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Abstract

“Masked Autoencoders (MAE) Are Scalable Vision Learners” revolutionizes the
self-supervised learning method in that it not only achieves the state-of-the-art
for image pre-training, but is also a milestone that bridges the gap between visual
and linguistic masked autoencoding (BERT-style) pre-trainings. However, to our
knowledge, to date there are no theoretical perspectives to explain the powerful ex-
pressivity of MAE. In this paper, we, for the first time, propose a unified theoretical
framework that provides a mathematical understanding for MAE. Specifically, we
explain the patch-based attention approaches of MAE using an integral kernel under
a non-overlapping domain decomposition setting. To help the research community
to further comprehend the main reasons of the great success of MAE, based on our
framework, we pose five questions and answer them with mathematical rigor using
insights from operator theory.

1 Introduction

“Masked Autoencoders (MAE) Are Scalable Vision Learners” [31] (illustrated in Figure 1) recently
introduces a ground-breaking self-supervised paradigm for image pretraining. This seminal method
makes great contributions at least in the following respects:

(1) MAE achieves the state-of-the-art on self-supervised pretraining on ImageNet-1K dataset [21],
outperforming the strong competitors (e.g., BEiT [5]) by a clear margin in a simpler and faster
manner. Particularly, a vanilla Vision Transformer (ViT) [23] Huge backbone based MAE
achieves the best accuracy (87.8%) among methods that use only ImageNet-1K data. This
inspiring phenomenon motivates the researchers to re-consider the ViT variants in self-supervised
contexts. Moreover, MAE achieves good transfer performance in downstream tasks beating the
supervised pretraining and shows promising scaling behavior.

(2) MAE is a generative learning method and beats the contrastive learning competitors (e.g., MoCo
v3 [18]) that have dominated vision self-pretraining in recent years.

(3) MAE is a mile-stone that bridged the gap between the visual and linguistic masked autoencoding
(BERT-style [22]) pretrainings. Actually, the previous work prior to MAE fails to apply the
masked autoencoding pretrainings on the visual domain. Thus, MAE paves a path that “Self-
supervised learning in vision may now be embarking on a similar trajectory as in NLP” [31].

The great success of MAE is interpreted by its authors as “We hypothesize that this behavior occurs by
way of a rich hidden representation inside the MAE” [31]. However, to the best of our knowledge, to
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Figure 1: Architecture of the Masked Autoencoder (MAE) in [31], with Vision Transformer (ViT)
backbone. (Used under CC BY-NC 4.0 license from https://github.com/facebookresearch/
mae.) Best viewed in color.

date, there are no theoretical viewpoints to explain the powerful expressivity of MAE. Unfortunately,
the theoretical analysis for the expressivity of ViT based models is so challenging that it is still
under-studied.

Our Contributions In this paper, we, for the first time, propose a unified theoretical framework
that provides a mathematical understanding for MAE. Particularly, we not only rethink MAE by
regarding each image’s embedding as a learned basis function in certain Hilbert spaces instead of
a 2D pixel grid, but also explain the patch-based attention approaches of MAE from the operator
theoretic perspective of an integral kernel under a non-overlapping domain decomposition setting.

To help the researchers to further grasp the main reasons for the great success of MAE, based on our
proposed unified theoretical framework, we contribute five questions, and for the first time answer
them partially by insights from rigorous mathematical theory:

Q1: How is the representation space of MAE formed, optimized, and propagated through layers?
A: We illustrate that the attention mechanism in MAE is equivalent to a learnable integral kernel
transform, and its representation power is dynamically updated by the Barron space with the positional
embeddings that work as the coordinates in a high dimensional feature space. See Section 4.1.

Q2: Why and how does patchifying contribute to MAE?
A: We prove that the random patch selecting of MAE preserves the information of the original image,
while reduces the computing costs, under common assumptions on the low-rank nature of images.
This paves a theoretical foundation for the patch-based neural networks/models including but not
limited to MAE or ViT. See Section 3.

Q3: Why are the internal representations in the lower and higher layers of MAE not significantly
different?
A: We have provided a new theoretical justification for the first time by proving the stability of
the internal presentations. The great success of MAE benefits from a main reason that the scaled
dot-product attention in the ViT-backbone provides stable representations during the cross-layer
propagation. Furthermore, we view the skip-connection for the attention mechanism from a com-
pletely new perspective: representing an approximated solution explicitly to a Tikhonov-regularized
Fredholm integral equation. See Section 5.

Q4: Is decoder unimportant for MAE?
A: No. We argue that the decoder is vital to helping encoder to build better representations, even
if decoder is discarded after pretraining. Due to the bigger patch dimension in the MAE decoder,
it allows the representation space in the encoder enriched much more often by functions from the
Barron space to learn a better basis. See Section 6.

Q5: Does MAE reconstruct each masked patch merely inferred from its adjacent neighbor patches?
A: No. We prove that the latent representations of the masked patches are interpolated globally based
on an inter-patch topology that is learned by the attention mechanism. See Section 6.

