

第一章	快速入门	
	I 基本原理	 1-1
	I 3D打印流程	 1-2
	1 打印机结构	 1-3
	1 打印机参数	 1-7
	l 快速打印操作步骤	 1-8
第二章	设备操作指南	
	I 控制菜单介绍	 2-1
	I 自动送退丝	 2-4
	1 调整打印平台	 2-7
	I 打印参数动态调节	 2-12
	1 打印过程控制	 2-13
第三章	切片软件Pango介绍及使用	
		 3-1
	I 快速切片	 3-7
	I 关键参数	 3-13
	I 模型调整	 3-20
	I 切片技巧	 3-26
第四章	高级功能	
		 4-1
	I 断丝报警及续打	 4-3
	I 设备固件升级	 4-4
第五章	系统保护反馈信息分析	 5-1
第六章	日常维护及注意事项	 6-1
第七章	售后条款及保修卡	 7-1
第八章	联系方式	 8-1

Panowin F3CL桌面3D打印机是基于FDM技术的准工业级精度3D打印机

——首台全闭环智能运动控制的FDM高速3D打印机(专利号: 201310330304.X)

您的3D模型设计文件,将由我司专用的Pango切片软件转化为3D打印机的工作指令;通过SD卡将数据传输进打印机上。然后, Panowin F3CL桌面3D打印机加热专用的3mm直径PLA丝材至融化,送丝机通过打印喷头将其挤压出来;经过层层堆叠而形成一个坚实的三维立体物体——这种3D打印方法被称为熔融沉积成型制造技术(FDM)。

其工作方式如下图(图PW-1)所示:

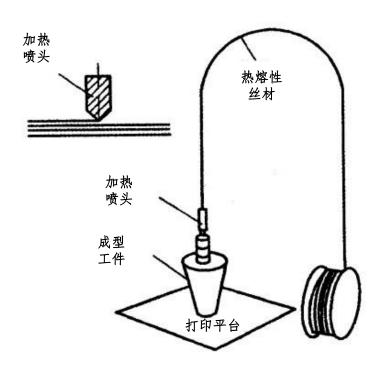
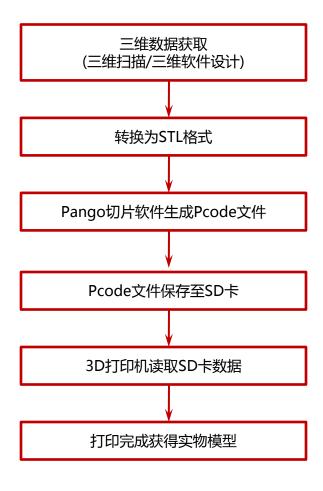
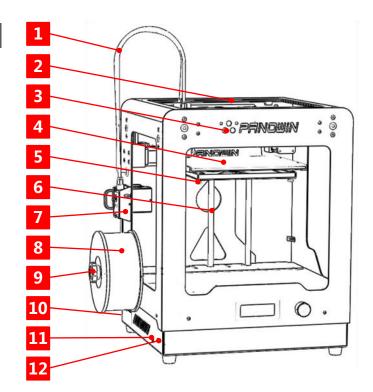
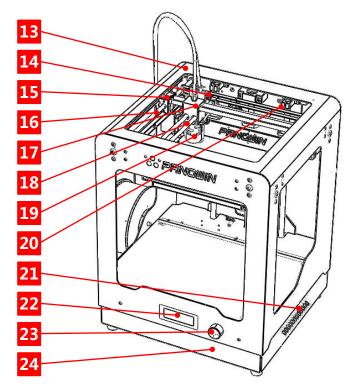



图 PW-1 FDM 工艺的基本原理图

第一章 快速入门 1-1

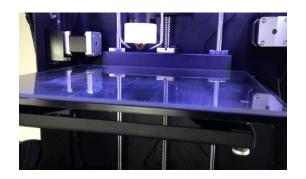
Panowin F3CL操作简单易用,您只需要按照如下流程即可轻松完成打印。


第一章 快速入门 1-2


打印机结构

序号 名称

- 1 进料导管
- 2 LED发光灯带
- 3 Panowin logo
- 4 打印平台
- 5 打印托盘调节水平螺丝
- 6 螺纹丝杠
- 7 送丝机
- 8 丝料盘
- 9 丝料盘轴架
- 10 电源插座及开关 (内置保险丝)
- 11 USB接口
- 12 SD卡接口
- 13 主机框架
- 14 X轴滑块
- 15 Y轴滑块
- 16 Y轴光轴
- 17 十字轴滑块
- 18 十字轴光轴
- 19 打印喷头
- 20 X轴光轴
- 21 主控箱散热槽
- 22 LCD液晶面板
- 23 LCD液晶面板控制旋钮
- 24 主控箱

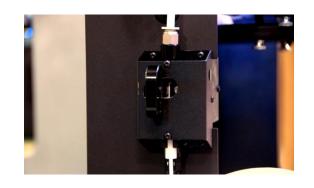

关键结构名词解析

打印平台

好的打印效果。

打印平台是模型的成型空间,打印过程中丝 状材料将在打印平台上逐层堆积成型。 打印平台需注意保持平整,整洁,以达到更

注意:打印过程中,平台会加热到较高温度, 请避免触碰平台造成伤害。


SD卡接口

SD卡接口用于打印数据的传递,打印机通过读取SD卡文件(.Pcode)进行模型打印。

送丝机


送丝机是材料的给进机构,用于将熔融的丝状材料经过喷头挤出。

丝料盘轴架

可安装在打印机的左侧面,用来挂住PLA丝盘。需先拧下螺丝,将丝盘穿过丝料盘轴架安装在打印机上;后重新旋紧螺丝。

USB接口

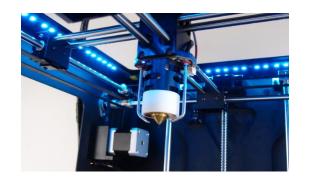
通过USB数据线将打印机与电脑连接,用于打印机固件升级。

打印托盘

打印平台的支撑,托盘上安装有调节水平旋钮。

进料导管

一段引导PLA丝从送丝机进入打印头喷嘴的塑料管。



打印喷头

打印喷头是材料的输出机构,用于将丝状材料加热至融化,在送丝机的作用下挤出熔融状的材料。

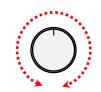
注意:打印过程中,喷头会加热到较高温度, 请避免触碰喷头造成伤害。

控制界面

LCD液晶面板

控制旋钮

控制界面包括LCD液晶面板(显示屏)和控制旋钮,用于打印机的使用操作。



重要提示

旋钮的两种方式:

①左右旋转——选择

②按压点击——确认

技术参数

Specifications

打印技术		Technology
熔融沉积成型	FDM	Fused Deposition Modeling
专利技术		Patent Technology
运动控制	全闭环运动控制 Full closed-loop motion control	Motion Control
重续打印 断电重续打印 Resume power-off printing		Resume Print
丝料使用监控	丝料用尽报警 Alert: Out-of-filament	Filament Monitor
丝料安装	自动送退丝 Auto feed/retract filament	Filament Load
打印指标		Printing
打印尺寸	约240*215*215 毫米(mm)	Build Envelope
一次成型量	约11升(L)	Build Volume
定位分辨率	XY轴(axis)10微米(μm) Z轴(axis)2微米(μm)	Positioning Precision
打印精度	0.05毫米(mm)以内	Accuracy
最快打印速度	300毫米/秒(mm/s) (建议一般使用<=180毫米/秒(mm/s))	Maximum Printing Speed
温控挤出喷口直径	0.4毫米(mm)	Nozzle Diameter
最高挤出温度	260摄氏度(°C)	Maximum Extruder Temperature
最高加热平台温度	130摄氏度(°C)	Maximum Temp for Heated Build Platform
电路硬件		Electronics
微控制器	Atmel ATmega2560/ATmega164 双核微控制器 (Dual-MCU)	Micro Control Unit
电源	110V/220V, 50-60HZ	Power
炫彩LED照明	4路LED照明 (LED lighting)	Brilliant Color LED
	4路LED照明 (LED lighting)	Brilliant Color LED Software support
炫彩LED照明	4路LED照明 (LED lighting) 中文 Pango (Chinese)	
炫彩LED照明 软件支持		Software support
炫彩LED照明 软件支持 软件	中文 Pango (Chinese) 全新操作系统固件	Software support Software Firmware Compatibility OS
炫彩LED照明 软件支持 软件 固件	中文 Pango (Chinese) 全新操作系统固件 Optimized OS Firmware	Software support Software Firmware Compatibility OS Input File Type
	中文 Pango (Chinese) 全新操作系统固件 Optimized OS Firmware Windows 7 STL, Pcode	Software support Software Firmware Compatibility OS Input File Type Materials
	中文 Pango (Chinese) 全新操作系统固件 Optimized OS Firmware Windows 7 STL, Pcode	Software support Software Firmware Compatibility OS Input File Type Materials Works With
対料 対対 対対 対対 対対 対対 対対 対対	中文 Pango (Chinese) 全新操作系统固件 Optimized OS Firmware Windows 7 STL, Pcode	Software support Software Firmware Compatibility OS Input File Type Materials Works With Filament Diameter
対料直径 大田 大田 大田 大田 大田 大田 大田 大	中文 Pango (Chinese) 全新操作系统固件 Optimized OS Firmware Windows 7 STL, Pcode PLA , ABS 3毫米(mm)	Software support Software Firmware Compatibility OS Input File Type Materials Works With Filament Diameter Mechanical
放彩LED照明 软件支持 软件 固件 电脑操作系统 輸入文件 材料 种类 材料直径 九械 X-Y行走机构	中文 Pango (Chinese) 全新操作系统固件 Optimized OS Firmware Windows 7 STL, Pcode PLA , ABS 3毫米(mm)	Software support Software Firmware Compatibility OS Input File Type Materials Works With Filament Diameter Mechanical X-Y Axes Mechanism
放彩LED照明 软件支持 软件 女件 女件 固件 电脑操作系统 输入文件 材料 种类 材料直径 机械 X-Y行走机构 打印机尺寸(长*宽*高)	中文 Pango (Chinese) 全新操作系统固件 Optimized OS Firmware Windows 7 STL, Pcode PLA , ABS 3毫米(mm) 双轨十字轴 (Double X-Y Axes) 约415*400*525毫米(mm)	Software support Software Firmware Compatibility OS Input File Type Materials Works With Filament Diameter Mechanical X-Y Axes Mechanism Printer Size(W*L*H)
放彩LED照明 软件支持 软件 女件 女件 固件 电脑操作系统 输入文件 材料 种类 材料直径 机械 X-Y行走机构 打印机尺寸(长*宽*高) 打印机净重	中文 Pango (Chinese) 全新操作系统固件 Optimized OS Firmware Windows 7 STL, Pcode PLA , ABS 3毫米(mm)	Software support Software Firmware Compatibility OS Input File Type Materials Works With Filament Diameter Mechanical X-Y Axes Mechanism Printer Size(W*L*H) Printer Weight
炫彩LED照明 软件支持 软件 固件 电脑操作系统 输入文件 材料 种类 材料直径 机械 X-Y行走机构 打印机尺寸(长*宽*高) 打印机净重	中文 Pango (Chinese) 全新操作系统固件 Optimized OS Firmware Windows 7 STL, Pcode PLA , ABS 3毫米(mm) 双轨十字轴 (Double X-Y Axes) 约415*400*525毫米(mm)	Software support Software Firmware Compatibility OS Input File Type Materials Works With Filament Diameter Mechanical X-Y Axes Mechanism Printer Size(W*L*H) Printer Weight Package
放彩LED照明 软件支持 软件 女件 女件 固件 电脑操作系统 输入文件 材料 种类 材料直径 机械 X-Y行走机构 打印机尺寸(长*宽*高) 打印机净重	中文 Pango (Chinese) 全新操作系统固件 Optimized OS Firmware Windows 7 STL, Pcode PLA , ABS 3毫米(mm) 双轨十字轴 (Double X-Y Axes) 约415*400*525毫米(mm)	Software support Software Firmware Compatibility OS Input File Type Materials Works With Filament Diameter Mechanical X-Y Axes Mechanism Printer Size(W*L*H) Printer Weight

第一章 快速入门 1-7

本部分将引导您快速完成随机SD卡内的示例模型打印。设备工具包中附带有一张SD卡,内有一个示例模型pcode文件,通过打印示例模型,让您可以快速掌握打印过程。

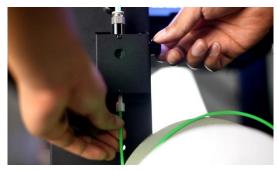
1 拆箱及配件整理

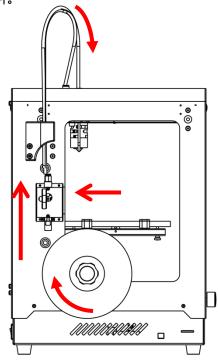
若您阅读本部分时已完成拆箱过程,请跳过。

- 拆除包装箱外的打包绳。将包装箱上盖取下。
- 打印机包装箱的四块侧板为拼装结构,可向上抽提。移去包装箱的四块侧板。将打印机上部的珍珠棉缓冲材料移除。

- 双手抓住打印机主体框架的上横梁处(请勿碰到打印机的运动结构部分),将打印机 慢慢抬出底部的珍珠棉底座,安放于稳固的工作台上。
- 小心移除打印机各部件固定物,包括十字轴固定胶带,打印平台玻璃固定胶带等。
- 解开附件拎包固定扣,从打印机内部拿出附件拎包。从附件拎包内拿出耗材和工具包。【附件拎包内物件,详见纸质工具说明】

2 安装打印耗材


● 取出工具包内的丝料盘轴架,把螺帽拧下;然后将丝料去除外包装,按丝料顺时针方向安装到打印机左侧的转轴孔上,并将螺帽拧紧。



- 取出打印丝料,用斜口钳将顶端剪为斜口状,以方便材料通过导料管。
- 松开送丝机调节旋钮,将剪好的材料一端由送丝机下部料口送入,直至材料完全穿过送丝机并到达导料管,如图A所示。材料送至导料管部分约5mm即可。
- 拧紧送丝机调节旋钮,确认送丝机齿轮刚好咬合材料。

