
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA

General Transfer Function for the Pinhole Camera
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The theory of partial coherence is applied to the classical pinhole camera. This study extends the previous
work of Reynolds and Ward, and derives the general transfer function for the pinhole camera. System per-
formance is covered for all field conditions, from Fresnel to Fraunhofer, in closed solution. From initial
considerations of the one-dimensional case, a technique for generating low-frequency, controlled-modulation
sinusoidal irradiance distributions is established; its transfer function is determined. Experimental evidence
is introduced to support the theoretical contentions; agreement is obtained.
INDEx HEADINGS: Modulation transfer; Coherence; Resolving power.

ONE of the consequences of applying new analytical
approaches to old physical problems is the addi-

tional insight often provided. These new approaches,
typified in optics by the theory of partial coherence,
permit a wider generality of application and often lead
to a surprising analytical compactness of solution for
many complex problems. This particular theory is con-
cerned with relating optical observables (radiant flux
measurements) and has demonstrated its theoretical
and operational usefulness on a wide range of problems.

The pinhole camera is one of the classical problems of
physical optics, and the description of its behavior
constitutes probably the simplest nontrivial example
of the successful application of scalar diffraction theory.
However, until recently, the pinhole camera has not'
undergone the searching analysis provided by modern
optical theory. While optimum pinhole size and impulse
response (for the Fraunhofer case) can readily be calcu-
lated, little has been determined about its general
transfer function, particularly for those camera geo-
metries which are not Fraunhofer in nature. The
standard specification of near-field impulse response in
Fresnel integrals may have served to inhibit studies in
this region.

In a recent paper,' Reynolds and Ward discussed the
pinhole camera from the point of view of coherence
theory. In that study, they concentrated on the resolu-
tion limit as a function of pinhole diameter and far-field
distance, and were concerned primarily with impulse re-
sponse. The purpose of this paper is to generalize the
Reynolds and Ward results by deriving the complete
transfer function for the pinhole camera system. The
transfer function will be valid for all camera geometries
within the paraxial approximation; interpretation of
this transfer function will substantiate the explanation
of the pertinent physics offered by Reynolds and Ward.

I G. Reynolds and J. Ward, J. Soc. Phot. Instr. Eng. 5,3 (1966).
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THE OPTICAL SYSTEM: GENERAL IMAGE
IRRADIANCE (ONE DIMENSION)

We shall restrict the problem initially to one dimen-
sion, primarily to simplify the notation and establish
the analytical approach with a minimum of mathe-
matical encumbrances. A generalization to the two-
dimensional case, for the pinhole camera, will then
be made.

Consider the optical system of Fig. 1, where the
pinhole (the slit in our one-dimensional analysis) will be
located in the a plane. Both slit width and pinhole di-
ameter will be denoted by 2 e. For descriptive con-
venience, the distances zt and z2 will be termed object
and image distances, respectively, although these
designations may not be literally true for all geometries.
The object plane will be illuminated with light whose
coherence can be measured. Then the object can be
completely described by the mutual-coherence function
Po(g1,p2,r), or by the mutual intensity ro(oA,,g2), when T

is made to vanish.
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FiC. 1. Sketch of the general optical system, showing location of
the pertinent planes, their corresponding coordinate systems, and
the position and orientation of the slit. The6aperture for the pin-
hole camera will also be located in this plane.
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The amplitude transmittance of the slit, the aperture
function, can be fully described by

F+(X) = 1; cI al. (1)-
=0; I a1 > eJ

Reference 1 outlines the general steps taken in relating
the mutual intensity of object and image for this par-
ticular problem. The relationship stems from the appli-
cation of the appropriate Green's functions to the solu-

tion of the Helmholtz equation which describes the
optical propagation. It is therefore not necessary to
repeat those steps, although a different analytical form
is required; the physical rationale is the same for both.
Then, for quasimonochromatic, partially coherent il-
lumination and the standard paraxial approximations,
the most general relation between object and image
mutual intensity can be written2

rP(Xi,X2) == rffJo,t,12)F(a)F oF (a2) - {expK in-1)] exp -t2a 2 )2 ]J'ik Ii2zi) 2 z, ka 2 x)

where

ik (Qi-X,)2 - - il? (a2- X)2-
.expL j exp[ - j!2 - 'd*Upid1U 2 daida 2 ,

k = 2ir/X,

(2)