2

https://github.com/facebookresearch/mae
https://github.com/facebookresearch/mae
AgainstEntropy
高亮

AgainstEntropy
高亮

AgainstEntropy
高亮

AgainstEntropy
高亮

AgainstEntropy
高亮

AgainstEntropy
高亮



Overall, our proposed unified theoretical framework provides a mathematical understanding for MAE
and can be used to understand the intrinsic traits of the extensive patch and self-attention based
models, not limited to MAE or ViT.

The rest of this paper is organized as follows: Section 2 summarizes related work. Based on our
proposed theoretical framework, some mathematical understandings for the encoder and decoder of
MAE are presented in Section 4 through Section 6. We draw some conclusions in Section 7.

2 Related Work

Vision Transformer (ViT) [23] is a strong image-oriented network based on a standard Transformer
[44] encoder. It has an image-specific input pipeline where the input image needs to be split into fixed-
size patches. After going through the linearly embed layer and adding with position embeddings,
all the patch-wise sequences will be encoded by a standard Transformer encoder. ViT and its
variants have been widely used in various computer vision tasks (e.g., recognition [43], detection
[7], segmentation [36]), and meanwhile work well for both supervised [43] and self-supervised
[18, 15] visual learning. Recently, some pioneering works provide further understanding for ViT,
e.g., its internal representation robustness [38], the continuous behavior of its latent representation
propagation [39]. However, the theoretical analysis for the expressivity of ViT based models is so
challenging that it is still under-studied.

Masked Autoencoder (MAE) [31] is essentially a denoising autoencoder [45], which has a straight-
forward motivation that randomly mask patches of the input image and reconstruct the missing
pixels. MAE works based on two key designs: (i) asymmetric encoder-decoder architecture where the
encoder takes in only the visible patches and the lightweight decoder reconstructs the target image, (ii)
high masking ratio (e.g., 75%) for the input image yields a nontrivial and meaningful self-supervisory
task. Its great success is attributed to “a rich hidden representation inside the MAE” [31]. However,
to the best of our knowledge, to date, there are no theoretical viewpoints to explain the powerful
expressivity of MAE.

Mathematical Theory Related to Attention Self-attention [44] is essentially processing each input
as a fully-connected graph [51]. Therefore, as aforementioned, we start from a more general
perspective of topological spaces [13] to rethink MAE, by regarding each image as a graph connecting
patches instead of 2D pixel grid. Meanwhile, we study the patch-based attention approaches of MAE
through the operator theory for the Fredholm integral equations [1], to formulate the dot-product
attention matrix as an integral kernel [29], i.e., a learned Green’s function to reconstruct solutions
to the partial differential equations e.g.. [26]. The skip-connection can be then explained through
two perspectives, first as the term corresponding to the Tikhonov regularization [27, 48], or Neural
Ordinary Differential Equations (ODE) [17]. On the other hand, the patchification is connected with
the Domain Decomposition Methods (DDM) [42, 52].

3 Patch is All We Need?

Patchifying has become a standard practice in Transformer-based CV models since ViT [23], see also
[30, 37]. In this section, we try to answer the question “Why and how does patchifying contribute to
MAE?” from a perspective of the domain decomposition method to solve an integral equation.

We first consider the full grid Ω ' I ⊗ I with I = [0, 1/N, . . . , (N − 1)/N ], then the patchification
of Ω is essentially a non-overlapping domain decomposition method (DDM) [16]. DDM is commonly
used in solving integral/partial differential equations bearing similar forms with (10), e.g., see [42],
as well as image denoising problems [52].

DDM practices “divide and conquer”, which is a general methodology suitable for lots of science
and engineering disciplines: the original domain of interest is decomposed into much smaller
subdomains. Each subproblem associated with subdomains can be more efficiently solved by the
same algorithm, especially when the algorithm has a super-linear dependence on the grid size. The
attention mechanism computational complexity and storage requirement have a quadratic dependence
on n, and this translates a quartic dependence on the coarse grid size p (how many patches along one
axis) as n = p2. Without patchification, we can see the operation in (6) is of O(N4) that renders the
algorithm unattainable.
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In this setup, Ω is first partitioned to equal-sized non-overlapping subdomains: Ω = ∪ni=1Ωi,
int(Ωi) ∩ int(Ωj) = ∅ as well as int(Ωi) ' int(Ωj) if i 6= j. For the simplicity of the presentation,
we consider a single-channel image and define the space of bounded variation (BV) on Ω as BV (Ω),
and for any unpatchified image u ∈ BV (Ω) ⊂ RN×N

|u|BV (Ω) :=
∑
xi∈Ω

 ∑
xj∈Nxi

wij(u(xi)− u(xj))
2


1
2

, (1)

where Nxi denotes the grid points that are connected with xi through an undirected edge xixj , and
wij is some positive weights measuring the interaction strength. When being viewed in the continuum
such that u is a discrete sampling of the function u : R2 → R+, this norm approximates |∇u|L1 and
measures the smoothness of an image, and is widely used in graph/image recovery e.g., see [8].