第一章 快速入门 1-9

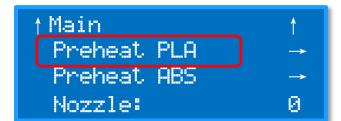
3 打印机开机

- 将打印机电源线连接220V交流电源,并开启背部的电源开关。
- 开机后打印机LCD面板将显示待机状态界面。

Panowin Technologies F3CL 3D Printer

4 安装SD卡

● 取出随机的SD卡,将其插入打印机左侧的SD卡接口中。



5 预热打印喷头和平台

- 压按打印机控制旋钮,打开系统菜单,如下图
- 选择Temperature菜单,点击Preheat PLA选项,打印机将开始预热喷头和平台。

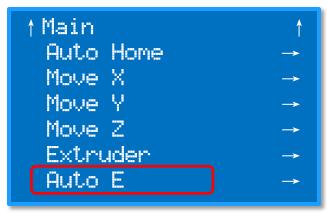
6 自动送丝

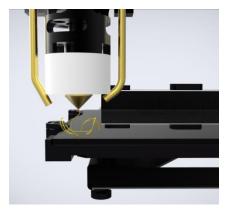
● 当打印机喷头温度高于180度时,方可进行自动送丝操作。

```
Ω 205 °/205 ° X 000.00

≌ 45 °/45 ° Y 000.00

C 20 ° Z 000.00


Status: Ready
```


● 点击旋钮打开系统菜单,选择Motion->Auto E->Auto Feed选项,打印机将进行自动送丝。

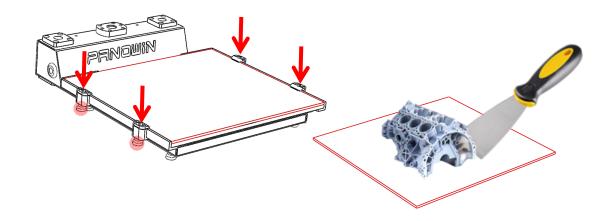
第一章 快速入门 1-11

- 送丝机自动将材料送至喷头,并从喷头挤出一小段融化的材料。
- 自动送丝过程大约持续1分钟,屏幕将显示以下信息,请您耐心等待。

● 送丝完成后,请用镊子将喷嘴处多余的材料清理干净。

安全提示:禁止用手触碰打印喷头或熔融未冷却的丝料。

快速打印操作步骤


7 打印示例模型文件

- 打开系统菜单,选择Card Menu->SD_Card_Holder.pcode,启动示例模型打印。
- 示例模型打印大约持续1小时,请您耐心等候。

8 打印完成

- 打印完成后,将平台两侧的四个玻璃锁紧螺丝拧松,取下平台玻璃。
- 待模型冷却后,用铲刀将模型从平台玻璃上取下。

第一章 快速入门 1-13

F3CL打印机LCD 控制菜单

Panowin Technologies F3CL 3D Printer

Ω 200 °/205 ° X 000.00 \(\text{\te}\text{\texi}\text{\text{\text{\text{\text{\texi\text{\text{\text{\texi}\x{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\t

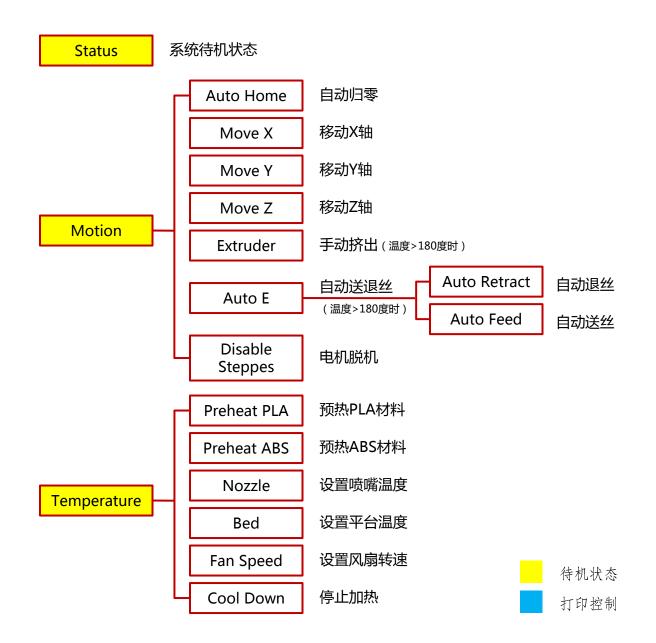
喷嘴实际温度/设定温度 X轴位置 打印平台温度/设定温度 Y轴位置 机箱温度 Z轴位置 机器状态显示

打印机待机状态

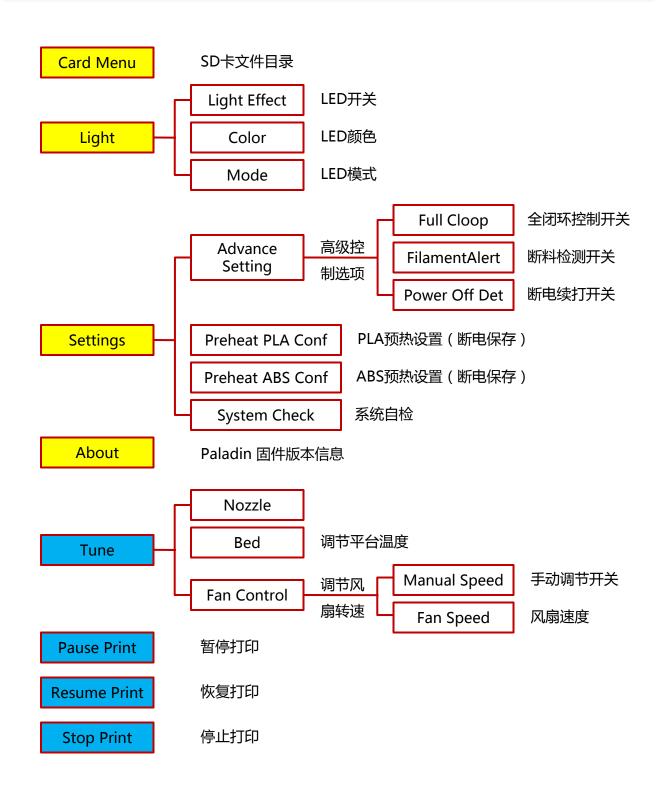
↑Status ↑
Motion →
Temperature →
Card Menu →
Lisht →
Settins →

打印机主菜单状态

Ω 205 °/205 ° > 5½ ≌ 45 °/45 ° O 00: 03 S 20mm/s Z 000.00 Dark_stick.pcode


喷嘴实际温度 / 完成百分比 打印平台温度 / 已打印时间 打印速度 Z轴位置 正在打印的文件名称

打印机打印状态



F3CL打印机LCD 控制菜单

主菜单/二级菜单/三级菜单(解释说明)

>>自动送丝

1 预热打印喷头

● 为了避免在低温下进行材料挤出造成喷头和送丝机损坏,自动送丝功能必须在喷头温度高于180度时才能使用。请您确认喷头温度高于180度,否则请打开系统菜单,点击Temperature->Preheat PLA,进行预热;

