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Density functional theory describes matter at the quantum level, but all popular approximations
suffer from systematic errors that arise from the violation of mathematical properties of the exact
functional. We overcame this fundamental limitation by training a neural network on molecular
data and on fictitious systems with fractional charge and spin. The resulting functional, DM21
(DeepMind 21), correctly describes typical examples of artificial charge delocalization and strong
correlation and performs better than traditional functionals on thorough benchmarks for main-group
atoms and molecules. DM21 accurately models complex systems such as hydrogen chains,
charged DNA base pairs, and diradical transition states. More crucially for the field, because our
methodology relies on data and constraints, which are continually improving, it represents a
viable pathway toward the exact universal functional.

C
omputing electronic energies underpins
theoretical chemistry and materials sci-
ence, and density functional theory (DFT)
(1, 2) promises an exact and efficient ap-
proach. However, there is a conundrum

at the heart of DFT: The exact functional—
mapping electron density to energy—is proven
to exist, but little practical guidance is given on
its explicit form. Approximations to the exact
functional have enabled numerous investiga-
tions of matter at a microscopic level and rank
as some of the most impactful works in the
whole of science (3). Nevertheless, despite their
design and success, pathological errors per-
sist in these approximations, and it has been
known for over a decade (4) that the root cause
of many of these errors is the violation of exact
conditions for systems with fractional elec-
trons. In this work, we used deep learning to
train a functional that respects these condi-
tions and thus has excellent performance across
main-group chemistry.
Since the early days of DFT, it has been clear

that approximations improve when they sat-
isfy more of the mathematical constraints of
the exact functional and fit more systems.
Seventeen known exact constraints (but not
the fractional constraints) are satisfied by
the strongly constrained and appropriately
normed (SCAN) functional (5), which achieves
unprecedented accuracy and predictiveness
for bonded systems among the functionals
that are not fitted to any bonded system. Re-

cent work has also begun to address the frac-
tional constraints, of particular interest being
a localized correction on the orbitals (6, 7). In
parallel, machine learning has emerged as a
powerful tool at the level of molecular mod-
eling in chemistry (8, 9) and has been recently
applied to functional development (10, 11).
Proof-of-principle studies have shown that
neural networks (12–16) can be trained on mo-
lecular data, but to date, they are not competi-
tive in accuracy with traditional hand-designed
functionals.
In this work, we present a functional, DM21

(DeepMind 21) that is state of the art on thor-
ough benchmark evaluation and has qualita-
tively improved properties because it obeys
two classes of constraints on systems with
fractional electrons. The types of fractional con-
straints considered were fractional charge (FC)
systems, with a noninteger total charge, and
fractional spin (FS) systems, with noninteger
spin magnetization. In both cases, the exact
energy is a linear interpolation of the energy
of the neighboring integer systems (17, 18). FC
and FS systems are fictitious, but real charge
densities can include regions that have FC or
FS character, and therefore, correctly modeling
these idealized problems helps to ensure that
functionals behave correctly in awide variety of
molecules and materials. The FC and FS lin-
earity conditions have shown to be challenging
to address withmanual design of the functional,
but they are easy to illustrate as examples. This
situation is ideally suited to a deep learning
framework, in which the constraints can be
expressed as data and a functional can be
trained to obey them and to reproduce the
energy of molecular systems.
Our functional is illustrated in Fig. 1. Only

the exchange-correlation term was learned
and interfaced to a standard Kohn-Sham DFT

code [PySCF (19)]. The functional was eval-
uated by integrating local energies computed
by a multilayer perceptron (MLP), which took
as input both local and nonlocal features of
the occupied Kohn-Sham (KS) orbitals, and
can be described as a local range-separated
hybrid. To train the functional, the sum of
two objective functions was used: a regression
loss for learning the exchange-correlation en-
ergy itself and a gradient regularization term
that ensured that the functional derivatives
can be used in self-consistent field (SCF) cal-
culations after training. For the regression
loss, we used a dataset of fixed densities rep-
resenting reactants and products for 2235 re-
actions, and the network was trained to map
from these densities to high-accuracy reaction
energies by means of a least-squares objective
(Fig. 1B). Specifically, 1161 training reactions
represented atomization, ionization, electron
affinity, and intermolecular binding energies
of small main-group, H-Kr molecules, and 1074
represented the crucial FC and FS densities
only for the atoms H-Ar (supplementary ma-
terials, section 2.1). The fixed densities for the
main-group molecules were obtained from a
popular traditional functional [B3LYP (20)],
and the energy labels were either obtained
from literature (21–25) or based on in-house
complete basis set CCSD(T) (coupled-cluster
with single and double and perturbative tri-
ple excitations) calculations. More justifica-
tion on the use of a fixed charge density is
provided in the supplementary materials,
section 4.3. For gradient training, perturba-
tion theory gives the leading order change
in energy, dESCF, after a single SCF iteration
(supplementary materials, section 1.3.1). This
energy change depends on the derivatives of
the exchange-correlation functional (Fig. 1C),
and adding dE2

