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Abstract— Identification and tracking of dynamic objects are 

essential concepts in the field of robotic vision. This paper 

presents the design of a four-wheeled robot that can detect a 

target object, track the object, and maintain a constant distance 

from it. In this design, S5P6818 system-on-a-chip (SoC) is used as 

the core processing unit with embedded Linux OS, and a USB 

video class (UVC) camera is used for image acquisition. The 

robot captures real-time images and tracks the object based on a 

joint tracking algorithm of enhanced Continuously Adaptive 

Mean Shift (CAMShift) and Kalman filter (KF). A combination 

of Bang-bang controller and proportional–integral–derivative 

(PID) controller is used to control the robot's real-time motion. 

The experimental results show that the robot can track a target 

object and keep a certain distance in real-time, proving its 

effectiveness and robustness. 

Keywords- Embedded robotics; robotic vision; embedded 

system; mobile robot; object tracking; CAMShift 

I. INTRODUCTION  

At present, autonomous robots are widely used in various 
fields. An autonomous robot can determine the actions to 
perform a task, with the assist of a perception system [1]. The 
development tendency of the future robots is further intelligent. 

The basics of autonomous mobile robots consist of the 
fields of locomotion, perception, cognition, and navigation [2]. 
In the field of cognition and navigation, artificial intelligence 
plays an important role in the process of information and 
perform tasks more efficiently. Among them, vision is one of 
the most important sensory systems. The vision-based 
approach not only provides multiple parameters such as color 
and shape, but also is the simplest and most effective way 
enabling artificial intelligence technology to reach the goal.  

In recent years, with the expansion of the intelligence 
requirements in industry and research, machine vision has also 
been rapidly developed and gradually applied to various fields, 
such as image identification and pattern recognition. Due to the 
high computation overhead and power consumption, many of 
the machine vision designs are not suitable for resource-
restrained embedded platforms [3]. Driven by the proposition 
of edge computing [4] and the progress of computing power on 
embedded processors, some designs are also implemented on 
embedded systems. 

This paper aims at the target-tracking robot system for the 
Advanced RISC Machines (ARM) platform. Based on the real-
time images, the robot is able to track an object and keep a 
certain distance using a joint tracking algorithm. Users can 
monitor and control the robot remotely through a desktop 
application on the PC. The experiments show that the robot has 
the advantage of low-cost and robustness. 

II. SYSTEM STRUCTURE 

The system's overall architecture is composed of a desktop 
application on the host PC and the robot. The desktop 
application is able to monitor and control the robot remotely. 
Based on the concept of edge computing, the majority of tasks 
are executed by the main processing unit on the robot, 
including image acquisition, object tracking algorithm, and 
data transmission. 

A. Remote-control Application 

Presented in Fig. 1, the desktop application provides a 
graphical user interface (GUI) for users to control and monitor 
the robot remotely. The wireless communication between the 
robot and host device opts for the User Datagram Protocol 
(UDP) in sockets programming to improve real-time 
performance and reduce latency [5]. Using click-and-drag on 
the real-time image, a screenshot of the target object can be 
captured and transmitted to the robot as a sample. 

Figure 1.   Desktop application GUI, showing that a polar bear model is 

being tracked 
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B. Robot Hardware Structure 

The robot is equipped with embedded control boards, Wi-Fi 
adapter, UVC camera, servo and DC motors. An image of the 
robot is displayed in Fig. 2. 

Figure 2.  Image of the mobile robot 

The robot adopts two controllers, including the S5P6818 
SoC and STM32F103 Cortex-M3 microcontroller (MCU). The 
S5P6818 SoC is an octa-core Cortex-A53 CPU board, with 
dynamic frequency scaling up to 1.4GHz. Embedded Linux OS 
provides interaction with the low-level hardware elements. As 
previously discussed, the S5P6818 SoC performs the core 
tasks. For image process and wireless communication, the 
OpenCV library and device driver of the RT5572 USB Wi-Fi 
adapter are ported to the embedded platform. The forward-
facing UVC camera is connected with the CPU board through 
USB for image acquisition. 

The STM32F103 Cortex-M3 MCU is used as a lower 
controller, responsible for controlling the motion of the robot, 
connected with the CPU board via the UART. The Cortex-M3 
MCU is connected with two DC motors for speed control and a 
servo for steering control. A closed-loop control algorithm is 
implemented to control DC motors' real-time speed and 
rotation angle of the servo. 