2 安装打印耗材

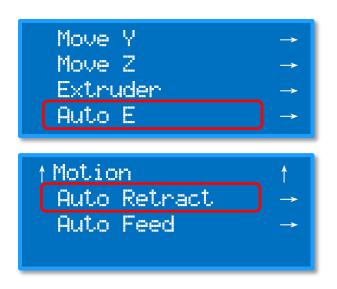
- 取出打印丝料,用斜口钳将丝料顶端剪为斜口状,以方便材料通过导料管。
- 向左扳动送丝机扳钮,将剪好的材料一端由送丝机下部料口送入,直至材料完全穿过 送丝机并到达导料管。材料送至导料管部分约5mm即可。
- 后松开送丝机扳钮,确认送丝机齿轮刚好咬合材料。

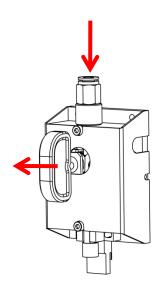
3 启动自动送丝

- 打开系统菜单,点击Motion->Auto E->Auto Feed,打印机将启动自动送丝,材料自动以较快速度送至喷头内,并慢速挤出一小段融化的材料。
- 自动送丝过程大约持续1分钟,屏幕将显示以下信息,请您耐心等待。

4 清理多余丝料

● 自动送丝完成后,请用镊子清理喷头挤出的多余材料,以进行后续打印任务。


>>自动退丝


1 预热打印喷头

● 为了避免在低温下进行材料挤出和回退造成喷头和送丝机损坏,自动退丝功能必须在喷头温度高于180度时才能使用。请您确认喷头温度高于180度,否则请打开系统菜单,点击Temperature->Preheat PLA,进行预热;

2 启动自动退丝

- 打开系统菜单,点击Motion->Auto E->Auto Retract,打印机将启动自动退丝,先以较快速度挤出喷头内残留的材料,再以较快速度将材料回抽至送丝机进料口附近。
- 自动退丝大约持续1分钟,请您耐心等候。

3 取出耗材

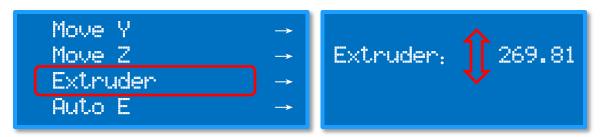
自动退丝完成后,请将送丝机扳钮向左扳动,并将材料取出。

>>手动挤丝

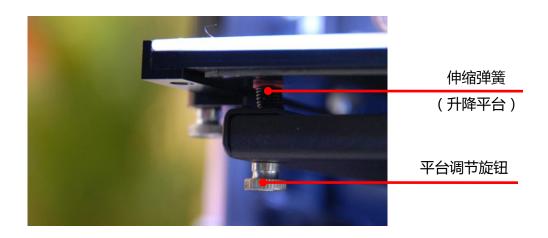
以下情况建议您进行手动挤丝后再启动打印,以提高打印效果。

- 自动送丝完成时,喷头自动挤出的材料过少或带有杂质;
- 打印机闲置了较长时间,再次开机准备打印时;
- 更换了不同颜色或材质的材料,准备继续打印时;

操作步骤:

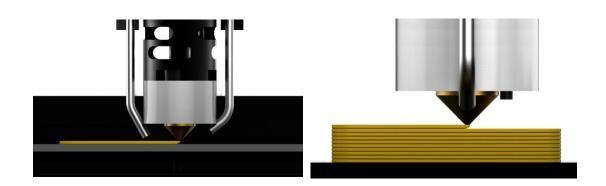

1 预热打印喷头

● 手动挤丝要求喷头温度高于180度,请您确认喷头温度高于180度,否则请打开系统菜单,点击Temperature->Preheat PLA进行预热。

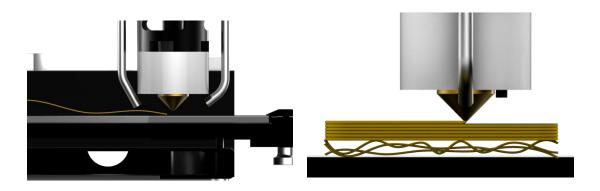


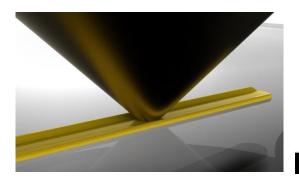
2 手动控制挤出

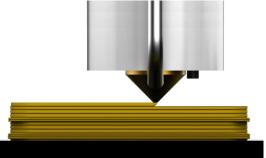
- 打开系统菜单,点击Motion->Extruder,打开挤出坐标控制界面,如下图:
- 手动旋转控制旋钮可改变挤出坐标值,从而控制挤出;顺时针旋转为挤出,逆时针旋转为回退。


- **平台调节原理**:通过旋拧平台调节旋钮松紧,带动升降平台的弹簧伸缩;从而调整平台 和喷头之间的距离。
- 平台调节原则:微调为主(打印平台安装正常的情况下)
- **平台调节目的**:是保证系统归零时打印喷嘴垂线与平台垂直,且喷嘴与平台表面各个点均正好接触,不紧压也不远离,如下图所示:

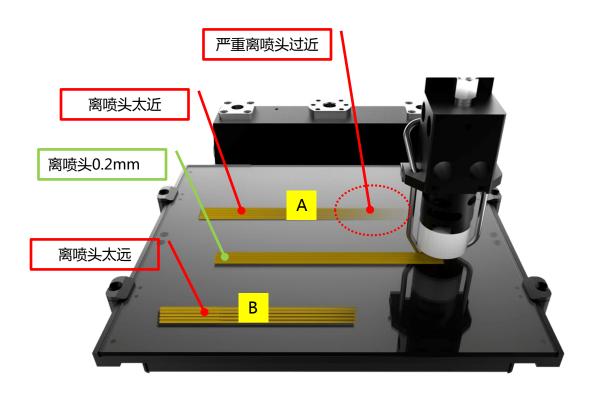
● 当打印模型的第一层材料时,若平台水平状态,平台与喷嘴的距离为0.2mm,喷嘴所挤出的材料能够正好填满喷嘴不平台之间的间隙,一方面使材料较好地附着在上,另一方面产生一个较为平整的底层平面,使得后续材料在平整的底层之上逐层堆积。


【喷头与平台(玻璃)之间距离0.2MM左右;每根丝宽度0.4左右,排布无间隙】

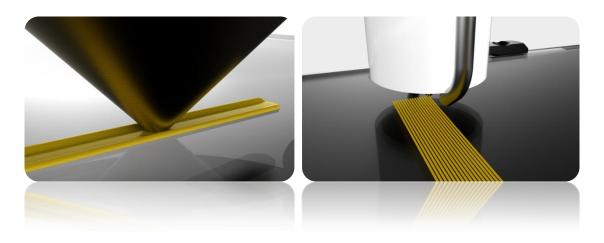



以下为错误×状态,需调节平台

● 【平台离喷头太远】若打印底层时平台不平,则喷嘴在某些区域与平台距离过远,导致 材料无法附着在平台上。(需要微调上升平台)



