
X-ray data analysis

Andrea Marinucci

Università degli Studi Roma Tre marinucci@fis.uniroma3.it

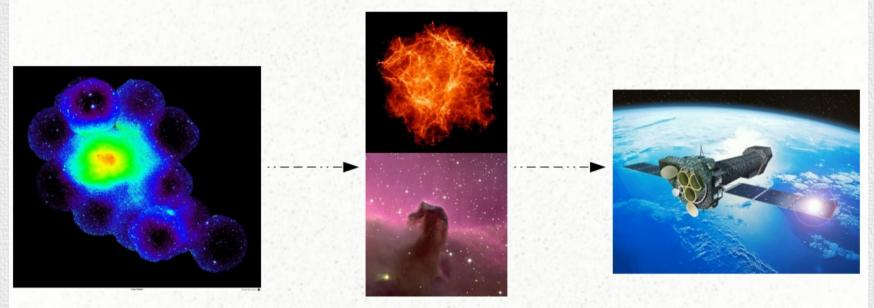
This is intentended to be a general reference for topics relevant to spectroscopy of low-resolution (i.e. CCD) spectra:

- How do we fit spectra?
- [and, by the way, what does it min "fitting a spectrum"?]
- What files do we need? what are they?
- How do we turn the fitting wheel?
- How do we deal with calibration uncertainties?

If I make things too messy, no panic! Look at (e.g.):

http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/manual/XspecSpectralFitting.html

This section is taken from past lectures by Dr. Matteo Guainazzi


This talk is primarily intended for users of CCD spectra:

- ASCA/SIS
- Chandra/ACIS
- Swift/XRT
- Suzaku/XIS
- XMM-Newton/EPIC (-MOS and -pn)
- However, some basic principles can be applied to instruments with even lower resolution:

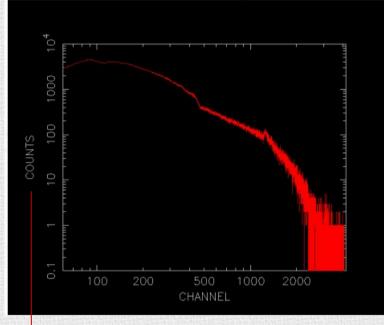
– ROSAT/PSPC, ASCA/GIS, BeppoSAX, RXTE, Suzaku/HXD, <u>NuSTAR/FPMA-B</u> Intrinsic source spectrum s(E) ...

... seen through IGM/ISM absorption a(E) ...

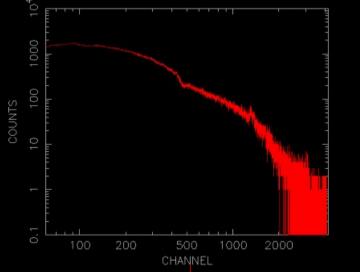
... detected as observed counts C(PHA)

We measure C(PHA). We want to determine S(E) - occasionally A(E). Easy, isn't it?

(Coma Cluster as seen by XMM-Newton: courtesy P.Rodriguez-Pascual)


(IGM simulation: courtesy G.Becker)

(Horsehead Nebula: courtesy M.Richmond)

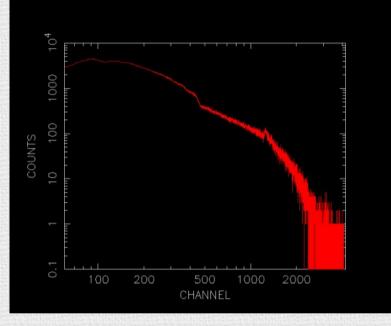

When all candles be out, all <u>cats</u> are gray..

CCD spectra extracted by dmextract, xmm/evselect, or xselect look like this:

Ark 120 – EPIC-pn (AGN)

Coma – EPIC-pn (Galaxy Cluster)

These are "COUNTS per bin", not flux!


These are "CHANNELs", not energy!

First problem: spectral extractors produce spectra in instrumental quantities

When all candles be out, all <u>cats</u> are gray..

And now, something completely different..