SCF to the training objective en-
courages the model to avoid making spuriously
large orbital rotations away from reasonable
orbitals during self-consistent iteration. This
approach was considerably cheaper than su-
pervising explicit self-consistent iterations dur-
ing training (26) or Monte Carlo methods to
supervise densities (12). Networks with gra-
dients regularized in this way were able to run
self-consistently on all reactions in large main-
group benchmarks, and DM21 produced ac-
curate molecular densities (supplementary
materials, section 5).
After training, the behavior of the functional

was analyzed, starting with the archetypal FC
and FS systems shown in Fig. 2, A and B. We
compared DM21 with SCAN and popular hy-
brid functionals B3LYP (20), M06-2X (27), and
wB97X (28), with all calculations carried out
by using a modified version of PySCF (19). Gen-
erally, traditional functional approximations
are convex with respect to the FC exact con-
dition and concave with respect to the FS
exact condition, with improved performance
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on FC coming at the cost of a larger error in
FS, and vice versa. DM21 stands out in com-
parison as close to the correct behavior for
both FC and FS. The functional was trained
only on the exact conditions for bare atoms,
but correct behavior was also seen on frag-
ments of molecules for both FC and FS, albeit
with a somewhat larger error. This result shows
that DM21 has not simply memorized the
training examples but has found features in
the charge density of the atom data that use-
fully generalize to molecular systems.
Additional limitations of current function-

als associated with FC and FS errors are in-
correct description of bond breaking for
charged and closed-shell neutral molecules,
respectively. When dissociating a chargedmol-
ecule, functionals with a convex error for FC
artificially lower the energy by delocalizing
charge; as such, they predict that—even at in-
finite separation—a chargedmolecule is bound.
This limitation is the essence of the well-known
charge delocalization error in DFT, and DM21
achieves the correct asymptote as in Fig. 2C.
Related discussion on eigenvalues is availa-
ble in the supplementary materials, section 6.
Traditional functionals also grossly overesti-
mate the energy of a stretched closed-shell
molecule, whereas DM21 yields correct as-
ymptotes (Fig. 2D). This overestimation is often
described in terms of static correlation error
under the interpretation that at large separa-
tion, there is near degeneracy of bonding and
antibonding states that cannot be represented
by a single reference method.
Following previous studies (4, 29), we re-

visited this interpretation and instead sug-
gest that the error is due to the overestimation
of the energy for spin delocalized solutions:
Closed-shell orbitals are not capable of artifi-
cially breaking spin symmetry and localiz-
ing spins, giving asymptotes that are too
high for functionals with FS error. Addition-
ally, we made a quantitative evaluation of
the advantage of DM21 for bond breaking by
using an accurate QuantumMonte Carlo bond
breaking benchmark (BBB) (supplementary
materials, section 8.1). For neutral molecules
at intermediate distances, DM21 could ex-
hibit a “hump” in the energy. This feature,
seen before with other methods such as the
random phase approximation (30), can be
corrected with an extension to fractional oc-
cupation of the closed-shell orbitals (31). Of
the functionals presented, optimization of the
orbital occupations lowered the hump en-
ergy only for DM21 (supplementary materials,
section 3.2).
Having established the improved FC and FS

behavior of DM21 on textbook systems, how
this behavior leads to improved description of
subtle electronic structure in systems of sci-
entific interest is illustrated in Fig. 3. Three
systems from across the sciences were con-

sidered: charge delocalization in a DNA base
pair, magnetic properties of a compressed hy-
drogen chain, and reaction barrier heights
for a ring-opening intermediate with dirad-

ical character. Charge transport in DNA is a
subject of considerable experimental and the-
oretical interest (32), and the distribution of
the charge of an ionized base pair (adenine