(3)

and where * indicates the complex conjugate. The constant factors outside the integrals which arise from the
description of the physics of propagation and those resulting from the paraxial approximations have been
suppressed, since they will not be required for (nor their absence affect) the subsequent analysis.

When the exponentials in Eq. (2) are expanded, terms collected and the expressions regrouped, we obtain

ik (xi 2 - x22) ' [ ik (p' 2
j 

21 ,
I, 4~x1 ,x 2) = expi r o(p1A,M2) exp

I 2Z2 ii J L 2z 1 J

{JF(a1) exp[ik {!(i+-jai2-1(7 +iai} ]dcxa

JF* (a2) exp- ih { i(i+;)a922 (X+-± 2 } ]da-2 }cldi 2 .

f I- 2 Z1 Z2 32 Z1 J

We will be interested in determining the observable,
image irradiance. This is accomplished analytically by
making the two image points coincident; i.e.,

Ii(x)= P i(xix
2

) 1 J=2=l (5)

Examination of Eq. (4) shows that the relation of
Eq. (5) will eliminate the quadratic factor in x and re-
move the subscripts on the x's in the exponentials. We
further will require incoherent illumination, since we
will be concerned with transfer functions and these are
defined without ambiguity only for such illuminations
This can be represented analytically for the present
system by4

r =(AItU2) = 1(A)8(PI-/2)- (6)

This is the usual representation for incoherent illumi-
nation, where the delta function implies that each point
in the object is illuminated independent of all others,

2 All integrals in this paper, unless otherwise noted, are evaluated
between - oo and o.

R. Swing and J. Clay, J. Opt. Soc. Am. 57, 1180 (1967).
4 M. Beran and G. Parrent, Jr., Theory of Partial Coherence

(Prentice-Hall, Englewvood Cliffs, N. J., 1964) p. 57.

(4)

no matter how near. The paradoxical requirement of
infinite energy does not enter nor affect the present
consideration. Equation (6) is substituted in Eq. (4) in
integral form,

Po(g1i1 2) = f Io(G)6er-g)6(A-g 2)dg. (7)

When Eqs. (5) and (7) are combined with Eq. (4),
and the integrations carried out over Al and /2, we
obtain the irradiance in the x plane

I (x) = fo). F(i) exp -[ih k±-+ai12

- (-+- }u[,aif F*(a2) exp]-ik {-Q-+i)a22

-(-+-)a2} ]cda2X di. (8)

Finally, since the integrals in a are complex and sym-

Vol. 58



TRANSFER FUNCTION FOR PINHOLE CAMERA

metric, we can write

Ii(X)= o(A)! JF(a)

2 z, Z2 Z2 Z1)I I--tlhldu 9

This equation characterizes image formation for all sys-
tem geometries, near and far fields, for incoherent
illumination. The general system impulse response is
given by the squared modulus of the inner integral.

Direct analytical development of this equation is not
immediately feasible without the aid of simplifying as-
sumptions, since the a integral is a general Fresnel
integral having no closed solution in elementary func-
tions. On the other hand, the a integral after quadrature
is the system impulse response. Its Fourier transform
is the system transfer function, the ultimate aim of this
analysis. Before passing to consideration of this transfer
function, however, it will be useful to simplify Eq. (9)
for the Fraunhofer or far-field case. The far field occurs
when the quadratic term in a becomes vanishingly
small; i.e.,

[(2E) 2 /X][(1/zl)+ (1/Z2)]<<1, (10)

since the actual limits on a are e. This requires that

zl>> (2,E)2/X 1

Z2>> (2 e)

2/X.