After the patchification we have u =
∑n2

i=1Eiui, where Ei : Ωi → Ω is an extension operator
that maps the patch pixel values on Ωi to Ω by zero-padding. It is straightforward to see that the
representation consist of the concatenated patch matrices, and is in Πn2

i=1BV (Ωi). Here we denote
Y := ⊕n2

i=1EiBV (Ωi). By (1), the original BV space is only a subspace of the decomposed product
space, i.e., BV (Ω) ⊂ Y , while the reverse is not true. The reason is that by patchification, the
underlying function spaces have completely lost the inter-patch topological relations: e.g., how the
inter-patch pixel intensities change? There is also another analytical set of questions to answer: how
to choose the size of the patch? If bigger patches are used, it then requires a bigger embedding
dimension, thus harder to formulate the bases for the representation space. On the other hand, if
smaller patches are used, because of the aforementioned quartic dependence on the grid size, the
inter-patch topology is much harder and more expensive to learn.

In the following proposition, we shall show that, if an image has a low rank structure, then there
exists a semi-randomly chosen set of patches that can represent the original image. This selection has
a very high mask ratio, that is, the representation using a small fraction e.g., p patches out of all the
patches. Meanwhile, we assume that there exists an embedding that is able to represent the original
image, in the sense that the difference between the reconstruction and the original image is small
measured under | · |BV (Ω).

Following the standard practices [23, 43], we consider the ViT-base case in MAE where the dimension
of the feature embedding matches the original dimension of the pixel counts in the any given patch:
u ∈ RN×N ' Rn2×d, i.e., for each patch’s embedding in the MAE encoder, there exists a continuous
embedding that maps Rn2×d ↪→ RN×N , from the patch embeddings to images.
Proposition 3.1 (Existence of a near optimal patch embedding). For any u ∈ BV (Ω) ⊂ RN×N ,
and an equal-sized n × n patchification of u, let the patch grid size Nc := N/n, assuming there
exists a rank r approximation to u with r < Nc and error ε, and a unique patch is randomly chosen
from each row such that the final selection’s columns set is a permutation of {1, · · · , n2}, then there
exists an embedding y ∈ Rp×d such that

‖u−R(y)‖BV (Ω) < C(r,Nc, p)ε, (2)

where R is a rank preserving reconstruction operator R : Rp×d → RN×N .

4 Attention in MAE: a Kernel Perspective

In this section, we reexamine the attention block present in both encoder and decoder layers in MAE
from multiple perspectives. The first and foremost understanding comes from the operator theory
for the integral equations. By formulating the scaled dot-product attention as a nonlinear integral
transform, learning the latent representation is equivalent to learning a set of basis in a Hilbert space.
Moreover, upon adopting the kernel interpretation of the attention mechanism, a single patch is
characterized by not only its own learned embedding, but also how it interacts with all other patches
(reproducing property of a kernel).

4.1 Self-attention: A Nonlinear Integral Kernel Transform

For MAE [31], each input image patch is projected as a 1D token embedding. Following the practice
in [31], we also omit the shared class token added to the embedding that can be removed from the
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Figure 2: The i-th patch embedding from the scaled dot-product attention is a convex combination of
the attention weights, which encodes the interactions among all patch embeddings. Best viewed in
color.

pretraining of MAE. Given an attention block in an encoder or a decoder layer of MAE, the input and
output are defined respectively as yin := y,yout ∈ Rp×d. When an image has not been masked, it
has p = n2 patches, where n is a positive integer. The embedding dimension is d. In y, a positional
embedding X := {xi}pi=1 ⊂ R1×d, such that xi is associated with the i-th patch, is added. Each
xi can be viewed as a coordinate in high dimension. We note that the patch ordering map i 7→ xi
is injective, since the first component of xi is the polar coordinate in 2D, and as such the relative
position of each patch can be recovered from xi. For simplicity, the analysis done in this section
applies to a single head.

Here we briefly review the self-attention from [44]. The query Q, key K, value V are generated by
three learnable projection matrices WQ,WK ,WV ∈ Rd×d: Q = yWQ, K = yWK , V = yWV .
The scaled dot-product attention is to obtain z ∈ Rp×d:

z = Attns(y) := Softmax
(
QK>/

√
d
)
V. (3)

Then the softmax attention Attn(·) with a global receptive field works as the following nonlinear
mapping:

Attn : Rp×d → Rp×d,

y 7→ LN
(
y + z + FFN

(
LN(y + z))

))
,

(4)

where LN(·) denotes the Layer Normalization (LN) [2] that essentially is a learnable column scaling
with a shift, and FFN(·) is a standard two-layer feedforward neural network (FFN) applied to the
embedding of each patch.

