 

g-2 of the electron (exp.) 
g-2 of the electron (QED theory) 

Muon hyperfine structure (exp.) 
Muon hyperfine structure (theory) 

Quantum Hall effect 
Calculable capacitor 

Proton gyromagnetic ratio 
Rydberg constant 
ac Josephson effect 
Quantum Hall effect 

Neutron de Broglie wavelength 
Rydberg constant 
Proton/electron mass ratio 
Neutron proton mass ratio 

Cs photon recoil 
Rydberg constant 
Proton/electron mass ratio 
Cs/proton mass ratio 

3.7 
7.2 

2.9 
22.0 

110 
0.029 
8.9 
2.9 

800 
0.029 

20 
9.0 

0.029 
20 
27 

~3 

~-3 
0~-3 
~2 
~2 
~2 
~2 

~2 
0(2 
~2 
~2 

8.1 [6] 
[4] 

190 [71 
[8] 

24 [91 
[I01 

37 [9, l l ]  
[121 

400 [3] 

[61 

This work 

[13] 

field in the ~]p experiment.  Measurements  o f  him do no t  
require accurate  knowledge  o f  macroscop ic  objects, and  
therefore have the potent ia l  to significantly improve  the 
measured  accuracy  o f  ~. 

1.1 Simplified version of the experiment 

The basic physical  principle o f  the measurement  o f  the 
recoil shift is s t ra ightforward,  and  does no t  depend on  
a tomic  interference or  any  detailed a tomic  physics. We 
can ignore the subtleties o f  the a t o m - p h o t o n  interact ion 
and reduce it to its basic nature,  tha t  o f  a two b o d y  
collision. The initial and final a t o m + p h o t o n  states in 
this process are shown in Fig. 1. Conserva t ion  o f  momen-  
tum dictates tha t  when  an a t o m  absorbs  a p h o t o n  it 

In i t ia l  

ink 
a, p 

Final 

b,p+hk 

b 

Fig. 1. An atom absorbs a photon and receives a recoil momentum 
kick. The diagram on the left illustrates conservation of momentum 
in the process. The diagram on the right illustrates conservation of 
energy; the photon energy must be higher than the energy separa- 
tion in the atom to account for the change in atomic energy due to 
the photon recoil 

\ 

7I 

Fig. 2. Simplified measurement of the photon recoil. The solid and 
dashed lines indicate the atom is in states la) and Ib), respectively 

receives a m o m e n t u m  recoil kick, hk, where k = co/c a n d  
co is the f requency o f  the light. Conserva t ion  o f  energy 
implies the resonance condi t ion  

hk 2 
co--CO,b = k" v+  2m ' (2) 

where hcoab is the energy difference between the a tomic  
levels, and  the sign o f  the last term depends on whether  
the initial energy level is higher or  lower than  the final 
o n e .  

In  Fig. 2 we illustrate a simple experiment  to measure  
the quant i ty  fik2/m, which is p ropor t iona l  to the recoil 
shift term in (2) and  to the Dopp le r  shift due to the recoil 
kick. A n  a t o m  in state ]a) with zero velocity in the 
l abora to ry  f rame is made  to absorb  a p h o t o n  f rom a 
leftward p ropaga t ing  laser beam with f requency co. The 
a tom recoils by  fik/m and  the process has the resonance 
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condition 

hk 2 
c°-co~b = 2m (3) 

The atom can then be de-excited from state !b) by a 
photon from a rightward propagating beam with fre- 
quency co'. It receives another velocity kick hk'/m in the 
same direction, and the new resonance condition is 

hkk' hk '2 
co' - coab = (4) 

m 2m 

The two resonances are shifted relative to each other by 
Am = co- co' = h (k + U)2/2 m. The simple experiment 
would be to measure this frequency difference, for in- 
stance by fixing co at the resonance peak and scanning co' 
to find the maximum number of atoms that come back 
to state [a). 

HalfofAco comes from the addition of a Doppler shift 
due to the recoil velocity, kv = hk2/m, and half comes 
from the recoil energy shift, hk2/2m, which has a different 
sign for emission and absorption. Note that if the second 
beam is made to propagate in the same direction as the 
first there is no shift in the resonance relative to the first 
excitation, because the change in the recoil energy shift 
cancels the additional Doppler shift. 

1.2 Important features of  this experiment 

Our experiment is the separated oscillatory field version 
(Ramsey spectroscopy) [14] of the experiment described 
in the previous section. The Ramsey spectroscopy ver- 
sion yields increased resolution, allows more atoms to 
contribute to the signal, and reduces systematic errors. 
As shown in Fig. 3, each z pulse in Fig. 2 is replaced with 
two re/2 pulses. This is the same pulse sequence used in 
optical Ramsey spectroscopy [15], and has previously 

been studied using Ca and Mg atoms in thermal atomic 
beams in order to test the feasibility of optical frequency 
standards and as early demonstrations of atomic inter- 
ferometry [16, 17]. 

To appreciate the improved accuracy in the recoil 
measurement obtained using a four-pulse sequence one 
need only study Fig. 3. As opposed to the ~z pulses of the 
simple measurement, the re/2 pulses can be made so brief 
that atoms in a broad inhomogeneous velocity distribu- 
tion can contribute to the signal without sacrificing re- 
solution. Each of these pulses divides the trajectory of an 
atom in two, like a 50-50 beamsplitter, so that after the 
third pulse each atom is in a superposition of eight 
different trajectories. When the spacing between the first 
two ~/2 pulses is equal to the spacing between the last 
two, two pairs out of the eight paths overlap and hence 
interfere at the final re/2 pulse. In this double inter- 
ferometer, the only essential difference between the two 
interfering pairs is that their velocities are shifted with 
respect to each other by two photon recoils, so that the 
sets of Ramsey fringes they produce are displaced by 
2hk2/m. Because of the differential nature of the mea- 
surement, the measured recoil shift is unaffected by the 
atom's initial velocity, the acceleration due to gravity, 
and all frequency shifts that are position independent. 

We have improved the optical Ramsey experiment for 
the purpose of measuring h/m in three basic ways. First, 
we excite from one hyperfine ground state to another via 
a velocity-selective stimulated Raman transition [18]. 
The recoils from the two photons that excite this tran- 
sition are in the same direction, so the effective wavenum- 
ber is kerr = k 1 + k2, but the effective frequency of the 
transition is the hyperfine splitting. We therefore obtain 
the large momentum kicks one would get with single 
violet photons, at the same time as we have the con- 
venience and accuracy of working with microwave fre- 
quencies. Second, since both atomic levels are ground 
states, the linewidth of the stimulated Raman transition 
is limited only by the measurement time, and unperturbed 
measurement times can be quite long in an atomic fountain 

Interferometer Interferometer 
A B 

'N ,q 

',1, t 

\\\\I 

~/2  

~ /2  

Fig. 3. The double atomic interferometer. The solid and dashed lines 
denote the atom is in la) and Ib), respectively. The four paths that 
do not interfere at the final light pulse are prematurely truncated, 
in order to highlight the two pairs which do interfere 

Interferometer Interferomet,~r 
A B 

. / 

W "l"l 
~\1 7tI2 

~ /2  
Fig. 4. Double atomic interferometer with two intermediate 
pulses. All paths are shown except the four which are truncated in 
Fig. 3. Many more 7r pulses can be added in the same way 
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[19]. Third, we add up to 15 zc pulses to our inter- 
ferometer, sandwiched in between the middle two z~/2 
pulses, with alternating propagation directions (see 
Fig. 4). Each additional pulse adds one effective photon 
recoil to the center of mass velocity of each path. For N 
7c pulses the separation between the two sets of inter- 
ference fringes is multiplied by N+  1. All these improve- 
ments together lead to a current resolution which is 
several orders of magnitude higher than any previous 
form of optical Ramsey spectroscopy would be for mea- 
suring the photon recoil. 

Light-pulse interferometry has previously been com- 
bined with velocity-selective stimulated Raman tran- 
sitions and laser cooled atoms in order to measure chan- 
ges in the local acceleration of gravity with a relative 
precision of 3 x 10 -a [20]. Atomic interferometry has 
been touted as a potentially potent tool for such diverse 
applications as testing the weak equivalence principle, 
testing the charge neutrality of atoms [21], oil explora- 
tion, navigation [22], testing quantum mechanics, and 
precision frequency measurements [23]. 

This experiment also provides a quantitative handle 
on the systematic errors in a light-pulse atomic inter- 
ferometer in general. Using literature values for the va- 
rious constants involved, we can obtain an accepted 
value for the photon recoil of a cesium atom with a 
relative accuracy of 8 x 10- s, which allows us to charac- 
terize and reduce systematic errors in the light pulse 
interferometer to this level. Even if there were no accep- 
ted value at or beyond that level of accuracy, since this 
experiment contains myriad reversals and switches for 
diagnosing the existence of systematic errors, still higher 
accuracy should be possible. 

1.3 A new mass standard? 

It has been suggested that mass be redefined in terms of 
the de Broglie frequency of a fundamental particle, me2/h 
[24]. Wignall suggested that were a new mass standard 
to be adopted with units of frequency, measurements of 
him would be particularly well placed to be the basis for 
such standards. The basic aesthetic argument in favor of 
a redefinition of mass as frequency is that h would drop 
out of the equations of quantum mechanics. Many of the 
observables in quantum mechanics are frequencies, so 
the energy-frequency conversion is only really necessary 
when an observable involves mass. However, such a 
redefinition of mass as frequency is unlikely to offer a 
practical advantage. In addition, him measurements are 
not uniquely placed to help in the adoption of new mass 
standards, although they are among the relevant mea- 
surements. To understand the place of him in considera- 
tions of a new mass standard, we will review the current 
direction of the precision measurement community in 
this regard. 

The current SI mass standard is based upon an arti- 
fact, a 1 kg Pt-Ir bar located in Paris. No other current 
basic SI unit relies on such a unique, impermanent object. 
Therefore there has been much discussion about replac- 
ing the current definition of mass with an inherently more 

fundamental one, like for instance, the mass of the elec- 
tron [25, 26]. The mass of the electron can be related to 
other base units by a simple inversion of (1), 

2Ro~h 
me - (5) 

C~2 ' 

and the equation [26] 

h = 4(W9o/W)/K2_9oRK_9o, (6) 

which shows how Planck's constant can be determined 
based on the SI voltage and resistance standards (Kj-9o 
and RK_ 9o, which are realized from the Josephson con- 
stant, Kj, and the von Klitzing constant, RK, of the 
quantum Hall effect), and the ratio of the mechanical 
watt (W), which depends on a standard kilogram mass, 
to the electrical watt (Wg0), which depends on the electri- 
cal standards. The physics underlying (6) lies in the rela- 
tion, KZRK = (2e/h)2(h/e 2) =4/h. Since the measurement 
of h gives me in kg, and because particle mass ratios are 
relatively well known, the determination of h can be 
viewed as a measurement of Avogadro's number, NA. 
Once me is taken as the mass standard, the watt measure- 
ment that is now used to determine me would serve the 
purpose of calibrating secondary 1 kg standards. Other 
approaches to realizing a new definition of mass along 
similar lines include the direct determination of NA, for 
instance, by precisely measuring the volume and density 
of a perfect crystal [27, 28]. 

These practical approaches to changing the mass stan- 
dard would be unaffected by a change in the definition 
of mass in terms of a frequency. For fundamental physics 
experiments where only the ratio m/h is necessary, this 
ratio will probably continue to be known to better accu- 
racy than either m or h, either by combining R~ and 
or by direct measurement of him. For other experiments 
or measurements which require m or h separately, the 
only issue with regard to a new definition of mass is 
whether a conversion like the watt balance is performed 
before or after the mass standard is invoked. 

1.4 Testing QED 

One of the goals of this work is to contribute to a mea- 
surement of ~ using a theory-insensitive technique in 
order to test QED. This goal raises the obvious questions 
- in what sense is this measurement theory insensitive 
and how does this measurement relate to other e mea- 
surements ? 

The raw quantity which is measured, the photon re- 
coil, is about as theory independent as experimental 
physics can be. First, the photon momentum must be 
assumed to be hco/c. This assumption relies on three 
elementary things: a basic precept of quantum mechan- 
ics, that frequency is related to energy, the energy- 
momentum transformations of special relativity, 
E2=(p¢)Z+(mc2) 2, and the empirical fact that the 
photon is massless to high precision. The frequency dif- 
ference between the resonances of the two inter- 
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ferometers depends only on conservation of energy and 
conservation of momentum. As long as the two inter- 
ferometers are treated identically, any complicated atom- 
ic physics that shifts energy levels drops out of the mea- 
surement. The ratio m/h is the only intrinsic atomic 
property that is measured, and it is an external quantity, 
independent of what goes on in the atom 1. The step 
where an energy separation of two peaks becomes the 
separation of two sets of interference fringes uses only 
general quantum mechanics, and not any particular field 
theory. 

To determine ~ from h/m requires the use of the 
Rydberg constant, Ro~, which is defined according to (1). 
The Rydberg constant is determined by measuring the 
separation of energy levels in hydrogen or deuterium and 
making several corrections to this value. Thus R~ is not 
so manifestly theory insensitive. The relative importance 
of the various corrections differs with the transition that 
is measured. When the hyperfine structure is resolved in 
a Rydberg measurement, the largest correction is due to 
the hyperfine splitting of the levels and these have been 
independently measured for low lying levels. The second 
order Doppler shift must be corrected for, but this cor- 
rection is based only on special relativity. The reduced 
mass must also be known, but mo/mp is known to high 
precision from a separate measurement [6]. The only 
correction which depends on the details of QED is the 
correction for the Lamb shift. For hydrogen this quantity 
has been precisely measured, while for deuterium the 
adjustment is based on a Lamb shift calculation. The 
Rydberg constant has been measured using many dif- 
ferent transitions. These measurements are in generally 
good agreement to 3 parts in 1011. The theory that under- 
lies Ro~ is thus on solid experimental ground, especially 
at the level required for helping to determine e [12, 29]. 

If we forego the details, the procedure for testing QED 
using this type of determination of e is straightforward. 
The anomalous magnetic moments of electrons and 
muons are calculated using QED, by performing an 
expansion in orders of e/g. Measurements of these quan- 
tities are used to solve for ~. The two values for c~ are then 
compared. 

Currently the two most accurate methods of deter- 
mining e without a long QED calculation, using the 
quantum Hall effect and the proton gyromagnetic ratio, 
disagree at about the two standard deviation level, which 
underscores the need for further independent measure- 
ments. There is in particular some concern because there 
is no microscopic theory of the quantum Hall effect, so 
it is not clear to what level of precision the remarkable 
relation RH = h/e 2 holds [30]. It is encouraging that the 
value for R ,  has been shown to be the same for different 
materials to ~0.1 ppb [31], Although it is certainly not 
surprising, it is notable that the determinations of c~ 
which use the quantum Hall effect, the proton gyromag- 
netic ratio and h/mn are all limited by systematic errors. 

To check the consistency of theory and guard against 
systematic error, it is desirable to determine e in as many 

1 The mass of the atom is different in the two ground states by 
3x 10 -16 

ways as possible. Even measurements with inherently less 
precision are helpful for assessing systematic errors in 
other measurements, even if they do not ultimately figure 
into the ultimate value of a constant [32]. The fine struc- 
ture constant can be obtained with accuracies near 1 ppm 
from measurements of the hyperfine structure of elemen- 
tary particles, the Lamb shift in hydrogen, the decay rate 
of orthopositronium, and high energy collisions of elec- 
trons and positrons [33]. It is difficult to predict what new 
measurement techniques may arise, but there are a 
couple of possibilities which deserve mention. An h/m 
measurement has been proposed which combines the 
measurement of the mass ratio of two ions related by 
nuclear beta decay with knowledge of the associated 
gamma ray energy [34]. Single electron tunneling devices 
could be used to count the number of electrons deposited 
on a calculable capacitor. This could yield an e deter- 
mination with the same precision as the quantum Hall 
measurement, but without relying on R,  [35]. 

1.5 Overview 

Section 2 presents a detailed analysis of stimulated Ram- 
an transitions and of atomic interferometry based on 
these transitions. Section 3 is devoted to describing the 
details of the experiment. Section 4 contains tl~e results 
of the recoil measurement, including discussion of poten- 
tial systematic errors. Finally, in Sect. 5 we discuss the 
future prospects for this experiment. 

2 Theory 

The underlying theory behind the recoil measurement is 
presented in this section. In subsection 2.1 we derive the 
full quantum mechanical equations governing velocity- 
selective stimulated Raman transitions. Then in subsec- 
tion 2.2 we discuss atomic interference in general and 
consider in detail the semi-classical spatial picture in 
which the double atomic interferometer is easiest to un- 
derstand. Subsection 2.3 considers the double atomic 
interferometer in particular. 

2.1 Stimulated Raman transitions 

Velocity-selective stimulated Raman transitions give a 
four times larger recoil shift than single photon tran- 
sitions using comparable wavelengths. They allow both 
internal states in our state-labeled interferometer to be 
ground states, so that we can take advantage of the long 
measurement times afforded by the atomic fountain. 
Also, because the frequency difference between those 
levels is in the microwave region, it is only necessary to 
precisely control microwave and not optical frequencies. 

2.1.1 Classical analysis. In this subsection, as in the 'sim- 
plified experiment' in the introduction, we will look only 
at the states of the system before and after the excitation, 
so that we do not need to know anything about the 
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Ini t ial  

hkl hkz 

a, p A 
~ " v ' ~  0 - "  o,~ ~2~, b Final 

2hkz b,p+h(kl_kz) a 

Fig. 5. An atom undergoes a stimulated Raman transition and 
receives a momentum kick due to both photons. This is directly 
analogous to Fig. 1 

intermediate level or the atomic physics of  the excitation. 
The black box picture of  a stimulated Raman transition 
is shown in Fig. 5. The atom is initially in the state l a )  
and is excited by a rightward traveling photon with 
frequency co, to a virtual level many linewidths away 
from the excited state l i ) ,  so that the probability of  
spontaneous emission from the excited state is small. It 
is then stimulated down to the state I b )  by a leftward 
traveling photon with frequency o02. If  we require energy 
and momentum to be conserved in this process, we find 
the resonance condition, 

h 
(cot - °)2) - CO,b = Vo" ( k l -  k2) + ~m ( k l -  k2) 2, (7) 

where a positive sign for the last' term corresponds to the 
initial energy level being lower than the final one and vice 
versa. Comparison to (2) shows that the stimulated Ram- 
an transition behaves like a one-photon transition be-  
tween states l a> and I b> when the following two corre- 
spondences are made. First, the effective photon has the 
frequency co~ z, which is the frequency difference between 
the two photons. Second, the effective photon has an 
effective k-vector, k e f  f = k ~ - k 2 ,  which for counter- 
propagating comparable frequency beams is double the 
single photon recoil. Thus, interference diagrams like 
those in Figs. 3 and 4 can still be used when stimulated 
Raman transitions are applied, as long as the illustrated 
photon is understood to be this effective photon. 

2.1.2 Quantum mechanical analysis. The quantum me- 
chanical analysis is somewhat more involved and has 
been done elsewhere [20, 36]. It will be necessary in the 
analysis of  systematic errors to refer to some of the 
details of  this derivation, so we will present much of  it 
here. In the limit where spontaneous emission can be 
neglected the equations governing a three-level system 
take the same form as equations for a two-level system. 
In order to aid our analysis we will also explicitly include 
additional excited states and allow both laser beams to 
interact with any excited state level. In this analysis we 
include the effect of  both Raman beams on both ground 
state levels. 

The Hamiltonian for the two ground state-many ex- 
cited state system, in the absence of  spontaneous emis- 
sion, is 

fi2 + h c o a [ a )  ( a l  + h c o b l b )  ( b l  FI=27 ~ 
+ y, thco, (8) 

excited 
states 

where h %  is the energy of  level ~, E is the electric field 
of  the light, and a,, is the electric dipole operator asso- 
ciated with state j and the i-th excited state, 
dla = l i> dij(,jl • The electric field for two incident beams 
is given by 

E(r, t) = E, cos (kl • r-colt+~01) 
+ E 2 c o s  ( k  2 " r - o 9 2 t +  ~2).  (9) 

It is useful to define Rabi frequencies to characterize the 
level couplings, 

(ila,~. E, Ij) 
t2kji -- h ' (10) 

where k = 1, 2 specifies the light beam, and j =  a, b speci- 
fies the ground state. 

Solutions of  the Schr6dinger equation can be found 
using a basis of  states of  the form 

a<p, eXp [ - i  (co~+ 2mhJP'2 "] t ]  I~'p'>' (11) 

We now explicitly start with an atom in state 

ra, p), 

so the states that are coupled by the light are 

la, p>, Ib, p+hk~fr>, [ i ,p+hk~>, Ii, p+hk2>,  

and 

l i, p+hkeff+ hkl >. 