When these conditions are met, the quadratic term in
the a integral becomes negligible, and Eq. (9) reduces to

Ii(x)= fIo()IF[(x/Z2)+ (I/L 1)] I 2dp, (12)

where the tilde (-) denotes the Fourier transform of
the aperture function. This is similar to Eq. (15) of
Ref. 1, and represents the image as a convolution of the
object irradiance with the impulse response of the slit.
It constitutes the normal linear-system representation
of the slit operating in the Fraunhofer mode.

Further deferring consideration of the general trans-
fer function, we will find it useful to establish first a
method for obtaining the transfer function for the more
restricted, far-field case. Since it must necessarily be a
limiting factor, this transfer function will aid in the de-
velopment and interpretation of the more general case.

FAR-FIELD TRANSFER FUNCTION
(ONE DIMENSION)

The f ar-field transfer function is given by the Fourier
transform of the system impulse response. Thus,

r ff (w) = th Fou(Xiz2) sh2i-2ftthiod (13)

where we have used the Fourier shif t theorem to remove

the term in 4 from the integral. The resultant expo-
nential has been dropped, since it represents only a
phase shift that occurs as a result of the displacement in
ft. The integrand of Eq. (13) is now rewritten in terms of
the integrals over the pupil plane,

f(a)=1| = F(ai) exp[-ikxa1/Z21da1

f F* (a2) exp[ikxa2/z2]das2 e-2ixdx,. (14)

These integrals are now rearranged to carry out the x
integration first,

FfJ(a) = JF(as)F*(a2)

{fexp[ -27ri(o-+---)x]dx} d.Axd2 ,
XZ2 XZ2

(15)

where the relation of Eq. (3) has been substituted for k
in the exponentials. The inner integral becomes a
delta function, and

Fff ((A) = JJF(a1)F* (a2) (uJ+---) daclda2 .
XZ2 XZ2

We now integrate over a, and obtain

FIff(a)= fF(as2-AXz,)F*(a2)da2.

(16)

(17)

This expression is the self-convolution of the aperture
function with its complex conjugate, and is the classical
definition of the transfer function. Since the aperture
function is rectangular, Eq. (17) may be rewritten with
the aid of Eq. (1) to give

Ff f (a) = - da2 ,

which integrates easily, to become

Fff (a) = 1- (Xz2/2E)o-; I a I < (2 E/XZ2)

=O; I o- > (2 E/ XZ2) .

(18)

(19)

This equation has long been known,5 and shows the
dependence of the transfer function on slit width, as
well as the linear scaling with Z2 . The necessary ana-
lytical approach has now been outlined, and we are
finally prepared to consider the general case.

THE GENERAL SYSTEM TRANSFER FUNCTION

To derive the general transfer function, we return to
the formulation of Eq. (8). The transfer function will
be the Fourier transform of the impulse response, which,
for the general case, is given by the two integrals over

5 E. O'Neil, Introduction to Statistical Optics (Addison-Wesley
Publishing Co., Inc., Reading, Mass., 1963), p. 79.
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the pupil plane, cr. We first define

a= -21[(/Zl)+ (I/X2)], (20)

and then carry out the transformation, eliminating the
/i term through the Fourier shift theorem, as before,

FPT)= f {fF(ai) exp[ik(aa 2- (x/z 2)ai)]da1

f*Y(a 2) expE-ik(aa22- (x/z2)a2)]da2l

.e 2riiadx. (21)

Integration over x is next achieved, by first regroup-
ing terms,

F(Pr) = fF(ai)F* (a2) exp[ika(ai 2-a)]

*fexp[-2ri(o-+ (al/Z2)- (a2/Z'

i~(o)= ffF(ai)F* (a2) expEika(a1
2 -a 2

2)

XZ2 XZ2

We then integrate over a,, as before, an'

(o) = exp[ika (XZ20r)2]f F(a2-Xz 2a)F* (a

expE-ika(2Xzla

The integration over a2 can be accom
calling the discussion preceding Eq. (
aperture functions are purely rectangular,
volution is only weighted by the expon(
in a2, the same approach can be taken. '
integral of Eq. (24) in the light of Eq. (