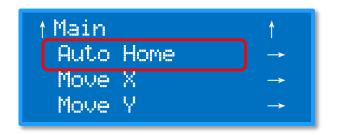
【平台离喷头太近】在某些区域与平台距离过近,导致材料从间隙中溢出,相互挤压造成顶面不平,侧面突出,影响后续材料层的打印。(需要微调下降平台)

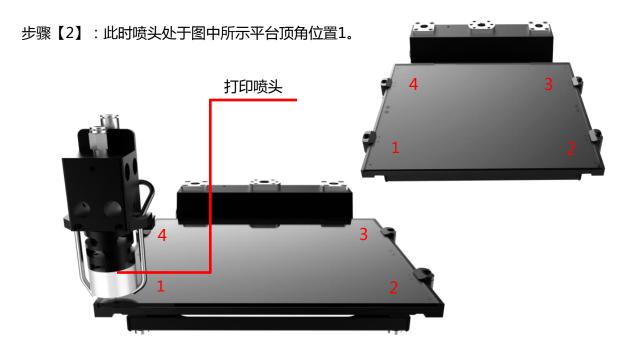


A处放大图

此种情况:附着在平台上的出丝不均匀,并且会反复挤压;长时间打印会使物体表面有多处鼓出丝料,表面也不光滑。严重会导致喷头内积压丝料过多,烧损部件。

B处放大图


此种情况:附着在平台上的每一道丝 料之间联系不够紧密;长时间打印, 会出现材料粘连不牢,无法成型。



打印平台在出厂时已经进行了精密的水平调校,通常您拆机可以直接打印。若由于运输等问题造成打印平台水平发生变化,请按照以下步骤重新调整。

步骤【1】:平台归零:打开系统菜单,点击Motion->Auto Home,系统完成归零动作。

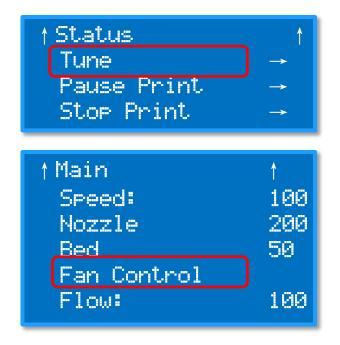
步骤【3】:按照顶视逆时针方向(如图所示)旋转平台调整旋钮1,直至喷头与平台不接触。

步骤【4】:按照顶视顺时针方向微动旋转平台调整旋钮1,同时观察平台的运动,当平台刚好接触到喷头的瞬间,停止调整。

步骤【5】:释放电机:打开系统菜单,电机Motion->Disable Steppers,释放电机。

步骤【6】:此时可手动拖动十字轴中心滑块,依次将喷头移动至平台的顶角位置2,3,4。

步骤【7】:在每个顶角位置,重复【3】~【4】的步骤,直至喷头在每个位置都刚好与平台接触但不压紧。


步骤【8】:以上为静态调整过程,在打印第一层时,若平台距离仍有误差,您可以根据情况 微调4个旋钮,最终使模型第一层达到较理想的成型状态。

打印过程中,您可以视情况动态调节打印参数,以提高打印效果。

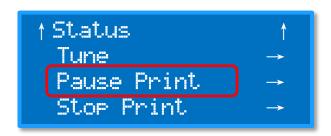
关于打印参数对打印效果的影响,请参考第三章第3节"关键参数"的内容。

● 打开系统菜单,点击Tune选项,可以打开调节菜单,如下图:

◆ Speed:打印速度百分比◆ Nozzle:调节喷头温度◆ Bed:调节平台温度◆ Fan Control:调节风速

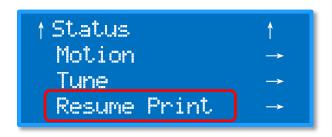
◆ Flow:调节挤出量

Fan Control:调节风速
 打印时默认为自动风速,若需要手动调节风速,请将选择Fan Control 按下旋钮;选中Manual Speed选项为On,再进行Fan Speed参数的设置。



打印过程中,您可以对打印任务进行暂停、恢复、停止等控制。

打开系统菜单,控制选项:


● 暂停打印

在打印过程中点击"Pause Print"可暂停打印,打印机将在完成缓冲的命令后,快速回抽材料并将喷头移动至零点附近。

● 恢复打印

在暂停状态下点击"Resume Print"可恢复打印,当打印机由于温度、机械等故障自动暂停时,请确认相应故障得到排查再进行恢复操作。

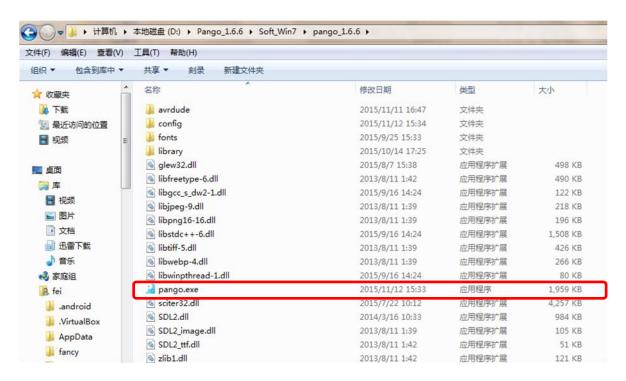
● 停止打印

打印过程中点击 "Stop Print"可停止打印,打印机将自动归零,释放电机。

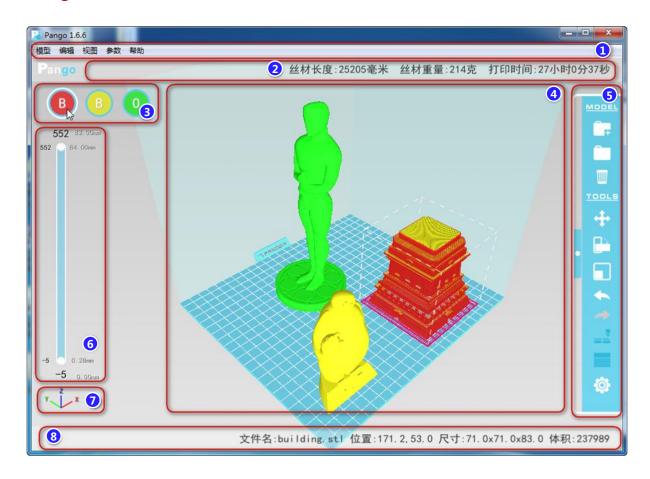
通常我们认为您手动停止打印后,将在短时间内继续新的打印任务,为了节省您的等待时间,点击"Stop Print"后,喷头不会立即停止加热;若您在20分钟没有操作打印机,打印机将自动停止对喷头和加热板加热,以减小功耗。

Pango切片软件安装

磐纹科技Pango切片软件为绿色软件,无需安装;位于工具包【SD卡】压缩包内。此软件一直处于优化升级状态,您也可以联系客服人员,提供您的有效客户信息后索取最新版本。


- 随机SD卡内软件包的名称为"Pango_x.x.x",末尾数字为版本号,本手册撰写时所使用的是1.6.6版本。
- 请确认您所使用的电脑操作系统为WIN7以上原装版本,若您使用GHOST或其他裁剪版本的Windows,可能导致切片软件无法正常运行。
- 请将随机Pango切片软件包拷贝至您的电脑,本手册以存放PC机D盘:\为例,解压软件包后,您将看到以下文件目录:


- ◆ .\Driver目录:包含打印机升级固件所需的USB驱动文件;
- ◆ .\Firmware目录:包含打印机出厂默认固件;
- ◆ .\Soft_Win7目录:包含Pango切片软件;
- ◆ .\STL目录:包含随机示例模型文件;
- 点击.\Soft_Win7\ Pango1.6.6**Pango.exe**文件,可启 动切片软件。



为了方便使用,请将鼠标移至Pango.exe文件点击右键,选择发送到"桌面快捷方式"。 电脑桌面快捷窗口,每次使用直接点击,即可。

Pango切片软件介绍

- ①菜单栏:所有操作都可以通过菜单栏中的项目来实现,每一项都有对应的快捷键。
- ②信息栏:模型切片后可以显示看到切片信息,包括丝材长度、重量、打印时间。
- ③标识栏:每个载入的模型显示一个标识,字母为文件的首字符,颜色和模型一致。
 - 当软件正在处理模型时,对应标识符会显示进度百分比。
- ④主视图:一个打印平台,所有载入的模型会排列在平台上。
- ⑤工具栏:常用的工具选项。鼠标放在图标上时,下方状态栏会提示其功能。
 - 依状态栏提示,有些工具按鼠标左右键会有不同的功能。
- ⑥标尺栏:切片后,可上下拖动顶端白色圆圈预览切片效果。
- ⑦坐标轴:指示当前主视图平台的三个坐标轴方向。跟随主视图方向而变化。
- ⑧状态栏:左侧是FPS显示位置,右侧是基础信息显示。

● 模型

菜单项	快捷键	工具栏	说明
载入	Ctrl+O	左键	载入3D模型文件,支持STL、 OBJ和DAE格式。
载入上一个 Ctrl+Shift+ O		右键	重复载入上一个模型。多见于 同一个模型打印多个情况。
保存pcode	保存pcode Ctrl+S 左键		将所有载入的模型进行切片并 以pcode格式保存。
从模型库 载入			打开本地模型库。
清除所有 模型 左键			清除平台上所有的模型。
清除选中 Ctrl+Shift+ 模型 E		右键	清除选中的模型。
重载所有 模型	Ctrl+R	无	重新载入平台上所有的模型。
重载选中 模型	Ctrl+Shift+ R	无	重新载入选中的模型。

● 编辑

菜单项	快捷键	工具栏	说明
恢复	Ctrl+Z	左键	恢复到上一个操作。
重做	Ctrl+Y	左键	重做上一个被撤消的操作。
移动	Ctrl+M	左键	点击后进入移动模型模式,在主视图中通过鼠标左键移动模型, 再次点击退出移动模型模式。
旋转	Ctrl+A	左键	点击后进入旋转模型模式,在主 视图中通过鼠标滚轮旋转模型, 再次点击退出旋转模型模式。
缩 放	Ctrl+T	左键	点击后打开缩放模型对话框。
自动放平	Ctrl+W	无	一个辅助功能,将模型放平在底 面上,有时需要多次点击完成。
自动排列	Ctrl+G	无	自动排列模型。尽可能将模型都 放在平台中间可打印区间。
重置位置	Ctrl+C	无	将选中模型恢复到原始状态。

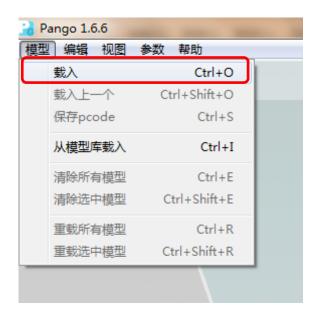
● 视图

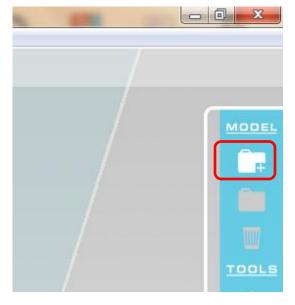
菜单项	快捷键	工具栏	说明
分层视图	Ctrl+L	左键	在模型视图与分层视图之间切换。
显示模型重心	Ctrl+N	无	选择之后,主视图的模型上会显示一黑一白两条垂线。黑线代表模型的重心所在位置,白色代表模型底面的中心。一般而言,黑白两根线越接近模型站得越稳。根据物理知识,只要模型的重心线在底面的范围之内,模型就不会倒。
显示FPS	Ctrl+`	无	切换FPS显示。FPS会显示在状态栏的左下角。
控制台	Ctrl+B	无	连接打印机,通过控制面板或控制台对其进 行控制,或者进行固件升级。

参数

菜单项	快捷键	工具栏	说明
设置	Ctrl+F	左键	打开打印参数设置对话框进行设置。
恢复默认 参数	Ctrl+D	无	恢复默认打印参数。
并行打印	Ctrl+P	左键	多模型打印时,默认是串行打印,即打完一个模型再去打下一个模型。并行打印,即所有模型同时打印,这样可以避免打印过程中的碰撞。当模型的尺寸超出限制时,软件会自动切换为并行打印模式。