C. Robot Software Structure 

The robot's software framework can be divided into two 
subsystems: the vision subsystem and the robot control 
subsystem. The vision subsystem is implemented on the 
S5P6818 SoC. The subsystem includes four blocks: image 
acquisition, target tracking, distance estimation, and data 
transmission. The image acquisition block uses the UVC 
camera with a fixed view to capture real-time colored images, 
which have a resolution of 640 × 480 and a frame rate of 30 
frames per second (FPS). In the target tracking block, the 
tracking algorithm is based on an enhanced joint tracking 
algorithm, which overcomes some disadvantages of traditional 
CAMShift. After that, the distance between the object and the 
robot will be estimated based on the object location on the 
image.  

The robot control subsystem is implemented on the Cortex-
M3 MCU, which controls the robot's real-time speed and 
steering. The base algorithm of this subsystem is a combination 
of PID and Bang-bang controllers. In this way, the robot can 

follow the target object's motion and keep a certain distance 
from the target object.  

III. TARGET TRACKING ALGORITHM 

A. CAMShift Algorithm 

For object detection and track, the basic algorithm used in 
the system is the CAMShift algorithm. The CAMShift was first 
proposed by Bradski [6] and introduced the idea of adaptively 
adjusting the tracking window size and the probability 
distributions of targets. CAMShift is designed for dynamically 
changing distributions, which can be used to track dynamic 
objects in a lightweight and robust way. Comparing with other 
deep-learning-based methods such as Structure-Aware 
Network (SANet) and Multi-Domain Network (MDNet) 
trackers, CAMShift has lower complexity and consumption of 
computation resources while keeping a satisfying level of 
accuracy [7].  

Illustrated in Fig. 3, the process of the traditional CAMShift 
algorithm can be summarized as follow: First, initialize the 
tracking window and convert the color model of real-time 
image from RGB to HSV. Then, extract the Hue (H) 
component and generate a color histogram within the tracking 
window. After that, the center of mass in the tracking window 
will be calculated based on the color probability distribution 
map derived from the histogram in the tracking window. 
Finally, move the center of the tracking window to the center 
of mass and upgrade the size of the tracking window. The 
iteration will repeat until the center of mass converges or the 
number of iterations reaches the maximum value. The updated 
size and position of tracking window will be used as the initial 
parameters in the next frame of image. The loop of iterations 
can fulfil the continuous track of an object. 

Figure 3.  Block diagram of CAMShift algorithm [6] 

Although CAMShift is widely used in object tracking 
because of low complexity and good real-time performance. 
However, there are still some drawbacks of CAMShift. First, if 
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other objects block the target, the tracking window is likely to 
diverge in irregular manners [8]. Similarly, if the target moves 
too fast, the tracking windows of the previous frame and 
current frame have no overlapped area. The track is also likely 
to fail. Additionally, if the track fails, it is unable to restore 
automatically even if the target returns to the original position. 

Moreover, the traditional design requires manual 
initialization of the tracking window, providing the position of 
region around the target [9]. However, due to the inevitable 
latency in communication between the robot and the host 
device, the data transmission may cost more time than the time 
interval between two frames. The target's position might have 
left its initial region while receiving the initial parameters from 
the host device. It will reduce the quality of detection and 
causes drifts of the tracking window [10]. 

B. Enhancements on CAMShift 

In order to solve the common issues of CAMShift and 
improve its stability in the actual environment, several methods 
are used to enhance the CAMShift algorithm. First, a 2D hue-
saturation (HS) histogram replaces the traditional histogram 
solely based on hue component, improving the accuracy and 
robustness of CAMShift in complex environments. Second, the 
Kalman filter is employed to estimate the target's motion, 
which is used as a supportive tracking method when the target 
gets occluded. Additionally, the CAMShift algorithm is 
modified to automatically detect target in the entire frame 
based on the sample image, which also enables the re-detection 
when track fails. Combined with the methods above, the 
enhanced CAMShift algorithm is able to work appropriately on 
the embedded platform, showing satisfying real-time 
performance.  

The enhanced algorithm combines CAMShift with the 
Kalman filter and automatic target detection. When the track 
fails, re-detection can be executed to detect target and restore 
tracking. Continuous and stable tracks can be performed in a 
complex environment or when obstacles block the target.  