The equations that govern the time evolution of  the 
coefficients of this closed family of  states are 

i 
aa, p = 2 2 ~'2;ai eia~"t e-i~ ai, p+hk~ ' 

k, i 

i Z ~-2" e iAkb/e -i~°~ a ~- +*'- 
ab, p+hkorr = 2 k, i kbi i,p+n%rf n~k , 

i( ) 
{/i,p+hk, : 2 ~Qlai e id~"~t ei~°* aa, pq-~r22bie-ia2b~t ei~°2 ab,p+hk~rr , 

i 
di, p+hk2 : 2 ~2ai e-iAz"it ei~°2 aa, p ,  

i 
¢li, p+hkorf+hk I ~ 2 ~-21bi e-iZJlbl t eiet ab, p+hkof r , (12) 

where the detunings of  the two beams from the various 
levels are given by 

1)2 [pj+hkkl2 
Akj  i ~ (.0 k -- ((,0 i --  (Z)j) -[- 2 m h  2 m h  ' (13) 
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Fig. 6. Energy level diagram for a stimulated Raman transition. One 
intermediate level is shown, but the formalism allows for many 
levels which are not necessarily coupled by the light to both ground 
states 

in the ac Stark shift sum but not in the Rabi frequency 
sum.  

f2 ac are the total ac Stark shifts of levels a and b, Qefr 
is the Rabi frequency in this effective two-level system 
and d is the detuning from the Raman resonance in the 
absence of the ac Stark shift• In the analogy with the 
two-level system, the ac Stark shifts correspond to the 
energies of the two levels, and d is the frequency of the 
coupling radiation. Only the Rabi frequency is described 
unchanged in the analogy. 

The solution of (14) for a pulse of duration z begin- 
ning at time to is well known from the early days of N M R  
[37], and is given by 

aa, p(to + z) = exp {~ [3-  ((2'c + f22c)] z} 

{IicosO in( )+ 
with Pa=P and Pb = P+ h kefr. These detunings from a 
single intermediate state li)  are illustrated in Fig. 6. 
Equations (12) are exact to within the rotating wave 
approximation. 

In the limit where the detunings from the excited 
states are much larger than the Rabi frequencies, A >>£2, 
the coefficients a vary slowly compared to the explicitly 
time dependent terms. We can thus adiabatically elimi- 
nate all the coefficients ai:pj.+hk~ from (12). We next dis- 
miss all terms in the remaining two equations that oscil- 
late at co l -  co2, which corresponds to the limit that the 
detuning from the Raman resonance condition is much 
smaller than CO,b, the splitting between the ground state 
levels. We are left with the following pair of equations, 

• " AC aa, p = --l~C2a aa, p-- ieidt  ek°off ~2effab, p+hkorf , 

ab,p+hkof r = --i(2~bcab, p+~ko~--ie-ifte-i%~O2ffaa, p, (14) 

which are analogous to the equations of motion for a 
two-level atom in a single frequency driving field. In these 
equations, 

~-2~a i ~'22b i ~'2;C = ~ [ Qkjll 2 
~'~eff = 2i  4Alal  ' . 4Akj  i , (Pelt = (,02--(01, 

(COl -- CO2)-- (coab+ P 'kef f  hke2ff~ = -l- . 
m 2m J 

(15) 

For the purposes of these identifications the distinction 
between A 1,1 and Azb i is negligible in this limit. Also, in 
the expression for Oorr there is no sum over the beam 
index, k, because all such terms which contain A2a~ or Alb~ 
dropped out for oscillating too fast. For each excited 
state, only the one combination of states and beams that 
roughly satisfies the Raman resonance condition appears 
in the Rabi frequency. There are some excited states that, 
for reason of angular selection rules, couple to one of the 
ground states and not to the other. These states appear 

+[isi. Osin( )e t 
where 

CO2 = (~AC__ ~)2_]_ 4QZff, 6AC = g)AC oAC 

(16) 

•AC - -  d 2Oerr 
c o s O -  , s i n O -  (17) 

CO CO 

As a check to see that the equations behave properly in 
a situation where the expected result is unambiguous, we 
can make the effective Rabi frequency be zero, but still 
allow light to be present which causes ac Stark shifts. 
Then (16) reduces to 

a,,,p(to+ z) = e -i~2% aa, p(to) , 

al,,p+hkor r (to + z) = e -iO2% ab, p+~L~f(to), (18) 

as expected• 
When we consider atomic interference we will be in- 

terested in the phase shifts which accrue along distinct 
atomic trajectories. Equations (16) can be reexpressed so 
that the phases and amplitudes are kept distinct. In 
general, we will care mostly about the phase shifts ac- 
crued during n/2 or n pulses. When coz/2 = n/4  + e, (with 
e small so that we have approximately a n/2 pulse), and 
cos O is small (that is, the detuning from the ac Stark 
shifted Raman resonance is small compared to the Rabi 
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frequency) we find 

a,,,p(to + r) = exp [i(&/2 - ~0~s) ] 

1( 
x ~ ( l - e )  exp (-i~0ofr) a~,p(to) 

ab, p+~ko,,(t0 + r) = exp [ i ( -  dr/2 - (,0acs) ] 

x ~/2 (1 - e )  exp (i(0off) ab, p+~kor ~ (to) 

+ ) (19) 

where 

(t2o + ~b ) z 
(0,os=- 2 , ~0of r =  O -  (l+2e).  (20) 

The phase subscripts acs and off denote, respectively, the 
ac Stark shift and any detuning offset from the ac Stark- 
shifted resonance. For historical reasons [37], O has been 
defined so that r / =  r e /2 -O  is a small number near re- 
sonance 2. Terms up to second order in small quantities 
have been kept in the phase parts of  the above equations, 
although only first order terms have been kept in the 
amplitude parts. For e)~/2 = re/2 + e, an approximate ~z 
pulse, 

aa, p (t o + "c) = exp [ i (6z/2--  ~0acs)] 

aa, p (to) 

+ ex Ii(  o+ eff+ t , 
a~,p+hko~f (to + r) = exp [i(-- c~r/2 -- ~0aos) ] 

+   +  expEi an } (21) 

When all the population originates in a single state, the 
amplitude and phase associated with the transfer of am- 
plitude to the other state are first order independent of  
e and O. 

2 ~Oor r is the small detuning limit of the terms which prevent 
complete population transfer to the excited state when the 
radiation is tuned off resonance. In the optical Bloch picture, it 
would be the angle of the torque vector with respect to the x-y  
(or u-v) plane [38] 

2.2 Atomic interference and the semi-classical picture 

When an atom is put into a coherent superposition of  
two energy states, the centers of its two state-labeled 
spatial wavepackets will start to move away from each 
other at the photon recoil velocity, separating from each 
other by ~ X  r = hkoffT/m in a time T. These two wavepack- 
ets will have distinct space-time trajectories which must 
overlap in space at a later point in time if they are to 
interfere. In rf and microwave Ramsey spectroscopy the 
spatial coherence length of  the atomic ensemble, 6xc = 
h/Ap, where Ap is the momentum spread of the atoms, is 
typically much larger than 6xr. Therefore, sufficient over- 
lap for interference occurs without the need to explicitly 
redirect the atomic trajectories between the establish- 
ment of  the coherence and the detection of  the inter- 
ference. When Ramsey spectroscopy is performed using 
optical wavelengths it is usually the case that c~xr>>c~xc, 
so it is generally necessary to redirect the parts of  the 
atom separated by a recoil. A scheme to do this using 
three standing waves was proposed by Baklanov et al. 
[39] and demonstrated by Bergquist et al. [40]. The latter 
group identified the traveling wave components that lead 
to the signal, two oppositely directed pairs of  re/2 pulses, 
which is essentially the same sequence employed in our 
experiment. The interpretation of  their experiment as an 
atomic interferometer came a dozen years later [41]. The 
simplest light-pulse atomic interferometer pulse se- 
quence, using a total of  three pulses, has since been 
demonstrated by Kasevich and Chu [42]. 

Rigorous calculation of atomic interference is rela- 
tively simple in the momentum picture, in which the 
calculations of  the preceding section were performed, 
because the effect on each atomic plane wave component 
due to any number of  light pulses can be computed 
independently. Integrals can then be taken over each 
atom's momentum wave function and over the ensemble 
of atoms. In contrast, the calculation is difficult in the 
position picture because there is no closed family of  
position states that allows the problem to be Fourier- 
decomposed. Nonetheless, the position picture is heuris- 
tically helpful. Furthermore, in calculations which in- 
volve spatial gradients of  fields the plane wave picture 
alone is insufficient. 

The calculational merit of  the plane wave picture can 
be retained in the spatial picture if we take the classical 
limit of  the quantum mechanical free propagator, which 
allows us to associate a single momentum with the atom- 
ic wavepacket [43]. This is the limit where the classical 
action, defined as [44] 

t ~ l  m 2 
S =  ;i [ ~ m22dt= ~ v  ( t f - t l ) ,  (22) 

is much larger than h. The semi-classical condition S>>h 
is well satisfied during the free propagation times in our 
experiments. However, during the Rabi pulse times this 
condition is less well satisfied. For instance, we must 
follow a Cs atom moving at its Raman transition recoil 
velocity for 25 gs for the action to be equal to h. In our 
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experiments we are typically in the semi-classical limit for 
the length of a re/2 pulse by only about a factor of 20. 

As long as we can use this approximation, a well- 
localized atomic wavepacket can be followed in space 
and its momentum-dependent interactions with external 
fields can be calculated using the classical momentum, 
without the need to sum over plane waves. If an atom is 
split into two coherent parts by a light pulse, the phase 
accumulated by each separate path can be calculated in 
this semi-classical limit. Bord6 and Riehle et al. have 
expounded a list of phase shift rules that apply at light- 
pulse vertices and during free space propagation [43, 45]. 
We will generalize that exposition by including ac Stark 
shift terms, which are absent for a single photon tran- 
sition, and considering the effect of pulse lengths that 
deviate slightly from re/2 or re. 

Along the freely propagating segments of a path the 
accumulated atomic phase is equal to the action along 
that path, exp ( iLA t/h), where L is the atomic Lagran- 
gian. Using the Lagrangian for an unperturbed free 
atom, this phase term is 

e '~ . . . . .  exp [i(k, A x -  co,A t)], (23) 

where hcoa is the total energy of the atom and k, is the 
atomic wavenumber, k,=p~/h. If all the forces on the 
atom are conservative, then the only part of the atom's 
energy that changes is the energy of the atom's internal 
state. Other energies remain constant, so the associated 
global phase factors can be ignored. 

Gravity causes an additional phase shift along a freely 
evolving path, 

m 
(24) 

which we obtain using (23) and allowing Pa to evolve in 
a uniform gravitational field. This phase shift is the same 
for two paths which intersect at their beginning and end, 
so free evolution in a gravitational field does not in itself 
cause an interferometer phase shift [42]. However, grav- 
ity does change the point at which the atom interacts with 
the light field, which we shall soon see does cause an 
interferometer phase shift. 

If the laser beams rotate in the plane of interference, 
the Sagnac effect contributes a phase shift to each 
straight path of 

At 
~0 s = ( ~ '  r x p) ~ - ,  (25) 

where r is the position at the end of the path, p is the 
atomic momentum for that path in the freely falling 
reference frame, At is the time interval of the path and 

is the angular velocity of the rotating frame [43]. The 
net effect of these shifts in an atomic interferometer is 
that the phase shift is proportional to the area swept out 
in the interferometer. The Sagnac effect has been 
previously observed in an atomic interferometer, where 
the entire apparatus was rotated at 0.1 Hz [45]. The 
earth's rotation should be observable in an apparatus 

similar to ours [42]. We show in subsection 4.6 that the 
Sagnac effect does not cause a systematic error in our 
experiment. 

An external field will also modify the action during the 
free propagation segments. Phase shifts that are caused 
by forces on the atom are relatively difficult to model, 
because they change the atom's path in space and time. 
In the limit when the perturbing field changes the velocity 
of the atom by much less than its mean velocity, these 
shifts can be approximated by phase shifts due to time 
dependent, spatially independent potential energy 
changes. These do not change the path, which makes the 
calculation of their effect more straightforward. This 
approximation will be most useful in the context of 
magnetic field gradients. 

To determine the effect of the light pulses on the phase 
accumulated on different semi-classical paths we will rely 
on (19) and (21). At each successive interaction with a 
laser beam we apply anew these solutions of the equa- 
tions of motion for the effective two-level system to each 
distinct path separately. The phase shifts can basically 
just be read from (19) and (21), but we will discuss them 
all briefly here. The phase terms + i3 to, which keep track 
of the relative phase evolution between different momen- 
tum states when the solution is done with plane waves, 
are now zero because to = 0 in this fragmentary solution 
to the problem. The laser phase terms + i(0eff, take on an 
added significance because they now correspond to the 
phase where the path intersects the laser beam. This is in 
contrast to the plane wave calculation, where as long as 
the laser beams are parallel and stable, the laser phase 
can simply be set equal to zero. 

From both (19) and (21) we can see that when a path 
makes a transition between two states it accrues an ad- 
ditional phase of :t: (0elf = ± [(O1 -- 002) t-- koff" r]. The 
position and the time are referenced to some fixed point. 
The constant phase shift ~/2, which appears along with 
~0ef f, will not contribute a phase shift difference between 
two paths which start and finish in the same state, so it 
can in general be ignored. Anything that affects this 
phase must be included in this term, like phase noise on 
the laser frequency difference or acceleration due to grav- 
ity, which changes r from what it would otherwise be. A 
phase shift due to a change in r in the semi-classical 
picture corresponds to a Doppler shift in the momentum 
space picture. 

Equations (19) and (21) also show that every path that 
sees a ~/2 pulse gets a phase shift of ~0aos. Thus if the ac 
Stark shift does not depend on the position along the 
exciting beam this term drops out in any interferometric 
comparison between paths. Because the ac Stark shift 
scales in the same way as the Rabi frequency, the size of 
~0a~ is essentially independent of the pulse length. How- 
ever, in the short pulse limit (z<<T), ~0,c s becomes a 
vanishingly small fraction of the total phase accumulated 
along any given path. 

From (19), when a path sees a re/2 pulse and does not 
make a transition it accrues an additional phase of 
+ ~Oof~ = ( 0 -  re~2) (1 + 2e). If the laser is on the ac Stark 
shifted resonance, porf = 0. 
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Fig. 7. Qualitative spreading of a wavepacket at a pulse. Amplitude 
is continually being exchanged between the two coupled states 
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Fig. 8a, b. The atomic paths resulting from a ~z/2-~/2 pulse se- 
quence, a Ax is the separation of the two pairs of paths immediately 
after the second 7~/2 pulse, b Illustration of phase washout due to 
misaligned beams and a longitudinal spatial spread in the atomic 
ensemble. The parallel lines represent either parts of a single, curved 
set of wavefronts or two beams with different k-vectors. The boxes 
correspond to the location of one atom during the pulse, and the 
circles correspond to the location of another atom with the same 
initial velocity. The phase difference between the light at the first 
pulse compared to the last pulse is different for the two atoms, so 
that they will contribute to velocity fringes with different phases 

When a transition between internal states takes place 
in a finite time, there is an inherent delocalization of the 
wavefunction. Consider a well localized wavepacket that 
receives a light pulse. Early in the pulse, the amplitude 
in the excited state, which has a different momentum 
from the initial state, begins to grow and separate from 
the initial state (see Fig. 7). The excited state becomes a 
source for amplitude in the initial state, even as it gains 

amplitude from the initial state. The wavepackets of the 
atom can be substantially delocalized in this way after a 
single Rabi pulse. Therefore, two wavepackets need only 
be overlapped in time to within the pulse width and in 
space to within the product of the interaction time and 
the mean atomic velocity in order to have interference. 
Because various experimental imperfections may lead to 
imperfect overlap of interfering wavepackets, it is impor- 
tant to keep their inherent fuzziness in mind. 

As an application of this semi-classical picture, con- 
sider a ~z/2-u/2 pulse sequence in the usual limit of optical 
Ramsey spectroscopy, 5xr>>fxc. After the second re/2 
pulse the atomic path is coherently divided into four 
paths, with two paths in each state spatially separated by 
Ax=(hkoff/m)T (see Fig. 8a). If we take the Fourier 
transform of this spatial distribution for each internal 
state, we find fringes in the velocity distribution with a 
period of 2off/T [36]. 

Now suppose the second beam in the u/2-~/2 pulse 
sequence is misaligned by an angle 0 with respect to the 
first, or equivalently, that wavefront curvature results in 
a different k-vector at the second pulse (see Fig. 8). The 
spatial separation of the two halves along the second 
beam will be cos Ohk~ffT/m and the periodicity of the 
velocity fringes is reduced by a factor of cos 0. If the 
atoms that contribute to the signal have a spread A z 
along their direction of motion, then two atoms that have 
the same momentum and position along the first beam, 
but a different position perpendicular to the beam, A x, 
will interact at different phase fronts of the second beam. 
These two atoms will thus contribute to velocity fringes 
which are phase shifted with respect to each other. If 
Az=2off/2 tan 0, the two sets of fringes will be rc out of 
phase and wash each other out. 

2.3 Double atomic interferometer 

2.3.1 General description. A picture of the four ~/2 pulse 
sequence is shown in Fig. 3. After the first ~/2 pulse pair 
the direction of k~ff is reversed. This change breaks up the 
existing closed families of momentum states, l a, p )  and 
]b, p + hkeff), and matches them each with states whose 
momenta point away from the first family's mean, [b, 
p-hkef~) and ]a, p+2hk~f ) ,  respectively. Four of the 
eight coherent paths after the third u/2 pulse do not 
intersect with other paths at the final ~/2 pulse. The other 
four coherent paths form two distinct interferometer 
loops. The differences between the two are minimal and 
easily enumerated. They are different with regard to: 
their mean velocities, which are separated by 2hk~ff/m; 
their spatial paths; and the internal state they occupy in 
the time between the middle ~/2 pulses. 

The first difference is precisely what we measure, be- 
cause the velocity difference is proportional to two effec- 
tive photon recoils. Since it is the difference between two 
sets of interferometer fringes that is measured, absolute 
frequency is unimportant. Any homogeneous field, grav- 
ity, or Doppler offsets are the same for the two inter- 
ferometers, and do not affect the measured photon recoil. 
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The second difference between the interferometers, 
their spatial paths, is our primary source of  systematic 
error. Inhomogeneous fields will cause different phase 
shifts in the two interferometers, which will tend to 
change the separation of their fringe patterns. These 
inhomogeneous shifts will be considered in detail in the 
section on systematic errors. 

The difference in the internal states between the mid- 
dle re/2 pulses is somewhat less significant. Again homo- 
geneous fields cause no error, this time because the phase 
shifts are equal for the two arms of each interferometer. 
Inhomogeneous fields remain a potential source of error 
which must be considered. This difference in the inter- 
mediate internal states can be useful, in that it allows us 
to selectively remove atoms from each of the inter- 
ferometers. 

2.3.2 Numerical calculations. The first detailed calcula- 
tions on the double atom interferometer were performed 
by Bord6 et al. [15], when they demonstrated single 
photon optical Ramsey spectroscopy with traveling 
waves. They used a matrix formalism to keep track of the 
evolution of  the amplitudes and phases associated with 
two plane wave momentum components for each state. 
The expressions they find contain the essential physics 
and analytically demonstrate interference clearly. How- 
ever, that work considered only single photon transitions 
and atomic plane waves, and their numerical calculations 
are in the limit of a negligible photon recoil shift. These 
differences limit the direct application of those results to 
this work. 

We consider the double interferometer in a reference 
frame that is accelerating with gravity, so that we can 
ignore the effect of gravity. As a practical matter, one 
must take gravity into account either by making the 
Raman beams horizontal so that there is no acceleration 
in the velocity selection direction, or by adjusting the 
detuning to keep the atoms in resonance with the light 
from pulse to pulse. The required precision of the adjust- 
ment is on the Order of the Rabi frequency and not the 
Ramsey fringe width. 

Our numerical calculations use the complete solution 
of the effective two-level equations, (14), assuming 
square pulses. The beam direction is changed in the 
calculation by taking the amplitudes in the original 
closed family of states and evolving them each separately 
in their new closed family of states. The equations for the 
new families are identical to each other, except that the 
momentum, p, is shifted either up or down by one recoil. 
We obtain the probabilities of ending up in each of the 
four possible momentum-labeled states as a function of  
the detuning of the second pair of zc/2 pulses. We also find 
the total probability of finishing the pulse sequence in 
each of the two internal states, since this is the quantity 
we actually measure. The calculation is performed for 
many different initial atomic momenta. The results are 
weighted according to an initial Gaussian momentum 
distribution and summed together to yield the expected 
signal. 

For a measurement of  the photon recoil, the double 
interferometer can be excited in two limits: the Rabi 
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Fig. 9. Numerically calculated double atom interferometer signal 
for a Raman transition. (a) The total fraction of atoms that end up 
in the excited state after four ~/2 pulses. (b) The final fraction in the 
excited state that are in the excited state between the ~/2 pairs. (c) 
The final fraction in the excited state that are in the ground state 
between the ~/2 pairs. The parameters correspond to Cs, the Raman 
Rabi frequencies are 2~ (1.1 kHz), T=500 ps, and the initial 
momentum spread is 0.3 5 .... although the momentum integration 
is carried out over 5too 

frequency, t'2af, can be either much larger or much 
smaller than the recoil splitting, o)rs=2hk2rf/m. When 
f2eff<<COrs, the two interferometers are not in resonance at 
the same detuning of the final pulse pair. This is the limit 
in which our experiment is performed. An illustrative 
numerically obtained signal is shown in Fig. 9. The ac 
Stark shifts for the two states are set equal to each other, 
the four pulses are exactly re/2 at resonance, and the first 
~/2 pulse pair is detuned exactly on resonance. For  an 
initial ensemble of atoms in state l a, p = 0) ,  we plot the 
fraction that end the sequence in the J b, p-hke~rf) state, 
the ] b, p + hkeff) state and the sum of those two. 

