

A Vision-based Target Tracking Robot System for

Embedded Platforms

Yi Liu

Department of Engineering and Design

University of Sussex

Brighton, UK

yl701@sussex.ac.uk

Abstract— Identification and tracking of dynamic objects are

essential concepts in the field of robotic vision. This paper

presents the design of a four-wheeled robot that can detect a

target object, track the object, and maintain a constant distance

from it. In this design, S5P6818 system-on-a-chip (SoC) is used as

the core processing unit with embedded Linux OS, and a USB

video class (UVC) camera is used for image acquisition. The

robot captures real-time images and tracks the object based on a

joint tracking algorithm of enhanced Continuously Adaptive

Mean Shift (CAMShift) and Kalman filter (KF). A combination

of Bang-bang controller and proportional–integral–derivative

(PID) controller is used to control the robot's real-time motion.

The experimental results show that the robot can track a target

object and keep a certain distance in real-time, proving its

effectiveness and robustness.

Keywords- Embedded robotics; robotic vision; embedded

system; mobile robot; object tracking; CAMShift

I. INTRODUCTION

At present, autonomous robots are widely used in various
fields. An autonomous robot can determine the actions to
perform a task, with the assist of a perception system [1]. The
development tendency of the future robots is further intelligent.

The basics of autonomous mobile robots consist of the
fields of locomotion, perception, cognition, and navigation [2].
In the field of cognition and navigation, artificial intelligence
plays an important role in the process of information and
perform tasks more efficiently. Among them, vision is one of
the most important sensory systems. The vision-based
approach not only provides multiple parameters such as color
and shape, but also is the simplest and most effective way
enabling artificial intelligence technology to reach the goal.

In recent years, with the expansion of the intelligence
requirements in industry and research, machine vision has also
been rapidly developed and gradually applied to various fields,
such as image identification and pattern recognition. Due to the
high computation overhead and power consumption, many of
the machine vision designs are not suitable for resource-
restrained embedded platforms [3]. Driven by the proposition
of edge computing [4] and the progress of computing power on
embedded processors, some designs are also implemented on
embedded systems.

This paper aims at the target-tracking robot system for the
Advanced RISC Machines (ARM) platform. Based on the real-
time images, the robot is able to track an object and keep a
certain distance using a joint tracking algorithm. Users can
monitor and control the robot remotely through a desktop
application on the PC. The experiments show that the robot has
the advantage of low-cost and robustness.

II. SYSTEM STRUCTURE

The system's overall architecture is composed of a desktop
application on the host PC and the robot. The desktop
application is able to monitor and control the robot remotely.
Based on the concept of edge computing, the majority of tasks
are executed by the main processing unit on the robot,
including image acquisition, object tracking algorithm, and
data transmission.

A. Remote-control Application

Presented in Fig. 1, the desktop application provides a
graphical user interface (GUI) for users to control and monitor
the robot remotely. The wireless communication between the
robot and host device opts for the User Datagram Protocol
(UDP) in sockets programming to improve real-time
performance and reduce latency [5]. Using click-and-drag on
the real-time image, a screenshot of the target object can be
captured and transmitted to the robot as a sample.

Figure 1. Desktop application GUI, showing that a polar bear model is

being tracked

2021 10th MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 7-10 JUNE 2021, BUDVA, MONTENEGRO

978-0-7381-3361-4/21/$31.00 ©2021 IEEE

20
21

 1
0t

h
M

ed
ite

rr
an

ea
n

Co
nf

er
en

ce
 o

n
Em

be
dd

ed
 C

om
pu

tin
g

(M
EC

O
) |

 9
78

-1
-6

65
4-

39
12

-1
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
M

EC
O

52
53

2.
20

21
.9

46
01

98

我要变身了！
Highlight

我要变身了！
Highlight

我要变身了！
Highlight

我要变身了！
Highlight

我要变身了！
Highlight

我要变身了！
Highlight

我要变身了！
Highlight

B. Robot Hardware Structure

The robot is equipped with embedded control boards, Wi-Fi
adapter, UVC camera, servo and DC motors. An image of the
robot is displayed in Fig. 2.