1) Multi-dimensional Histogram: The standard CAMShift 

algorithm only uses the hue component to generate a 

histogram. It is an efficient way to track the target with a 

simple appearance. However, the histogram's information is 

lopsided, and the track is likely to fail when the background is 

in a similar color [11]. In order to make better use of the color 

information, the saturation component is taken into 

consideration to implement the 2D HS histogram, replacing the 

traditional 1D histogram. The hue and saturation components 

are divided into 30 and 16 intervals, resulting in a total of 480 

bins in the histogram. The number of pixels located in the 

certain hue and saturation interval will be assigned to the 

corresponding bin. 

2) Automatic detection: The target detection is based on 

the sample image sent from the host PC. At the beginning of 

the detection process, the sample image will be loaded to 

generate a histogram, which will be used to detect the target on 

the entire image. The detection process usually iterates several 

times. When the tracking windows' size change in two 

consecutive frames is less than 5%, it is determined as a 

successful detection. The location, size and histogram of the 

current tracking window will be used as the initial state for the 

tracking process. 

3) Kalman filter: The KF is a popular algorithm in real-

time guidance, navigation, and control. The KF observes 

measurements over time and makes an estimation based on the 

observation. It only requires the states of a target in previous 

and current frames. Therefore, the KF is used to predict the 

center of the tracking window in this design. 

KF contains two steps: prediction and update, which are 

implemented upon the linear system model below [12]: 

𝑥k =  𝐹𝑥k−1 +  𝑤k,   () 

𝑧k =  𝐻𝑥k + 𝑣k,   () 

where the xk and xk-1 represent the state at k and k-1 

respectively. In (1), the term F is the state-transition model, 

and wk represents the Gaussian-distributed process noise. In 

(2), zk represents the observation at time k, H is the 

observation model, and vk is the Gaussian-distributed 

observation noise. 

In the prediction step, the priori state estimate xk|k-1 and 

priori estimate error covariance Pk|k-1 can be derived by: 

𝑥k|k−1 =  𝐹𝑥k−1|k−1 +  𝑤k, () 

𝑃k|k−1 =  𝐹𝑥k𝐹𝑇 +  𝑄,  () 

 

where Q is the process noise covariance matrix. 

In the upgrade step, the Kalman gain matrix Kk can be 

calculated by: 

𝐾k =  𝑃k|k−1𝐻𝑇(H𝑃k|k−1𝐻𝑇 + R)−1, () 

where R is the covariance of the observation noise. 

Then the prediction results can be adjusted by: 

𝑥k|k =  𝑥k|k−1 + 𝐾k(𝑧k − H𝑥k|k−1), () 

𝑃k|k = (𝐼 − 𝐾k𝐻)𝑃k|k−1.  () 

The target's movement on the image can be considered in a 

uniform speed within the time interval between two frames 

because the time interval is very short (i.e. around 33 ms). 

With the assist of the Kalman filter, the tracker is able to work 

properly when the target suffers occlusion.  

4) Target re-detection: As mentioned previously, after the 

failure of tracks, it is unable to regain the tracks. In this paper, 

the Bhattacharyya distance between the histograms of the 

initial state and current frame is used to determine if the 

tracking is failed. The threshold value of the Bhattacharyya 

distance is set as 0.6 in this design. If the Bhattacharyya 

distance exceeds the threshold (i.e. less similarity), it will be 

defined that the CAMShift tracker is failed, and the KF 

prediction result will be used as the new location of the 

tracking window. The size of the new tracking window will be 

the same as the previous state. Otherwise, the CAMShift 

tracker works properly, and the CAMShift tracking result is 

used to upgrade the tracking window. If the CAMShift tracker 

fails consecutively over 60 times (i.e. unable to find the target 
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within 2 seconds), the target detection procedure will be called 

to re-detect the target. 

C. The Joint Tracking Algorithm 

In order to achieve accurate and robust tracking, the joint 
tracking algorithm is implemented, using CAMShift as the 
basic algorithm and combining with the enhancements 
introduced in the previous chapter. Fig. 4 shows the flow chart 
of the tracking process. The process is listed below: 

1) Load a sample image and generate a sample 2D HS 

histogram. 

2) Execute the automatic detection in the entire image. 

After successful detection, save the location, size and 

histogram of the tracking window as initial states. The central 

coordinates of the tracking window are also used as the initial 

states of the KF. 