Kirkpatrick et al., Science 374, 1385–1389 (2021) 10 December 2021 2 of 5

Fig. 1. Overview of the functional architecture and training. (A) Features of the electron density
computed from KS orbitals are sampled on an atom-centered quadrature grid. Specifically, the input features
are the spin-indexed charge density r, the norm of its gradient rrj j, the kinetic energy density t, and the
(range-separated) local Hartree Fock exchange energy densities ewHF and eHF. These are fed through a shared
MLP that predicts local enhancement factors for local density approximation and Hartree-Fock contributions
to the local exchange-correlation energy density, which is then integrated over all space. A dispersion
correction is then added to the functional. (B) The network is trained by using a dataset of KS input densities
and high-accuracy energy labels for molecules and exact mathematical constraints. (C) The gradient of
the learned functional at fixed electron number (N) is supervised by requesting that the supplied orbitals are
a stationary point of the total energy with respect to unitary rotation of occupied and virtual orbitals
(illustrated by angle d). (D) Once trained, the functional can be deployed in self-consistent calculations.
Numbers on the right indicate dataset sizes (excluding grid augmentations) for the DM21 functional.
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and thymine) is shown in Fig. 3A. A popular
functional such as B3LYP predicts charge
density delocalized over both base pairs, but
this prediction is an artefact driven by the
violations of FC conditions for the individual
bases. Conversely, DM21 is much closer to the
correct FC behavior, and charge is localized
on the adenine unit alone. The difficulties for
traditional functionals to localize charges are
well understood, but artificial spin localization
errors associated with FS violation are less
well studied.
In a highly compressed hydrogen chain, un-

restricted DFT calculations with traditional
functionals localizes spin on what appear to
be antiferromagnetic domains (Fig. 3B). This
observation has been used to bolster the evi-
dence for a magnetic phase transition (33).
Conversely, high-level wave function methods
did not yield spin polarized solutions, sug-
gesting that the symmetry breaking might

be driven by errors in traditional functionals,
and DM21 predicts a ground state with no spin
symmetry breaking. In the example of ring
opening in bicyclobutane (C4H6), the energy
of the disrotatory transition state is highly
overestimated in unrestricted calculations with
functionals such as M06-2X and wB97X but
is correctly predicted by DM21. This is again
linked to FS error; although the transition state
is a singlet, DFT predicts partial localization
of the spin with an intermediate S2h i value
between 0 and 1. This means that functionals
with incorrect FS behavior give large errors.
This result is highly reminiscent of the way
that energy is overestimated for closed-shell
bond breaking. For C4H6, high-level reference
calculations are available to verify that DM21
behaves correctly (34), but we also observed
that hybrid functionals tend to overestimate
barrier heights for transition states with in-
termediate levels of spin polarization in other

sets of reactions (supplementary materials,
section 7.2), and this phenomeneon has also
been observed in the literature for other cy-
cloaddition reactions (35).
Last, beyond the treatment of FC and FS,

analysis ofDM21 is extended to consider broader
classes of main-group chemistry contained
in large benchmark sets. Shown in Fig. 4 is the
summary performance of DM21 compared
with existing functionals on the GMTKN55
benchmark (36), a set of subbenchmarks used
to probe the behavior of functionals for several
important chemical tasks that require extrap-
olation to systems very distinct from the train-
ing set. GMTKN55 includes systems that contain
heavy atoms beyond Kr that were never seen
during training and that therefore we would
not normally recommend for DM21 [we eval-
uated these using pseudo-potentials following
the method in (36)]. We calculated the mean
absolute error for each subbenchmark and
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Fig. 2. Training on fractional electron constraints solves charge and spin
localization and delocalization errors. (A) and (C) relate to the FC constraint, and
(B) and (D) relate to the FS constraint. (A) DM21 correctly captures the piecewise
linear energy of a H atom as the electron number is continuously varied. (Insets)
Deviation from linear behavior for simple atoms (H and C), and small molecules.
(B) DM21 correctly captures the constancy condition of energy upon interpolating
between spin flipped solutions. Shown are the results for a quadruplet (N) and some
doublets (H, CH3, and AlCl2). (C) Correct handling of the fractionally charged states

generalizes to improved cation binding curves for DM21. The oracle is HF
for Hþ

2 and UCCSD(T) for Heþ2 and C2H
þ
6 . (D) Improved performance on

closed-shell bond breaking. DM21 gives the correct stretched limit but
shows a bump at intermediate distances, which is corrected in a restricted
optimization that allows fractional occupation of the highest occupied molecular
orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). Oracles for
these curves come from FermiNet QMC calculations, except for C2H6, which
used UCCSD(T) at the basis set limit.
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report the mean of these means (MoM), with
additional reweighted scores presented in
the supplementary materials, section 8.2.
Overall, the behavior of DM21 is better than
the best hybrid functional and approaches
the performance of the much more expen-
sive double-hybrid functionals. In particu-
lar, DM21 excels at the description of barrier
heights, which is unexpected given that no
transition states were present in the training
data. Ablation of the training data revealed