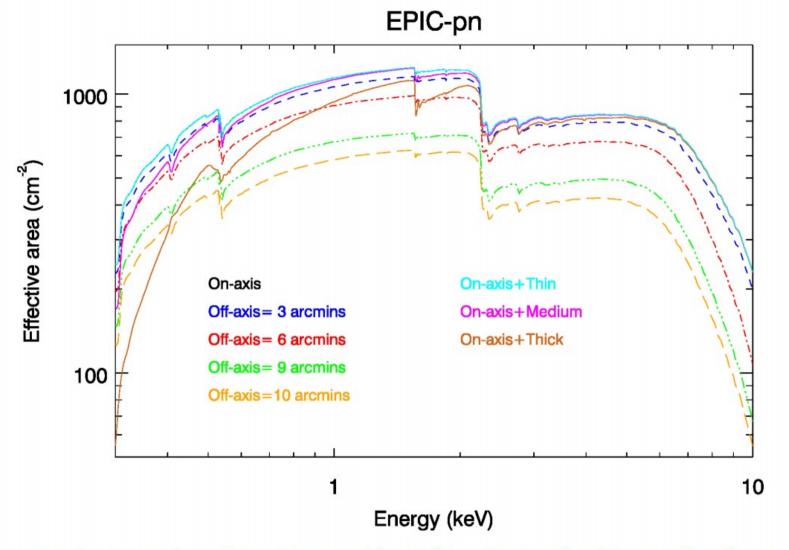
Ark 120 - EPIC-pn (AGN)

CHANNEL

1000

Ark 120 – SIS (AGN)

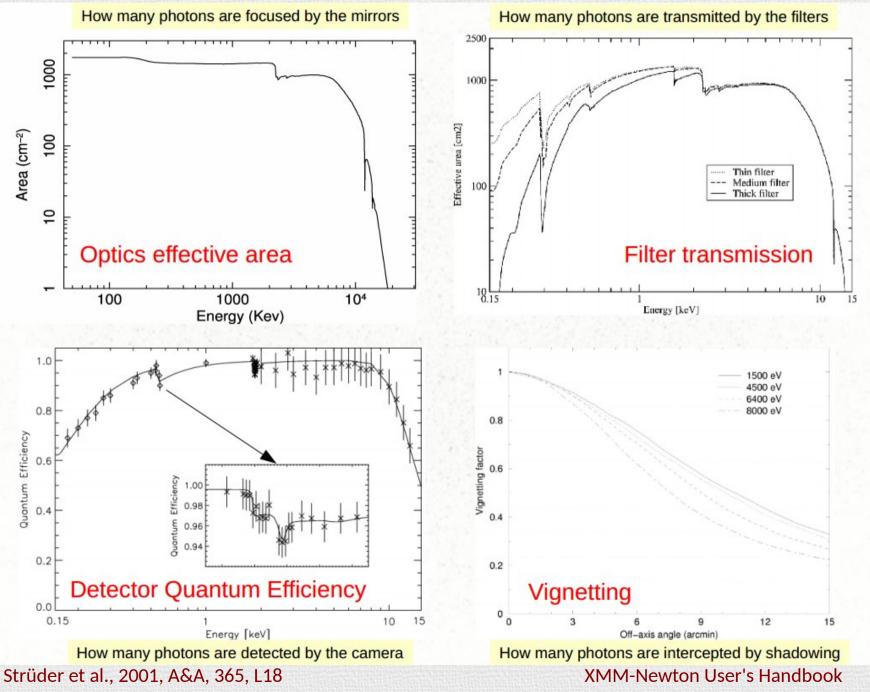
<u>Second problem</u>: the shape of the count spectra is dominated by the transfer function of the telescope+detector: we must "decode" it