3) Make the KF prediction and compute CAMShift 

tracking process. Compute the Bhattacharyya distance 

between the histograms of the current tracking window and 

initial state. If the Bhattacharyya distance is over 0.6, the 

CAMShift tracker is failed, and execute step 4 and 5. 

Otherwise, execute step 6. 

4) If the number of consecutive CAMShift failures is over 

60, restart from step 2. Otherwise, use the KF prediction result 

as the tracking window's central coordinates and keep the 

window size unchanged. Update the tracking window based on 

the KF prediction. 

5) The CAMShift tracking result is accurate. Update the 

tracking window based on CAMShift tracking result. 

6) Update the KF using the current central coordinates of 

the tracking window as observation results. The current 

position and size of tracking window will be used on the next 

frame. 

Figure 4.   Flowchart of the joint tracking algorithm 

 

IV. DISTANCE ESTIMATION ALGORITHM 

When objects are being tracked, it is essential to determine 
their position and orientation with respect to the robot to 
navigate the object. In vision-based methods, a method uses the 
stereo camera systems that require at least two cameras or 
changing camera position [13]. Despite providing high-
accuracy measurements, it requires higher hardware cost and 
system power consumption. In order to provide effective range 
estimation on a resource-strained embedded platform, 
monocular cameras are preferred for fulfilling the task. 

Previous designs show that for monocular camera systems, 
it is currently unavailable to accurately estimate the distance 
that suits all cases without external sensors assist [14]. 
However, the accuracy of estimation can be improved to a 
satisfying level for specified environments within an effective 
range. In this paper, the distance estimation method is based on 
land objects located on the same ground surface as the robot. 
With zero roll and yaw angles of the camera, distance can be 
estimated through object position in the image based on 
pinhole camera geometry and similarity of triangles [15], 
shown in Fig. 5. 

Figure 5.   Diagram of imaging geometry 

The center of the entire image is approximated as the 
vanishing point in the image, and the bottom edge of the 
tracking window is considered as the bottom line of the target 
object. If the object moves far away from the robot, the bottom 
line will approach the horizon, which passes through the 
vanishing point. The vertical distance in pixels between the 
bottom line of the tracking window and the horizon is inversely 
proportional to the real distance between the object and robot, 
with a factor between pixels and centimeters. The estimated 
distance d can be calculated as: 

𝑑 =  
𝑓 𝐻𝑅

𝑦𝑏−𝑦0
,   () 

where f represents the camera focal length, HR represents 
the height of the robot, and yb and y0 are the vertical 
coordinates of the tracking window bottom line and vanishing 
point in pixel. 

V. ROBOT CONTROL ALGORITHM 

The robot's speed and steering are controlled by DC motors 
and a DS3119 servo, respectively. In this paper, a PID 
controller is applied on the servo, and Bang-bang + PID two-
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mode controller is used to control the real-time speed. PID 
controllers are widely used in industrial applications due to 
their robustness and functional simplicity [16]. In order to 
reduce the computing complexity, a simplified proportional-
plus-derivative (PD) controller is used to control the steering. 
The purpose of applying the PD controller is to keep the target 
object within the central region in the field of view. 

The horizontal central coordinate of the tracking window x 
is the current state, and the expected state x0 is the horizontal 
coordinate of the center in the entire image. In the 640 × 480 
images, the value of x0 is 320. Hence the error of horizontal 
coordinate (ex) can be obtained by: 

𝑒𝑥 = 𝑥 − 𝑥0.   () 
The output of the PD controller can be calculated by: 

𝑢𝑥 =  𝐾𝑃𝑥𝑒𝑥 + 𝐾𝐼𝑥𝑒𝑥.  () 
The DC motors are controlled by PID controllers. The 

purpose of using the PID controller is to keep a desired safe 
distance between the robot and the target object, by adjusting 
real time speed. The current distance d is estimated in cm 
through the method stated in the previous chapter. The 
expected state d0 is the desired safe distance (100 cm). The 
error of distance (ed) can be obtained by: 

𝑒𝑑 = 𝑑 − 𝑑0.   () 
The output the PID controller can be calculated by: 

𝑢𝑑 =  𝐾𝑃𝑑𝑒𝑑 + 𝐾𝐼𝑑 ∫ 𝑒𝑑 dt + 𝐾𝐷𝑑
𝑑𝑒𝑑

𝑑𝑡
. () 