1
F(ar) -* exp[ika (Xz2u)2]

2e

exp[- 27ri(2az20
z2a-E

This integral is easily evaluated. After
limits, substitution of Eq. (20), and soi
manipulation, we obtain

F(a)= 1- sinc> 27r6(/+- 0z()-

=0; Jaf|> (2E/XZ2).

t))x]dxI

This is the general transfer function of the slit, irre-
spective of the field conditions, and valid for all possible
geometries consistent with the paraxial approximation.
The utility of first having determined the transfer func-
tion for the far-field case now becomes apparent. Not
only is the far-field transfer function the limiting factor
due to system geometry, but it also serves as the envel-
lope of the oscillating sinc function. It is clearly the
optimum transfer function for imaging purposes. The
equation predicts system behavior to be similar to a
lens out of focus. Indeed, it is nearly identical to the
expression obtained by O'Neill6 for an ideal cylindrical
lens out of focus.

For near-field conditions, the function assumes nega-
tive values. This predicts spurious resolution, the
manifestations of which are shown in Fig. 8 of Ref. 1.
The experiments shortly to be described fully confirm
this phenomenon and its characterization by Eq. (26).

EXPERIMENTS WITH THE ONE-DIMENSIONAL
TRANSFER FUNCTION

It is relatively simple, in principle, to verify the trans-
-dald- 2, (22) fer function of Eq. (26); we have done so with several

types of experiments. The object consisted of a sinusoi-
)] dal variable-area target of the kind described by Lam-

berts and Straub.7 The illumination was provided by a
light table with a heavy opal glass surface. The object

)daida2 . (23) was fastened directly to this surface; object illumination
was then essentially incoherent, particularly since the

I obtain object frequency ao never exceeded 0.20 cycles/mm. A
Kodak Wratten number 58 filter was used to narrow
the spectral width commensurate with the quasi-

.2) monochromatic approximation. The image plane con-
tained a scanning photometer whose entrance slit was

a 2)]da 2. (24) maintained parallel to the system slit.

Lplished by re- Object modulation was known, and remained con-
18). Since the stant. The image modulation was determined from the
and their con- trace produced by the scanning photometer. The value

,ential function of the transfer function at the image frequency was then
me rewrite the given by the ratio of the latter to the former modula-
[8) and obtain tion values, corrected for the photometer response.

Sine-Wave Generator

One of the interesting features of this system, which
rendered the experiments more useful, is the variation

*)a2]da 2. (25) of image spatial frequency with slit position. For a
fixed object frequency, spatial frequency increases as

application of the ratio of z 2 /zl is decreased. Thus, the system be-
ne subsequentf comes a sine-wave generator, and is ideally suited to

nme subsequent produce low-frequency, controlled-modulation sinus-
oidal irradiance distributions; photographic-emulsion

XZ20 - testing at very low spatial frequencies is an obvious
; application. Many others come to mind.

2e -Under these circumstances, the system impulse re-

6 See. Ref. 5, p. 94.
(26) 7R. Lamberts and C. Straub, J. Phot. Instr. Eng. 9, 331 (1965).
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sponse, and hence the transfer function, is different for
each value of Z2 /z 1 . It is therefore more useful to change
Eq. (26) to accommodate this variation. Further, since
it uses only one object frequency, corroborative tests
are simplified; since the physics remain the same, verifi-
cation of one will assure validity of the other.

First, we make the definitions

Z1+Z2= C,

= z 1 /z 2,

o-i= 0ao.

(27)

(28)

(29)

The first requires that the distance between the object
and image planes remains constant for a set of determi-
nations in which t is made to vary. The second estab-
lishes the origin at z1 =0, and orders the independent
variable conventionally, from left to right. Equation
(29) shows the relation between image and object fre-
quency produced by the change of slit position.