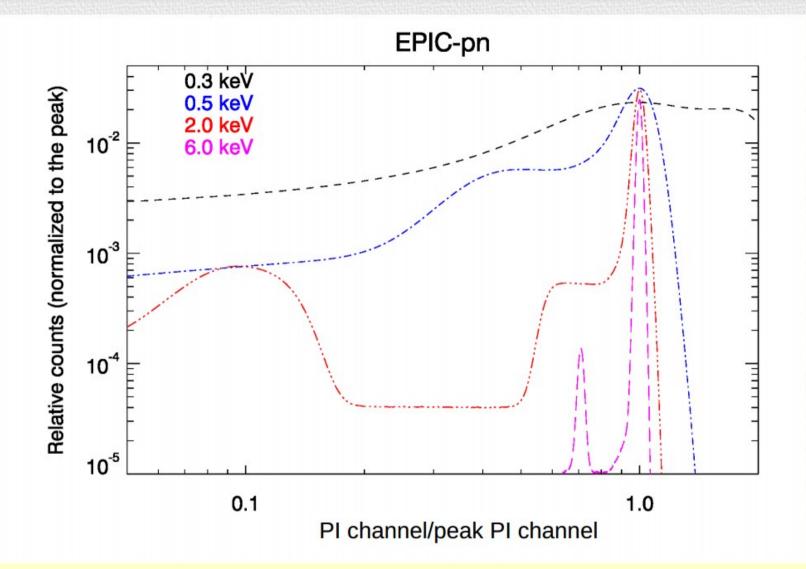

$C(h) = (N\tau) \int dE R(h, E) A(E) s(E)$

- (Nτ) = exposure time
- C(h) = observed spectrum, in units of counts per spectral bin
- R(h,E) = redistribution matrix (a.k.a. "RMF file"), typically normalised to 1
- A(E) = effective area (a.k.a. "ARF" or "ancillary file") in units of area
- *s*(*E*) = intrinsic spectrum (to be determined)
- h = spectral channels, in units of Pulse Height Analysis (PHA) or Pulse Invariant (PI): digital instrumental quantities only loosely related to energy

Davis, 2001, ApJ, 562, 575

We would need to invert this equation to get s(E). However, in general this is not possible. Why?


The effective area A(E)


Measure (conventionally expressed in units of "area") of the collecting power of telescope+filter+detector. It depends on energy and position ("off-axis")

[Beware: not all observatories carry "optical photon blocking filters"]

Components of the effective area

Redistribution matrix R(E)

Response of the detector to a monochromatic line. Highly dependent on the energy. The width of the core defines the instrument resolution: $\sigma_{_{PHA}} = [n^2 + fE]^{0.5} (n^2 \rightarrow \text{noise term})$ The redistribution is sampled at discrete spectral channels:

$$R_{hE}^{i} = \frac{\int_{E_{j-1}}^{E_j} R(i, E') dE'}{(E_j - E_{j-1})}$$

The whole spectra matrix is actually a discrete matrix equation:

$$C_h = T\Sigma_i \Sigma_E R^i_{hE} A^i_E S^i_E dE$$

The cross-talk among different energies prevents the R^{i}_{hE} matrix from being inverted.

Alternative: Forward-folding approach

Forward-folding approach

- 1. Assume a model with its defining parameters
- 2. Define a set of parameter values
- 3. Convolve the model with the instrument response
- 4. Compare the (dis)agreement between the observed spectrum and the folded model through a goodness-of-fit statistical test
- 5. Change the parameter values to minimize the goodness-of-fit test = fit
- 6. Once the best fit is found, calculate the confidence intervals on the best-fit parameters

Spectral packages are looping machines through the steps above (+ some fancy cosmetic features)

The inevitable background is due to various component:

- Space environment
- Instrument
- Astrophysical sources

Synopsis of background components in XMM-Newton EPIC

	SOFT PROTONS	INTERNAL (cosmic-ray induced)	ELECTRONIC NOISE	HARD X-RAYS	SOFT X-RAYS	
Source Few x 100 keV solar protons, accelera magnetospheric reconnection events. D times of high-BG.		Interaction of High Energy particles (cosmic rays) with detector - associated instrumental fluorescence. <u>Main MOS ref.</u>	 Bright pixels & (parts of) columns. (2) CAMEX readout noise (pn). (3) (4) (5) (6) Artificial Low-E enhancements in outer MOS CCDs (Also dark current - thought negligible). 	X-ray background (AGN etc), <u>Single Reflections</u> frum outside FOV Out-of-time (OOT) events (pn)	Local Bubble, Galactic Disk, Galactic Halo, <u>Solar</u> Wind Charge Exchange (SWCX) SWCX. Single Reflections from outside FOV. Out-of-time (OOT) <u>events.(pn)</u>	
Variable? (per Observation)	Flares (up to >1000%). Unpredictable. Significant quiescent component (long flares) - survive GTI screening. (<u>Also additional possible 'arreducable'</u> <u>component</u>).	+/-10%. MOSMOS_: > 2keV continuum unchanged, small changes in fluorescence lines. <1.5keV continuum varies - may be be due to Al redistribution. gs: Difference between continuum and lines (some correlation).	(1) +/-10%. (2) Very constant. (3) (4) Believed constant.	Constant.	Constant. Long obs. may see effect of <u>SWCX</u> <u>SWCX</u> (e.g. variations at 0.5-1.2 keV [Ovu(Mgx)], but not at 2-4 keV).	
Variable? (Obs. to Obs.)	Unpredictable. Affect 30%-40% of time. Flaring SP increasing? Quiescent SP not evolving. More SPs far from apogee. More SPs in winter than in summer. Low-E flares turn on before high-E.	Majority @ ±/-15%. Can be x10 higher in high radiation periods. No increase after solar flares. Plus above 'per Observation' variations.	(1) >1000% (pixels come and go, also [micro-pimetorite damage). (2) Mode-dependent (lowest eFF, then FF, LW, highest SW) (3) effects 5-20+% of obs. (4) effects 20-50% of obs. (factor increases with high-BG rate). (5) (6) >50% of obs for later Revs (Rev1300+)	Constant. OOT events (pa) mode-dependent (LW:0.16%, FF:6.3%, eFF:2.3%)	Variation with RA/Dec (+/-35%). <u>SWCX SWCX</u> may affect observations differently <u>OOT</u> events (pm) mode-dependent (LW:0.16%, FF:6.3%, eFF:2.3%)	
Spectral	Variable. Unpredictable. Continuum spectrum (no lines), fitted hy unfolded sspec PL (<u>double</u> : expennetial or broken power law (Ereak nearry <u>stable = 3.2 keV</u>)) model for E>-0.5keV (E<0.5keV, less flux is seen). <u>Variable in intensity + shape</u> (higher the intensity, fatter the slope).	Flat (<u>MOS index=0.2</u>) + fluorescence + detector noise. <u>MOS: 1.5keV Al.K. 1.7keV Sl.K. 2.2keV An. Det.noise</u> <u><0.5keV Aljk, 1.7keV Sl.K. 2.2keV An. Det.noise</u> <u><0.5keV Aljk, 1.7keV Sl.K. 2.2keV An. Det.noise</u> <u><0.5keV Aljk, 1.7keV Aljk, 5.8keV</u> <u>9.15keV Aljk, No Si (self-absorbed), Cu-Ni-Zn-K</u> (<u>-5keV</u>), <u>Miten Inoise</u> < <u>0.3keV</u>	(1) low-E (<300eV), tail may reach higher-E. (2) low-E (<300eV), (3) (d) low-E (<300eV), excess. (5) (6) Strong excess <1000eV.	 4 power law. Below SkeV, dominates over internal component. Above SkeV, internal component component dominates (in times of low-BG). 	Thermal with -<1keV emission lines. Extragalactic @>0.8keV, index=1.4. Galactic - emission/absorption varies. <u>SWCX SWCX</u> very soft, with unasual Ovum You lin ratios (plus others) - Strong Ovum & Mgxa	
Spatial - Vignetted?	Yes (scattered) - Vignetting is flatter than for photons - low-E SPs extremely flat. higher-E SPs steeper (MOS) - pn shows more constant vignetting with energy	No - flat (see below).	(1,2) Bright pixels and CAMEX - No. MOS noise - (3) No/unclear (out-FOV) (see below) (4) Yes - evident in vignetting maps (in-FOV) (similar; smaller-magintude vignetting asymmetries seen in pn). (5) (6)	Yes.	Yes.	
Spatial - Structure? Ferhaps, in MOS due to the RGA. No structure in seen in pn. <u>SP feature seen in MOS1-CCD2 at low-E</u> , SPs observed only inside FOV.		Yes. Detector + construction. <u>MOS: outer CCDs more AL less Si. CCD edges more Si.</u> Less Si out-FOV Continuum diff. between out-FOV and in-FOV below AL line (redistribution?). More Au out-FOV. <u>Changes in high-E lines. CCD-to-CCD: line intensity</u> yariations, energies/widths stable. (Here also) PN: Line intensities show large spatial variations from electronic board. Central 'hole' in high-E lines (-BikeVi, Residual MIP contribution near CAMEX readout (low-E, non-singles, parallel to readout).	Yes. (1) Individual pixels & columns. (Also (pa) sections of columns away from CAMEX, near to FOV centre) (2) Near pn readout (CAMEX), perpendicular to readout. (3) MOS1 CCDs 4 & 5, MOS2 CCDs 2 & 5 - unusual in-& out-FOV differences (esp. MOS1 CCDs 4 and spatial inhomogeneities. (4) MOS1 CCDs 2 & 5. (5) (6). Lower-level ~persistent low-E enhancement in MOS1 CCD2	No. <u>Simple reflections</u> : Diffuse flux from 0.4-1.4 deg (out-FOV) is -7% of in-FOV signal. <u>Effective area</u> <u>of 1 telescope -3 sec, cm at 20-80 arcmintes</u> <u>of 1 telescope</u>	No, apart from real astronomical objects. Exgal.>0.8keV spatially uniform. <u>SWCX SWCX</u> over whole FOV. <u>Single reflections</u> Diffuse flux from 0.4-1.4 deg (out-FOV) is -7% of in-FOV signal. <u>Effective are</u> of 1 telescope ~3 sq.cm at 20-80 arcmintes <u>OOT</u> events (pn) smeared along readout from bright sources of X-rays. [extra BG in pn LW mode due to frame store area	
Patterns	Distribution similar to genuine X-rays.	Distribution different from genuine X-rays.	Distribution different from genuine X-rays. (5) MOS E1/E2 connection	Genuine X-ray distribution.	Genuine X-ray distribution.	