Upon closer inspection of the scaled dot-product attention (3), for z, the j-th element of its i-th row
zi is obtained by

(zi)j = Ai• · vj , (5)

and the i-th row Ai• of the attention matrix A is

Ai• =
e(QK>/

√
d)i•∑p

j=1 e
(QK>/

√
d)ij

=: Softmax(qiK
>/
√
d), (6)

i.e., using the diagram in Figure 2, we have

zi = Ai•

 v1...
vn

 =

p∑
j=1

Aijvj . (7)

Due to the softmax, Ai• contains the coefficients for the convex combination of the vector representa-
tions {vj}pj=1. This basis set {vj}pj=1 form the V’s row space, and it further forms each row of the
output z by multiplying with A. As a result, the scaled dot-product attention has the following basis
expansion form:

zi :=

p∑
j=1

A(qi,kj)vi, (8)

where ui denotes the i-th row of certain latent representation u ∈ {z,Q,K,V}. The key term in (8),
A(·, ·), denotes the attention kernel, which maps each patch’s embedding represented by the rows of
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Q,K to a measure of how they interact. From (8), we shall see that the representation space for an
encoder layer in MAE is spanned by the row space of V, and is being nonlinearly updated layer-wise.
This means, the embedding for each patch serves as a basis to form the representation space for the
current attention block, whereas the row-wise attention weights are the Barycentric coordinates for a
simplex in R1×d.

Here we further assume that there exist a set of feature maps for query, key, and value e.g., see [20].
For z, the feature map z ∈ V that maps R1×d → BV (Ωi), i.e., zi = z(xi), we can then define an
asymmetric kernel function κ̃(·, ·) : R1×d × R1×d → R,

A(qi,kj) = α−1(xi)〈qi,kj〉
= α−1(xi)〈q(xi), k(xj)〉
=: α−1(xi) κ̃(xi, xj),

(9)

where α̃(xi) :=
∑d
l=1(eqiK

>/
√
d)l. Now the discrete kernel A(·, ·) with vectorial input is rewritten

to an integral kernel κ̃(·, ·) whose inputs are positions. As a result, using the formulation above, we
can express the scaled dot-product attention approximately as a nonlinear integral transform:

z(x) = α−1(x)
∑
x′∈X

(
q(x) · k(x′)

)
v(x′) δx′

≈ α−1(x)

∫
ω

κ̃(x, x′)v(x′) dµ(x′),

(10)

where δx is the Dirac measure associated with the position at x. For the second equation, with a
slight abuse of the order presentation, we assume that there exists κ̃(·, ·) and a Borel measure µ(·)
such that κ̃(·, ·) has a reproducing property under the integral by dµ(·), which shall be elaborated in
the next paragraph. Here in this integral, the image domain ω is approximated by a patchified grid
X ' (0, 1

n · · · ,
n−1
n )⊗ (0, 1

n · · · ,
n−1
n ). Returning to the perspective of “embedding ≈ basis” for

the representation space, the backpropagation from the output z(·) to update weights to obtain a new
v(·) during pretraining can be interpreted as an iterative procedure to solve the Fredholm integral
equation of the first kind in (10).

How to Obtain a Translation Invariant Kernel. We note that the formulation above in (10) is
closely related to Reproducing Kernel Hilbert Space (RKHS) [9]. First, the dot-product in (6) is
re-defined to be

Ai• := Softmax
(
− γ(qi − ki)(Q−K)>

)
. (11)

Then, a pre-layer normalization scheme in [4, 19, 46, 49] or pre-inner product normalization in
[33, 12] and can be a cheap procedure to re-center the kernel. Rewritting the original dot-product for
q,k ∈ R1×d as follows

qk> =
1

2
qq> +

1

2
kk> − 1

2
(q− k)(q− k)>. (12)

Thus, a layer normalization for each row in Q and K before QK> results the two moment terms
above, qq> and kk>, in (12) being relatively small versus the third term. Consequently, using merely
the third term in (12) to form (11) suffices to provided a good approximation to the scaled dot-product
attention. As an important consequence, the kernel becomes symmetric, and translation-invariant,
which is arguably one of the nicest traits of CNN kernels. As a result, the normalized attention kernel
κ̃(x, x′) based on (11) is

(A)ij = γ〈qi − ki,qj − kj〉 =: κ(xi, xj). (13)

Moreover, κ(x, x′) can be written asK(x−x′) forK : R1×d → R being the 1-dimensional Gaussian
radial basis function (RBF) kernel, K(θ) = e−γ‖θ‖

2

. By the positivity and the symmetrcity, κ(·, ·)
becomes a reproducing kernel. We can define the following nonlinear integral operator K:

K(v)(x) :=

∫
ω

κ(x, x′)v(x′) dµ(x′). (14)

In the traditional settings such that κ(x, x′) is not explicitly dependent on v(·), the vector version of
the Mercer representation theorem for the integral kernel can be exploited [24, 14], and there exists
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an optimal representation space to approximate the solution to this integral equation: the eigenspace
the nonlinear integral operator K. While for the scaled dot-product attention’s integral transform
interpretation, explicitly pinning down the eigenspace is impossible during the dynamic training
procedure. Nevertheless, we can still obtain a representation expansion to show that the internal
representations are propagated in a stable fashion (Theorem 5.1).