When Eqs. (27)-(29) are applied to Eq. (26),
we obtain

Ft)o - 2e(i-I) 1

sinc[27reo'o(e+ 0 {1- 2(i+&}] (30)

the transfer function of the sine-wave generator.

Experimental Results

Figure 2 shows plots of Eq. (30) for selected values of
the parameters, with c constant at 100 cm. Experimental
points are added to the figure and indicate a generally
excellent agreement with the predicted values. Spurious
resolution was observed for the 1-mm-slit response; the
observed pattern clearly shifted phase in the im-
age plane.

1.0

.8

.6

1 2 3 4 5 6 7 8 9 10

FIG. 2. Transfer function for the sine-wave generator, with a
constant object frequency, ao, of 0.20 cycles/mm and a total object-
to-image distance of 100 cm. Curve (a) (@): 2e=1 mm; Curve
(b) (n): 

2 e= 2 mm; Curve (c) (A): 2 e=1 mm. Points shown are
experimental; curves are calculated from Eq. (30).
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FIG. 3. Transfer function for the sine-wave generator, with a
constant object frequency, co, of 0.20 cycles/mm and a slit width
of 1 mm. The points shown are experimental; curves are calculated
from Eq. (30). Curve (a) (0): c=1 m; Curve (b) (U): c=2 m;
Curve (c) (A): c = 4 m.

For the far-field portion of the general transfer func-
tion, a reciprocal relation exists between c and 2e. Thus,
response should remain the same when one is doubled,
the other halved. However, this reciprocity does not exist
in the argument of the sinc function, and we should,
therefore, expect a qualitative change for the same slit
width when the system length is increased. Figure 3
shows this variation, with the slit width held constant
at 1 mm. Some experimental points are shown; the
number of them is limited by the experimental difficulty
of achieving sufficient irradiance in the image plane for
the longer distances. Agreement is again excellent.

PINHOLE-CAMERA TRANSFER FUNCTION

We have sufficiently established the validity of the
one-dimensional case to proceed to the pinhole, or two-
dimensional case. Fortunately, it will not be necessary
to repeat the steps leading to Eq. (26), with the obvious
complexity demanded by the added dimension. We
can derive the appropriate transfer function entirely
by analogy.

.5

. .

0 1 2 3 4 5 6 7 ? 9

4

FIG. 4. Transfer function for a pinhole camera operating in a
typically near-field mode. The object frequency, ao, is 0.375
cycles/mm, with the pinhole diam (2e) 1 mm and a total object-to-
image distance of 100 cm. Points shown are experimental; the
curve is calculated from Eq. (34).
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The two-dimensional version of the transfer function
for the far-field condition is simply the self-convoltution
of a clear, circular aperture with its complex conjugate,
the analytical details of which are adequately described
by O'Neill.8 After adjusting constants and variables to
fit the present problem, we obtain for a pinhole of
diameter 2 e

2 = XZ20] [Xa]Z2[- ( _ XZ2]i 2- 1

ir I~)-c 2,E - -2e - V 2,e I -
(31)

This expression describes the transfer characteristics of
the pinhole camera operating in a condition analogous to
infinite conjugates for a lens.

The two-dimensional, circular equivalent to the sinc-
function is the Bessel function of the first kind divided
by its argument

Bessinc (A) =JI (3)/3. (32)

By analogy, then, we can specify the entire transfer
function; this will describe the pinhole-camera per-
formance at all conjugate distances. Thus,

F(a) = F f (a) Bessinc{ 27rE[1+ (Z2/Zl)]a-f f (o) } (33)

For experimental tests, it will be more convenient to
change spatial frequency by moving the pinhole longi-
tudinally. We therefore require a circular, two-dimen-
sional analog to Eq. (30). When the definitions of
Eqs. (27)-(29) are coupled with Eqs. (32) and (33), the

FIG. 6. Photograph of the image of a resolution target for a
pinhole-camera system operating in the far-field mode. For this
system, c =4 m, (2 e) = 1 mm, and I = 1.0. Experimentally observed
resolution limit is the (-1, 5) pattern group, or 0.80 cycles/mm;
the calculated value is 0.77 cycles/mm.