This implies that some components are focused by the telescope. Others aren't

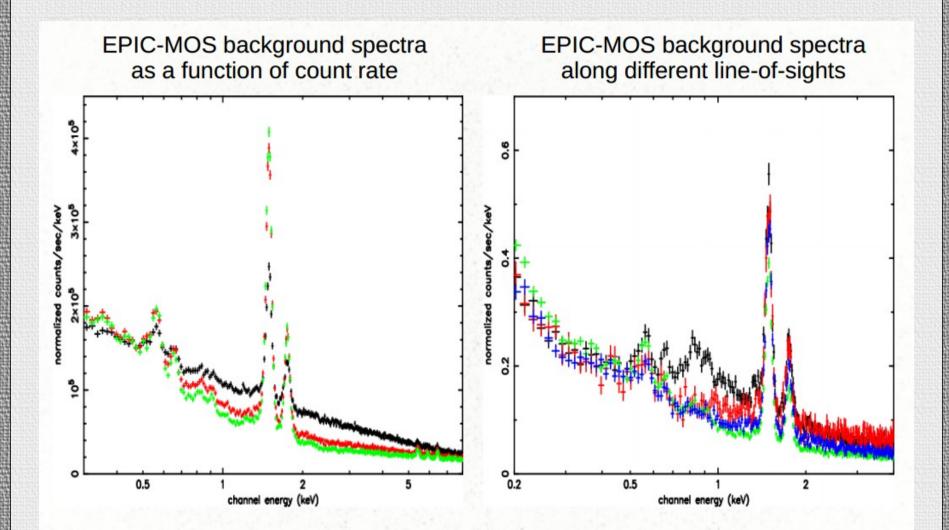
(Courtesy A.Read: http://www.star.le.ac.uk/~amr30/BG/BGTable.html))

How to deal with background spectra

 $C_h = T[\Sigma_i \Sigma_E R_{hE}^i A_E^i (s_E^i + b_E^{i,f}) dE + b_E^{i,u}]$

Three approaches are possible:

• Ignore the background. Wrong, even if in Chandra it is often very low


focused

- <u>Subtract the background</u>. Easy, but:
 - "It reduces the amount of statistical information in the analysis [...]
 - The background subtracted data are not Poisson-distributed;
 - [For example, subtracting a background can give negative counts; this is definitely not Poissonian!

not focused

- Fluctuations, particularly in the vicinity of localized features, can adversely affect analysis"
- Model and fit simultaneously the source and the background. Appealing, but:
 - The background spectra is often awfully complex, time- and detectorposition dependent, sometimes not known at all

How to deal with background spectra

(Carter & Read, 2007, A&A, 464, 1155)

Most software packages include the same suite of astrophysical models (~10²):

- Additive:
 - Power-law bremsstrahlung
 Phenomenological: po, bb, brems, gauss

Comptonization

- Astrophysical: comptt, diskbb, apec, diskline

blackbody

Accretion disk blackbody

Gaussian profile

Relativistic line emission

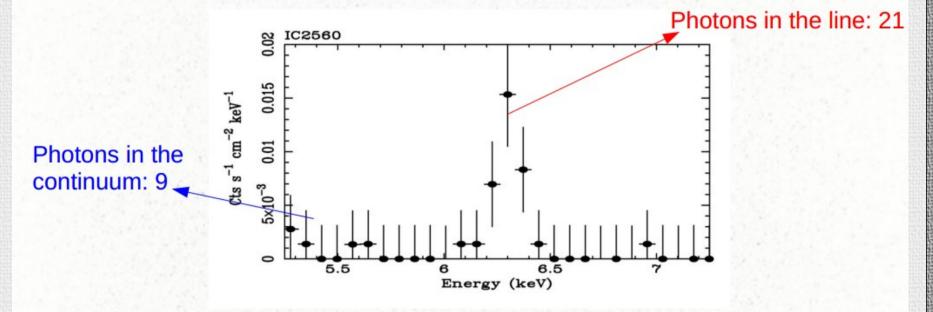
Thermal plasma

- Multiplicative:
 - Absorption, cut-off ...
- Convolution:
 - Kernels, flux calculation ...
- Mixing
 - Surface brigthness, deprojection ...
- Colleagues in the community contribute their own ("external model"), either as functions or as FITS table