Figure 2. Image of the mobile robot

The robot adopts two controllers, including the S5P6818
SoC and STM32F103 Cortex-M3 microcontroller (MCU). The
S5P6818 SoC is an octa-core Cortex-A53 CPU board, with
dynamic frequency scaling up to 1.4GHz. Embedded Linux OS
provides interaction with the low-level hardware elements. As
previously discussed, the S5P6818 SoC performs the core
tasks. For image process and wireless communication, the
OpenCV library and device driver of the RT5572 USB Wi-Fi
adapter are ported to the embedded platform. The forward-
facing UVC camera is connected with the CPU board through
USB for image acquisition.

The STM32F103 Cortex-M3 MCU is used as a lower
controller, responsible for controlling the motion of the robot,
connected with the CPU board via the UART. The Cortex-M3
MCU is connected with two DC motors for speed control and a
servo for steering control. A closed-loop control algorithm is
implemented to control DC motors' real-time speed and
rotation angle of the servo.

C. Robot Software Structure

The robot's software framework can be divided into two
subsystems: the vision subsystem and the robot control
subsystem. The vision subsystem is implemented on the
S5P6818 SoC. The subsystem includes four blocks: image
acquisition, target tracking, distance estimation, and data
transmission. The image acquisition block uses the UVC
camera with a fixed view to capture real-time colored images,
which have a resolution of 640 × 480 and a frame rate of 30
frames per second (FPS). In the target tracking block, the
tracking algorithm is based on an enhanced joint tracking
algorithm, which overcomes some disadvantages of traditional
CAMShift. After that, the distance between the object and the
robot will be estimated based on the object location on the
image.

The robot control subsystem is implemented on the Cortex-
M3 MCU, which controls the robot's real-time speed and
steering. The base algorithm of this subsystem is a combination
of PID and Bang-bang controllers. In this way, the robot can

follow the target object's motion and keep a certain distance
from the target object.

III. TARGET TRACKING ALGORITHM

A. CAMShift Algorithm

For object detection and track, the basic algorithm used in
the system is the CAMShift algorithm. The CAMShift was first
proposed by Bradski [6] and introduced the idea of adaptively
adjusting the tracking window size and the probability
distributions of targets. CAMShift is designed for dynamically
changing distributions, which can be used to track dynamic
objects in a lightweight and robust way. Comparing with other
deep-learning-based methods such as Structure-Aware
Network (SANet) and Multi-Domain Network (MDNet)
trackers, CAMShift has lower complexity and consumption of
computation resources while keeping a satisfying level of
accuracy [7].

Illustrated in Fig. 3, the process of the traditional CAMShift
algorithm can be summarized as follow: First, initialize the
tracking window and convert the color model of real-time
image from RGB to HSV. Then, extract the Hue (H)
component and generate a color histogram within the tracking
window. After that, the center of mass in the tracking window
will be calculated based on the color probability distribution
map derived from the histogram in the tracking window.
Finally, move the center of the tracking window to the center
of mass and upgrade the size of the tracking window. The
iteration will repeat until the center of mass converges or the
number of iterations reaches the maximum value. The updated
size and position of tracking window will be used as the initial
parameters in the next frame of image. The loop of iterations
can fulfil the continuous track of an object.

Figure 3. Block diagram of CAMShift algorithm [6]

Although CAMShift is widely used in object tracking
because of low complexity and good real-time performance.
However, there are still some drawbacks of CAMShift. First, if

2021 10th MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 7-10 JUNE 2021, BUDVA, MONTENEGRO

我要变身了！
Highlight

我要变身了！
Highlight

我要变身了！
Highlight

我要变身了！
Highlight

我要变身了！
Highlight

我要变身了！
Highlight

other objects block the target, the tracking window is likely to
diverge in irregular manners [8]. Similarly, if the target moves
too fast, the tracking windows of the previous frame and
current frame have no overlapped area. The track is also likely
to fail. Additionally, if the track fails, it is unable to restore
automatically even if the target returns to the original position.

Moreover, the traditional design requires manual
initialization of the tracking window, providing the position of
region around the target [9]. However, due to the inevitable
latency in communication between the robot and the host
device, the data transmission may cost more time than the time
interval between two frames. The target's position might have
left its initial region while receiving the initial parameters from
the host device. It will reduce the quality of detection and
causes drifts of the tracking window [10].