sine-wave-generator transfer function becomes

F(t),= Fff(t) Bessinc{ 27reao(1+ t)Fff (t) j,

where

2 [ Xuocr 7
FffW(,) 0 o=- COS-1

7- 2e ((I+ X ) -

2E(1+ t) 2,E(t+t))]

(34)

(35)

FIG. 5. Photograph of the image of a resolution target for a pin-
hole system operating in the near-field mode. Here, c =1 m,
(2 e) = 1 mm, and t = 1.0. Spurious resolution can he seen for targets
after pattern group (-1, 5).

8 See. Ref. 5, p. 84.

Experimental Results

Figure 4 shows a plot of this function for a pinhole
diam (2E) of 1 mm and a system length (c) of 100 cm.
Experimental points are added to the figure and indi-
cate good agreement. The simple variable-area sinusoi-
dal targets employed in the slit experiments were not
used for these tests. Instead, targets whose optical
transmittance varied sinusoidally in one dimension9

were used. The procedure for obtaining values of the
transfer function was essentially the same as that used
for the slit determinations. However, since these targets
are photographic they tend to scatter, and modulation
transfer values are therefore not as inherently accurate
as those shown in Figs. 2 and 3. General agreement
with the predicted values is nevertheless good.

The curve of Fig. 4 predicts spurious resolution. To
exhibit this, resolution targets were photographed under

9 N. Kapany, J. Eyer, and R. Shannon, J. Opt. Soc. Am. 47,
103 (1957).
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the physical-system conditions appropriate to the curve.
One of these is shown in Fig. 5. The three-bar pattern
can be observed out to group (- 1, 5). Here it vanishes,
as the contrast drops to zero. Subsequent groups show a
clear phase reversal, evidenced by the two-bar pattern.
The theoretical cross-over spatial frequency calculated
from Eq. (34) is slightly greater than 0.80 cycles/mm,
which lies between pattern groups (-1, 5) and (- 1,6).
Again, the agreement between theory and experiment
is excellent.

When far-field conditions on the slit are met, there
should be a gradual decrease of resolution, without
spurious resolution, as predicted by Eq. (31). The far-
field distance for the 1-mm-diam pinhole with a mean
wavelength of 530 mtt is approximately 1.9 m. The sys-
tem response when zi> 1.9 m and Z2> 1.9 m should be
approximately far field. This is demonstrated in the
photograph in Fig. 6, where c= 4 m and the pinhole di-
ameter is 1 mm. The object resolution limit, calculated
according to the classical Rayleigh criterions should be
approximately 0.80 cycles/mm for the experimental
conditions. Since object and image distances were
identical and equal to 2 m, the object and image fre-
quencies were also identical. The resolution observable
in the figure is pattern group (- 1, 5), or 0.80 cycles/mm,
substantiating the hypothesis of the far-field response.

10 See Ref. 1, Eq. (23).

Francis Turner (president-elect) and William
Koch (Director, AIP) at meeting of Board of
Directors in Detroit, 10 October.

The gradual loss of contrast with increasing target fre-
quency is clearly shown and further indicates the ex-
pected response. No spurious resolution can be observed.

CONCLUDING REMARKS

The concepts of the theory of partial coherence ap-
plied to the classical pinhole camera system have led to
the derivation of the general transfer function govern-
ing its behavior with incoherent illumination. The ex-
perimental evidence is in excellent agreement with the
theoretical predictions. Response for any paraxial sys-
tem is fully described, whether in the Fresnel or Fraun-
hofer regions. Incident to this, a technique for genera-
tion of low-frequency, controlled-modulation sinusoidal
irradiance distributions has been described, and its
transfer function determined. The results of this in-
vestigation, both analytical and experimental, have pro-
ceeded from and complement the studies of Reynolds
and Ward. The analytical characterization and under-
standing of the physics of the pinhole camera is thus
modernized once more.
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