The signals can be understood with reference to the 
interferometer diagram, Fig. 3. When the final two 7t/2 
pulses are far from any resonance, the atoms remain as 
they are after the second ~/2 pulse, evenly divided be- 
tween the two states. When the interferometer that con- 
tains I b, p+hkeff) is in resonance, atoms that end the 
second ~/2 pulse in [b) have a chance to make a tran- 
sition to l a ) ,  so the r b )  population dips down. This dip 
is the sum of  two parts: one with oscillations, due to the 
two paths that interfere, and the other a broad feature, 
due to the two paths that do not interfere, whose am- 
plitude ends up split between the two states. Conversely, 
when the interferometer that contains the l a, p )  atoms 
is in resonance, the [b) population can gain atoms and 



228 D.S. Weiss et al. 

0 ,5  I I I I I 

(o) 

0 . 0  
I I I I I 

0 . 5  l J - '  L ' ' ' ' ' 

o 0 . 0  
I I I I I I 

0 . 5  . . . .  - - ~ - , . , , , ~ q ^  , ^ r , - . w ~ -  

X (c) o ~T/ 
EL 
© 

o.o ~ T ; 
" ~  0 . 5  . . . . . . .  

A2)  

0 .0  . . . . .  
I I I I I I I I I 

0 . 5 ,  , , , , , , , , , 

l I I I I I I I I I I 

- 6  -5 - 4  -5 -2 -I 0 1 2 5 4 
nd 

2 Frequency ((~rec) 

Fig. 10a-e. Incorrect length '~/2' pulses. The numerically generated 
fringes in a double atomic interferometer are shown for pulses that 
differ from ~/2. The ac Stark shifts of the two levels have been 
canceled. Notice that the locations of the central fringes do not shift 

the signal peaks up. It is important to note that although 
the parts of the two signals that correspond to the non- 
interfering paths are inverted with respect to each other, 
the oscillations are not. This reflects the similarity of the 
two interferometers after the third ~/2 pulse, which is 
crucial to the recoil measurement. 

Analytical solutions are sufficient to demonstrate the 
insensitivity of the recoil measurement to non-zero ac 
Stark shifts and deviations from perfect ~/2 pulses. To 
graphically illustrate the latter insensitivity, Fig. 10 
shows the calculated signal when the size of the nominal 
~/2 pulses is varied from ~/4 to 3 ~/2. The central fringes 
do not change location. 

When #~rf>>c%, the two interferometers are in re- 
sonance at the same frequencies. Although this is not the 
limit of our experiment, we will consider it here. In this 
case there is no net contribution to the signal from the 
non-interfering paths, since they result in equal am- 
plitudes in the two states regardless of the detuning. The 
signal consists of two identical sets of  Ramsey fringes 
with overlapping Rabi envelopes. The fringes are 
separated by COr~, but their amplitude is undiminished at 
that distance from their central fringes. A numerical cal- 
culation of the total signal in this limit is shown in Fig. 11. 
If  n is an integer and T the time between ~/2 pulses, 
then the two fringes will constructively interfere when 
2~n = c%T, which is when an integer number of fringes 
fit between the central peaks. When 2rcn = corsT+ re, the 
two sets of fringes will destructively interfere in the fre- 
quency range between and near the central peaks. If data 
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Fig. 11. Interference fringes in the short pulse limit. This is the 
numerical double atom interferometer signal when the Rabi fre- 
quency is 5 times larger than the recoil splitting. The contrast of the 
fringes depends on the fringe frequency 

were to be taken under these conditions, one would scan 
T in order to determine ~%. Alternately, one could use 
the state separation in the time between the middle M2 
pulses to alternately clear away atoms in the two inter- 
ferometers, and measure each of their central fringes 
independently. Similarly, the two sets of fringes could be 
measured independently if the spatial separation of the 
two interferometer endpoints was larger than the spatial 
spread in the atomic ensemble. 

2.3.3 Semi-classical picture for homogeneous fields. 
Bord6 has calculated the relative phase shifts between the 
two arms of each interferometer for single photon tran- 
sitions [43]. This shift is 

6(/) = [((Z) 1 - -  0 )2)  - -  (Dab -1- ~rec] 2 T, (26) 

where T is the time between re/2 pulses and 6no = hk~fr/2m. 
This follows from repeated applications of (19) at the 
vertices of the double interferometer and calculation of 
the action during the free propagation times. As expect- 
ed, the phase shift difference between the interferometers 
A(5(0)=46recT, so that the frequency shift between the 
two sets of Ramsey fringes is 2hk2rf/m. When inhomoge- 
neous laser beams, imperfect detuning, and imperfect 
pulse sizes are allowed, some extra spatially dependent 
phase shifts can occur. We will show here how these shifts 
cancel exactly when the laser beams do not have these 
imperfections. In the section on systematic errors we will 
estimate the size of these errors in realistic experimental 
situations. 

If  the ac Stark shift is the same at all vertices its 
contribution to the phase, ~0 .... is also the same at every 
vertex and the recoil result is unchanged. When we next 
keep track of ~0orf to see the effect of being detuned with 
respect to the Stark shifted resonance (see Fig. 12) we 
find that 

( 2 )  (6Ac-5)(1 + 2 e ) ( 2 7 )  5~0of f = - 4  O -  ( l+2e)  = 2 (2err 

for both interferometers. As long as the difference be- 
tween the Stark shifts of  the two levels has no gradient 
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Fig. 12. Phase shifts due to (0or r. The atom enters from below in state 
la). These phase shifts, which occur only off resonance, only accrue 
to paths that do not make transitions. The arrows denote the 
direction of the effective k vector 

along the laser beams, A(&~0orf)= 0 and there is no error 
from these terms. Because the cancellation occurs on a 
pulse by pulse basis, a gradient of the relative ac Stark 
shift transverse to the beam causes no error in the separa- 
tion. Similarly, an imperfect n/2 pulse size causes no error 
in the measured separation when the fields are spatially 
homogeneous. Furthermore, when the ac Stark shift 
varies with position along the beam the phase error due 
to an imperfect pulse size is one order lower in a small 
number. Although 6~0orr can be non-zero for single 
photon transitions, A(&~0orf) is always zero in that case as 
long as the laser detuning is kept constant, because the 
terms which correspond to OAc in the equations for single 
photon transitions are the fixed energies of the atomic 
levels. 

3 Experiment 

Before contributing to atomic interference fringes for 
measuring the photon recoil, the atoms undergo a signifi- 
cant amount of processing. See [46] for a brief summary 
and [2] for a more detailed discussion. Atoms are slowed, 
trapped, cooled and launched into a fountain trajectory 
using well-established laser cooling and manipulation 
techniques. On their way up they are prepared in a 
well-defined state and at the top of their trajectory they 
are given a series of interferometer pulses. On their way 
down their internal state is probed. The details of these 
various steps are presented in this section. 

3.1 The atomic fountain 

The overall experimental setup is similar to previous 
atomic fountain experiments (Fig. 13). A thermal beam 
of Cs atoms is slowed using the chirped slowing tech- 

atomic 
trajectory clearing • I ~ beams interferometer 

m l r r ~ ~  i1 Raman beams 

probe/ 
air rail cart ~ blaster 

Raman velocity @ --~ optical pumping 
preselection .J-beams 

beams ~ ~ optical 
< /~ molasses 

beams 

slowing atomic 
beam beam 

< > 

magneto-optic 
trapping coils 

Fig. 13. Schematic of the experiment. Most of the laser beams 
contain two component beams 

nique [47]. The primary slowing light is generated from 
a scannable single-mode Ti-Sapphire laser, locked near the 
6S1/2, F = 4  to 6P3/2, F ' =  5 resonance using an fm sat- 
uration technique (at 18 MHz)[48]. The 1 W Ti-Sapphire 
laser is also the source of the primary cooling beams, the 
probe/blasting beam, the Zeeman optical pumping beam, 
and the reference beam for the frequency lock of the 
Raman beams. The light necessary to repump the atoms 
out of the lower Cs hyperfine level is generated[ from a 
50 mW diode laser with grating feedback [49] locked near 
the 6S1/2, F = 3 to 6P3/2, F ' = 4  transition. The repump- 
ing beam is combined with the Ti-Sapphire beam in an 
acousto-optic modulator, so that both the slowing and 
cooling light contains both frequencies. The two carrier 
frequencies of the slowing light are 300 MHz above the 
F=  4 to F '  = 5 and F =  3 to F '  = 4 transitions, respective- 
ly, so that the unchirped part of the light is far from 
resonant with the slowed atoms, and will be less likely to 
heat them up and push them out of the way. A traveling- 
wave electro-optic modulator produces the sidebands 
with a modulation index of close to one. Slowing is 
accomplished by the lower sidebands, which are chirped 
from 550-340 MHz. The slowing light is circularly po- 
larized and the resonant sideband has 100 mW and 
1 mW in its two components, in a beam that converges 
from about 10 mm to 1 mm diameter over the 1 m in- 
teraction length. 

The slowed atoms are captured in a Magneto-Optic 
Trap (MOT) [50] near the center of the 1 x 10 -9 Torr 
vacuum chamber. The anti-Helmholtz coils for the MOT 
magnet consist of 10 turns of 3/16 inch diameter copper 
tubing, insulated by a loose fiberglass sheath and 
wrapped in three layers with a 10 cm inner diameter. The 
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Fig. 14. Velocity distribution of fountain atoms. The temperature 
determined by the width of this signal is 4.0 gK, although because 
the distribution is not quite Gaussian, this is, strictly speaking, not 
a temperature. (The narrow side peaks are doppler-free resonances 
on magnetic-field sensitive transitions) 

separation between the two haives is 3.5 cm. The typical 
current run through the water-cooled coils is 15 A. 

The light for the trapping passes through three AOMs 
in series. The three downshifted first-order Bragg-dif- 
fracted beams are used successively for the horizontal 
molasses beams (~3.5 cm diameter), and the upward 
propagating and downward propagating molasses beams 
(~  2.5 cm diameter), which are aligned 45 ° with respect 
to the horizontal. Because the frequencies of the beams 
need to be shifted for the launch, a short focal length lens 
images each AOM. In this way the angular change result- 
ing from changing the AOM frequency is immediately 
converted to an acceptably modest spatial offset. The 
polarizations are adjusted by rotating quarter wave pla- 
tes in each beam in order to maximize the trap lifetime a . 
The intensity in the diagonal trapping beams is ap- 
proximately 25mW/cm / per beam. The primary 
trapping light is typically detuned 20 MHz below the 
F =  4 to F ' =  5 resonance. 

After 200 ms of loading there are ,~5 x l0 s atoms in 
the MOT. We block the slowing beam and shut off the 
magnetic field, and then wait for 50 ms before continuing 
the launch sequence so that any eddy currents induced 
by the switching magnetic field can die away. There are 
three orthogonal pairs of ~ 1 m diameter Helmholtz coils 
around the apparatus, which are used to cancel the 
earth's magnetic field in the trapping region so that the 
optical molasses can cool most efficiently. The frequen- 
cies of the different molasses beams are then acousto- 
optically shifted to create molasses in a frame moving 
upwards, ~ 5 ° off vertical at 2 m/s [21]. The intensity of 
the light is then decreased to further cool the atoms to 
~3.5 gK using the polarization gradient cooling mech- 
anism. The temperature was measured, as shown in Fig. 14, 
using velocity-selective Raman transitions [18]. Then the 
light is blocked with a mechanical shutter and the atoms 
are left unperturbed on an upward ballistic trajectory. 
The repetition rate of the experiment is 2 Hz. 

3 Other work suggests that crossed linear polarizations are opti- 
mal, ultimately yielding up to 30% lower temperatures than 
opposite circular polarizations [51] 

3.2 Atomic  state preparation 

Right after the atoms are launched we change the cur- 
rents flowing through the Helmholtz coils in order to 
provide a bias field of ~85 mG, so that the inter- 
ferometer experiment can be performed using only mag- 
netic field-insensitive transitions. On their way up the 
atoms are excited by a 1 cm diameter, 200 gW, linearly 
polarized horizontal beam that is resonant with the 
6S1/2, F =  3 to 6P3/2, F ' =  4 transition, so that it depletes 
the atoms in the F = 3 level. This hyperfine pumping 
beam is overlapped with another linearly polarized beam 
that is resonant with the 6S1/2, F = 4  to 6P3/2, F ' = 4  
transition. This Zeeman pumping beam, with a few gW 
in its 1 cm diameter, increases by a factor of four the 
phase space density of atoms in the ground F =  4, mF = 0 
level. The two beams are slightly offset from each other, 
so that the atoms see the hyperfine pumping beam last. 
After the atoms have passed through both beams the 
light is shut off using AOMs. 

A typical distribution of  populations after Zeeman 
pumping is shown in Fig. 15. For this scan the bias 
magnetic field was aligned with the Raman beam 
propagation axis, and to the extent that this is achieved 
the A m = 4- 1 transitions are not driven. Only half of the 
resonances are shown in the scan because the distribution 
is symmetric. Some population remains in the mF = + 1, 2 
levels, presumably because of the difference in the bias 
field direction between the optical pumping and Raman 
regions, which are separated by ~ 7 cm. The temperature 
of the atoms after optical pumping is 4.0 gK. 

If  the Doppler-broadened width is significantly wider 
than the Rabi pulse widths in the interferometer, many 
atoms will be excited by off-resonant light. In this limit 
the maximum possible fringe contrast (the difference 
between the height of the peaks and valleys divided by 
their sum) is only 14% [42]. To reach the opposite limit, 
where the maximum possible fringe contrast is 50%, a 
preliminary velocity selection is made. A pair of ve- 
locity-selective Raman beams are made to counter- 
propagate just below the probe/blaster beam and the 
interferometer Raman beams (Fig. 13). The velocity 
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Fig. 15. Ground state populations after hyperfine pumping. The 
bias magnetic field is much larger than in Fig. 14, and it is aligned 
with the Raman beams. The peaks are each proportional to the 
number of atoms in a given sublevel, although the proportionality 
constants are different 
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selection light is ~1/4 of the intensity of the inter- 
ferometer light. It is pulsed on to give a ~z pulse, which 
is typically 0.25 ms long. Atoms from within a velocity 
width of ~500 gm/s are thereby transferred from the 
F =  4, mF = 0 state to the F =  3, mF = 0 state. 

As the atoms continue upward through the probe/ 
blaster beam, the beam is pulsed on for ~ 6 ms with the 
light at 3Isat in order to push the F =  4 atoms out of 
resonance and out of the way. Of the atoms that finish 
in the F =  3 state after blasting, the ratio of velocity 
pre-selected atoms to other atoms is typically ~ 3. The 
residual background in the F = 4  state is <0.5% of the 
pre-selected atoms. Overall, the internal and external 
state-selection leave about 106 useful atoms for the inter- 
ferometer. 

3.3 The Raman beams 

The Raman beams are generated by two diode lasers, 
which are phase-locked to each other with a 9.2 GHz 
frequency offset. The reference frequency is the summed 
output of a fixed 9.14 GHz synthesizer and a low fre- 
quency digital synthesizer (~60 MHz), the output of 
which can be changed between pulses without losing the 
phase lock. Our phase locking scheme is described in 
detail elsewhere [52], so we will only briefly describe the 
technique here. Both our laser diodes (SDL-5410-G1, 
GaA1As) are spectrally narrowed using optical feedback 
from a gold coated, holographic grating in the Littrow 
configuration, which narrows their linewidths to 
< 1 MHz. Beams from the two lasers are overlapped in 
a polarizing beamsplitter cube and part of this light is 
split off and passed through a linear polarizer oriented 
at 45 ° to the polarization so that the two beams will 
interfere on a fast photodiode. This beatnote is mixed 
against a stable microwave reference, and the error signal 
is used to electronically feed back to one of the lasers. 
The feedback is accomplished in three bands. The low 
frequency (<500 Hz) error signal is fed to a PZT on 
which the grating is mounted, the midband (0.5 kHz to 

500 kHz) error signal is fed to the laser diode current 
controller, and the high band is ac coupled directly into 
the current lead to the laser diode. The final result is a 
phase lock with ~ 5 ° phase noise which stays locked for 
several hours. The master laser in the phase lock is typ- 
ically frequency locked from between 0.8 GHz and 
3 GHz to the side of the 6P3/2, F '=  5 level. 

The Raman beams are passed through an AOM that 
controls their intensity and then are coupled into an 
optical fiber to ensure that they are well-overlapped. 
After the fiber the beam is further spatially filtered to 
remove aberrations caused by the high numerical aper- 
ture optics. There is 15 mW total power after the filter- 
ing, and the beams are expanded to 2.3 cm Gaussian 
diameter. They are passed through the vacuum chamber 
and then retroreflected. These beams can drive the stim- 
ulated Raman transition with a Rabi frequency of 
~4  kHz. 

Each of the counterpropagating Raman beams con- 
tains both frequencies, so the atom can in principle be 

excited by several combinations of beams. The velocity 
along the beam is made large enough so that only one of 
the two velocity-selective pairs is in resonance at any 
time. The direction of koff is determined by the choice of 
which velocity-selective pair is in resonance. The Dopp- 
ler-free pairs and standing wave pairs are never in res- 
onance. The Doppler-free transitions can also be sup- 
pressed using the appropriate polarization combinations 
for the Raman beams, but we have found these polariza- 
tion tricks to be insufficient for avoiding unwanted tran- 
sitions near zero velocity, due to residual polarization 
imperfection. The standing wave Raman transition, 
which depends on only one of the Raman beams, cannot 
be avoided using clever polarizations. 

Crossed linear polarizations have at times been used 
in our measurements, with the retroreflected polariza- 
tions unchanged. Because there is no waveplate before 
the retroreflection, the polarizations of the two possible 
effective traveling waves are more reliably identical, so 
that some systematic errors are easier to diagnose. How- 
ever, this polarization produces its own extra error be- 
cause it creates optical standing waves, which will be 
discussed in the systematic errors section. We typically 
use opposite circular polarization for the two counter- 
propagating Raman beams, and avoid optical standing 
wave effects. 

3.4 Phase noise and vibration isolation 

Freely falling atoms in an atomic fountain provide an 
extremely good inertial reference. Their motion can be 
perturbed by inhomogeneous fields, but these perturba- 
tions are typically very small. For instance, a Cs atom in 
an mF = 0 level that propagates for 0.5 s in a 100 mG bias 
field with a uniform gradient of 10 mG/cm will have its 
velocity changed as a result by 400 nm/s. It will be dis- 
placed from a perfect ballistic trajectory by only 100 nm. 
Vibrations of the field sources will in general have am- 
plitudes less than 100 ~tm, even if the sources are mount- 
ed to a floating optical table, as are our Helmholtz coils. 
Assuming a field curvature of 2 mG/cm 2, the largest 
fluctuations in the atomic trajectories will be less than 
2 nm for even the highest atomic fountains. 

In contrast, the Raman light does not in general 
provide a very spatially stable wavefront. Any phase 
noise on the Raman beam difference frequency causes the 
effective wavefront to move. Since the phase of atomic 
interference fringes depends on the phase of the light at 
the point at which the atom interacts with the light, 
motion of the effective wavefront translates into noise on 
the interference fringes. If the phase noise approaches ~, 
which is to say that the effective wavefront of the light 
moves by half an effective wavelength (which for coun- 
terpropagating beams is 2~/(kl + kz)) during the interac- 
tion time, the atomic interference fringes will be com- 
pletely washed out. Of course, the momentum view can 
also be taken, where if the effective frequency (col- co2) 
of the light fluctuates by an interference fringe width, the 
interference cannot be seen. Sources of noise include 
phase noise on the reference frequency, noise in the phase 
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lock, and any Doppler shifts that are different for the two 
beams after they are combined for the phase lock. 

The reference noise is negligible because our syn- 
thesizers are weakly locked to either a LORAN C signal 
or a stable crystal oscillator. As long as the experiment 
is triggered by the power line frequency, the phase dif- 
ference between two fixed points in time is repeatable, 
leaving residual phase noise below 2 °. The phase-lock 
noise, which is less than 5 °, is largest at frequencies above 
a few hundred kHz [52]. Since this characteristic time is 
significantly shorter than typical pulse times, the noise is 
appreciably washed out during the atom's finite interac- 
tion time with the light. 

Noise from the vibrations of mirrors can be a serious 
problem. The Doppler shifts on the two beams due to 
mirrors which they have in common are not identical, but 
the difference is small, reduced by a factor of (kl -k2)/ 
(k  1 + k 2 )  , which is 1.3 x 10 -5 for Cs. In our experiment, 
the retroreflection mirror is the only mirror after the 
phase lock which is not common to the two Raman 
beams, so it is the only point in the apparatus which has 
stringent constraints on its inertial stability. 