Under extreme circumstances, the Bang-bang controller is 
used to control the motor. The Bang-bang controller has two 
thresholds. In this paper, the two thresholds are set at 300 cm 
and 48 cm, respectively. When the estimated distance exceeds 
300 cm, the robot is too far from the target. The motor will 
apply maximum positive output. On the contrary, when the 
distance is less than 48 cm, the object is too close to the object. 
The motor will reverse with maximum output to avoid 
collisions. The Bang-bang controller can reduce the system 
response time under extreme circumstances, improving the 
efficiency and robustness of the system. 

VI. EXPERIMENT RESULTS 

A. Occlusion Experiment 

In the occlusion experiment, the tracking performances of 
the joint tracking algorithm and standard CAMShift are tested, 
presented in Fig. 6, where the tracking windows of the joint 
tracking algorithm and standard CAMShift are illustrated in red 
and blue respectively. A blue notebook is the target object, 
moving from right to left and passing through an obstacle. 
When the target gets fully occluded, the standard CAMShift 
tracking window wrongly tracks the black area due to color 
interference. The tracking cannot be restored when the target 
re-appears in the field of view. However, the Kalman filter is 
able to predict an approximate position of the target for the 
joint tracking algorithm. When the target appears again, it can 
be tracked continuously and stably. The result proves that the 
joint tracking algorithm has better robustness to short-term 

occlusion and color interference, overperforming the standard 
CAMShift. 

Figure 6.   Occlusion experiment 

B. Distance Measurement Experiment 

In this experiment, the accuracy of the distance estimation 
algorithm is tested by measuring the same object placed at 
different distances, as presented in Fig.7. The real distances 
were pre-measured. The estimation was performed 20 times at 
each distance, and the average estimation value was calculated 
and recorded. The results are presented in Table I.  

Figure 7.   The same object placed at distances of 50 cm (a), 100 cm (b) and 

150 cm (c) from the robot, with estimates displayed on the top-left 

TABLE I.  AVERAGE ESTIMATION RESULTS IN DIFFERENT DISTANCES 

Real Distance 

(cm) 
50 100 150 200 250 300 350 400 

Average 
Estimation 

(cm) 

51.1 
100.

3 

147.

8 

196.

1 

249.

2 

293.

9 

316.

6 

357.

4 

Error rate (%) -2.2 -0.3 1.9 1.9 0.3 2.0 9.5 10.7 

It can be observed that the estimation error is able to 
maintain a relatively low level for measurements within 300 
cm. At distances over 300 cm, the error rates go up to around 
10%. Hence, the effective range of the distance estimation 
algorithm is set as 3 meters. 

C. Real-time Tracking Experiment 

In the real-time tracking experiment, the robot was tested in 
an indoor environment sized 3m × 3m. The route includes 
straight paths and turns. A red notebook carried by the operator 
was set as the target object. The safe distance was set as 1m. 
Fig. 8 presents the tracking path result, illustrating the paths of 
target and robot in red and blue respectively.  

The result shows that, in linear tracking, the algorithm has 
satisfying tracking accuracy. During the experiment, the robot 
and the target keep a distance of 1m. During steering, the robot 
is able to select the optimal path to steer. In some cases, 
although the robot loses the target for a while, it can still re-
locate and continue tracking after re-detection. Overall, the 
processing speed of the tracking system is fast enough for real-
time applications, with the average video frame rate around 30 
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FPS. The movement of the robot is recorded by a camera, and 
some of the images are displayed in Fig. 9. 

Figure 8.   Plotted paths of target (red solid line) and robot (blue dotted line) 

Figure 9.   The robot in operation for target tracking 

VII. CONCLUSION 

In this paper, the target tracking robot system based on 
embedded platform is proposed and investigated. Integrated 
with CAMShift, Kalman filter and additional measures, the 
joint tracking algorithm is used for target tracking, increases 
the real-time performance and robustness of the tracking 
algorithm. Proved by the experimental results, the robot can 
estimate the real-time distance with a satisfying accuracy 
within the effective range, and the target is tracked properly. 
The robustness of the tracking algorithm is enhanced, 
preventing it from losing control due to occlusion and color 
interferences. The future work will consider combining other 
tracking algorithms for more complex environments. 
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