• The most common goodness-of-fit statistic test is the "chi-squared" (χ^2):

$$X^2 = \sum \frac{(\text{observed - expected})^2}{\text{expected}}$$

- It requires that the distribution of background-subtracted counts in each spectral channel is well approximated by a Gaussian (5-10 counts)


- Different alternatives from the denumerator: weight churazov or weight model

- Alternatively, one can use the Cash (C-)statistics: $C = 2 \sum_{i=1}^{n} s_i N_i + N_i \ln(N_i/s_i)$.
 - Applicable to data following the Poissonian statistics only i.e.: non-background subtracted spectra)
 - XSPEC implements a flavour (the "W-statistics") which can be directly applied to background-subtracted spectra
 - It does not yield a metrics of the absolute quality of a a fit (one need to use Monte-Carlo simulations in this case)

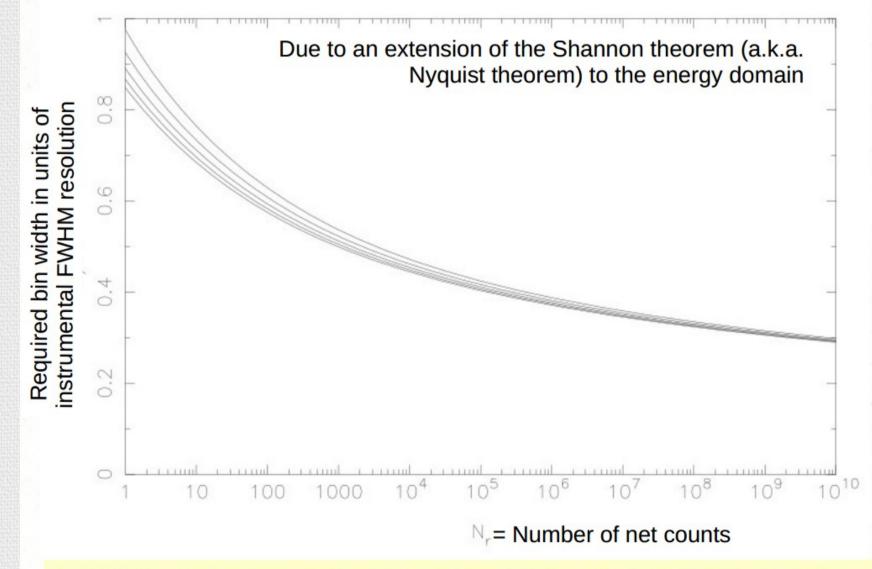
(see Arnaud et al., "Fitting low count spectra",https://astrophysics.gsfc.nasa.gov/XSPECwiki/low_count_spectra) (Cash, 1976, ApJ, 52, 307)

Data rebinning

Rebin you spectra is pure evil, and may lead to loss of scientific information:

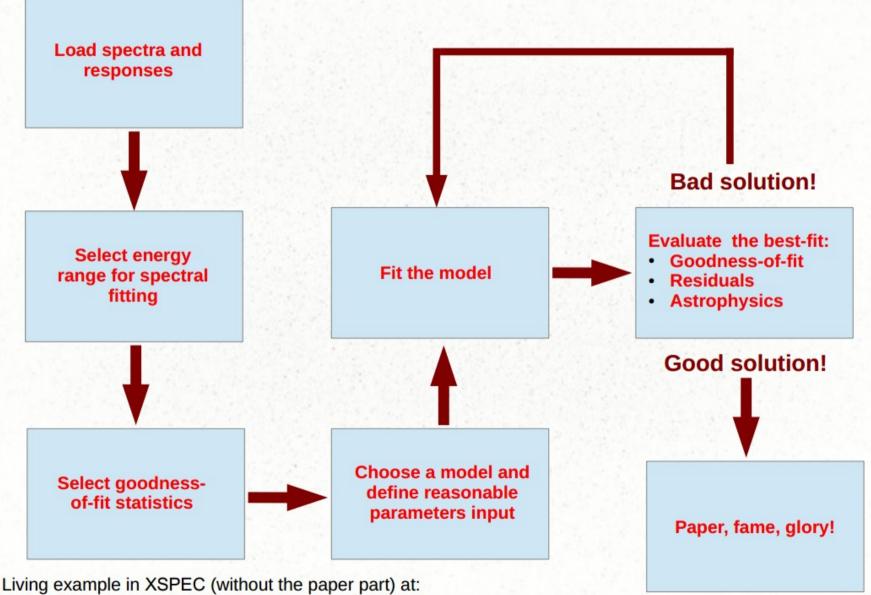
 However, a minimum level of spectral rebinning is required to avoid oversampling the intrinsic resolution of the instrument Let f(t) be a continuous signal. Let $g(\omega)$ be its Fourier transform, given by

$$g(\omega) = \int_{-\infty}^{\infty} e^{i\omega t} f(t) dt.$$
(1.6)