The first stage of vibration isolation is that the laser 
tables and the vacuum chamber are all rigidly mounted 
together and floated on a total of 9 Newport XLB pneu- 
matic isolation legs. This removes most of the mechanical 
noise above 10 Hz. The residual vibrations are domi- 
nated by a table resonance at ~ 3 Hz. The second stage 
of vibration isolation is an inertial platform that consists 
of a cart suspended on a precision air rail, oriented in the 
direction of the Raman beams. The cart is weakly 
trapped in a potential well created by permanent mag- 
nets. The resonance frequency for low amplitudes is 
greater than 5 s by an undetermined amount. With the 
air rail, there is no appreciable phase noise on the atomic 
interference signal with 25 ms separating a n/2 pulse pair. 

The difference between the double atomic inter- 
ferometer and the 3-pulse interferometer of Kasevich and 
Chu with regard to mirror vibrations is significant. In the 
3-pulse interferometer, the first n/2 pulse and the first half 
of the n pulse set up state-labeled fringes in velocity space 
and the last half of the n pulse and the last n/2 pulse 'read 
out' these fringes. A uniform mirror velocity shifts both 
fringe patterns together, so the interference is unchanged. 
In the double atomic interferometer, the second pair of 
pulses propagates oppositely from the first pair, so the 
fringes shift in opposite directions due to the same mirror 
motion. Therefore, a uniform mirror velocity will change 
the phase relationship between the two sets of velocity 
fringes, thus changing the phase of the fringes as a func- 
tion of the frequency of the final n/2 pair. So in the 
3-pulse interferometer only a change in the mirror veloc- 
ity during the time between the two n/2 pulses will cause 
phase noise on the interference fringes, while in the 4- 
pulse interferometer there is noise due to changes in the 
mirror velocity which occur on the time scale it takes to 
measure an entire interference fringe. 

3.5 The double interferometer pulses 

The atoms reach their apogee slightly above the center 
of the Raman beams, 10 cm and 145 ms from the launch 
point. 50 ms is available for interferometer pulses, which 
corresponds to a fountain height of 3 ram, measured 
from the location of the atoms at the first or last inter- 
ferometer pulse. This is smaller than the spatial spread 
of the atoms we detect, which is ~ 6 mm diameter. Out- 
side of this range it takes more than 10% longer to drive 
a n/2 pulse, and the Rabi frequency starts to decrease 
rapidly. To avoid unwanted frequency sidelobes on our 
n/2 pulses each pulse is given a Blackman shape, 

~ 2 ( t )  = ~ F 2 e f f { O . 5  C O S  [ 7 ~ ( 2  t/T-- 1 ) 1  

+ 0.8 cos [2n (2t/z- 1) + 0.421} , 

for 0 < t < z [53]. The pulse shaping is accomplished using 
an arbitrary function generator to drive the Raman 
beam's AOM. 

The frequencies used in the pulse sequences when 
intermediate n pulses are added are illustrated in Fig. 16. 
Frequencies above and below the Doppler-free re- 
sonance frequency, o)Dv (defined as the hyperfine fre- 
quency separation when the ac Stark shifts of the two 
levels are equal) result in an effective wavevector in op- 
posite directions. The two number lines in Figs. 16a, b 
correspond to the frequency sequences for two mirror 
symmetric interferometer pairs. The pre-selected velocity 
group is in resonance at the frequencies marked by 1 in 
either sequence, so 1 is the frequency of the first n/2 pair. 
In order for the next absorbed photon to have the oppo- 
site recoil, the frequency is reflected through o)i~v and 
then shifted either up or down by hk2erf/m. The sequences 
that increase the absolute value of the atoms' velocity are 
marked above the number line, while those that bring the 
velocities closer to zero are marked below. The procedure 
of reflecting through O)DF and shifting to account for the 
additional recoil velocity can be repeated many times. 
Frequencies for a three n pulse interferometer are shown 

531 24 

in fl ~ f I I i 0 I ] I i I i ] i I i I } I I i I I l i i ~ 

. . . . .  i i . . . .  I i . . . . . . . . . . . . . .  
3 5  4 2  

4 2  3 5  

<b> I I 
I i I I I I II J I i I I i I I I I I I I I I ~ 

4 53 

Fig. 16a, b. The frequency sequences for adding n pulses. Each 
number  line gives the sequence for two interferometers whose center 
frequencies will be compared, one sequence marked above the line, 
the other below. In the rest frame of  the pre-selected atoms, the 
interferometers corresponding to the two number  lines are mirror 
symmetric to each other 
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Fig. 18. Timing in the fountain after the launch. Numbers indicate 
time measured in milliseconds. The timing is not to scale, rather it 
serves to illustrate the relative positions of the various pulses. The 
dashed lines in the Raman frequency correspond to the other inter- 
ferometer in the pair. See text for further details. As was discussed 
above in the subsection on Raman-beam polarization, it is basically 
undesirable for the Raman frequencies to be too close to (ODF. In 
conjunction with the vacuum chamber windows, which limit the 
angle of the molasses beams and hence the initial velocity of the 
atoms along the Raman beams, this is currently the dominant 
constraint on the number of g pulses that can be given. If the 
Raman beams were vertical, the atoms could be accelerated through 
zero velocity by gravity (it only takes 3 ms to accelerate from + 2 
to - 2  effective recoils) so this would not be a limitation 

in the figure, where 5 designates the frequencies for the 
final re/2 pairs. 

The state flip due to a ~z pulse is not perfect. The 
imperfection arises because the detected atoms sample a 
range of Raman beam intensities and because the pre- 
selected velocity width is a finite fraction of the Rabi 

pulse width. Figure 17 shows the number of atoms that 
stay in resonance with a sequence of g pulses as a func- 
tion of N, the number of rc pulses. The loss per pulse is 
~15%, so that the signal is halved when N~4. The 
difference between odd and even N results from differ- 
ences in the background, which are primarily due to the 
difference in how unwanted atoms are cleared, as is 
discussed next. 

Unwanted atoms can be cleared from the inter- 
ferometer because the two interfering paths of each inter- 
ferometer spend the time between the middle r~/2 pulses 
in the same state. Atoms are cleared before and after the 
last zc pulse (Fig. 18), so that any atom that does not 
make the appropriate transition at that ~ pulse is cleared. 
The F=  4 clearing is the same as the clearing which is part 
of the velocity pre-selection, where the atoms are cycled 
on the F = 4  to F ' =  5 transition. The F=  3 clearing is 
slightly more complicated, because the F = 3 to F ' =  2 
transition tends to pump the atoms into a dark state. This 
optical pumping effect is avoided by making the polariza- 
tion of the light linear and orthogonal to the bias magnet- 
ic field. The dark state then precesses in the bias magnetic 
field, so that within ~ 1 gs it can again absorb photons. 
An atom need only absorb a few hundred photons before 
it is pushed out of resonance and well clear of the probe 
region, so that a ~2 ms clearing pulse near saturation is 
enough to remove most of the atoms in the F=  3 state 
from the final signal. The F=  3 clearing beam is 452 MHz 
away from the repumping light, and is generated from a 
diode laser which is dedicated to that purpose (STC, 
nominally 50 mW) and locked to the F=  3 to F ' =  2 
transition. 

The signal to noise does not significantly suffer from 
the loss of signal illustrated by Fig. 17 because of the 
combination of clearing and signal normalization. 
Atoms that are lost to the rc pulse sequence are cleared, 
and the dominant noise is the residual amplitude noise 
after the normalization. Since this is not due to counting 
statistics it is largely independent of the total signal size. 

After the clearing there remains a small number of 
background atoms. The background is ~2% of the 
cleared F = 3  atoms and ~0.5% of the cleared F = 4  
atoms. In addition, there is a loss of atoms to the F =  4 
state during the F=  3 clearing which is typically three 
times larger than what is left in the F=  4 state after the 
F=  4 clearing. The result is that the background levels, 
particularly in the F=  4 state, are different depending on 
the order of the clearing pulses, which are necessarily 
different for the two interferometers in a pair. None of 
the background subtractions that can be made are com- 
pletely satisfactory, so that the vertical scale cannot be 
made a priori consistent for the two interference fringes 
in a pair. Also, the zero level or the unity level (depending 
on whether the off-resonant signal has all or none of the 
atoms in the F = 4 state) cannot be unambiguously deter- 
mined. This imperfect knowledge of the scale and offset 
along the ordinate has no effect at all on the determina- 
tion of the phase of the signal, and hence on the deter- 
mination of the recoil. 
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3.6 Fluorescent detection and normalization 

The atoms that remain at the end of  the interferometer 
sequence fall back down through the lower clearing 
beam, which now becomes the probe beam (Fig. 13). 
Fluorescence from the beam is collected onto a photo- 
multiplier tube with a 10 cm focal length, 10 cm diameter 
doublet lens located outside of the vacuum chamber, 

16 cm away from the fluorescence region. The PMT 
output is amplified and then smoothed with an RC filter 
with a 100 ~ts rolloff. It is then sent to an analog-to-digital 
card plugged into the computer, which digitizes it at 
25 kHz. The digital signal during the pulse time is inte- 
grated and an offset, which is measured after the pulse, 
is subtracted. 

The atomic cloud passes through the probe in 
10 ms, full width at half maximum. However, when the 

high intensity probe is pulsed on, it cycles atoms on the 
transition at near the maximum rate, ~ 1 cycle/100 ns. In 
a few hundred gs, all the atoms in the probe region 
receive enough momentum kicks to push them substanti- 
ally out of  resonance with the beam. After 2 ms the probe 
fluorescence has dropped by ~95%, and it continues to 
drop thereafter. The exact detuning of the probe beam 
is set by looking at this raw signal, the goal being to place 
the peak of the signal pulse right at its beginning. 

It is important that the fluorescence drops quickly 
because there is a second step in the detection. After 2 ms 
a mechanical shutter is opened that unblocks a repump- 
ing probe beam which is overlapped with the main probe 
beam. It requires significantly less (~0.01Isat) power. 
Atoms which entered the probe region in the F =  3 state 
require only a few photons to be dumped into the F =  4 
state, where they are detected just as before. The F =  3 
atoms detected in this way are from almost the same 
spatial volume as the originally F =  4 atoms, so the area 
under these two peaks can be combined to give a signal 
with which to normalize the F =  4 signal [54]. The typical 
fluctuations in the number of atoms launched is 15% 
peak to peak; normalization reduces the amplitude noise 
by a factor of  3 to 5. There are background atoms in each 
of the two signal peaks, and we will discuss the charac- 
terization of  this background below. 

3.7 Interferometer signals 

An illustrative four re/2 pulse double interferometer sig- 
nal is shown in Fig. 19 for 1 ms separating each pair of 
~/2 pulses. The microwave frequency of  the first re/2 pair 
is fixed, at - 50 kHz away from (LIDF in this instance, and 
the frequency of  the final re/2 pair is scanned. The data 
in Fig. 19 was taken with a ,~4 kHz ac Stark shift dif- 
ference between the two levels. Because the recoil mea- 
surement is a differential frequency measurement a uni- 
form frequency shift due to the ac Stark effect will not 
shift the measured recoil. However, when there is such 
a shift, the phase of the interference fringes can be dif- 
ferent for atoms in different parts of  the beam. Thus, to 
prevent the interference fringes from washing out due to 
light inhomogeneities, we cancel the ac Stark shifts rou- 
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Fig. 19. Four-pulse double interferometer data. There is 1 ms be- 
tween ~/2 pulses in a pair. In contrast to the multiple ~ pulse 
interferometer data, this data was taken with square Raman pulses. 
Also, the atoms had an initial velocity along the Raman beams of 
only ~ 3 effective recoils 

0.8 
~0 

4~ 
<~ 0.4 
.q- 

[r 0.2 
L 

0.0 I I i I I I ~ I I I I t 

150 200 450 500 

Frequency (kHz) 
Fig. 20. The recoil doublet with 8 • pulses. The pulse sequences are 
different for the two sets of fringes. The frequency of only the final 
pair of ~/2 pulses is scanned 

tinely by scanning the frequency of  a Doppler-free rc 
pulse, and making sure the peak of the interferometer 
signal occurs when the Raman frequency difference is 
equal to the known hyperfine splitting. This is an adjust- 
ment of  the relative intensities of the two Raman beams, 
which is accurate to ~ 1/20 of the Rabi width (<  1 kHz). 
There is actually no observable change in the fringe 
contrast even when the ac Stark shift difference fre- 
quency is half of  the overall ac Stark shift, so this routine 
adjustment is largely precautionary. 

Illustrative data with 0.5 ms between re/2 pulses and 
8 ~r pulses is shown in Fig. 20. The separation between re/2 
pulses was typically greater than 15 ms. The fringes on 
the left correspond to interferometer A in Fig. 3, while 
those on the right correspond to interferometer B. Before 
the final re/2 pulse pair the atoms are in either the F =  4 
state, N +  1 recoil kicks away from the pre-selection 
velocity for the case of interferometer A, or in F =  3, 
N +  1 recoil kicks in the other direction away from the 
pre-selection velocity for interferometer B. This explains 
the off-resonant baselines, zero for interferometer B and 
a maximum for interferometer A. The fringes at the Rabi 
peak do not extend to the baseline because half the 
amplitude of the atoms that survive the clearing are in 
two trajectories that do not interfere. 
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3.8 Data collection and fittin 9 

A typical scan of interference fringes is shown in Fig. 21. 
All such scans of interference fringes are taken in sets of 
four, consisting of two interferometer pairs which are 
mirror symmetric with respect to each other. A mirror 
symmetric interferometer results from a reversal of the 
direction of all of the interferometer light pulses. Points 
are taken from each of the four interferometers in suc- 
cession, so that the four fringe patterns build up together. 
In under four minutes 101 points in each of the inter- 
ferometers are collected. The frequency difference be- 
tween the scans in a pair is set at the recoil separation to 
within at least a tenth of a fringe. (The recoil separation 
was originally determined to within a fringe by varying 
the time between re/2 pulses.) The frequency span 
is typically set to encompass three to five interference 
fringes. Two such sets are taken in succession, one with 
an even and one with an adjacent odd number of  inter- 
mediate ~ pulses (N). Four of  these pairs are usually 
taken with all experimental parameters the same, so that 
our data comes in blocks which take ~ 1/2 h to collect. 
We will refer to the two mirror symmetric pairs as 'left' 
and 'right' interferometers, and 'odd' and 'even' will refer 
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Fig. 21. Typical interference fringe pat tern.  These da ta  were taken 
in one minute  using 10~r pulses and  18 ms between the ~/2 pulses 
in a pair 

to the parity of N. The difference of the measured recoils 
between all possible combinations of these points are 
routinely computed in order to monitor potential sys- 
tematic errors. 

The four one-minute scans in a set are least squares 
fit together using 13 free parameters for four sine waves. 
The free parameters are the amplitude, vertical offset and 
phase of each of the four, and a fringe frequency offset 
common to all of them. The actual fringe frequency is 
well known (it is just the inverse of the time between ~/2 
pulses), but during the course of a scan the fringes drift 
to some degree, typically by <0.5 Hz, probably due to 
drifts in the Raman beams' power and polarization. The 
linear part of this drift is taken up by the 13th parameter, 
which is added to the known fringe frequency with op- 
posite signs for the two interferometer pairs. Because we 
are only interested in the separation of  the fringes and 
because we simultaneously build up the fringes that are 
to be compared, slow drifts have little effect on the result. 
The addition of the extra fit parameter does, however, 
improve the measured standard deviations. The residuals 
(data minus fit) for the typical scan shown in Fig. 21 are 
plotted in Fig. 22. 

We are predominantly interested in the phase of the 
sine waves, which is labeled by a frequency near the 
middle of the scan. For convenience in our discussion we 
will refer to this as the 'central frequency', although it is 
not in general truly the frequency of the central fringe. 
The standard deviation of the center frequency is deter- 
mined by assuming a Gaussian distribution of points and 
finding the curvature of the chi-square with respect to the 
fit center frequency [55]. The difference between the fitted 
center frequencies of the two interferometers in  a pair is 
taken, adding or subtracting integral multiples of the 
fringe frequency if the difference is not within a half 
fringe of the recoil separation. 

We adjust all our data so that we can compare all our 
recoil measurements with the same frequency unit. The 
coarse part of this adjustment is to normalize the results 
for all N values to N =  3. A finer detuning correction is 
then made so that the data can be compared to that 
for Raman beams with an arbitrarily chosen detuning 
from the 6S1/2, F = 4  to 6P3/2, F ' = 5  resonance of 
-2 .186 GHz. 
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4 Determination of h/m and systematic errors in the recoil 
separation 

4.1 Overview of  the results 

If  we use the data we have taken with the parameters 
that yield the highest precision, 14 and 15~r pulses 
and 15 ms between ~/2 pulses, our measured recoil 
is 132244.457+ 14Hz, normalized for 3~ pu][ses with 
- 2.186 GHz excited state detuning. The precision in two 
hours is 1.1 x 10 .7 and the disagreement with the accept- 
ed value is at the 8.5 x 10 .7 level. Since we do not yet 
have all of the systematic errors under control, this is not 
an absolute measurement. We expect to have a more 
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reliable result after the Raman beams are made vertical, 
which, as we will describe, should allow us to better 
diagnose these errors. 

We have measured the recoil shift as a function of  
beam alignment, laser detuning, magnetic field, the rela- 
tive ac Stark shift of  the two levels, clearing beam inten- 
sity, time between zc/2 pulses, and number of  ~ pulses. In 
this section these results are presented along with calcula- 
tions of  how various imperfections are expected to affect 
the recoil measurement. At the current level of  precision, 
we have made theoretical estimates that show many of 
the possible systematics to be unimportant .  Other sys- 
tematics have been ruled out experimentally. We have 
not  yet placed upper limits on the errors from wavefront 
distortion and intensity gradients of  the Raman beams. 
Also, we still observe systematic shifts with the number 
of ~ pulses, and have not clearly ruled out dependence 
on the laser detuning. 

In our theoretical estimates we will give illustrative 
numbers where appropriate, and for this purpose we will 
define the following variables, and assign to them typical 
values that correspond approximately to those in the 
current experiment: for the time between ~z/2 pulses, 
T = 2 0 m s ;  for the number of  intermediate ~ pulses, 
N =  10; for the time between the middle two ~/2 pulses, 
T ' =  10 ms; and for the ~/2 pulse time, r = 50 gs. We will 
also discuss how the systematic errors are affected by 
changes in these parameters. Atomic Cs will be assumed 
throughout.  We usually have velocity-selective Raman 
transitions in mind, although our use of  koff typically 
makes the result for single photon transitions clear. We 
will consider both the cases of  vertical and horizontal 
laser beams when there is a significant difference; we find 
that vertical laser beams typically lead to smaller sys- 
tematic errors. 

There are two convenient reversals that we conduct on 
a routine basis as we take data. We change the direction 
of  all the pulses, which reflects both interferometers 
about  the initial path of the atoms, and we change the 
parity of  the number of  rc pulses we add. Both of  these 
reversals change which side of  the interferometers is 
occupied by which state during the time between the last 
two re/2 pulses, so we will associate the binary indicator 
'spatial parity'  with the combination of  these reversals. 
Thus we can group the four experimental points in a set 
into three types of  pairs that should behave characteris- 
tically with regard to various systematic errors. 

Two parameters that are routinely scanned, T and N, 
should have characteristic effects on many different er- 
rors because they change the separations within and be- 
tween interferometers, and it is typically spatial inho- 
mogeneity that can lead to errors. Figure 23 shows the 
dependence on the time within a ~/2 pulse pair. There is 
no significant change as a function of  T and there does 
not appear to be any significant variation with any of  the 
standard reversals. Figure 24 shows the recoil as a func- 
tion of  N. There is a clearly discernible dependence on 
iV, although there is no significant variation with any of  
the standard reversals. We mostly took data for 14 and 
15re pulses because it gives the highest resolution for a 
given measurement time. This dependence on N must be 
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eliminated before an absolute accuracy can be assigned 
for our recoil measurement. 

4.2 Magnetic fields 

Magnetic field gradients can change the measured recoil 
due to the quadratic Zeeman shift, which is different for 
the two states used in this experiment, the F =  3, mr = 0 
and the F =  4, me = 0. When the shifts are small compared 
to the hyperfine structure, the relative shift of  the two 
m = 0  levels is A UQz~2(#sB)2/AW, where A W is the 
hyperfine splitting, #j  is the Bohr magneton and we have 
ignored the relatively small nuclear moment  [37]. For  
Cs, A VQz[Hz] ~ ~ B2[(mG) 21, where e = 4.27 x 10 - 4. With 
magnetic shielding one can make the bias field in an 
atomic fountain apparatus very small (less than 1 mG), 
[56] but in the present apparatus the bias field is 100 mG 
along kerr. So the approximate size of  the phase shift in 
each interferometer due to the magnetic field is 
~0B = (4.27 Hz) 27c(2T+ T') .  As with all phase shifts we 
consider, a constant field has no effect on the recoil 
measurement. 

Magnetic field gradients can affect the recoil measure- 
ment in two somewhat different ways. First, a linear field 
gradient shifts the mean field value in each of  the two 
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interferometers differently, which results directly in an 
error in the recoil measurement, A ~0B. Second, there can 
be a different average field along the two paths within 
each interferometer, &0B. For a linear field gradient &0B 
is the same for the two interferometers, so only higher 
order spatial derivatives affect the recoil measurement in 
this manner. Magnetic fields experienced by the atom 
between the last two =/2 pulses, when the two paths of 
each interferometer are in different internal states, can 
shift the recoil measurement by the first mechanism. In 
contrast, shifts in the interference fringes due to field 
gradients experienced by the atom between the middle 
=/2 pulses can not be due to the first mechanism, because 
both paths within an interferometer occupy the same 
state during that time. Therefore we are predominantly 
concerned with the magnetic fields seen by the atom 
between the last two =/2 pulses, when the recoil measure- 
ment is sensitive to linear gradients. 