1 启动切片软件Pango

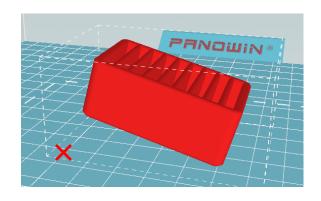

● 启动Pango后,您将看到以下"选择打印机"界面;点击"PanowinF3CL"确定。

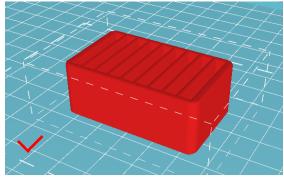


2 载入模型文件

● 方法1:选择菜单栏左上角"模型",会出现如下"载入";点击选择。

● 方法2:选择工具栏最上端" 7 图标;点击选择。




选择您要进行切片的.STL文件。 这里我们以SD卡中STL文件内的示例模型SD_Card_Holder.stl为例。

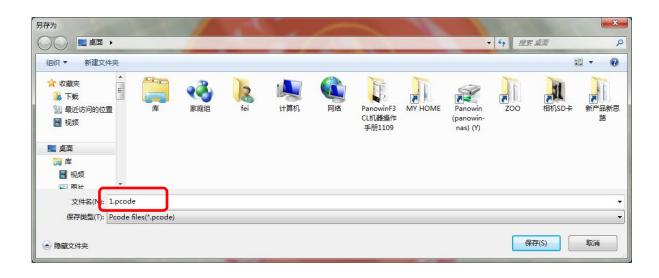
载入模型摆放要求:接触平台且接触面平整

● 方法3:从模型库载入模型。

↑点击圆圈进行页码选择

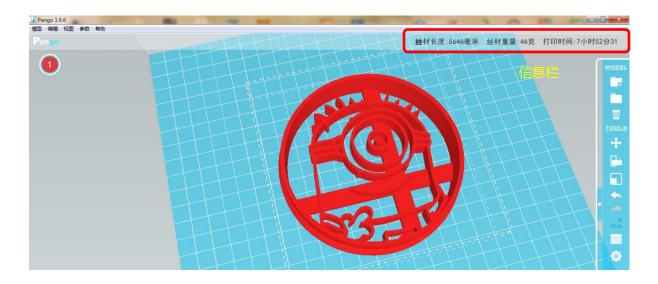


从模型库快速载入文件"1"的模型为例,所有参数为默认状态。



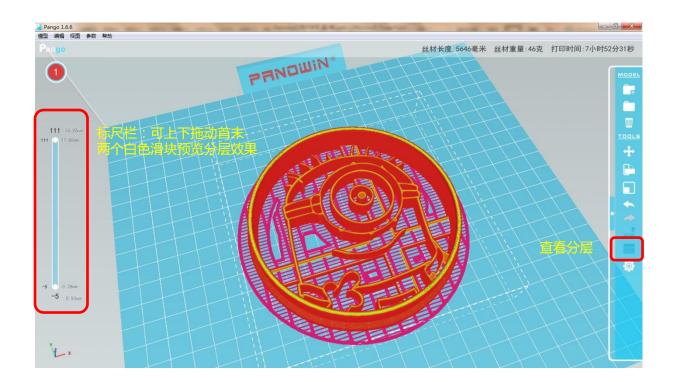
2 保存Pcode文件

● 点击模型窗口里"保存pcode"或者左侧工具栏" □ " (快捷键Ctrl+S)按钮,可将文件进行快速切片并保存到桌面;以便复制到SD卡里进行3D打印。



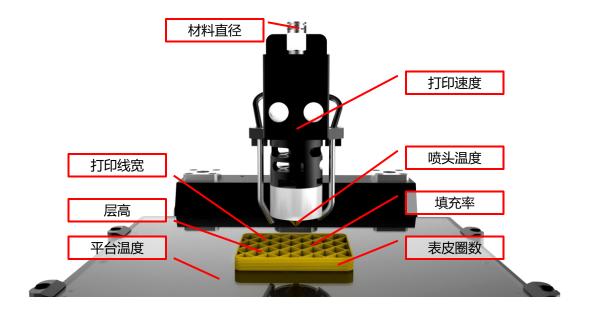
* 快速切片

● 在保存为pcode文件后,Pango切片软件根据默认参数将模型自动进行快速切片;并保存输出。

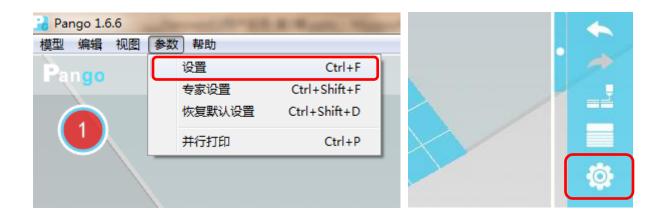

通常默认切片参数能够满足大多数模型的切片需要。在您熟悉参数用途和切片技巧之前,使用默认参数可以方便您快速完成切片。

● 模型窗口右上角信息栏也会在切片后,显示预计打印时间,丝材损耗等信息。

3 分层预览


● 在分层视图里,拖动右侧的分层滑块,您可以查看模型各个分层的效果,确认分层结果与模型结构相符,没有断层、残缺等现象。

Pango切片软件使用技巧:


- 使用带有滚动的鼠标,前后转动鼠标滚轮,可以放大或缩小整个3D模型画面。
- 按住鼠标左键可随意平移拖动整个画面;按住鼠标右键可随意旋转整个画面。

- 本部分将详细介绍切片时涉及的关键参数含义和作用;使您能够根据模型的特点调整特定参数,以达到更好的打印效果。
- 下图示意了一个典型的打印过程所涉及的关键参数:

打开"设置",以下将针对"关键参数"逐一详细讲解

层高

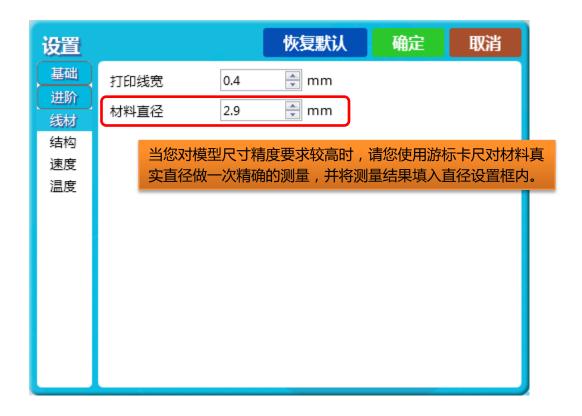
- 层高影响模型纵向的细腻程度,层厚越小表面越平滑,但打印时间也越长。
- F3CL支持0.05mm/0.1mm/0.15mm/0.2mm四种分层厚度设置,默认为0.15mm层厚。(见于切片软件内"基础参数-质量")

打印速度

- 打印速度影响模型成型时间,随着速度的增加,模型表面质量会随之降低,应在成型时间与打印质量之间取平衡;
- F3CL默认打印速度为40mm/s,您可以在不降低模型表面质量的情况下适当调整。例如:为了优质的表面常用值20mm/s。

(见于切片软件内"基础参数-质量")

打印线宽


- 打印线宽(喷嘴尺寸)由打印机喷嘴尺寸所决定,影响模型表面细腻程度,线宽越小表面越平滑,但打印时间也越长。(见于切片软件内"进阶参数-线材")
- F3CL的喷嘴尺寸默认为0.4mm,通常您无需修改此参数值。

材料直径

- 材料的实际直径与切片时的设置参数越接近,模型的成型量越准确。若实际直径偏大, 会造成挤出过多;实际直径偏小,会造成挤出偏少。
- F3CL默认的材料直径为2.9mm,这是一个平均估计值,由于工艺误差的问题,您使用的材料直径可能与此有所出入。

表皮圈数

- 表皮圈数以及上下表面层数,影响模型的外表面坚硬程度。
- F3CL默认的表皮圈数为2,根据喷嘴尺寸可以换算为0.4×2=0.8mm; 上下表面层数为4,根据分层厚度可以换算为0.15×4=0.6mm。 (见于切片软件内"进阶参数-结构")

填充率

- 填充率影响模型内部强度,填充率越高,模型打印时间约长。
- F3CL默认填充率为25%,兼顾了模型强度和打印时间。 (见于切片软件内"进阶参数-结构")

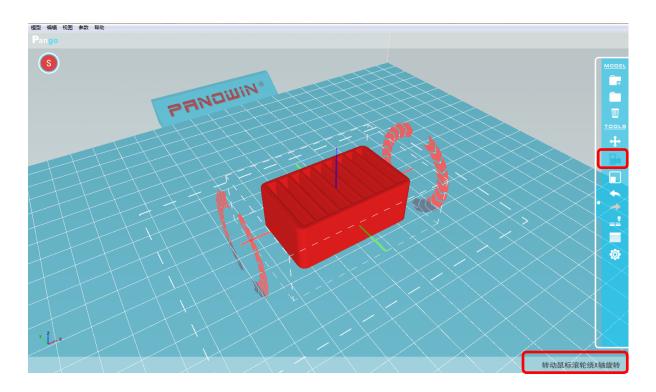
喷头温度

- 喷头温度(打印温度)影响材料熔融程度,温度越高材料融化越充分,但容易导致冷却过缓,造成模型塌陷;温度过低材料融化不充分,又会导致挤出不畅,造成模型断层或无法成型。
- 通常, PLA材料打印温度为195度~205度, ABS材料打印温度为230度~250度。
- F3CL支持的打印温度范围为170度~260度,默认为200度,适合PLA材料打印。
- 通常不建议您采用PLA/ABS以外的其他材料,如有特殊需要,请咨询我们的客服以寻求技术支持,以免造成喷头损坏。