B. Enhancements on CAMShift

In order to solve the common issues of CAMShift and
improve its stability in the actual environment, several methods
are used to enhance the CAMShift algorithm. First, a 2D hue-
saturation (HS) histogram replaces the traditional histogram
solely based on hue component, improving the accuracy and
robustness of CAMShift in complex environments. Second, the
Kalman filter is employed to estimate the target's motion,
which is used as a supportive tracking method when the target
gets occluded. Additionally, the CAMShift algorithm is
modified to automatically detect target in the entire frame
based on the sample image, which also enables the re-detection
when track fails. Combined with the methods above, the
enhanced CAMShift algorithm is able to work appropriately on
the embedded platform, showing satisfying real-time
performance.

The enhanced algorithm combines CAMShift with the
Kalman filter and automatic target detection. When the track
fails, re-detection can be executed to detect target and restore
tracking. Continuous and stable tracks can be performed in a
complex environment or when obstacles block the target.

1) Multi-dimensional Histogram: The standard CAMShift

algorithm only uses the hue component to generate a

histogram. It is an efficient way to track the target with a

simple appearance. However, the histogram's information is

lopsided, and the track is likely to fail when the background is

in a similar color [11]. In order to make better use of the color

information, the saturation component is taken into

consideration to implement the 2D HS histogram, replacing the

traditional 1D histogram. The hue and saturation components

are divided into 30 and 16 intervals, resulting in a total of 480

bins in the histogram. The number of pixels located in the

certain hue and saturation interval will be assigned to the

corresponding bin.

2) Automatic detection: The target detection is based on

the sample image sent from the host PC. At the beginning of

the detection process, the sample image will be loaded to

generate a histogram, which will be used to detect the target on

the entire image. The detection process usually iterates several

times. When the tracking windows' size change in two

consecutive frames is less than 5%, it is determined as a

successful detection. The location, size and histogram of the

current tracking window will be used as the initial state for the

tracking process.

3) Kalman filter: The KF is a popular algorithm in real-

time guidance, navigation, and control. The KF observes

measurements over time and makes an estimation based on the

observation. It only requires the states of a target in previous

and current frames. Therefore, the KF is used to predict the

center of the tracking window in this design.

KF contains two steps: prediction and update, which are

implemented upon the linear system model below [12]:

𝑥k = 𝐹𝑥k−1 + 𝑤k, ()

𝑧k = 𝐻𝑥k + 𝑣k, ()

where the xk and xk-1 represent the state at k and k-1

respectively. In (1), the term F is the state-transition model,

and wk represents the Gaussian-distributed process noise. In

(2), zk represents the observation at time k, H is the

observation model, and vk is the Gaussian-distributed

observation noise.

In the prediction step, the priori state estimate xk|k-1 and

priori estimate error covariance Pk|k-1 can be derived by:

𝑥k|k−1 = 𝐹𝑥k−1|k−1 + 𝑤k, ()

𝑃k|k−1 = 𝐹𝑥k𝐹𝑇 + 𝑄, ()

where Q is the process noise covariance matrix.

In the upgrade step, the Kalman gain matrix Kk can be

calculated by:

𝐾k = 𝑃k|k−1𝐻𝑇(H𝑃k|k−1𝐻𝑇 + R)−1, ()

where R is the covariance of the observation noise.

Then the prediction results can be adjusted by:

𝑥k|k = 𝑥k|k−1 + 𝐾k(𝑧k − H𝑥k|k−1), ()

𝑃k|k = (𝐼 − 𝐾k𝐻)𝑃k|k−1. ()

The target's movement on the image can be considered in a

uniform speed within the time interval between two frames

because the time interval is very short (i.e. around 33 ms).

With the assist of the Kalman filter, the tracker is able to work

properly when the target suffers occlusion.

4) Target re-detection: As mentioned previously, after the

failure of tracks, it is unable to regain the tracks. In this paper,

the Bhattacharyya distance between the histograms of the

initial state and current frame is used to determine if the

tracking is failed. The threshold value of the Bhattacharyya

distance is set as 0.6 in this design. If the Bhattacharyya

distance exceeds the threshold (i.e. less similarity), it will be

defined that the CAMShift tracker is failed, and the KF

prediction result will be used as the new location of the

tracking window. The size of the new tracking window will be

the same as the previous state. Otherwise, the CAMShift

tracker works properly, and the CAMShift tracking result is

used to upgrade the tracking window. If the CAMShift tracker

fails consecutively over 60 times (i.e. unable to find the target

2021 10th MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 7-10 JUNE 2021, BUDVA, MONTENEGRO

我要变身了！
Highlight

我要变身了！
Highlight

我要变身了！
Highlight

我要变身了！
Highlight

我要变身了！
Highlight

我要变身了！
Highlight

within 2 seconds), the target detection procedure will be called

to re-detect the target.