Relation to Other Methods. The integral transform formula derived in (10) resembles the nonlocal
means method (NL-means) in tasks of traditional image signal processing such as denoising, e.g.,
[10]. In NL-means, κ(x, x′) is a non-learnable integral kernel, which measures the similarity between
pixels at x and x′. While in ViT, the layer-wise kernel κ(x, x′; θ) is learnable, and establishes the
inter-patch topology (continuity, total variation, etc). One key common trait is that they are both
normalized in the sense that for any x ∈ ω

α−1(x)

∫
ω

κ(x, x′) dµ(x′) = 1, (15)

which is facilitated by the row-wise softmax operation to enforce a unit row sum. We shall see in
Section 5 that this plays a key role in obtaining a stable representation in ViT layers mathematically.

Compared with another popular approach, the Convolutional Neural Network (CNN)-based models,
the MAE has several differences. In CNN, the translation-invariance is inherited automatically
from the convolution operation, i.e., the CNN kernel depends only on the difference of the positions
(x−x′). Moreover,K(·) is acting on a pixel level and locally supported, thus having a small receptive
field. For CNN to learn long-range dependencies, the deep stacking of convolutions is necessary but
then renders the optimization algorithms difficult [40]. Moreover, repeating local operations around
a small pixel patch is computationally inefficient in that the convolution filter sizes being small in
CNN makes the “message passing” from distant positions back and forth difficult [47]. In MAE, the
translation invariance is obtained through proper normalization. The learned kernel acts on the basis
function representing each patch. Moreover, the kernel map is globally supported, which means it
can learn effectively the interaction between even far away patches. As a result, this global nature
makes it easier to learn a better representation, thus greatly reduces the number of layers needed to
complete the same task.

5 Stable Representation Propagation in the Attention Block

In this section, we try to explain why the representations are continuously changing in a stable
fashion in both the encoder and decoder of MAE, which is first observed in [39]. In the following
theorem, we have proved a key result that the softmax normalization plays a vital role in stabilizing
the propagation of the representations through the layers.

Theorem 5.1. Assume that a trained attention block in the MAE/ViT encoder layer such that ‖WQ−
WK‖2 are uniformly bounded above and below by two positive constants, and WV = I, and the
attention kernel being in the form of (13) such that it is translation invariant and symmetric, let
v(t)(·) and v(t+1)(·) be the feature maps for the input and output of the scaled dot-product attention
(8), and v(t) ∈ BV (ω) ∩ V , then we have

‖v(t+1) − v(t)‖V ≤ C(d)
1

n

(
‖v(t)‖V + |v(t)|BV

)
. (16)

Proof Sketch and an Interpretation for Theorem 5.1. The softmax operation in (6) makes the
attention matrix to have a row sum being 1. This normalization further translates to the integral
kernel’s integration being 1 in (15). This enables us to estimate of how the internal representations
are propagated in a stable evolution from v(t) to v(t+1). We can rewrite v(t)(x)

v(t)(x) = α−1(x)

∫
ω

κ(x, x′)v(t)(x) dµ(x′), (17)
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3: The internal representation propagation during evaluation for a random sample from
ImageNet-1K validation set. (a) input of MAE encoder; (b) output of MAE encoder, concatenated
with the learnable mask token embedding that is shared among all masked patches; (c)–(i) the latent
representations, i.e., the outputs of the decoder layers #1 to #7; (j) output of the last decoder
layer (#8). (We use the official released model and pretrained weights at https://github.com/
facebookresearch/mae.) See texts for details. Best viewed in color.

Thus, the propagation can lead the following modulus of continuity representation

v(t+1)(x)− v(t)(x)

= α−1(x)

∫
ω

κ(x, x′)v(t)(x′) dµ(x′)− v(t)(x)

= α−1(x)

∫
ω

κ(x, x′)
(
v(t)(x′)− v(t)(x)

)
dµ(x′).

(18)

Using the argument in Section 4.1, κ(x, x′) = K(x− x′) thus a simple substitution can be exploited
to get the following representation:

α−1(x)

∫
ω

K(x− x′)
(
v(t)(x′)− v(t)(x)

)
dµ(x′)

= α−1(x)

∫
ωξ

K(ξ)
(
v(t)(x+ ξ)− v(t)(x)

)
dµ(ξ).

(19)

By Mercer’s theorem, there exists an eigenfunction expansion for κ(x, x′) =
∑∞
i=1 aiψi(x)ψi(x

′)
that has a spectral decay. Then, the propagation bounds can be proved under the assumption that the
current layer’s learned feature map offers a “reasonable” approximation to the eigenspace of κ(·, ·).

Overall, this bound describes that the propagation of the internal representation is continuously chang-
ing based on the inter-patch interaction encoded in the attention kernel. In the kernel interpretation
of the attention mechanism, there is one key difference with the conventional kernel method: the
conventional kernel measures the inter-sample similarity in the whole dataset; while the attention
kernel κ(·, ·) or κ̃(·, ·) is built for a single instance, and learns inter-patch topological relations to
build a better representation space for the MAE. This learned representation for a specific data
sample determines how amenable it is for the downstream tasks.