4.2.1 Linear gradients. In between the final two 2~/2 pul- 
ses, the average separation between the two interfero- 
meters is az(N, T, T') ~, 2(N+ 1) (hkeff/m) (T/2+ T'/2), 
where the T' term comes from the assumption that many 
r~ pulses are equally spaced throughout the intermediate 
time, For our typical parameters, A z= 2.3 ram. If the 
bias field is much larger than the gradients, the difference 
between the phase shifts in the two interferometers is 

Zf{0B ~ 2c~Bo dz Az(N, T, T')22zT. (28) 

For a linear field gradient of 10 mG/cm, A ~0B ~ 30 mrad, 
which corresponds to a fractional error in the recoil 
measurement of 5 x 10 .7" Since the phase shift is in fact 
due to a change in wavepacket momentum, we are using 
the approximation that these energies are small com- 
pared to the atom's kinetic energy. 

From (28) we see that the absolute frequency shift in 
the recoil measurement grows approximately linearly 
with N, but so does the frequency separation of the 
interferometers, so the fractional error is independent of 
N. If we increase T, the phase difference due to the field 
gradient grows approximately quadratically. However, 
each interference fringe is a linearly decreasing fraction 
of the total recoil, so the sensitivity to magnetic fields 
only grows linearly with T. 

We can change the sign of the error by changing which 
state is on which side of the interferometer during the 
time between the last two ~/2 pulses (the spatial parity 
reversal). Figure 25a shows the two pairs of inter- 
ferometers (1-3 and 2-4) in the reference frame of the 
initial atomic velocity. Changing the direction of all the 
pulses transforms one pair into the other. The resonance 
frequencies at the final 2r/2 pulse pair are shown in 
Fig. 25b for a situation where the resonances are shifted 
due to the magnetic field by a greater amount in region 
A than B. The same field gradient tends to push frequen- 
cies 1 and 3 together and pull frequencies 2 and 4 apart. 
An additional re pulse will shift all the frequencies by 
hkZrr/m and flip all the resonances through the origin, so 
the same field gradient will then pull 1 and 3 apart and 
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Fig. 25a, b. Flipped interferometer pairs, a Spatial picture of the two 
interfering pairs (1 and 3, and 2 and 4), drawn in the reference frame 
of the interfering atoms, b The final frequencies at which each of 
the interferometers interferes. The length of  the arrows indicates the 
size of the shift of the resonance due to the magnetic field, which 
is taken to be larger in spatial region A than B 
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push 2 and 4 together. If the 1-3 and 2-4 pairs were 
exactly spatially overlapped, spatial parity reversals 
would perfectly cancel all magnetic field gradients. 

The measured dependence on B is shown in Fig. 26. 
The open and closed circles are spatial parity opposites. 
The salient feature of the curve is that at high B field the 
spatial parity pairs split from the mean just as expected. 
The linear magnetic field gradient empirically determined 
in this way is 10 mG/cm. 

4.2.2 Quadratic gradients. To the extent that the overlap 
between the 1-3 and 2-4 pairs is imperfect, errors due to 
spatial second derivatives of the field can be studied by 
varying the size of the bias magnetic field. To estimate the 
magnitude of these errors, we must follow the phase 
evolution more carefully than is necessary for linear 
gradients. If kerr and Bo are along the z-axis, then we can 
Taylor expand t B [ 2 around small displacements in the xi 
directions, 
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Bo~ Bz O Bk O Bk BoO2 Bz 
[BI 2 ~ B 2 + 2xl a x ~  + XiXj ~X~ ~X---j -I- NiX j 8Xi~Xj. 

(29) 

The magnetic-field-dependent phase shift in a single in- 
terferometer is 

~o, = 2 ~  S IB(r)lZdt" (30) 
mean 
path 

The calculation of  this shift is straightforward but can be 
messy. For  the case where z is vertical and the transverse 
velocity spread is negligible, the answer is relatively simp- 
ly expressed. For  simplicity we ignore the initial separa- 
tion at the third re/2 pulse. The phase shift difference 
between the two interferometers is then 

&  vr2+ T 

x [((?Bz~ 2 B°(O2Bz]~ 

L\T;/  + JJ' 
(31) 

where Av = 2(N+ l)hk~fr/m and v0 is the mean initial 
velocity of  the atoms in the interferometer. There exists 
an initial velocity for any given T and A v for which the 
second derivative terms cancel; this occurs when 
Vo = 3 g T / 8 - A v / 2 .  The optimal condition is when the 
atoms pass their apogee between the last two z~/2 pulses. 
When koff is horizontal so that the atoms are obliged to 
have non-zero initial horizontal velocity, and to a lesser 
extent when there are transverse velocity spreads, there 
is a proliferation of  cross derivative terms in (29). The 
additional terms depend on A v and T like the T 3 term 
in (31). Because g _k koff there is no T ~ term for these extra 
terms and hence no optimal launch velocity in that case. 
To give a rough idea of  the size of  these shifts, we can 
calculate the size of  the T 3 term of  (31) for our approxi- 
mate conditions of  Vo = Av = 14 cm/s. If  we take a plau- 
sible value for the field curvature of  82B/Oz 2 ~0.2  mG/  
cm 2, then the resulting phase shift is 0.5 mrad, which rep- 
resents a fractional error in the recoil measurement of  
1.1 x 10 -8. 

4.2.3 Magnetic fields and line pulling. Line pulling from 
other Zeeman levels can be from either the Doppler- 
sensitive features or the Doppler-free features. The latter 
are more worrisome because they can contribute ~/2-g/2 
fringes with the same periodicity as our interferometer 
fringes. The effect of  these fringes, however, is washed 
out to some degree by field inhomogeneities, which cause 
different atoms in the ensemble to be Zeeman shifted by 
different amounts. We find only ~ 10% contrast in these 
Zeeman shifted fringes with T=  15 ms. To avoid line 
pulling from these atoms we make sure that the frequen- 
cies of all the ~/2 pairs are more than a Rabi width 
displaced from all Doppler-free resonances. The Black- 
man pulse shapes avoid potential trouble from 
sidebands, which could make it difficult to avoid the 
resonances. 
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Fig. 27. Effect of clearing on the background. The upper curve is a 
ten ~r pulse interference signal with clearing. As usual, the frequency 
of the final two ~/2 pulses is scanned. The lower curve is the same 
scan with no clearing of the F = 3 state. The broad feature at 
340 kHz is the Doppler-sensitive excitation of the background 
atoms which remain in the F = 3 state after the optical pumping into 
the F= 4 state. The difference in scales between the two curves 
results from normalization with and without the background. There 
is aliasing of the fringes 

Another  straightforward way in which we suppress 
line pulling from other Zeeman levels is by removing 
potentially offending atoms. The blasting and clearing 
beams allow very few atoms in the wrong magnetic sub- 
levels to be present at the final signal. Nonetheless, some 
do remain as part  of  the uncleared background. The 
wrong Zeeman level atoms are present because they are 
either left in the F = 3 state after the optical pumping 
before the pre-selection or they are dumped into the 
wrong sublevel by spontaneous emission during the 
Raman pulses. Either way, they have a high probability 
of  being cleared before and after the last rc pulse. Figure 
27 illustrates the effectiveness of  this final clearing in 
removing most of  the unwanted background. We have 
taken recoil measurements with and without the F =  3 
clearing, so that the background changes as it does be- 
tween Fig. 27a and b, and there was no observable shift 
in the recoil measurement. 

Still, some atoms do remain, which amount  to less 
than 20% of  the signal atoms after 10 7c pulses, but as 
large as 40 % after 15 ~ pulses. If  they cause line pulling 
it will be worse for higher N, where the signal to back- 
ground ratio is lower, although since the locations of  the 
final frequencies relative to the Zeeman resonances 
change as a function of  N, the dependence is likely to be 
erratic. Our measurements have repeatable behavior as 
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a function of N, and our measurements do not drift over 
time even when the magnetic field does, so we have 
further reason to rule out line pulling from Zeeman 
shifted levels as a significant source of error. 

4.3 Wavefront irregularities 

The recoil measurement is commensurate to a measure- 
ment of the number of effective photon wavelengths 
between the endpoints of the two interferometers in the 
double interferometer. If the wavefronts of the exciting 
light are not planar, the number of wavelengths between 
two points may not properly reflect the distance along the 
beams separating the two interferometers. Systematic 
errors can thereby be introduced into the measured re- 
coil. 

The wavefronts of a perfect Gaussian beam are 
spherical, with the radius of curvature going to infinity 
at the beam focus. Imperfections in the beams due to 
imperfectly smooth optics or point scatterers will also 
lead to wavefronts that are approximately spherical in 
the far field. In the near field, however, a single scatterer 
gives rise to more complicated wavefronts. The near field 
interference of the fields due to many coherent scatterers, 
laser speckle, is still more complicated and can typically 
only be described using statistical methods. Because of 
its fine spatial structures and their associated large cur- 
vatures, speckle is likely to be the type of wavefront 
curvature most damaging to the recoil measurement. 
However, to convey the underlying physics of wavefront 
curvature systematic effects, we will primarily consider 
spherical wavefronts, applying the result to both imper- 
fectly collimated beams and scattered light in the far 
field. We will assume that the local field can be described 
by a single k-vector, so we can ignore the non-linear 
processes that occur when there are multiple k-vectors at 
a single point in space. Furthermore, we will start by 
assuming k is due to only one laser beam exciting a single 
photon transition, and then we will generalize this to the 
case of Raman transitions with two counterpropagating 
beams. 

4.3.1 Uniform wavefront curvature. The dominant spatial 
separation between the two interferometers is accrued 
between the last two z~/2 pulses, so we will concentrate 
on these two pulses now. The local radius of curvature 
of the beam that the atom sees during the third ~z/2 pulse 
is R, which we take to be roughly the same for each path 
of each interferometer. By the time of the fourth re/2 
pulse the atom will have moved a distance A x perpen- 
dicular to k, and the paths of the two interferometers will 
be separated along the beam by a distance A z (near 3 mm 
for the typical conditions we have been using). We see 
from Fig. 28 that at the last ~/2 pulse each path will be 
shifted by 6z with respect to where they would be if the 
wavefronts were planar. For R>>Ax and Az, the phase 
shift difference between the two interferometers due to 
the curvature is given by, 

(Ax)ZAz 
A(0wfc = (~z2-  ~Zl)k - -  k. (32) 
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Fig. 28. Illustration of the relative phase change due to wavefront 
curvature at the final vertex of two interferometers. Thefilled circle 
is the effective source for some curvature. Point A corresponds to 
the vertex at the third ~/2 pulse for two interferometers, which are 
assumed to be approximately overlapped at that point. The dif- 
ference in the distance of B and C relative to the constant phase 
fronts will lead to an error in the measured recoil 
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For a Gaussian beam with a large waist, the Rayleigh 
range (Zo=rCw2/) 0 can be quite large on a laboratory 
scale. For instance, for 852 nm light and a 1.3 cm beam 
radius, z o is 625 m. Because the Rayleigh range sets the 
scale over which the phase front is mostly planar, R can 
be made larger than Zo. If the atoms traverse 2ram 
perpendicular to the laser beam, the separation between 
the interferometers is 3 ram, and R is 100 m, then A ~0wr c 
is 10-5 rad, which corresponds to a fractional error in the 
recoil measurement of 2 × 10- lo. For a Raman transition 
it is the relative phase of the two laser fields that is 
important to the interference, so we must find a ~z for 
each beam. In our experimental case, where the beams 
copropagate and are retroreflected, the error is just 
double what one would expect for a single photon tran- 
sition. 

Now suppose that near the center of the laser beam 
a large distance ds away from the interaction region there 
is a circular diffusive scatterer of radius a << Wo. Since we 
are taking the far field limit we can apply Babinet's 
principle, and consider the additional spherically curved 
wavefront due to the removal of light by the scatterer. 
The scattered light in the far field varies like an Airy 
pattern. It has an integrated power of ~z~cdlo, where I0 
is the central intensity of the beam. Its central disk has 
an a r e a  of~(ds,~/a) 2, so its average intensity in this region 
is Io(a2/ds2) 2 . The amplitude of the scattered field is thus 
aZ/ds 2 of the main beams. The radius of curvature of the 
scattered light in the far field is approximately ds. An 
atom in the central Airy disk will see a phase front that 
has an amplitude weighted contribution from this higher 
curvature beam. Applying (32), we find the contribution 
from the scatterer to the phase shift difference between 
the two interferometers, 

a2(Ax)ZAz 
- k.  ( 33 )  
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For ds=0 .4m and a = 1 0 g m ,  A~0scat= 2 x l 0 - 4 r a d ,  
which is a fractional error of 5 x 10-9. This phase shift 
increases quadratically with the scatterer size, and there 
is obviously a significant advantage to being far from all 
scatterers. 

In a measurement with a single pair of horizontal 
Raman beams the distance traversed transverse to the 
beams, A x, grows approximately quadratically with T 
due to gravitational acceleration. Therefore, if we assume 
that the curvature of each wavefront is constant, (32) 
implies that A ~0wf~ increases like T ~. The number of cycles 
in a recoil separation increases linearly with T, so the 
relative error in the recoil measurement increases like T 3 . 
When the number of rc pulses, N, is increased, A z in- 
creases linearly. The sensitivity to the recoil also increases 
linearly, so the relative error should be basically indepen- 
dent of N. 

If vertical Raman beams are used then the transverse 
travel is only caused by atoms' transverse velocities, so 
A x is linear in T and the relative error increases as T. In 
the vertical configuration there is a further experimental 
handle on this systematic error, because the initial trans- 
verse velocity spread can be limited and varied. The error 
from uniform wavefront curvature should decrease lin- 
early with transverse velocity spread. With horizontal 
Raman beams, A x cannot be independently limited in 
this way. 

To understand the behavior of this systematic error 
with changes in spatial parity, consider the wavefronts 
shown in Fig. 28, which correspond to those for a single 
beam. At the final re/2 pulse the two interferometers are 
separated by fewer wavelengths than they would be if the 
wavefronts were parallel. Therefore, the measured recoil 
separation will be smaller than the true value. This is a 
statement about the distance between the wavefronts; it 
is independent of the direction of beam propagation. So 
if the beam were exactly reversed in such a way that the 
wavefronts were unchanged, the measured recoil would 
be unchanged. Thus the error due to wavefront curvature 
is invariant under spatial parity reversal. The geometric 
argument also implies that curvature will always lead to 
smaller measured recoils. That the recoil is always 
smaller can also be understood by the obvious fact that 
the dot product of the k-vector at the third ~/2 pulse with 
the k-vector at the fourth ~/2 pulse is maximized when 
they are parallel. 

The argument carries over completely for the case 
of Raman transitions, where ~0eff = rpl-~02 = 
(0) 1 - - 0 ) 2 ) t - - ( k l - k 2 )  "x, and keff= k l - k 2  replaces k in 
the above argument. When the spatial parity is changed, 
the wavefronts will reverse more cleanly when counter- 
propagating Raman beams excite a transition than they 
will for a single beam and a single photon transition. 
Wavefront irregularities will in general be different for 
beams propagating in different directions, but if the two 
frequency components are well overlapped and retrore- 
flected, the wavefront shapes will be the same for beams 
that travel in the same direction, as long as their fre- 
quency difference is small enough that there are no chro- 
matic effects. 

4.3.2 Laser speckle. Chromatic effects may arise due to 
the interference of many scatterers. The location of in- 
terference features will vary on the scale of the wave- 
length associated with the difference frequency. Many 
wavelengths away from the scatterers, the details of 
speckle patterns for the two frequencies could look very 
different, so spatial parity reversals may result in a 
change in the measured recoil. Furthermore, the error in 
the recoil measurement due to a wavefront with a com- 
plicated shape can have either sign. 

Since we began this experiment we have changed the 
Raman beam optics several times to improve the beam 
quality. With each change the measured recoil has 
changed, generally moving closer to the accepted value. 
With worse quality beams there are systematic dependen- 
cies on the reversals. The deviation from the accepted 
value has had both signs. 

We have yet to make detailed calculations of speckle 
effects, but we can make some general observations. A 
speckle pattern is characterized by spatial correlation 
functions of the intensity and phase of the light. At 
separations greater than the scale of the second order 
correlation functions, the relative phase shifts of two 
points will start to have a random relation to each other. 
So the phase shift may not continue to increase with 
separation like those due to spherical wavefronts. If the 
magnitude of the average phase shift levels off for large 
separations, the fractional error in the measurement will 
become independent of T and will decrease linearly 
with N. 

It may be possible to independently characterize the 
speckle patterns in the beam under conditions nearly 
identical to the recoil measurement, also using interfering 
atoms. The technique would rely on a fundamental dif- 
ference between the double atomic interferometer and 
the 3-pulse interferometer of Kasevich and Chu. In the 
recoil measurement the spatial separation between the 
interferometers is essential; the greater the separation, 
the more precise the measurement. In the 3-pulse inter- 
ferometer, the fringes are sensitive to the phase difference 
between the pulses at different times, but the difference 
in space is not important. For instance, the measurement 
of 9 is just as precise near the top of a fountain trajectory 
as far from it. One could perform the 9 measurement at 
different times during the fountain trajectory and com- 
pare the results. Unfortunately, it is not possible to can- 
cel out the shifts completely, because the phases of the 
first and the last pulses add. It should, however, be 
possible to decrease the phase shift by half by making the 
middle pulse spatially coincide with one of the 7c/2 pulses. 

The data's general insensitivity to the sign of the 
detuning suggests (as we shall see in the next section) that 
if beam distortion causes a shift, it is through wavefront 
curvature. It is clearly essential to be able to control the 
transverse velocity spread and location of the signal 
atoms, as can be done with vertical Raman beams. 

4.3.3 Beam misalignment. The dominant effect of beam 
alignment on the recoil shift is explicit in the definition 
of koff. If there is a small angle 0 between the two Raman 
beams, then the recoil shift changes proportional to the 
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square of k~rf. 

kozf = k2+ 2k t k2  cos O+ k z ,.~ (k~ + kz) 2 -  klk2 02 

~ (kx+k2)2 ( 1 -  ~ ) ,  (34) 

where the last step assumes k z - k z  << k2. 
Data taken at different angles is shown in Fig. 29, 

where the data has not been corrected to take into ac- 
count the deviation from retroreflection. Therefore, to 
the extent that the data fits the quadratic, it yields a 
consistent value for the recoil. The fit shown has only one 
free parameter, the offset, which determines the size of 
the photon recoil. Each data point for misaligned beams 
has an uncertainty in its alignment that leads to a 

2.0 x 10-7 uncertainty in the recoil. However, when the 
beam is retroreflected to within 1 × 10 -4 radians, which 
is our standard condition and fairly straightforward to 
achieve using the available 3.5 m lever arm, the uncer- 
tainty due to the beam alignment is 2.5 x 10 - 9 .  

Uniform wavefront curvature also mimics beam mis- 
alignment for atoms that are not along the central axis 
of the Raman beams. Figure 30 illustrates this effect, 
where for a radius of curvature R and a displacement d, 
the angle between the k-vectors of the two beams is 
0 = 2d/R.  Using (34) and taking d=  3 mm and R = 100 m, 
the fractional error in the recoil due to this effect is 10 -9. 

4.4 ac Stark  shifts 

Fringes in an atomic interferometer can be shifted by ac 
Stark shifts in two distinct ways. A shift can result from 
the average ac Stark shift term, {0ao ~ = (f2,AC+1?;~C)~/2, 
which multiplies every path at every vertex. For our 
experimental parameters the average ac Stark shift is 
about twice the Rabi frequency, which makes {0ac s ap- 
proximately equal to n for a n/2 pulse. A shift can also 
come from {0off, which affects those paths which do not 
make a transition at a pulse. Near resonance 

~AC__ 

¢off ~ , (35) 
2f2efr 

which we find using (20) and (17). The difference between 
the ac Stark shifts of the two levels, 5 nc = f2~ c -  f2,ac, 
appears in this term, so it is zero if we are tuned to the 
Stark shifted resonance. Hence, for spatially uniform 
fields, it is possible to make {0off = 0, but {0,os cannot be 
made zero. When there are intensity gradients in the 
fields, both of these terms can contribute to systematic 
errors. 

Spatial variations in the ac Stark shift occur on the 
same scales as the curvatures discussed in the previous 
section. In addition, subwavelength variations will arise 
if there are any standing wave components in the light. 
Other sources of light, like the clearing beams, can also 
affect the measurement through these terms. 

4.4.1 Large-scale Raman-beam intensity gradients. A di- 
verging laser beam is the easiest slowly varying perturba- 
tion to characterize. For simplicity, we will start by con- 
sidering the intensity variation due to a single beam. The 
effect of the Raman beams themselves can be understood 
as a generalization of this case. The two Raman beams 
start with the same spatial mode, but one of them in- 
teracts with the atoms only after being retroreflected, so 
the spatial intensity gradients for the two beams have 
opposite signs. Therefore, when we apply these results to 
the Raman beam pairs, they will be too optimistic for ~0of f 
and too pessimistic for ¢,os. 