C. The Joint Tracking Algorithm

In order to achieve accurate and robust tracking, the joint
tracking algorithm is implemented, using CAMShift as the
basic algorithm and combining with the enhancements
introduced in the previous chapter. Fig. 4 shows the flow chart
of the tracking process. The process is listed below:

1) Load a sample image and generate a sample 2D HS

histogram.

2) Execute the automatic detection in the entire image.

After successful detection, save the location, size and

histogram of the tracking window as initial states. The central

coordinates of the tracking window are also used as the initial

states of the KF.

3) Make the KF prediction and compute CAMShift

tracking process. Compute the Bhattacharyya distance

between the histograms of the current tracking window and

initial state. If the Bhattacharyya distance is over 0.6, the

CAMShift tracker is failed, and execute step 4 and 5.

Otherwise, execute step 6.

4) If the number of consecutive CAMShift failures is over

60, restart from step 2. Otherwise, use the KF prediction result

as the tracking window's central coordinates and keep the

window size unchanged. Update the tracking window based on

the KF prediction.

5) The CAMShift tracking result is accurate. Update the

tracking window based on CAMShift tracking result.

6) Update the KF using the current central coordinates of

the tracking window as observation results. The current

position and size of tracking window will be used on the next

frame.

Figure 4. Flowchart of the joint tracking algorithm

IV. DISTANCE ESTIMATION ALGORITHM

When objects are being tracked, it is essential to determine
their position and orientation with respect to the robot to
navigate the object. In vision-based methods, a method uses the
stereo camera systems that require at least two cameras or
changing camera position [13]. Despite providing high-
accuracy measurements, it requires higher hardware cost and
system power consumption. In order to provide effective range
estimation on a resource-strained embedded platform,
monocular cameras are preferred for fulfilling the task.

Previous designs show that for monocular camera systems,
it is currently unavailable to accurately estimate the distance
that suits all cases without external sensors assist [14].
However, the accuracy of estimation can be improved to a
satisfying level for specified environments within an effective
range. In this paper, the distance estimation method is based on
land objects located on the same ground surface as the robot.
With zero roll and yaw angles of the camera, distance can be
estimated through object position in the image based on
pinhole camera geometry and similarity of triangles [15],
shown in Fig. 5.

Figure 5. Diagram of imaging geometry

The center of the entire image is approximated as the
vanishing point in the image, and the bottom edge of the
tracking window is considered as the bottom line of the target
object. If the object moves far away from the robot, the bottom
line will approach the horizon, which passes through the
vanishing point. The vertical distance in pixels between the
bottom line of the tracking window and the horizon is inversely
proportional to the real distance between the object and robot,
with a factor between pixels and centimeters. The estimated
distance d can be calculated as:

𝑑 =
𝑓 𝐻𝑅

𝑦𝑏−𝑦0
, ()

where f represents the camera focal length, HR represents
the height of the robot, and yb and y0 are the vertical
coordinates of the tracking window bottom line and vanishing
point in pixel.

V. ROBOT CONTROL ALGORITHM

The robot's speed and steering are controlled by DC motors
and a DS3119 servo, respectively. In this paper, a PID
controller is applied on the servo, and Bang-bang + PID two-

2021 10th MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 7-10 JUNE 2021, BUDVA, MONTENEGRO

mode controller is used to control the real-time speed. PID
controllers are widely used in industrial applications due to
their robustness and functional simplicity [16]. In order to
reduce the computing complexity, a simplified proportional-
plus-derivative (PD) controller is used to control the steering.
The purpose of applying the PD controller is to keep the target
object within the central region in the field of view.