Additionally, we note that this result applies to the layer-wise representation propagation in the
decoder layers as well. An enlightening illustration is demonstrated in Figure 3. There are multi-fold
interesting aspects about this evolution diagram shown: (1) in the ViT-base MAE, the embedding
dimension of its decoder is merely 512, which is less than the embedding dimension in the encoder
(d = 768). Note that 768 = Nc × Nc × 3 which enables that the latent representation (a row
vector) in a single patch can be directly reshaped to an image patch. Thus, we need a patch-wise
upsampling projection; (2) this projection, which maps vectors in R196×512 to those in R196×768
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resides in the MAE decoder. It should be noted that this upsampling projection is only connected
with the last decoder layer. Heuristically, this projection may only upsample the last decoder
layer’s output z8 ∈ R196×512 to the desired embedding dimensions. Nevertheless, due to the stable
representation propagation, the outputs from the previous decoder layers can also benefit from the
last layer projection weights to obtain sensible reconstruction results, as illustrated in Figure 3.

Skip-Connection as a Tikhonov Regularizer After presenting Theorem 5.1, one might ask: given
the integral transform representation is already stable, what is the role of the skip-connection?
Diverting from the original interpretation of battling the diminishing gradient for the skip-connection
[32], here we offer a new perspective and some heuristics inspired by functional analysis to articulate
the reason why using the skip-connection would make the representation propagation more stable,
which is also observed in [39].

Knowing that the integral kernel interpretation of attention (10) resembles the Fredholm integral
equation of the first kind, we can interpret the skip-connection as a layer-wise Tikhonov regularization
in the Fredholm integral equation of the second kind. Starting from (10)

z(x) = α−1

∫
ω

κ(x, x′)v(x′)dµ(x′). (20)

This Fredholm intergral equation of the first kind is usually extremely ill-posed [28], in the sense that
the solution, even if it exists, does not depend continuously on v(·).

If WV ≈ β−1I, then for x ∈ X , we have that

z(x) ≈ βv(x) + α−1

∫
ω

κ(x, x′)v(x′)dµ(x′). (21)

This is the Fredholm integral equation of the second kind witha variable coefficient, the extra βv(·)
term not only contributes to the well-posedness of this equation, but renders the numerical scheme to
approximate a better v(·) more stable. Tikhonov firstly introduced this method in [41], see also [35,
Chapter 16].

Theorem 5.2 (Skip-connection can represent the minimizer to a Tikhonov-regularized integral
equation functional). For K(·) using κ(·, ·) as the integral kernel in (13), define the following
functional

L :=
1

2
‖α−1(·)K(v)− z‖2V∗ + β〈K(v), v〉, (22)

where ‖u‖V′ := supv∈V |〈u, v〉|/‖v‖V denotes the dual norm. The Euler-Lagrange equation associ-
ated with minv L has the following form:

βu+ α−1K(u) = z in (K∗(V))′. (23)

Note that (23) bears exactly the same form with (21). Moreover, instead of the conventional L2-type
Tikhonov regularizer ‖v‖2V , here 〈K(v), v〉 is an induced norm by the positive (semi)definite integral
operator K(·). The skip-connection term in (23) comes from the Tikhonov regularization term in
(22), and without it, the Euler-Lagrange equation reverts to the Fredholm integral equation of the first
kind.

6 MAE Decoder: Low-Rank Reconstruction Through Global Interpolation

During pretraining, the major function of the MAE decoder is to map the low-rank representation
obtained by the MAE encoder to a reconstruction. The encoder embedding has a bigger dimension,
yet is define on only a fraction of patches. The decoder reduces the embedding dimension, but is able
to obtain the embedding for all p× p patches including the masked ones. Despite of the fact that the
decoder in MAE is only used in pretraining, not downstream tasks, it plays a vital role in learning a
“good” representation space for the MAE encoder.

Enrichment of the Representation Space through Positional Embedding Because the posi-
tional embedding x := ‖ni=1xi ∈ Rp×d is added to the latent representation y in (3), the nonlinear
universal approximator (FFN) in each attention block shall also contribute to learning a better
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representation. In every decoder layer, the basis functions in V are being constantly enriched by
span{wj ∈ X : wj(xi) = (FFN(y + x))ij , 1 ≤ j ≤ d}. If we treat the positional embeddings {xi}
as coordinate again, FFN(y + x) is a subset of the famous Barron space [6, 3], which has a rich
and powerful representation power that can approximate smooth function arbitrarily well, e.g., see
[34, 50]. As a result, the representation space is dynamically updated layer by layer to try to build
a more expressive representation to better characterize the inter-patch topology. FFNs themselves
have no linear structure, however, the basis functions produced this way act as a building block
to update the linear space for the expansion in (8) and (10). In the MAE decoder, the number of
basis (p2 = 196) is much greater than that of the MAE encoder (0.25 · p2 = 49), thus heuristically
speaking, this basis update mechanism is mostly working in the decoder.