If $g(\omega) = 0$ for all $|\omega| > W$ for a given frequency W, then f(t) is band-limited, and in that case Shannon has shown that

$$f(t) = f_s(t) \equiv \sum_{n=-\infty}^{\infty} f(n\Delta) \frac{\sin \pi (t/\Delta - n)}{\pi (t/\Delta - n)}.$$
 (1.7)

In (1.7), the bin size $\Delta = 1/2W$. Thus, a band-limited signal is completely determined by its values at an equally spaced grid with spacing Δ .


(from J.Kaastra's and F.Verbunt's lecture notes on high-energy astrophysics, 2008)

An ideal rebinning strategy

specgroup in SAS implements this, and many other spectral rebinning schemes

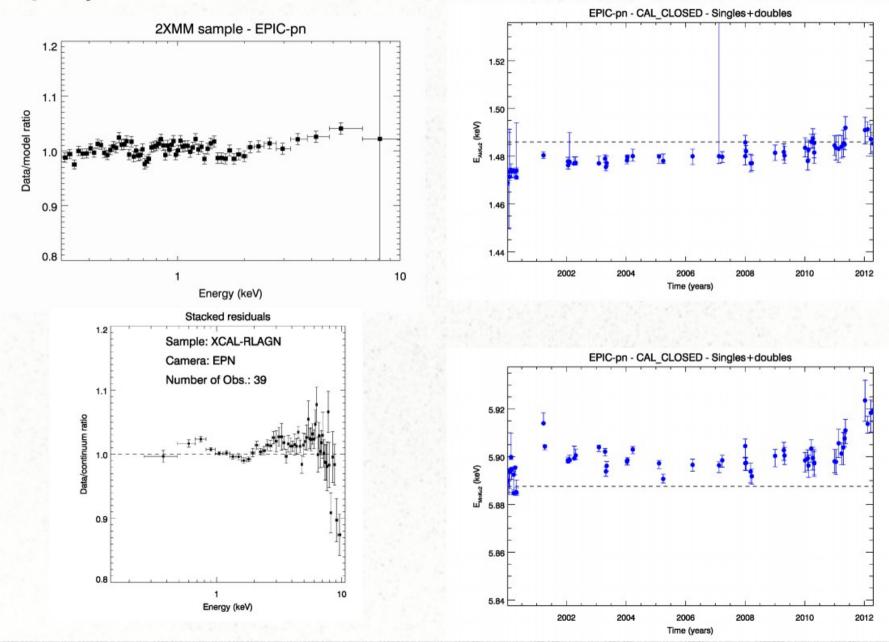
Forward-folding in action

http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/manual/XspecWalkthrough.html

Features of the existing X-Ray fitting packages

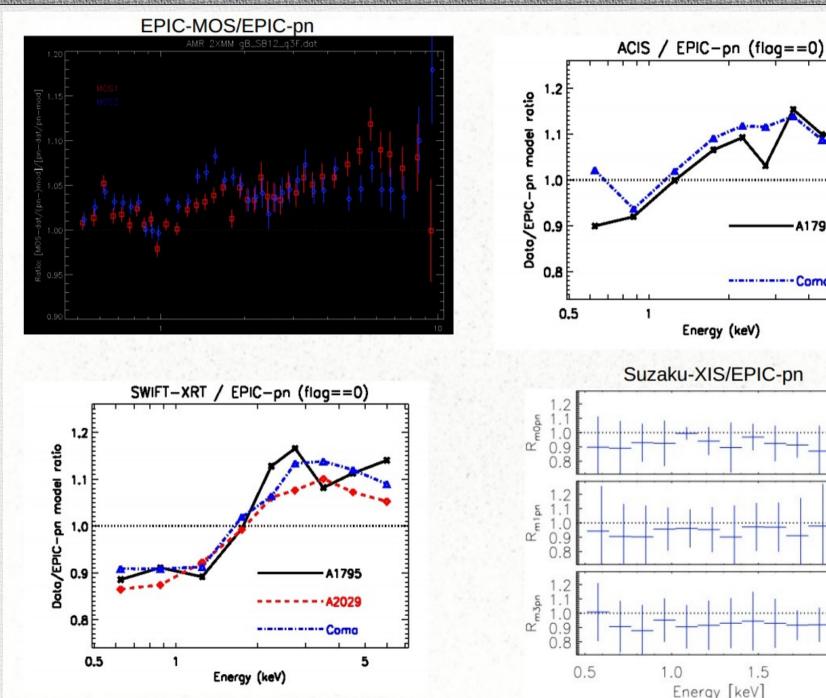
COMPARISON OF SOME ANALYSIS PACKAGE FEATURES:

	XSPEC MODELS	XSPEC LOCAL MODELS	SCRIPTED	USER SCRIPTS	DATA PRODUCT ACCESS	OTHER FIT KERNEL	USER FIT KERNEL	USER OPTIM. METHS.	USER FIT STATS
ISIS	Nearly All	Yes	S-lang	S-lang	Yes	Gain Pileup	Yes	Yes	Yes
Sherpa	Most	With Effort	Python	Python	Yes	No	Yes	Yes	Yes
XSPEC	All	Yes	Limited- mdefine	TCL	Very Limited	Gain	No	No	No
SPEX	Few	No	No	No	No	No	No	No	No


	NON- X-RAY DATA	ATOMIC DATA ACCESS	MULTI- CORE ERRORS	MULTI- CORE FITS	MULTI- SYSTEM ERRORS	MULTI- SYSTEM MODELS
ISIS	Yes	Yes	Yes	Yes	Yes	Yes
Sherpa	Yes	No	Yes	No	No	No
XSPEC	With Fake RMF, ARF	No	No	No	No	No
SPEX	No	Yes	No	No	No	No

Credit M. Nowak

Systematic errors (example from EPIC-pn)


Quality of effective area calibrations

Quality of energy reconstructions

(Guainazzi et al., 2013, XMM-SOC-CAL-TN_0018)

Features of the existing X-Ray fitting packages

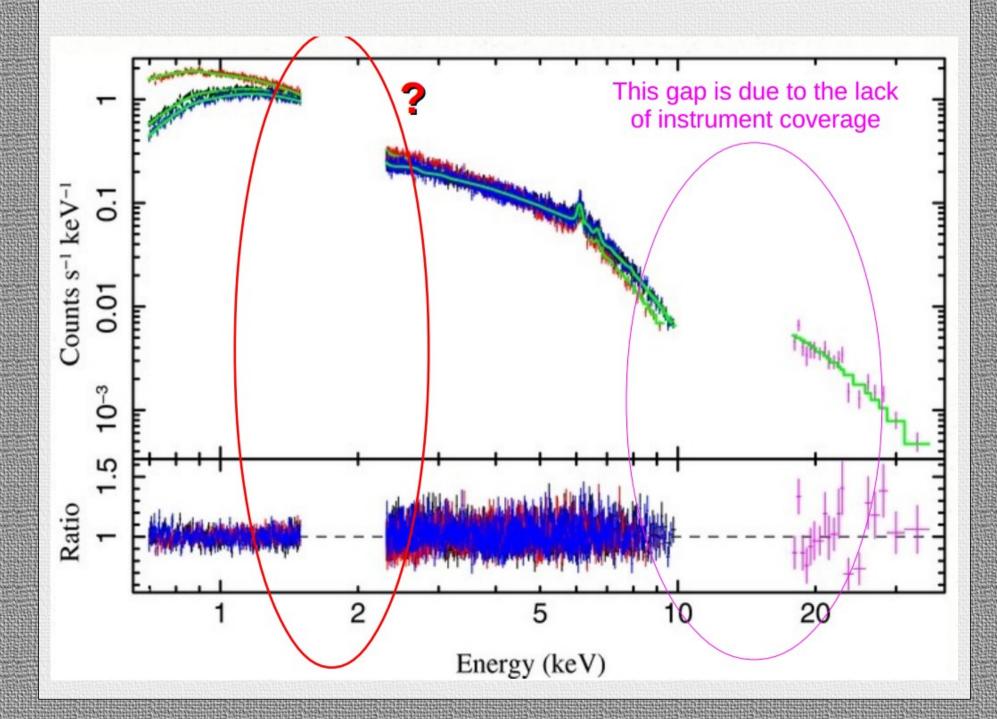
A1795

- Coma

Energy (keV)

1.5

5


2.0

(Courtesy A.Read, J.Nevalainen (2x); Kettula et al., 2013, A&A, 552, 47)

An example of how <u>not</u> to deal with systematic errors

An example of how <u>not</u> to deal with systematic errors