The horizontal central coordinate of the tracking window x
is the current state, and the expected state x0 is the horizontal
coordinate of the center in the entire image. In the 640 × 480
images, the value of x0 is 320. Hence the error of horizontal
coordinate (ex) can be obtained by:

𝑒𝑥 = 𝑥 − 𝑥0. ()
The output of the PD controller can be calculated by:

𝑢𝑥 = 𝐾𝑃𝑥𝑒𝑥 + 𝐾𝐼𝑥𝑒𝑥. ()
The DC motors are controlled by PID controllers. The

purpose of using the PID controller is to keep a desired safe
distance between the robot and the target object, by adjusting
real time speed. The current distance d is estimated in cm
through the method stated in the previous chapter. The
expected state d0 is the desired safe distance (100 cm). The
error of distance (ed) can be obtained by:

𝑒𝑑 = 𝑑 − 𝑑0. ()
The output the PID controller can be calculated by:

𝑢𝑑 = 𝐾𝑃𝑑𝑒𝑑 + 𝐾𝐼𝑑 ∫ 𝑒𝑑 dt + 𝐾𝐷𝑑
𝑑𝑒𝑑

𝑑𝑡
. ()

Under extreme circumstances, the Bang-bang controller is
used to control the motor. The Bang-bang controller has two
thresholds. In this paper, the two thresholds are set at 300 cm
and 48 cm, respectively. When the estimated distance exceeds
300 cm, the robot is too far from the target. The motor will
apply maximum positive output. On the contrary, when the
distance is less than 48 cm, the object is too close to the object.
The motor will reverse with maximum output to avoid
collisions. The Bang-bang controller can reduce the system
response time under extreme circumstances, improving the
efficiency and robustness of the system.

VI. EXPERIMENT RESULTS

A. Occlusion Experiment

In the occlusion experiment, the tracking performances of
the joint tracking algorithm and standard CAMShift are tested,
presented in Fig. 6, where the tracking windows of the joint
tracking algorithm and standard CAMShift are illustrated in red
and blue respectively. A blue notebook is the target object,
moving from right to left and passing through an obstacle.
When the target gets fully occluded, the standard CAMShift
tracking window wrongly tracks the black area due to color
interference. The tracking cannot be restored when the target
re-appears in the field of view. However, the Kalman filter is
able to predict an approximate position of the target for the
joint tracking algorithm. When the target appears again, it can
be tracked continuously and stably. The result proves that the
joint tracking algorithm has better robustness to short-term

occlusion and color interference, overperforming the standard
CAMShift.

Figure 6. Occlusion experiment

B. Distance Measurement Experiment

In this experiment, the accuracy of the distance estimation
algorithm is tested by measuring the same object placed at
different distances, as presented in Fig.7. The real distances
were pre-measured. The estimation was performed 20 times at
each distance, and the average estimation value was calculated
and recorded. The results are presented in Table I.

Figure 7. The same object placed at distances of 50 cm (a), 100 cm (b) and

150 cm (c) from the robot, with estimates displayed on the top-left

TABLE I. AVERAGE ESTIMATION RESULTS IN DIFFERENT DISTANCES

Real Distance

(cm)
50 100 150 200 250 300 350 400

Average
Estimation

(cm)

51.1
100.

3

147.

8

196.

1

249.

2

293.

9

316.

6

357.

4

Error rate (%) -2.2 -0.3 1.9 1.9 0.3 2.0 9.5 10.7

It can be observed that the estimation error is able to
maintain a relatively low level for measurements within 300
cm. At distances over 300 cm, the error rates go up to around
10%. Hence, the effective range of the distance estimation
algorithm is set as 3 meters.

C. Real-time Tracking Experiment

In the real-time tracking experiment, the robot was tested in
an indoor environment sized 3m × 3m. The route includes
straight paths and turns. A red notebook carried by the operator
was set as the target object. The safe distance was set as 1m.
Fig. 8 presents the tracking path result, illustrating the paths of
target and robot in red and blue respectively.

The result shows that, in linear tracking, the algorithm has
satisfying tracking accuracy. During the experiment, the robot
and the target keep a distance of 1m. During steering, the robot
is able to select the optimal path to steer. In some cases,
although the robot loses the target for a while, it can still re-
locate and continue tracking after re-detection. Overall, the
processing speed of the tracking system is fast enough for real-
time applications, with the average video frame rate around 30

2021 10th MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 7-10 JUNE 2021, BUDVA, MONTENEGRO

我要变身了！
Highlight
emmmm

FPS. The movement of the robot is recorded by a camera, and
some of the images are displayed in Fig. 9.