Reconstruction is a Global Interpolation. In MAE decoder, the mask token, a learnable vector
shared by every masked patch, is concatenated to the unshuffled representation of the unmasked
patches. To demonstrate that the reconstructed image is a global interpolation by using the unmasked
patch embeddings, we first need to prove the following lemma, which states that the learned mask
token embedding can be simply replaced by zero with an updated set of attention weights. For the
simplicity, we denote the embedding dimension in the MAE decoder still as d.
Lemma 6.1. Let m ∈ R1×d be the learned mask token embedding that is shared by all masked
patches, and let m(·) be its feature map. Denote the set of masked and unmasked patches’ index as
M and N , respectively, and we assume that |N | ≥ 2. For the input y ∈ Rp×d that already contains
the masked patches, i.e., all i ∈M, yi = m, , there exists a new set of affine linear maps to generate
{Q̂, K̂, V̂}, such that for any i = 1, . . . , n,∥∥∥∥∥∥

n∑
j=1

A(qi,kj)vi −
∑
j∈N

A(q̂i, k̂j) v̂i

∥∥∥∥∥∥ < Cn−1. (24)

With this lemma, we are already present our final result: for the first layer of the MAE decoder, the
network interpolates the representation using global information from the embeddings learned by the
MAE encoder, not just the ones from the nearby patches. Moreover, with Theorem 5.1, the MAE
decoders continue to perform such a global interpolation in subsequent layers. For an empirical
evidence, please refer to Figure 3.
Proposition 6.2 (Interpolation results for masked patches). For the embedding of every masked patch
i ∈M, let v(t+1)

i be the output embedding of a decoder layer for this patch, and let v(t)
j be the input

from the encoder for j = 1, . . . , p, then v(t+1)
i is

v
(t+1)
i =

∑
j∈N

ajv
(t)
j , (25)

for a set of weights based on unmasked patches aj(vi1 , . . . , vik), N := {i1, . . . , ik}. Moreover, the
reconstruction quality is bounded above by the global reconstruction error of the unmasked patches,

‖Rvi − ui‖BV (Ωi) ≤ C sup
j∈N
‖Rvj − u‖BV (Ωj) + Cn−1‖u‖. (26)

7 Conclusion

To the best of our knowledge, to date, there are no theoretical viewpoints to explain the powerful
expressivity of MAE. In this paper, we, for the first time, propose a unified theoretical framework
that provides a mathematical understanding for MAE. Particularly, we explain the patch-based
attention approaches of MAE from a perspective of an integral kernel under a non-overlapping
domain decomposition setting. To help the researchers to further grasp the main reasons for the great
success of MAE, our mathematical proof contributes the following major conclusions:

(1) The attention mechanism in MAE is a learnable integral kernel transform, and its representation
power is dynamically updated by the Barron space with the positional embeddings that work as the
coordinates in a high dimensional feature space.

(2) The random patch selecting of MAE preserves the information of the original image, while
reduces the computing costs, under common assumptions on the low-rank nature of images. This
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paves a theoretical foundation for the patch-based neural networks/models including but not limited
to MAE or ViT.

(3) The great success of MAE benefits from a main reason that the scaled dot-product attention
built-in ViT provides the stable representations during the cross-layer propagation.

(4) In MAE, the decoder is vital to helping the encoder to build better representations, while decoder
is discarded after pretraining.

(5) The latent representations of the masked patches are interpolated globally based on an inter-patch
topology that is learned by the attention mechanism.

Furthermore, our proposed theoretical framework can be used to understand the intrinsic traits of
not only the ViT-based models but also even the extensive networks/models made by patch and
self-attention.
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A Proof of Theorem 5.1

Assumption A.1 (Assumption of Theorem 5.1). To prove Theorem 5.1, we assume the following
conditions hold true,

(B1) The underlying Hilbert space for the latent representation is V ⊂
(
L2(ω, µ))d, i.e., there is

no a priori inter-channel continuity, and the inter-channel topology is learned from data.

(B2) For a BV function on ω, there exists a smooth extension to R2 such that the extension is
stable in | · |BV (Ω) (see e.g., [25], [11, Theorem 2]).

(B3) For each v ∈ V , there exists a smooth K such that κ(x, x′) = K(x− x′), and K(x− x′) ≤
Cγe

−γ‖x−x′‖ with a uniform constant Cγ that only depends on γ.

(B4) For each v ∈ V , α(x) :=
∫
ω
κ(x, x′) dµ(x′), and α is bounded below by a positive constant

Cα uniformly.
Theorem 5.1 (Stability result, rigorous version). Under the assumption of Assumption A.1, we have

‖v(t+1) − v(t)‖V ≤ C(γ, d)
1

n

(
‖v(t)‖V + |v(t)|BV

)
. (27)

Proof. First we extend the kernel function from ω to the whole R2 by

Ext(κ(x, x′)) =

{
κ(x, x′) if x and x′ ∈ ω,
0 otherwise.