Using ray optics, for a beam of radius Wo which has 
a half angular divergence 0, the normalized spatial de- 
rivatives of the beam area are 

dA 2 tan O(wo + z tan 0) 20 
- ~ - - ,  (36) 

Adz w 2 w o 

d 2 A 2 tan 20 2 0 2 

A d z  2 - Wo ~ ~ w ~  " ( 3 7 )  

As can be seen from Fig. 12, the difference in ~0off is 
manifested at all the n/2 pulses but the first. Because this 
phase shift only accrues when a path does not make a 
transition, none of the n pulses contribute. Like Cwrc, the 
large spatial separation of the two interferometers at the 
fourth n/2 pulse contributes most of the error. The separa- 
tion of the interferometers at the fourth n/2 pulse is 
A z ~ 3 mm. For 1.3 cm radius Raman beams that diverge 
with an angle of 0.1 mrad, the interferometers see a relative 



242 D.S. Weiss et al. 

intensity change of 5x10  -5 [using (36)]. Therefore, 
A(0off ~ 1.2 x 10-4rad,  and the associated fractional error 
is 2.5 x 10 -9. This is about an order of magnitude larger 
than (0wf c for comparable beams and these parameters. The 
functional form of the error is, however, different from that 
for ~0,,fc; both A ~9of f and the total interferometer phase are 
linearly proportional to N and T, which makes the fractional 
error from this effect independent of N and T. The systemat- 
ic error A fPof f associated with uniform intensity gradients 
approaches zero near the waists of diffraction-limited 
Gaussian beams. Therefore, as with A ~0wfo, the major con- 
cern is the steeper gradients associated with laser speckle. 

For ~0 .... the difference is only manifested at the ~r pulses 
and at the third ~/2 pulse, because at the first and last ~/2 
pulses, the vertices are at the same spatial point for the two 
paths in an interferometer, and at the second re/2 pulse the 
difference between the paths is the same for the two inter- 
ferometers. The separation within an interferometer, 6z, is 
hkefrT/m, and the separation between two corresponding 
paths in the two interferometers, A z, increases with each 
pulse to ~ ( N +  1)hkefrT'/m at the third ~r/2 pulse. The 
sensitivity to the recoil is independent of T', but as T ' ~  0, 
so that A z ~ 0 at the third re/2 pulse, the systematic errors 
in the recoil measurement due to ~0,c ~ will also approach 
zero. The critical difference between A (0off and A(c~qh~ ) er- 
rors, and what makes the former much more severe, is that 
it is sensitive to differences in intensity between two inter- 
ferometers, while the latter is sensitive to the difference be- 
tween the two interferometers of the intensity difference be- 
tween two paths. Typically, the spatial separation between 
the two paths in each interferometer during the time be- 
tween the middle ~/2 pulses is 140 ~tm, and the spatial 
separation of the two interferometers at the third z~/2 pulse 
is 840 ~tm. Using (36) and (37) and taking 0 = 0.1 mrad and 
N=10,  we find A(6(o~J ~ 4 x l 0 - 1 ° r a d ,  which corre- 
sponds to a fractional error some six orders of magnitude 
below A ~0orf due to the same imperfect beam. 

To first order, all ac Stark-related phase shifts are in- 
dependent of the magnitude of the detuning A if the Raman 
beam intensity is fixed, because although the ac Stark shift 
decreases with higher A, the Rabi pulse time must be in- 
creased. However, in our experiment both Raman beams 
shift both levels, so the ratio 0 = ~eff/£2Ac of the Rabi fre- 
quency to the ac Stark shift is A-dependent. The ratio of 
intensities of the two Raman beams is empirically adjusted 
at each detuning so that the Stark shifts of the two levels are 
equal. To satisfy this condition, 

I1 2A 
- -  = 1 + - -  ( 3 8 )  

12 ( H - A ) '  

where H is the hyperfine frequency splitting, the sub- 
scripts of  the intensities conform to Fig. 6 and the detun- 
ing is taken to be positive. Thus, 

. 
- - ( 3 9 )  
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Fig. 31. Recoil measurement as a function of detuning from the 
center of mass of the excited state. The dotted line is derived from 
the accepted values of fundamental constants 

in the limit where A <<H. Therefore, the fPoff and (#aos terms 
increase with A in this limit. 

To date, measurements have been taken using cork- 
screw polarization at only a few different detunings. As 
can be seen in Fig. 31, there is weak evidence for a 
dependence on the sign of  the detuning, so further study 
is clearly needed. 

Errors from ~0off change sign under spatial parity rever- 
sals because A (0off is proportional  to the gradients of  the 
ac Stark shifts. When the directions of  all of  the pulses 
are reversed, then the resulting interferometer is mirror 
symmetric to the original interferometer, except that the 
spatial gradients of  the Stark shifts change sign. Conse- 
quently, A (0of f must change sign as well. 

Because the errors from (0aos are insensitive to the 
atom's internal state, they have a spatial structure similar 
to the q~wfo error. If  two points in space appear to have 
more cycles between them because of  the difference in 
(p .... this fact will not change if the interferometers are 
flipped, or if the internal states are flipped by an extra zc 
pulse. 

The fact that all the ~0off and (0acs terms change sign with 
the detuning offers some promise for keeping track of  
these systematic errors. Unfortunately,  the reversal may 
be imperfect for the complicated intensity gradients 
caused by speckle, because the absolute frequency 
change associated with a sign change in the detuning may 
cause the speckle pattern to change. 

4.4.2 Standing waves. If  there are standing wave com- 
ponents in the Raman fields, there can be a considerably 
more complicated and potentially larger systematic error 
than those due to more gradual gradients. When the two 
Raman beams are oppositely linearly polarized and ret- 
roreflected, then Doppler-sensitive, Doppler-free, and 
standing wave Raman transitions can all be excited. The 
last two are only resonant when the atoms have velocities 
along the beam axis of  0 and 4- hk, respectively, so they 
will be suppressed if the velocities are large enough. If  the 
Rabi pulses are shaped to minimize sidebands, the in- 
dividual unwanted processes can be essentially complete- 
ly avoided. However, there is not a complete separability 
among these processes; beams that do not cause tran- 
sitions can affect transitions that do occur [57]. This kind 
of  interplay can lead to a physically interesting phase 
shift which can appear as a systematic error in the recoil 
measurement. 
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Fig. 32a, b. Systematic error due to optical standing waves. The 
upper two curves are the ac Stark shifts of the two levels caused by 
different standing waves, a When the standing waves are in phase, 
the transition frequency, which is proportional to the difference of 
the energies of the two levels, is position insensitive, b For  two 
standing waves n out of phase, the transition frequency varies with 
position 

Even though the atom is highly delocalized, we are 
still in a regime where its de Broglie wavelength is much 
shorter than the optical wavelength, so we can determine 
the appropriate weighting function for calculating the 
expectation value of q)orf by working in the semi-classical 
limit. For simplicity, we will assume that a semi-classical 
path that does not make a transition never leaves its 
initial state, even though these paths do have some am- 
plitude in the other state during the light pulse (Fig. 7). 
The actual phase shift should thus be slightly smaller 
than the value we calculate. If  we follow any initial 
position component of the atom across the standing 
wave, its velocity varies like that of a classical particle, 

v(z) = ~/v2 2~'QACm (2 COS 2 kl ,2 z) ~ v 0 -  - -  
/~ (2 Ac 

D'//.90 

The field for this polarization configuration consists 
of two standing waves with spatial periodicities of 21/2 
and 22/2, where 2k -- 2zr/kk. The two standing waves come 
in and out of phase with a periodicity of /],rf/2 = 27C/ 
(k l -k2 ) ,  which corresponds to 1.55 cm if the two fre- 
quencies drive a Raman transition between the ground 
state hyperfine levels in Cs. In the regions where the two 
standing waves are in phase, the two atomic levels shift 
together, as shown in Fig. 32a, so the Raman transition 
resonance frequency is independent of position. In con- 
trast, in the regions where the two standing waves are out 
of phase (Fig, 32b), there is a position dependence to the 
Raman transition frequency, which varies from + 2 f2 Ac 
to - 2f2 Ac with the periodicity of the standing waves. As 
is illustrated in Fig. 7, after a single Rabi pulse in the limit 
where the atomic velocity is much greater than ftkeff/m 
the atom is delocalized over many wavelengths. 
Therefore, periodic changes in the resonance frequency 
on the scale of the optical wavelength are averaged by 
each atom. This is important because ~AC>>I/T, and 
were the average of the resonance frequencies taken over 
an ensemble of atoms, rather than by each atom, the 
interference fringes would be washed out. 

I f  the amplitude of the atom's wavefunction were 
constant over a standing wave period, the sinusoidal 
variation in the resonance frequency would average to 
zero. But the wavefunction is not constant. Just as a 
classical particle rolling over a series of hills spends less 
time near the valleys than near the peaks, where it moves 
relatively slowly, the atomic wavefunction has a higher 
amplitude in the standing wave peaks. The amplitude 
weighted spatial average of the resonance frequency will 
therefore be changed by the standing waves. The size of 
this change depends on how much the atom's amplitude 
varies across the standing wave, and these fluctuations 
are larger when the atom moves more slowly. Because the 
absolute velocities in the two interferometers are dif- 
ferent, this can cause an error in the recoil measurement. 

Near resonance, the transition frequency only acts 
through the ~0off terms, which only accrue to paths that 
do not make a transition during a pulse. From Fig. 12, 
we see that this error in the recoil measurement can enter 
at all of the re/2 pulses except for the first. 

x (1 + cos keffz cos k,fz:F sin keffZ sin krfZ), (40) 

where we are in the limit that the energy perturbation is 
much less than the atom's initial kinetic energy, and 
minus refers to kl ,  plus to k2. We have assumed that the 
intensities of  the two beams have been adjusted to give 
the same ac Stark shift to both levels, f2 Ac, and we have 
ignored for now the fact that each state is shifted by both 
beams. The probability of finding any given initial posi- 
tion component at a given position along the standing 
wave is inversely proportional to its velocity at that 
position, so the normalized weighting function in this 
limit is 

~AC 
g(z) = 1+ - ( l + c O S k e f f Z  

mv~ 
cos k,rz T sin kerrZ sin krrz ). 

(41) 

The value of 5 Ac as a function of position is 

sAC(z) = 2 S~ Ac sin kefrZ sin krfz, 

so the expectation value of ¢orf is 

~0sw = (~0orr)sw = g(z) 2f2er--dz 

(42) 

~ (~,-~AC)2 

= 4- 4mv~f2err ( 1 5  - cos  2k~z), (43) 

where the integration has been done over a region where 
the change in z is much less than 2rf, and the plus sign 
corresponds to (0sw~, the minus sign to (Pswb. As expected, 
when the optical standing waves are ~z out of phase, 
which corresponds to krfz = zc/2, the magnitude of ~0sw is 
maximized. 

Unlike all the other phase shifts we consider in this 
paper, ~0sw would cause an error in the recoil even if it had 
the same magnitude everywhere it accrues. Recall from 
(27) that when ~0orf terms result from a simple detuning 
from resonance the fringes of each interferometer shift, 
but by the same amount  for the two interferometers. 
When the error is caused by standing waves, the signs of 



244 D.S. Weiss et al. 

the Colt's that apply in Fig. 12 depend on the atom's 
internal state, so there is no longer a cancellation between 
the two interferometers. In fact, the nature of the fringe 
shift in each interferometer is different from all the others 
considered in this paper, because a change in exit path 
changes the sign of the ~Psw term added at the fourth re/2 
pulse. The accumulated phase shift therefore depends on 
the state in which the atom exits the interferometer, 
which has the result that the interference fringes are dis- 
torted from a sinusoid. Inspection of Fig. 12 in this light 
shows that the absolute value of the relative shift of  the 
nodes and antinodes in a given interferometer is 21¢swl 
leading to an average phase shift, 5(Psw, of half that 
magnitude. The error in the recoil measurement, which 
is invariant under any of our standard reversals, is 

A(dCsw) = 2(¢SW~--OSWb). (44) 

The assumption that the magnitude of  ~0sw is constant for 
all the vertices is not generally a good one, so we will now 
consider corrections to the above derivations. We will 
start by ignoring the spatial separations of the atomic 
paths and concentrating on the more important effect of 
unequal final velocities. For  an interferometer pair where 
the first recoil is opposite the initial velocity of the atoms 
selected at the start of the interferometer sequence, vi, the 
velocities of  the two interferometers at the final two 
pulses are v~ + NV~c and/)i-- (N+ 1)v .... where Vro~ = hkorr/ 
m. If  all the paths are near where the standing waves are 
out of phase then, using (43), the error in the recoil shift 
will be 

h (nAC) 2 
A(d¢orr)sw - - -  

mf2~ff 

[ 1 1 1 ) 
× vi_(N~_l)v,¢jz + v.21 + (vi+Nv,~)i ' 

(45) 

It is independent of N for NOte c<</Ji, but for large N the 
first term, which corresponds to the slower inter- 
ferometer, dominates and leads to a strong N-depen- 
dence. When the first recoil in the interferometer 
sequence is along the initial velocity the N and N +  1 
terms are reversed, so there will be a change in the size 
of this error with the reversal from left to right inter- 
ferometers. 

I f  in (45) we use values from our experiment for which 
we observe a large error due to this effect, which in- 
clude f2 Ac ~ 2rex 10kHz, vi =20v .... N=15 ,  and 
f2off = 2n x 4 kHz, we calculate A(&0sw) = 0.10 rad. The 
observed phase shift is 0.14rad. The theoretical and 
experimental values for the comparable mirror flipped 
interferometer pair are 0.07 tad and 0.04 rad, respec- 
tively. 

The observed dependence on N is shown in Fig. 33. 
The experimental data matches quite well the prediction 
of (45) that the error should rise rapidly when the atom's 
velocity along the standing waves approaches zero. 

To incorporate the spatial separation of the different 
interferometer paths it is necessary to include the factor 
of (1 - cos 2k,rz)/2 from (43) for each of the six ~0or f terms 
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which contributes to (45). When the slower inter- 
ferometer dominates (45) and the separation between its 
two paths is much less than 2,f, this spatial separation 
only slightly reduces the peak error. For the largest 
separations in this experiment this correction is less than 
3 %. The absence of a significant dependence on spatial 
separation implies that the phase shift is independent of  
T, as in (45). Therefore as T is increased d(Sf&w) repre- 
sents a linearly smaller fractional error. The observed 
change in the error as Tis varied, shown in Fig. 34, agrees 
well with the expected linear dependence. 

The fact that both Raman beams shift both levels 
complicates the above description. The two ground state 
levels will be ac Stark-shifted differently by the other 
frequency component, which changes the phase relation- 
ship between the transition frequency and the standing 
waves. Some algebraic manipulation shows that the mag- 
nitude of dsw is different for paths in the two atomic 
levels. Specifically, 

h(A 2 + AB) 
(1 - cos 2krrz), 

(Pswa = -  8mvoZf2erf 

h(BZ + AB) 
(1 - cos 2krrz), (46) 

(0SWb = -- -8 mv~ ~C~ef f 
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where A = f21a- f2za, B = ~e~2b- ~ lb ,  and g2kj are the ac 
Stark shift of the j = a or b ground state by the k = 1 or 
2 Raman beam. Using the relations in (46) in (44) illus- 
trates that in the limit where differences in v0 and z 
among the paths are insignificant, this complication does 
not change the error. In the more experimentally impor- 
tant case where it is appropriate to use (45) in the limit 
where only the slower interferometer contributes a sig- 
nificant ~0sw, the errors depend on which internal state 
the slow interferometer's paths are in when they reach the 
final re/2 pair. This state changes under spatial parity 
reversal. Straightforward calculations reveal a difference 
in A(&0sw) under spatial parity reversal proportional to 
2(AZ-B2), which for A<<H (where H is the hyperfine 
splitting) is equal to 16((2AC)ZA/H. For A=H/8, this 
would make the absolute size of the change with spatial 
parity close to 50% of the size of the error. We observed 
closer to 10 %. Perhaps this overestimation could be cor- 
rected by a more exact treatment of the phase shifts 
during the time of the pulses. 

The error depends on (~ac)z, so it is independent of 
the sign of the detuning from the excited state resonance 
(43). The sign independence comes about because the 
effect depends upon the product of the spatially depen- 
dent energy shift and the spatially dependent transition 
frequency, both of  which change sign with detuning. The 
observed dependence on A is shown in Fig. 35. The data 
are independent of the sign of A, and there is the expected 
decrease in the error as A increases. 

The most unique feature of the standing wave error 
is its periodicity with a spatial frequency of 2krf. We set 
the parameters to where the systematic error was rela- 
tively high (T= 5.7 ms, N =  15, A = - 1.0 GHz) and took 
points as we scanned the location of the retroreflection 
mirror. The data is shown in Fig. 36. It behaved as 
expected, with the error oscillating with a period of half 
the rfwavelength. In addition to the large changes in the 
mean values of the recoil, there is also a statistically 
significant difference between right and left inter- 
ferometers, of the size expected due to the associated 
change in the velocity of the slower interferometer. 

We are able to nearly completely avoid this systematic 
error by using opposite circular polarizations in the two 
Raman beams. In this case the net polarization is linear 
everywhere and the direction of the polarization spirals 
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Fig. 35. Data vs detuning with optical standing waves. The detuning 
is measured with respect to the center of mass of the excited state. 
The open circles are for left interferometers, N =  14 and 15, and the 
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error is at least an order of magnitude reduced. The dotted line is 
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along the propagation axis. An atom in the me = 0 state 
has the same ac Stark shift everywhere along this 'cork- 
screw' polarized beam. The residual amplitude of the 
standing wave component of the light is then less than 
10 % of the non-standing wave component. A curve com- 
parable to Fig. 36 for this new polarization is shown in 
Fig. 37. Evidently, the large error is gone. For most of 
our data collection the mirror was placed at the location 
corresponding to the minimum in Fig. 36. 

There is another potential systematic error due to 
standing waves, If the two paths in an interferometer see 
a significantly different phase relationship between the 
two standing waves, the depths of the potential wells they 
pass when they are in a superposition of the two ground 
states will be different. They will be delayed by different 
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amounts, and the resulting deviation from overlap of the 
recombined paths is equivalent to an interference fringe 
shift. This mechanism is less important than the one 
described above because it requires there to be a signifi- 
cant difference in the depth of the potential wells not just 
between the two interferometers but  between the two 
paths within an interferometer. Unlike the dominant  
standing wave mechanism, this shift should accrue at 
every z~ pulse and at the third re/2 pulse. 

4.4.3 The clearing beams. The clearing beams can cause 
errors because of the Stark shifts they induce on the 
atoms they do not clear. Unwanted vacuum window 
reflections from these beams do not intersect the atoms 
so they can cause no standing wave shifts. The clearing 
beams are pulsed on just before the third 1r/2 pulse, so 
any systematic errors they cause will be proportional to 
the separations between and within the interferometers 
at that time, which vary approximately linearly with N 
and T, respectively. The intrinsic resolution improves 
with higher N and T, so any error due to the clearing 
beams should be insensitive to changes in N and T. Like 
other ac Stark shift effects, any systematic error they 
cause should not reverse sign with spatial parity rever- 
sals. Furthermore, because the F =  3 clearing light is to 
the blue of the F =  4 resonances, if it has uniform cur- 
vature it will lead to a systematically lower recoil mea- 
surement. Similarly, uniform curvature of the F =  4 clear- 
ing beam will lead to a systematically higher recoil mea- 
surement. Although shifts due to speckle on the clearing 
beams will not change under spatial parity reversal, they 
will not have the same predictable signs as do shifts due 
to uniform curvature, nor necessarily the same predict- 
able dependences. 

We have checked in several ways to see if the clearing 
beams introduce a systematic error. The most reliable 
method is to increase the intensity of the clearing beams, 
which should linearly increase the size of any shift. In 
doing this we have more dynamic range on the F = 4  
clearing, and we find no change at the 1.5 x 10 -7  level 
even with an order of magnitude increase in intensity above 
normal operating conditions. For the F =  3 clearing we 
can only increase the intensity by a factor of  four, and 
this tends to increase feedback to the laser diode which 
adds noise to the clearing. Still, we do not see a change 
in the signal at the 2.5 x 10 -7 level. We have also com- 
pletely blocked the F = 3 clearing, which has only a mild 
effect on the noise but leaves a substantial background 
with a lot of frequency structure (Fig. 27). The measure- 
ment is unchanged within the 2 x 10 -7 level when there 
is no F =  3 clearing. 