Figure 8. Plotted paths of target (red solid line) and robot (blue dotted line)

Figure 9. The robot in operation for target tracking

VII. CONCLUSION

In this paper, the target tracking robot system based on
embedded platform is proposed and investigated. Integrated
with CAMShift, Kalman filter and additional measures, the
joint tracking algorithm is used for target tracking, increases
the real-time performance and robustness of the tracking
algorithm. Proved by the experimental results, the robot can
estimate the real-time distance with a satisfying accuracy
within the effective range, and the target is tracked properly.
The robustness of the tracking algorithm is enhanced,
preventing it from losing control due to occlusion and color
interferences. The future work will consider combining other
tracking algorithms for more complex environments.

REFERENCES

[1] F. Rubio, F. Valero, and C. Llopis-Albert, “A review of mobile robots:
Concepts, methods, theoretical framework, and applications,”
International Journal of Advanced Robotic Systems, vol. 16, no. 2, p.
172988141983959, 2019.

[2] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to
autonomous mobile robots. Cambridge, MA: MIT Press, 2011.

[3] S. Alyamkin et al., “Low-power computer vision: Status, challenges, and
opportunities,” IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, vol. 9, no. 2, pp. 411–421, 2019.

[4] A. Davis, J. Parikh, and W. E. Weihl, “EdgeComputing: Extending
enterprise applications to the edge of the internet,” in Proceedings of the
13th international World Wide Web conference on Alternate track
papers & posters - WWW Alt. ‘04, 2004.

[5] A. Milanovic, S. Srbljic, and V. Sruk, “Performance of UDP and TCP
communication on personal computers,” in 2000 10th Mediterranean
Electrotechnical Conference. Information Technology and
Electrotechnology for the Mediterranean Countries. Proceedings.
MeleCon 2000 (Cat. No.00CH37099), 2002.

[6] G. Bradski, “Real time face and object tracking as a component of a
perceptual user interface,” Proceedings Fourth IEEE Workshop on
Applications of Computer Vision. WACV98 (Cat. No.98EX201), 1998.

[7] P. Chen and Y. Zhou, “The review of target tracking for UAV,” in 2019
14th IEEE Conference on Industrial Electronics and Applications
(ICIEA), 2019.

[8] J. Cai, Y. Chen, J. Zhu, X. Zheng, and H. Wu, “CAMShift tracking
algorithm for metro entrance and exit security,” 2019 Chinese
Automation Congress (CAC), 2019

[9] S. Boubou, A. Kouno, and E. Suzuki, “Implementing camshift on a
mobile robot for person tracking and pursuit,” in 2011 IEEE 11th
International Conference on Data Mining Workshops, 2011.

[10] E. Emami and M. Fathy, “Object tracking using improved CAMShift
algorithm combined with motion segmentation,” in 2011 7th Iranian
Conference on Machine Vision and Image Processing, 2011.

[11] N. Papanikolopoulos and C. E. Smith, “Issues and experimental results
in vision ‐ guided robotic grasping of static or moving objects, ”
Industrial Robot, vol. 25, no. 2, pp. 134–140, 1998.

[12] M. Roth, G. Hendeby, C. Fritsche, and F. Gustafsson, “The Ensemble
Kalman filter: a signal processing perspective,” EURASIP J. Adv.
Signal Process., vol. 2017, no. 1, 2017.

[13] J. G. Allen, R. Y. D. Xu, and J. S. Jin. Object tracking using camshift
algorithm and multiple quantized feature spaces. In VIP ’05:
Proceedings of the Pan-Sydney area workshop on Visual information
processing, pages 3–7, Darlinghurst, Australia, Australia, 2004.
Australian Computer Society, Inc.

[14] K.-S. Hsu, K.-C. Chen, T.-H. Li, and M.-C. Chiu, “Development and
Application of the Single-Camera Vision Measuring System,” Journal of
Applied Sciences, vol. 8, no. 13, pp. 2357–2368, 2008.

[15] K. Park and S. Hwang, "Robust Range Estimation with a Monocular
Camera for Vision-Based Forward Collision Warning System", The
Scientific World Journal, vol. 2014, pp. 1-9, 2014.

[16] R. H. Bishop and R. C. Dorf, Modern Control Systems: International
Edition, 10th ed. Upper Saddle River, NJ: Pearson, 2005.

2021 10th MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 7-10 JUNE 2021, BUDVA, MONTENEGRO