(28)

With a slight abuse of notation we still denote the extension Ext(κ(·, ·)) still as κ(·, ·), and the
normalization (15) still holds:

α−1(x)

∫
ω

κ(x, x′) dµ(x′) = α−1(x)

∫
R2

κ(x, x′) dµ(x′) = 1. (29)

Without loss of generality, we also assume that the Thus, under assumption (B1)–(B2), we have the
original integral on ω can be written as on the full plane

v(t+1)(x) = α−1(x)

∫
R2

κ(x, x′)v(t)(x′) dµ(x′). (30)

Similarly by (29),

v(t)(x) = α−1(x)

∫
R2

κ(x, x′)v(t)(x) dµ(x′). (31)
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Therefore,

v(t+1)(x)− v(t)(x)

= α−1(x)

∫
R2

κ(x, x′)
(
v(t)(x′)− v(t)(x)

)
dµ(x′).

(32)

Using κ(x, x′) = K(x− x′), let ξ = x′ − x:

α−1(x)

∫
R2

K(x− x′)
(
v(t)(x′)− v(t)(x)

)
dµ(x′)

= α−1(x)

∫
R2

K(ξ)
(
v(t)(x+ ξ)− v(t)(x)

)
dµ(ξ).

(33)

By v(t) ∈ BV (R2), and ω being compact, there exists δ > 0 such that

sup
x∈ω

sup
‖ξ‖<δ/n

‖v(t)(x+ ξ)− v(t)(x)‖ < 1

n
|vt|BV (R2). (34)

Thus, for any x ∈ ω

‖v(t+1)(x)− v(t)(x)‖

≤ |α−1|
∫
R2

‖K(ξ)
(
v(t)(x+ ξ)− v(t)(x)

)
‖ dµ(ξ)

≤ |α−1| sup
‖ξ‖<δ/n

‖v(t)(x+ ξ)− v(t)(x)‖
∫
ω

|K(ξ)| dµ(ξ)

+ |α−1|
∫
‖ξ‖≥δ/n

|K(ξ)| 2‖v(t)‖∞dµ(ξ)

≤ 2C−1
α Cγ

1

n

(
|v(t)|∞ + |v(t)|BV

)
.

(35)

Taking supx∈ω yields the result.

B Proof of Theorem 5.2

Proof. Define η(·) : V → R such that ηu(v) := 〈z, v〉 − 〈α−1Ku, v〉, where u ∈ W ⊆ V is the
solution to the integral equation in (23), andW is the solution subspace. Clearly, ηu ∈ V ′ defines a
bounded functional on V for (V, 〈·, ·〉). By Riesz representation theorem, there exists an isomorphism
G : V → V ′ such that φu := G−1(η) ∈ V and

ηu(v) = 〈φu, v〉 = 〈z, v〉 − 〈α−1K(u), v〉. (36)

Then, define ‖ · ‖2V := 〈·, ·〉, we have

min
u∈V
‖η(·)‖2V′ = min

u∈V
‖φu‖2V = min

u∈V
‖G−1(〈z, ·〉 − 〈α−1(·)K(u), ·〉)‖2V .

Thus, the functional L(v) can be written as:

L(v) =
1

2

{
‖α−1(·)K(v)− z‖2V′ + β〈K(v), v〉

}
(37)

Taking the Gateaux derivative limτ→0 dL(u+ τw)/dτ in order to find the critical point(s) u ∈ W ,
we have for any perturbation w ∈ W such that u+ τw ∈ W

0 = lim
τ→0

d

dτ

{〈
α−1(·)G−1(〈z, ·〉 − α−1(·)K(u+ τv), ·〉), G−1(〈z, ·〉 − α−1(·)K(u+ τv), ·〉)

〉
,

+ β〈K(u+ τv), u+ τv〉

}
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and applying G−1 on K(·, u) ∈ V ′, it reads for any w ∈ W〈
α−1(·)G−1

(
〈z, ·〉 − 〈K(u), ·〉

)
, G−1(〈K(w), ·〉)

〉
+ 〈K(u), v〉

=
〈
α−1φu, G

−1(〈K(u), ·〉)
〉

+ 〈K(u), w〉
= 〈α−1K(w), φu〉+ 〈K(u), w〉 = 0.

(38)

As a result, combining (38), (36), and the self-adjointness of K, we have the system in the continuum
becomes {

〈φu, v〉+ 〈α−1K(u), v〉 = 〈z, v〉, ∀v ∈ V,
〈α−1K(w), φu〉+ β〈K(u), w〉 = 0, ∀q ∈ Q.

(39)

The first equation implies that:

φu + α−1K(u) = z in V ′. (40)

Hence, by w ∈ W ⊆ V , when plugging w to the second equation in (36) we have

〈z − α−1K(u) + βu,K(w)〉 = 0 for w ∈ W, (41)

and the theorem follows.
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