4.4.4 Beam misalignment. When the beams are misalign- 
ed there will be an intensity gradient along kofr, as illus- 
trated in Fig. 38. Consider an atom located on the z-axis, 
where the mirror is the origin. Assume a Gaussian beam 
with radius w0. Then the intensity and the normalized 
spatial gradients of the intensity along the z-axis are 
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Fig. 38. Illustration of the axial variation in intensity due to beam 
misalignment. The relative intensity of the two beams, and hence 
~0off and the ac Stark shift, depends on the axial position along the 
beams 
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For 0 = 3 mrad, Wo = 1.3 cm, and z = 60 cm, the fractional 
difference in the intensity seen by two interfering paths 
that are separated by 140 gm at the time of the pulse is 
4.5 x 10 -6. If  this difference prevails for 10 7c pulses, then 
the accumulated phase difference due to the ac Stark shift 
is 3 x 10 -4 rad. The phase shift difference between two 
interferometers that have an average separation in the 
middle period of 420 ~tm is then 3 x 10 -9 of the total ac 
Stark shift, or 2 x 10-7 rad, which represents a fractional 
error in the recoil measurement of 5 x 10 -12. 

4.5 Line pulling 

In precision frequency measurement there is often the 
concern that the measured center of  one resonance will 
be shifted by nearby resonances or other sloping back- 
grounds. Since the center of a symmetric feature is pri- 
marily determined using the high slope sections on either 
side of the peak, a linearly sloping background will 
change the amplitude on either side differently, thus 
changing the apparent center. This problem is signifi- 
cantly reduced when the resonance being measured is not 
the center of a single peak but the phase of a sine wave, 
as in the case of our recoil measurement. For  a sine wave, 
the shift of the centers of the maxima will be opposite the 
shift of the centers of the minima. As long as an integral 
number of cycles are measured, a linear background will 
cause no systematic shift of the measured phase, al- 
though the quality of the fit to a sine wave may suffer. 

If  there are higher order terms in the background 
there is the possibility that they will cause a shift, but this 
will be leveraged down because of  the periodicity of the 
function. Figure 39 illustrates how this comes about. 
Each successive extrema is shifted one way or the other 
by a linearly increasing amount, and the fitted phase is 
assumed to be the average of the shift of all the extrema. 
If, as in Fig. 39b the frequency is scanned over an integral 
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Fig. 39a, b. Line pulling due to a quadratically varying background 
with positive curvature. The relative size and direction of the shifts 
of the fitted phase of each peak due to a quadratic background is 
indicated by the arrows, a If an integer number of cycles is fit with 
this phase there is a net shift in the fitted phase, b With this phase, 
because the first and last upper peaks are only fit with half weight, 
the net shift is zero 

number of  cycles starting at a minima or maxima (so that 
the shifts of  the first and last extrema are weighted by 
1/2), then the shift due to a second-order background 
exactly cancels. If, as in Fig. 39a, the scan is started at 
the point of  maximal slope then the shift is the average 
of the shifts over a single cycle. 

The Doppler-free and velocity-selective resonances of 
various magnetic sublevels are potentially problematic 
for this experiment, and their avoidance is discussed 
above. Here, we consider the contribution to the signal 
from the non-interfering paths which diverge from the 
interfering paths at the third 7t/2 pulse. The non-interfer- 
ing paths contain a total amplitude equal to the interfer- 
ing paths'  amplitude. Furthermore,  they come into re- 
sonance at the same frequency as the interference fringes, 
so they can only be removed from the final detection if 
there is very fine spatial resolution 4. Because there is no 
interference for these paths at the final re/2 pulse, their 
lineshape is simply that due to a single Rabi pulse, which 
depends on the shape of  the pulse, typically either square 
or Blackman [58]. 

F rom (16) we find that the transition probability P for 
a square ~z/2 pulse near the resonance peak is 

1 
P(a') = ~(1 -a25 '2 ) ,  (48) 

where 

5' = 5 ac - 5, a2 = (1 - =/4)/(2 f2~rr) 2. (49) 

Assuming perfect clearing before the final pair of =/2 
pulses, the wavefunction amplitude along all the possi- 

4 To isolate these paths the spatial extent of the useful atomic 
ensemble must be less than (hkrr/m)T, which is a condition 
that is not satisfied in our experiment by about two orders of 
magnitude. Performing this spatial resolution can likely be real- 
ized using some combination of lighter atoms or longer times 
between ~z/2 pulses. Additional intermediate ~ pulses do not im- 
prove the separation 
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Fig. 40. The wavefunction amplitude for an atom in an inter- 
ferometer during the final pair of ~z/2 pulses, written in terms of the 
transition probability P for the "~/2" pulses near resonance. The 
atom enters the interferometer in state [a) (solid lines) along one 
of two paths. We determine the amplitudes for an atom leaving 
the interferometer in state Ib) (dashed lines), either along the non- 
interfering paths on the left and right, or the interfering paths in 
the center 

ble atomic paths in the left interferometer is shown in 
Fig. 40. The total probability of  an atom ending up in 
state I b)  is 

1 
Pb(a') = P ( 1 - P ) +  ~ P ( 1 - P ) I i + e i 6 ' r l 2  

1 (1 - 022 0 '4) (2 + cos 5 'T) .  (50) 

We fit experimental fringes to a pure sinusoid, rather 
than to the more complicated feature described by (50). 
The fringes are measured as close as possible to the center 
fringe in order to minimize their non-sinusoidal charac- 
teristics. Since we do not perfectly locate tile center 
fringe, we estimate here the phase error that results from 
taking data of f to  the side. Since the least squares method 
used to fit the curves is most sensitive to the points of 
maximum slope, or inflection points, it pushes the inflec- 
tion points of the sinusoidal fitting function as close as 
possible to those of Pb. Let 5~ be locations of  inflection 
points of  cos 5' T with slope m ~ 0 ,  and let 5~ + A 5 ±  be 
the corresponding inflection points of Pb. Then the error 
caused by the fit will approximately equal the offsets 
Ag±. The inflection points of  Pb are given by the con- 
dition 

d2pb 6 ~ + 0 6 ~  
d5,2 = O. (51) 

Substituting (50) into (51) and expanding to lowest order 
around 5 ' - -5± gives the left interferometer phase shifts 

s 4 
5 ~  = TA0± ~ - T2 - ( 5 ± T ± 3 ) ,  (52) 
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where the first term is from the amplitude envelope of the 
fringes, and the second term is from the curvature of the 
background. The right interferometer has the same am- 
plitude envelope for the fringes, but opposite back- 
ground curvature. Consequently, the second term of (52) 
has reversed signs for the right interferometer. Then the 
difference between the shifts of corresponding points for 
the two interferometers is 

A(&I) ±) = 4-48a~c~2 /T 2. (53) 

Over an entire fringe, the fitting error is approximately 
the average of A (c~q~+) and A ( ~ _ ) ,  which only differ in 
magnitude because of the difference 1~+-6- I  = ~r/T. 
Using (49) and z = lr/4f2erf for a ~/2 pulse in (53) gives 
the net phase error over an integral number of fringes 
caused by the non-interfering paths, 

A~ni=I~2(1-~)2(6AC-(~(T) j (54) 

In the current experiment r /T ~ 0.0025, and we can 
locate the center fringe to at least within 500 Hz, which 
gives Aqs~ = 3 x 10 -9 rad. The fractional error in the 
recoil measurement is thus 6 x 10-14, which is far beyond 
our measurement precision. 

4.6 Inertial phase shifts 

One of the areas of great promise for atomic inter- 
ferometry is inertial sensing of external forces and fields. 
One might think that the potentially high sensitivity 
could be a problem for the recoil measurement, but the 
differential nature of the measurement makes these er- 
rors insignificant. By far the largest inertial shift in a 
light-pulse atom interferometer is the first-order Doppler 
shift of the light beams due to gravity, which changes 
linearly in time according to, 

A (koff • v) = kerr" gAt. (55) 

But since the two interferometers in a double atomic 
interferometer essentially only differ in their mean veloci- 
ties, the phase shift due to gravitational acceleration is 
the same for both of them. 

The second-order Doppler shift has the same sign and 
almost the same size for the two Raman beams, so it 
predominantly has the effect of changing the detuning 
from the excited state resonance. For atoms moving at 
2 m/s, which is about the fastest they get in a fountain, 
the second-order Doppler shift for a single beam is 
2.2x 10-17co, o r  8 x  1 0 - 3 H z  for Cs light. This is an 
insignificant change in the excited state detuning, so 
certainly the difference of this effect between the two 
interferometers is insignificant. The gravitational red- 
shift is also insignificant, causing a fringe frequency shift 
of (9Az/c2)co~f = 0.3 gHz between two interferometers 
separated by 30 cm. 

The calculation of the Sagnac effect for atoms launch- 
ed at an angle in an atomic fountain is not straightfor- 
ward. Because the trajectories are very curved, one can- 
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Fig. 41. Atomic fountain double interferometer in the lab frame. 
For simplicity, there are no z~ pulses, and the second and third ~/2 
pulses are nearly overlapped in time, so that the middle two vertices 
in the usual double interferometer diagram (Fig. 3) are condensed 
into one 

not make the simple analogy to the optical Sagnac effect, 
where the size of the effect is proportional to the area 
enclosed by the interferometer [45]. Figure 41 shows the 
approximate shape of our interferometers in the lab 
frame, as opposed to the falling frame in which we typi- 
cally consider them. For clarity there are no z~ pulses and 
the time between the middle two ~/2 pulses is made 
negligible. The paths in each interferometer cross each 
other, so the area of the interferometers in the lab frame 
is not even defined. However, we do not need to calculate 
the size of the Sagnac shift to show that it will not cause 
a systematic error in the recoil measurement. 

In the gravitationally accelerating frame the area 
swept out by the two interferometers is the same, which has 
been shown analytically [43] and is also easy to demon- 
strate with simple geometry. Furthermore, because this 
holds true regardless of T or T', the equality holds during 
any given time interval. Therefore, since this result is 
independent of a uniform change of the velocity, it must 
also be independent of a uniform acceleration. So the 
cancellation of the Sagnac effect holds in the laboratory 
frame in the presence of gravity. 

4.7 Atoms that miss photon kicks 

There is a scenario by which unwanted Doppler-sensitive 
atomic interference can be created, leading to inter- 
ference fringes which can pull the center fringes in the 
desired interferometers. The problem can come about in 
several similar ways. For pedagogical reasons we will 
start our explanation with the clearing beams blocked. 
At each real, imperfect z~ pulse some of the population 
is left behind, which is illustrated in Fig. 42, where we 
follow only one of the interferometers in the double 
interferometer. In the limit where ~¢'~eff << 26rec = hk2eff/ 
2 m, these lost atoms are never in resonance again, so the 
final re/2 pulse pair does not excite them, and they never 
interfere. When t2ofr _> 2c~ .... however, these atoms are 
not left behind completely. Paths that are missed by the 
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Fig. 42. Interference from atoms which miss n pulses. Atoms that 
interfere as in A'" may start with a velocity of 2hk/m away from the 
peak velocity. After these atoms miss two pulses they are indistin- 
guishable from the interferometer A atoms, except that they con- 
tribute to fringes with a different phase 

last n pulse, are to some extent resonant with the final n/2 
pulse pair, and they can form their own interference 
loops, as illustrated in Fig. 42. These paths, labeled A', 
form an interferometer akin to the 3-pulse interferometer 
of Kasevich and Chu [59], except that now the frequency 
of the final half of the n pulse (which is our third n/2 
pulse) is scanned along with the final n/2 pulse, so there 
are fringes as a function of the final frequency. The 
fringes corresponding to A and A' will be separated in 
frequency by 26elf and they will have a phase relation 
with respect to each other which will be periodic in lIT. 
When the fringes are out of phase, the measured center 
frequency will be shifted by A'. For 15% loss per n pulse 
and f2off >> 26reo the shift can be as large as 0.1 tad. 

If we turn on the clearing beams the paths in inter- 
ferometer A' will be pushed away by the last clearing 
pulse, and the phase shift just described will not appear. 
Similarly, the a~oms in what would be interferometer A" 
are pushed away by the next to last clearing pulse. How- 
ever, atoms which miss two earlier pulses in succession 
yet manage to keep up with the remainder of the n pulses, 
like those in interferometer A"', can still interfere at the 
final pulse. The most likely scenario is that an atom that 
is part of the background after the pre-selection and has 
a velocity near 2hkeff/m, will evolve according to the 
double atomic interferometer diagram for the first two 
n/2 pulses, albeit with unequal populations in the four 
arms. Then whatever amplitude is still left in that same 
state after the next two n pulses will be indistinguishable 
from the intended signal atoms, except for the phase of 
their fringes. The unwanted atoms must first be excited 
far from resonance and then twice miss being excited as 
the light comes closer to resonance. Nonetheless, when 
the on-resonant n pulse is imperfect, there will be some 
amplitude for this to occur. This problem clearly gets 
worse when there is no clearing (even if the two inter- 
ferometers are spatially resolved), and when either the 
Rabi frequency or the initial spread in atomic velocity is 
large. 

Varying T by a small amount will change this phase 
difference and hence any related SYstematic error. We see 
no evidence of significant changes of the measured recoil 
which are correlated with small changes in T. 

4.8 Instrumental systematic errors 

4.8.1 Phase-lock imperfections. If the diode phase lock 
does not settle after the final change in frequency, which 
is after the last n pulse and before the third n/2 pulse, a 
systematic error can result. A time lag or overshoot in the 
phase lock frequency compared to the reference will 
mean that the number of cycles of the beatnote between 
the third and fourth n/2 pulses will not equal the number 
of cycles of the reference. Since the final change in fre- 
quency is larger for the pulse sequences which lead to 
higher velocity than for those which lead to lower veloci- 
ties (Fig. 16), a lag or overshoot will be more pronounced 
for those interferometers, so that the wrong frequency 
difference will be measured. Since the lag or lead will be 
a fixed phase shift, as long as the phase lock has equili- 
brated by the last n/2 pulse, this mechanism would cause 
an error in the measurement which increases inversely 
with T. 

The error from this mechanism would not change sign 
with reversal of all the pulses (i.e., flipping the inter- 
ferometers), because the lock would presumably over- 
shoot or undershoot independently of the direction of the 
final change in frequency. An overshoot, for instance, 
would increase the average beatnote frequency separa- 
tion between the interferometers in a pair, so that the 
measured recoil separation would be smaller, regardless 
of whether the final change is to a higher or lower fre- 
quency. For the same reason, such an error wou~d always 
change the recoil measurement in the same direction. 

The empirical evidence exonerates this mechanism. It 
is straightforward to look at the error signal from the 
phase lock and check the transient features associated 
with the frequency changes. The first clear feature of this 
signal is that there is a frequency dependent phase offset 
in the lock of n/20 per MHz. This in itself is inconsequen- 
tial as long as the phase offset is the same at the final two 
n/2 pulses. However, the error signal takes at least two 
milliseconds to settle at the new level, depending on the 
gain settings in the phase lock. One millisecond after a 
500 kHz frequency switch there can be a phase shift of 
10 mrad, which can be worse still if the phase lock is 
poorly adjusted. By 3 ms, which is the typical time we 
wait after the last n pulse, no phase shift is observable 
even after 250 switches have been averaged, which places 
a limit on the shift from this source of 3 mrad. 

We can also delay the third n/2 pulse to allow more 
time for the phase lock to settle. There is no change in 
the recoil measurement as a function of this delay, which 
seems to rule this out as a source of error. 

4.8.2 Frequency -dependent amplitude changes. If the am- 
plitude in the slave Raman beam changes as a function 
of its frequency, then the relative ac Stark shifts of the 
two ground state hyperfine levels will be different for 
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different interferometer final frequencies. As a result the 
central fringe frequencies will be ac Stark shifted dif- 
ferently and the measured recoil will be wrong. The 
amplitude dependence on the frequency can come about 
in at least two different ways. First, the laser diode cur- 
rent affects both the frequency and amplitude of the 
output, so when the frequency is adjusted by changing 
the current, as the phase lock does in the mid-band, there 
is an amplitude change. Typically for these lasers 
(SDL-5410) it requires less than 1 gA to change the 
frequency by 1 MHz, so that the corresponding fraction- 
al change in power out is minuscule at < 10 -4. Second, 
when the frequency is changed by moving the PZT, this 
can change the alignment of that laser into the optical 
fiber. The size of this change is more difficult to estimate 
a priori. We have measured the amplitude change after 
the optical fiber when the frequencies are switched by 

500 kHz, which corresponds to the separation of two 
interferometers in a pair after 15 ~ pulses. It is less than 
0.25% of the total amplitude. 

A 0.25 % change in the amplitude of one of the Raman 
beams will to first order simply cause a shift of 0.25% in 
the ac Stark shift of the corresponding ground state 
hyperfine level. If the Stark shifts have been set to be 
approximately equal for the two levels, which they typi- 
cally are, then the frequency shift of the fringes will be 
0.25% of the absolute Stark shift, weighted by the frac- 
tional time that the Raman light is on during the Ramsey 
period. The actual effect of the light is somewhat more 
complicated, because both beams affect both levels, but 
this is less than a factor of two correction so we will 
ignore it. The measured value of the ac Stark shift with 
1.3 GHz detuning and at our typical intensities is 

10 kHz, which we determine by attenuating one Ram- 
an beam by a known amount and observing the shift of 
the resonant Raman frequency with a single ~z pulse. For 
T=  15 ms, a Rabi time of 50 gs, and a 0.25% amplitude 
dependence, the shift of the fringe will be 0.17 Hz, which 
corresponds to a 0.04 Hz shift in the recoil normalized to 
3 ~ pulses. This fractional error of 3 x 10 -7 is within our 
current precision. If the frequency dependence of the 
amplitude is linear, as shown in Fig. 43, then the error 
in the recoil will be the same under spatial parity reversals 
[2]. If this error is a problem or becomes a problem, it 
could be corrected by actively stabilizing the relative 
amplitudes of the two Raman beams after the optical 
fiber. 

Doppler 
1 3 free resonance 4 2 

Fig. 43. Illustration of the effect of a frequency-dependent Raman- 
beam amplitude on the sign of the resulting error in the recoil. The 
numbers label the center frequencies of the interferometers of two 
spatially flipped pairs, 1 and 3, and 2 and 4. Diagrams of these 
interferometers can be found in Fig. 25, although the spatial picture 
is unnecessary here. The Raman-beam amplitude changes linearly 
with frequency, which shifts the resonances linearly with frequency. 
This changes the separation within the two interferometer pairs by 
the same amount 

4.8.3 Detunin9 from the excited state. To scan the dif- 
ference frequency between the Raman beams, we adjust 
the frequency of only one of the Raman lasers. 
Therefore, in the rest frame of the atom, the detuning of 
the Raman beams from the excited state also changes, 
which raises the possibility that there will be a systematic 
error in the recoil measurement based on an ac Stark 
shift which depends on the difference frequency. For 
detunings much larger than or much smaller than the 
ground state hyperfine splitting, a change in detuning 
changes the ac Stark shift of the two levels in the same 
way. For the detuning in this experiment, however, each 
Raman beam affects both levels to some degree, so the 
two levels are affected differently when the detuning is 
changed. 

The difference in the derivatives with respect to A of 
the ac Stark shifts of the two hyperfine levels is 

d6~hc (11 - / 2 )  I1 /2 
(3Q ZJ 2 -]- - - .  ( 5 6 )  dA (H+  z~) 2 ( H -  A) 2 

Therefore, when the detuning is smaller than the hyper- 
fine splitting, the phase shift and hence the fractional 
error in the recoil measurement should decrease as the 
absolute value of A increases. Substituting (38) into (56) 
and keeping only terms to first order in A/H, 

d~ AC 
- -  ~ ~ 2f2AC/H, 
dA 

independent of A for A << H. 
At the final 7c/2 pulse pair, the difference between the 

ac Stark shifts of the levels is different for the two inter- 
ferometers, and is given by the expression 

Ac~AC = (N+ 1) hk~2r (2f2H~ c)  
m 

(57) 

With N = 10, £2 Ac= 10 kHz, and for a detuning much 
smaller than H, the resonance is shifted by 0.4 Hz. The 
interferometer phase error caused by Ac~ Ac enters through 
~0off, and can be approximated from (35) by 

Ac~ Ac 
A(0of f ~ (58)  

2 ;2~f f 

for a single re/2 pulse. Adding the errors for the final two 
re/2 pulses, with/2~ff = 4 kHz, gives a fractional error in 
the recoil measurement of 2 x 10 -9. This is beyond the 
current precision of our measurement. If it were to be- 
come a problem in the future, the systematic error could 
be easily calculated and corrected for. More reliably, the 
frequency to which the master laser in the phase lock is 
referenced could be adjusted to exactly compensate for 
the shift in the slave laser. 

A similar shift can occur if the diode lasers which 
generate the Raman beams have sidebands near the reso- 
nance. Occasionally multi-mode behavior is observed, 
but when the laser current is adjusted so that the phase 
lock has minimal noise, the total power outside of the 
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carrier is ~0.2%. Scaling from the numbers in the 
previous paragraph, only if this sideband were as close 
to one of the excited state resonances as 10 MHz would 
it cause as large a systematic shift as the carrier. It is easy 
to filter out all fequencies within a few hundred MHz of 
the resonance using a Cs cell. We periodically take data 
with a filter in place and find no change in our results. 

Shifting the Raman frequencies also changes the 
photon momentum, but the error this causes is on the 
order of a part in 10 9. It is straightforward to take this 
into account should it become necessary. 

4.9 Summary 

Table 2 summarizes the way in which the errors we have 
discussed vary with various parameters and reversals, for 
those errors which scale in a simple way. The high N limit 
is assumed, and the time between the middle ~/2 pulses, 
T', is assumed to be negligible. Because of their varied 

behavior, these errors should be distinguishable from 
each other. Errors due to speckle interference shifts ap- 
pear to be more important than those listed in the table, 
but they do not lend themselves to such simple charac- 
terization. 