that the improved performance on this class
stems from the FC and FS training data (sup-
plementary materials, section 8.2). Addition-
ally, DM21 considerably outperforms existing
functionals on the mindless benchmark subset
(MB16-43) of GMTKN55, a set of atomization
energies for randomly generated geometries
of atoms that was designed to test perform-
ance on out-of-distribution exotic geome-
tries. Otherwise well-performing functionals
have large errors for this dataset, such as

wB97-X (>30 kcal/mol error), as well as non-
empirical functionals, such as SCAN (15 kcal/
mol error), but DM21 had an error of <5 kcal/
mol. This dataset is as far from the training
and validation set as is possible, showing that
our functional performs well even when ap-
plied to out-of-distribution generalization ex-
amples. To further stress this out-of-distribution
generalization, benchmarking on the QM9
(37, 38) dataset is shown in Fig. 4B. This is a
collection of 133,857 enumerated isomers of
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Fig. 3. Exact constraints improve perform-
ance on challenging chemistry. (A) Charge
density for a singly ionized adenine-thymine base
pair. B3LYP unphysically delocalizes charge
on both base pairs despite adenine having a deeper
ionization potential. Conversely, DM21 displays
localization of charge on the adenine only.
(B) Spin density for a compressed chain of
24 hydrogen atoms at 0.48 Å separation. The line
density n for each spin channel is overlaid
(supplementary materials, section 3.3). The PBE
functional (41) breaks spin symmetry and leads
to an apparent magnetization along the chain.
This effect is also predicted by other functionals
but is absent in DM21. (C) The conrotatory
pathways of bicyclobutane isomerization. The
HOMO of a single spin channel in an unrestricted
calculation is shown for the transition states.
Spin is delocalized across two atoms in the
conrotatory path, requiring satisfaction of
FS for accurate modeling. The oracle is diffusion
Monte Carlo from (42).

Fig. 4. State-of-the-art performance by DM21 on benchmarks. All errors
are in kcal/mol. (A) The MoM error metric in each class of reactions from
GMTKN55. More details are available in the supplementary materials, section
8.2. DM21 is compared with functionals at rungs two to five, with strong
GMTKN55 metrics from (43): revPBE:D3BJ (44), SCAN:D3BJ, and PW6B95:D30
(45). The dashed black line indicates the performance of the double-hybrid
functional DSD-PBEP86:D3BJ (46). (B) Performance of DM21 compared with the
SCAN functional and the three best performing hybrid functionals on three

benchmark sets: BBB (supplementary materials, section 8.1), GMTKN55,
and QM9. The BBB benchmark measures mean absolute errors for selected
first- and second-row diatomics relative to high-level UCCSD(T) (cation)
and QMC (neutral) calculations. The neutral dimer DFT calculations use
a restricted ansatz with integer occupation. QM9 errors are taken relative
to high-level G4(MP2) theory. (:D3BJ) indicates that the best of SCAN
with or without D3 correction is reported on each metric and similarly for
VV10 variants (47) of wB97X.
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organicmoleculeswith up to nine heavy atoms,
and again DM21 displays state-of-the-art per-
formance when compared with that of exist-
ing functionals.
This work has successfully demonstrated

that deep learning provides a framework for
the development of improved functionals with
new properties. Specifically, development of
DM21 combined highly accurate chemical
data and fractional electron constraints to ad-
dressmajor shortcomings in prior functionals.
This combination led to a better description
of the quantum mechanical interaction of
electrons, from simple atomization energies
to complicated reaction barriers and exotic
compressed hydrogen chains. This work has
focused onmain-group chemistry, but themeth-
odology can easily be extended to incorporate
new data and constraints that will allow even
better functionals to be trained. To illustrate
this flexibility, results from adding the uni-
form electron gas condition to the functional
are provided in the supplementary materials,
section 4.2. Many natural phenomena, from
charge transfer excitations to the stripe phase
in superconducting cuprates (39), rely on sub-
tle effects dependent on the motion of charge
and spin polarization, and we believe that the
functional presented here, and the approach
that we suggest, are central to improving our
understanding of these and other properties
of materials.
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Improving DFT with deep learning
In the past 30 years, density functional theory (DFT) has emerged as the most widely used electronic structure method
to predict the properties of various systems in chemistry, biology, and materials science. Despite a long history of
successes, state-of-the-art DFT functionals have crucial limitations. In particular, significant systematic errors are
observed for charge densities involving mobile charges and spins. Kirkpatrick et al. developed a framework to train a
deep neural network on accurate chemical data and fractional electron constraints (see the Perspective by Perdew).
The resulting functional outperforms traditional functionals on thorough benchmarks for main-group atoms and
molecules. The present work offers a solution to a long-standing critical problem in DFT and demonstrates the success
of combining DFT with the modern machine-learning methodology. —YS
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