Most of the entries in Table 2 have not been verified 
experimentally, largely because most are not significant 
at the level of our current precision. Those that have been 
empirically studied are denoted with an asterisk. 

4.10 Conversion to h/m e 

The constants necessary for the conversion of our mea- 
sured frequency to h/me are listed in Table 3. Our present 
accuracy in determining h/me is limited by the accuracy 
of our measurement, but our current precision is only 
about a factor of three above the next limiting factors, 
the wavelength of the Cs primary transition and mcs/me. 
The possible improvements to those measurements are 
therefore relevant to the future of this one. 

Table 2. The approximate dependence of the fractional error in the 
recoil measurement as a function of various parameters in the 
experiment. The high N limit is assumed. When the parameter  in 
the given column is changed, all timing and frequency parameters 
are assumed to be adjusted to maintain  on-resonant ~/2 pulses. For  
instance, when A is changed, the pulse time must  be adjusted 

accordingly. The asterisks denote dependences which have been 
empirically verified. The following abbreviations are used: 
ind. = the shift is independent of this parameter;  comp. = the depen- 
dence is complicated, so see text; 'flip' refers to reversal of the 
direction of all the pulses and 'sign' refers to whether the measured 
recoil increases or decreases for negative d 

Mechanism T N A A flip N sign 
parity parity 

Spherical wavefronts, T 3 ind. ind. even even even -- 
horizontal  beams 

Spherical wavefronts, T ind. ind. even even even - 
vertical beams 

Defocused Raman beams via (Poll ind. ind. comp. odd odd odd either 

Linear B field gradient* T ind. ind. even odd odd either 

Quadratic B field gradient comp. comp. ind. even even even either 
( ~ r  2) ( ~ J r )  

ind. N comp. odd even even q- 

ind. ind. ind. even even even -- 
T - l comp. comp. even even even + 

( ~ A  -~) 

T ~ N-~ A m even depends on the two 
c%c 

Defocused Raman beams via (0,c ~ 

Beam misalignment* 
Optical standing waves* 

Line pulling from non-interfering 
paths 

Table 3. Values of physical quantities 
relevant to this measurement. The uncer- 
tainty at tached directly to the measured 
value corresponds to the r ightmost  digits 
of the value 

Physical quanti ty  Measured value Units  Relative Ref. 
uncertain'Ly 

Speed of light, c 299792458 m/s Defined [32] 
Rydbergcons tan t ,  R 10973731.56830 +31 m -1 1 .8x l0 - : t~  [12] 
mp/m e 1836.152701 4-37 - 2 . 0 x 1 0  .8 [6] 
Pro ton  mass, m v 1.007276470:5 12 u 1.1 x 10 8 [32] 
Cs mass, mcs 132.905442 ± 4 u 3 .0x 10 -a  [13] 
Cs 6S1/2-6P3/2 ,  351722010.6 4.12 MHz 3.5x 10 -'~ [60] 

F =  4 to F '  = 5 frequency 
Fine-structure constant ,  137.0359979 1 3 2  - 2 .4x 10 8 [61] 

e -1  (quantum Hall effect) 
Fine-structure constant ,  137.0359914 ± 11 - 8.0 x 10-9 [4] 

~ (electron g -  2) 
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The square of the Cs wavelength enters the measure- 
ment, so it is currently the external factor that will most 
limit the determination of h/me from the Cs photon 
recoil. It also has the best chance for substantial improve- 
ment. Absolute optical frequency determination has been 
accomplished for other wavelengths with an accuracy 
of ,,~0.1 ppb. The previous measurement of the Cs 
wavelength was performed using a wavemeter [60], and 
such measurements may yield still higher accuracy [62]. 
An approach which may be more successful involves 
counting precisely determined mode spacings in a Fabry- 
Perot interferometer to measure the absolute frequency 
difference of the unknown beam and an optical reference 
[63]. Optical frequency differences can also be measured 
using chains of phase locked lasers [64]. A viable optical 
reference for this frequency is the quadrupled methane 
laser line at 848 nm [65]. 

The best prospect for improvement in knowledge of 
rap~me is improvement in the current best measurement 
technique, which compares the oscillation frequencies of 
a proton and an electron in the same Penning trap [6]. 
The authors are optimistic that they will be able to 
improve the current 20 ppb uncertainty by an order of 
magnitude [26]. At this level of precision rap/me is unlike- 
ly to be the limiting factor in comparing an him measure- 
ment to other determinations of the fine-structure con- 
stant. 

Mass ratios have been determined with accuracies 
better than 1 ppb, by comparing the oscillation frequen- 
cies of two ions trapped in succession in the same Pen- 
ning trap [66, 67]. A technique that allows the com- 
parison of particles of different masses has also recently 
been presented [68]. Adaptation of these or similar appa- 
ratuses to measuring the masses of alkali atoms would 
improve existing mass values by more than an order of 
magnitude. 

For zero detuning from the F =  4 to U = 5 resonance, 
the conversion from the recoil shift to h/mr is 

- -  m ( . O m e a s  

me ~ \ mp/ 2(N+ 1)(co1+co2) z 

3.50157939 x 10 - 9  m 2 
= v . . . . .  (59) 

(N+ 1) 

where co . . . .  = 2z~v ....  is the measured recoil value, ad- 
justed to zero detuning. Using the value of e from the 
( 9 -  2)e experiment and (1), the accepted value of h/mo is 
1.157676499 x 10-4 m2s -1. Our experimental value for 
h/me from (59) is 1.15767555:t: 12 x 10 -4 mZs -1, where 
the quoted error only includes statistical error, since no 
systematic error bars can be assigned until we quantify 
all of the systematic errors. This is smaller than the 
accepted value by a fraction of 8.5 x 10-7. Inverting (59), 
the accepted frequency, v .... that corresponds to v ..... is 
determined to be 33.061 5522 kHz for A = 0. For excited 
state detuning A = -2.186 GHz and N = 3, which are the 
conditions to which we adjust our data, the accepted value 
for the frequency we measure is 132.244565 4- l0 kHz. 

5 Future improvements and prospects 

5.1 Lighter atoms 

The recoil shift can be made much larger using lighter 
atoms than Cs. A change to Li, for instance, brings with 
it a 20-fold increase in the size of the recoil shift due to 
the lighter mass, with another factor of 1.5 increase due 
to the higher energy resonant photon. Na yields a 12-fold 
increase in the size of the single photon recoil shift, and 
a similar experiment using H would give a remarkable 
940-fold increase in the recoil shift. Since the Ramsey 
fringe spacing in the atomic interferometer depends only 
on the interaction time, T, which is determined by the 
height of the atomic fountain, a larger recoil separation 
between the two sets of fringes translates directly into 
better resolution. 

However, Cs has several advantages from a practical 
perspective. The minimum temperature due to polariza- 
tion gradient cooling corresponds to a few photon re- 
coils, so the small recoil has the advantage of providing 
large signals in the atomic fountain even after many 
hundreds of ms, without the need to provide extra cool- 
ing or collimation. Also, Cs has a very large excited state 
hyperfine separation relative to the lighter alkalis, which 
brings with it simpler optical pumping and fluorescent 
detection. For instance, it is not clear that one can effec- 
tively clear away atoms from the lower ground state 
hyperfine levels of the lighter alkalis without losing an 
unacceptable fraction to the upper hyperfine level. 

Lighter atoms do not yield relief from most potential 
systematic errors, which depend predominantly on the 
spatial separation ofinterferometer pairs. In fact, achiev- 
ing a large recoil using many small photons instead of 
few large ones is preferable for some systematic errors, 
because one need only worry about gradients on the scale 
of the separation of the interferometers and not on the 
scale of the separation within each interferometer. The 
spatial separation between interferometers in the current 
recoil measurement is already a few mm, and anticipated 
improvements using Cs should extend this to near 25 cm. 
There is quite a lot of room to study systematics on this 
scale before a change in atoms extends the experiment to 
a less tractable laboratory distance scale. While the ulti- 
mate future of the measurement may in fact lie with 
lighter atoms, it is also possible that Cs will take the 
measurement to its final accuracy. 

5.2 Vertical Raman beams 

Reconfiguring the Raman beams so that they propagate 
vertically, along the path of the atoms, will have several 
advantages. As we have discussed, systematic errors due 
to wavefront curvature and magnetic fields can be more 
easily studied and minimized using vertical beams. In 
addition, it is desirable to significantly decrease the size 
of the bias magnetic field, so that the size of errors based 
on the quadratic Zeeman shift will decrease at least 
linearly. To lower the bias field requires that it be more 
homogeneous, which can probably only be accomplished 
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with magnetic shielding and a solenoid, as is done in 
atomic clocks. It is clearly easier to surround a perfectly 
vertical launch with such a solenoid than it is to surround 
the 5 ° launch we now employ. The vertical launch also 
uses gravity to avoid the sticky problem of accelerating 
the atoms through zero velocity, and all the unwanted 
Raman processes that can occur as a result. 

A longer available interaction time will improve 
things in several ways, the most obvious being the in- 
crease in Ramsey time, which linearly increases the res- 
olution. In addition, there will be more time available for 
adding zc pulses, which also linearly increases the resolu- 
tion. Furthermore, it seems likely that the signal loss per 
z~ pulse can be reduced with vertical beams because it will 
be easier to restrict the transverse velocity spread. The 
signal atoms will remain where the Raman beams have 
the most uniform intensity, which is not the case when 
the atoms move transversely to the beams. 

Vertical Raman beams will bring with them some 
inconvenience. Gravitational acceleration must be ac- 
counted for between each pulse, but because the same 
adjustment will be done to both interferometers there 
should be no systematic error associated with this 
change. Vertical vibration isolation is also much more 
difficult. However, an active feedback system can be 
employed to achieve the desired stability [69]. 

5.3 Effective N-photon transitions 

The linear increase in resolution with increased N is 
critical to this experiment. If it were possible to increase 
the resolution with N 2, the improvement would be amaz- 
ing. A straightforward way to achieve an N 2 dependence 
in the interferometer resolution has been discussed else- 
where [70, 71]. Such an increase in resolution comes at 
the expense of much of the symmetry which minimizes 
potential systematic errors in the current interferometer 
configuration. Still, it seems likely that an N 2 sensitivity 
will at the very least aid this experiment in the study of 
systematic errors. 

Increasing resolution by increasing the order of the 
Raman transitions is not possible. For a four or more 
photon Raman transition, the off-resonant spontaneous 
emission rate becomes larger than the effective Rabi 
frequency, which will lead to an unacceptable loss of 
coherence in the interferometer. 

5.4 Other technical improvements 

Other technical improvements which are contemplated 
include increasing the available Raman beam power (by 
using a Ti-Sapphire laser), increasing the number of 
atoms that contribute to the signal (for instance, by 
collimation of the atoms in the fountain), and exciting 
both interferometers simultaneously. 

5.4.1 Increased laser power. The experiment can be im- 
proved if more power were available for the Raman 

beams. With more power, the Rabi width and hence the 
number of contributing atoms can be increased. The 
obvious choice is to use either two Ti-Sapphire lasers, or 
one Ti-Sapphire laser and a high frequency electro-optic 
modulator. Even with the latter, more modest approach, 
a factor of 10 or 20 more power can be expected. The 
improvement from this source may be limited by the 
potential systematic error discussed in subsection 4.7, 
where atoms that fail to make a transition at the next to 
last zr pulse are still in resonance at the final re/2 pair. 
More laser power would allow the Raman beam waists 
to be increased without losing signal or the advantages 
of a large r/T (re pulse time to Ramsey time ratio). Larger 
beams ensure greater uniformity across a given ensemble 
of atoms, so that the population transfer at arc pulse 
could be more efficient and more zc pulses could be 
applied. The Rayleigh range increases, but this is prob- 
ably an unnecessary improvement. Finally, more power 
allows one to access a larger range of detunings from the 
excited state, which may be advantageous for studying 
and perhaps avoiding systematic errors. 

5.4.2 Providing more signal atoms. With more slow 
atoms the velocity width of the pre-selected atoms could 
be reduced, improving the chances of all the pre-selected 
atoms following a long series of ~z pulses. More atoms 
would increase the flexibility in studying the effect of 
wavefront curvature, because it would allow more range 
in decreasing the transverse velocity width of the ob- 
served ensemble. Although the experiment is not now 
shot noise limited, it is not far from the limit. Especially 
when considerably more ~ pulses are applied, in the 
future more atoms may directly reduce the noise. To 
increase the number of atoms that contribute to the 
signal, we can either slow more of them, or use those that 
have been slowed more efficiently, by making them 
colder. 

The optimal slowing technique has not been resolved 
if one prefers to avoid large inhomogeneous magnetic 
fields. What is fairly clear, however, is that approximate- 
ly two more orders of magnitude of atomic flux can be 
obtained in a vapor cell by slowing the low velocity part 
of the Boltzman distribution directly into a MOT [72]. To 
date, this slowing technique has had the serious disad- 
vantage that there are many background atoms which 
reduce the sensitivity of the detection. A large back- 
ground unrelated to the fountain atoms would be par- 
ticularly bad for the recoil measurement, in which a 
substantial number of signal atoms will be lost during a 
long sequence of zc pulses. The vapor background can be 
beaten by launching the fountain atoms into a lower 
vapor pressure, differentially-pumped cell. 

The temperature of the fountain atoms in this experi- 
ment is near the limit obtainable by polarization gradient 
cooling. Cooling of Na atoms below a single photon 
recoil has recently been demonstrated in 1D, using a 
technique which can be applied to any alkali atom [53, 
73, 74]. One dimensional cooling to 1/10 of a photon 
recoil temperature has been demonstrated, which would 
increase the number of atoms near the velocity peak by 
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about a factor of 50, assuming the transverse heating is 
not substantial. Zeeman pumping after such exquisite 
cooling would be out of the question, so if the atoms are 
cooled in an equal distribution of sublevels the improve- 
ment in the number of useful mr = 0 atoms would be 
smaller by at least the factor of 3 to 4 improvement that 
Zeeman pumping currently yields. Cooling in the other 
two dimensions would further boost the signal by keep- 
ing more atoms near the Raman beam center. 

Perhaps a more practical way to improve the number 
of signal atoms is to conservatively trade off momentum 
spread for position spread. The atoms are initially con- 
fined in the trap to a region that is smaller than necessary 
for the experiment, so the atomic cloud could be allowed 
to expand during the launch in a hexapole magnetic field, 
which is a harmonic potential for the atoms [75]. When 
the atoms have reached the maximum amplitude in the 
harmonic well it would be abruptly shut off, leaving them 
collimated to the extent allowed by Liouville's theorem, 
AxIAp s >-- AxiApi [76]. A magnetic lens with a 3D quad- 
rupole symmetry has been previously demonstrated for 
slow Cs atoms in a fountain [77]. and should be fairly 
straightforward to implement. This modification could 
yield improvements of more than an order of magnitude 
in the atomic density at the detection time. 

5.4.3 Excitin 9 both interferometers at once. If it is pos- 
sible to separately image atoms from the two inter- 
ferometers in a pair, the pulse sequences for the two 
interferometers could be applied simultaneously. A bene- 
fit of this approach is that phase noise from mirror 
vibrations would completely cease to be a problem, as 
long as it is too small to damage the fringe contrast. 
(Mirror vibrations are not currently significant.) Any 
drifting uniform fields would also not contribute noise or 
systematic error. Furthermore, data collection would be 
twice as efficient. 

Among the disadvantages of this approach are that 
the ac Stark shifts and off-resonant scatter would be 
larger, but only by about a factor of two. Also, other 
multi-photon processes related to the extra light could 
occur, and it may be difficult to keep track of all of them. 
The most significant disadvantage is that the clearing 
beams could no longer be used. Part of the function of 
the clearing beams is to remove the amplitudes in the 
opposite interferometer, which would no longer be 
necessary. The remaining function is to remove atoms 
that are lost during the long n pulse sequence. For large 
N there will be many more of these than signal atoms. 
However, if T were sufficiently long as to allow these 
atoms to also be spatially resolved, having no clearing 
would cease to be a disadvantage. 

5.4.4 Other methods for coherent transfer. In our current 
experiment, approximately 0.85 of each atom was 
coherently transferred with each n pulse, and we anti- 
cipate that the efficiency of transfer will increase to over 
0.90 when we go to a vertical geometry and use higher 
powered lasers. Nevertheless, improved methods of 
coherently transferring populations or beamsplitters are 
always desirable. Also, for some interferometer applica- 

tions, large momentum changes associated with a single 
population transfer may be more desirable. 

There are two basic requirements for substitute rc and 
n/2 pulses in this photon recoil measurement. (i) The 
transitions must be between magnetic field insensitive 
states because the accumulated phase errors due to mag- 
netic field inhomogeneities must be less than the expected 
resolution of the experiment. In this experiment, a mag- 
netic field difference AB over the trajectory of the atoms 
would cause a shift of adjacent magnetic sublevels by 
(1.4 MHz/G)AB/4. Hence, our measured resolution of 
50 mHz demands that AB< 10 -7 G. (ii) The transfer 
must be between two well defined states. If there is a 
coherent mixture of final states, a precise measurement 
of the recoil requires that the fraction of each atom in the 
allowed final states must be known precisely. 

The magneto-optic beamsplitter [78] can impart a 
large momentum transfer to the atoms, but their scheme 
works with magnetic field sensitive states and also trans- 
fers populations into a superposition of states with dif- 
ferent momenta. 

One method of coherent transfer that may satisfy our 
requirements is based on population transfer via adiabat- 
ic following [79 82]. In this scheme, the transfer of popu- 
lation between ground states J1) and 13) through excited 
state 12) can be done adiabatically with time delayed 
pulses of light at col tuned to the p l )  ~ 12) transition and 
o92 tuned to the 13) ~ 12) transition, as shown in Fig. 
44a. For given intensities at col and 02, there is a super- 
position state that is "dark", i.e., not connected to the 
excited state [2). For example, for/1 = 0, the dark state 
is I1), and for 11 =/2, the dark state is (l 1 ) -  13))/]/2 if the 
matrix elements between the ground states and excited 
state are equal. An atom initially in r l )  can be transferred 
adiabatically to 12) by first turning on I2 with/1 = 0 and 
then increasing/i as shown in Fig. 44b. Adiabatic trans- 
fer has the advantage that an atom in a dark state does 

(a) 

II> 
L3> 

(b) 
11, 12 

12 I1 

t 

Fig. 44a, b. Coherent population transfer by adiabatic following. 
a The level structure and coupling light fields, b A pulse sequence 
such as this can keep the atoms in the dark state during the popula- 
tion transfer 
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not experience an ac Stark shift and the transfer is insen- 
sitive to the exact shape and intensity of  the pulse. 

The N I S T  group has demonstra ted approximately  
40% coherent populat ion transfer between the m f  = - -4  
to mF = + 4 ground states of  cesium if the 6 P3/2, U = 5 
excited state is used as the excited state [83]. The imper- 
fect transfer was due primarily to the existence of the 
nearby F ' = 4  excited state, which allowed both off- 
resonant excitation and non-zero ac Stark shifts. 

Adiabatic  transfer between the F =  4, me = 0 and F =  3, 
me = 0 states is also possible. I f  the 6 P1/2 excited state of  
cesium is used, we have calculated that as much as 98 % 
of  the populat ion can be adiabatically transferred using 
a suitable pulse shape and realistic experimental parame-  
ters. I t  appears  that this method of transferring popula-  
tion is better than the n pulse method for minimizing the 
error f rom the ac Stark shift induced by the pulse. When 
there is only one excited state, the ac Stark-shift induced 
by the light beams is zero [84]. The ac Stark shift due to 
the presence of the other excited state was calculated by 
time integrating the Schr6dinger equation through the 
pulse sequence, and calculations show that  the phase 
shift introduced by the adiabatic transfer is on the order 
of  0.02 rad per pulse, roughly 100 times less than the 
phase shift of  one of the hyperfine levels by a R a m a n  
pulse. Consequently, any spatial inhomogeneities in in- 
tensity should then cause phase shifts for adiabatic fol- 
lowing of 1% those for R a m a n  transfer. We note ,  how- 
ever, that  the ac Stark shift induced by R a m a n  transfer 
can be canceled with judicious choice of  detuning and 
relative intensities of  the two R a m a n  beams while an 
effective cancellation of the ac Stark shift caused by 
adiabatic transfer is more problematic.  

5.5 Conclusions 

We have described an a tom interferometer experiment 
where a fundamental  constant has been measured with 
a relative precision on the order of  0.1 ppm. The current 
measurement  agrees with the accepted value for h/mcs at 
the 1 p p m  level. Many  of  the systematic effects have been 
identified and studied, but some systematic variations 
persist, and the errors due to wavefront  curvature and 
intensity fluctuations f rom laser speckle have not  yet 
been quantified, so we can not yet assign a systematic 
error to this measurement.  

Through a number  of  improvements  discussed in this 
paper,  we feel that  the precision can be increased by 
approximately two orders of  magnitude in our next 
generation experiment. We also feel that  the suggested 
changes will allow us to make an absolute measurement  
of  h/mcs at the few ppb  level. 
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