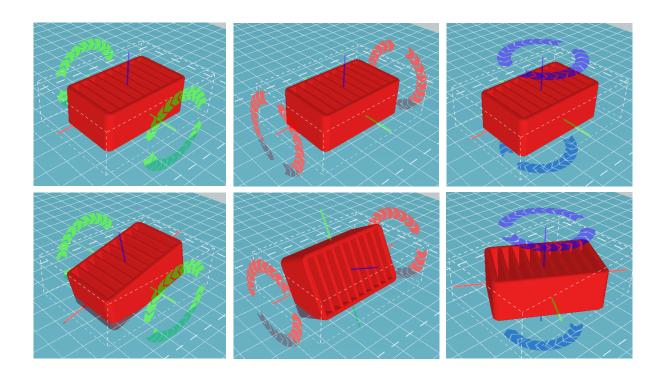
平台温度

● 合适的平台温度能使模型底部与打印平台良好附着,避免翘边、脱离现象,保证模型 顺利完成打印。

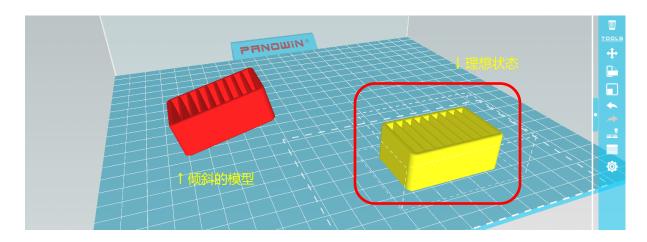
- 通常,PLA材料适合的平台温度为50~60度,ABS材料适合的平台温度为85度~110度。
- F3CL默认平台温度设置为50度,适合PLA材料打印。



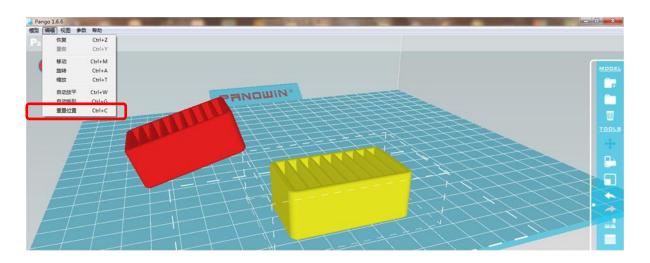
载入模型后,您可以根据需要在切片软件中直接对模型进行简单的处理。


1 旋转模型

◆ 旋转


- —— 根据需要选择红、绿、蓝三个旋转轴,被选中的轴会出现相应色颜色的旋转箭头;
- —— 移动鼠标滚轮中键,向需要旋转的方向滚动,可使模型旋转特定角度,旋转角度默认以 以15度为间隔递增/递减。
- —— 若在旋转的同时按下Ctrl键,则可以按每1度旋转任意角度。

◆ 平置


—— 当模型在竖直方向以某个角度倾斜时,点击菜单栏"编辑-自动放平" (快捷键 Ctrl+W) 按钮,可将其沿着倾角最小的面平放于打印平台上,这对于某些不规则模 型显得比较方便。

◆ 重置位置(复位)

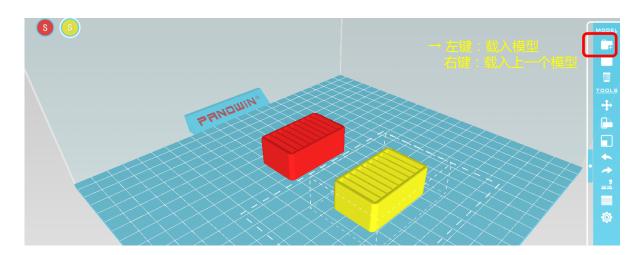
—— 当对模型进行过复杂的旋转后,若您对旋转结果不满意,可以点击菜单栏"编辑-重置位置" (快捷键Ctrl+C)按钮,将模型恢复到最初的姿态。

缩放模型

◆ 统一缩放

- —— 修改缩放比例或直接修改模型 尺寸(单位mm)。XYZ轴前 □ 全部"√"可对模型进行三维 统一尺寸缩放。

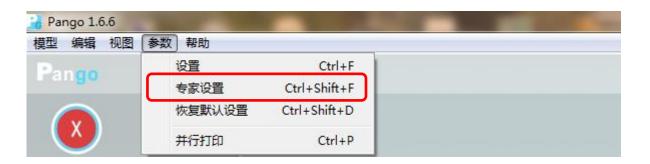
◆ 任意缩放


—— 点击缩放选项框左侧的 □ 进行自由选择"√",可以单独缩放各个维度的尺寸:

批量打印

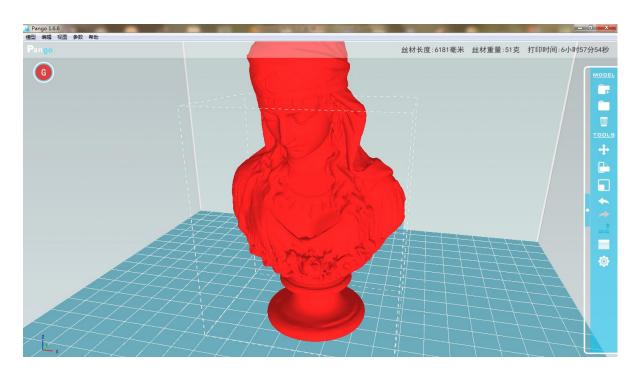
◆ 复制模型

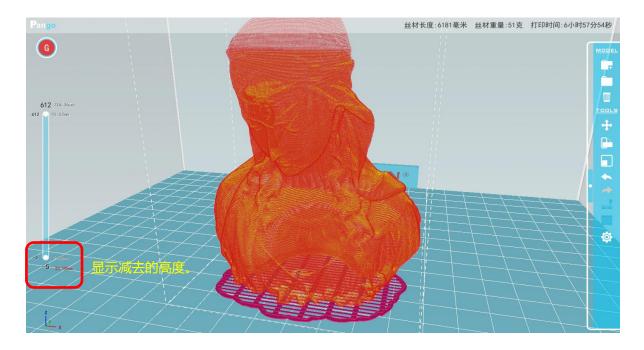
——右击工具栏 " (快捷键Ctrl+Shift+O)可默认载入前一个模型文件,从而达到复制模型。



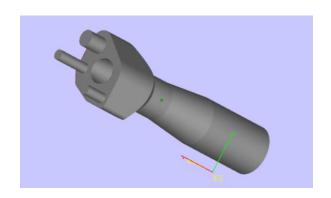
4

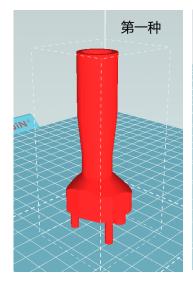
切除底部 (选段打印)

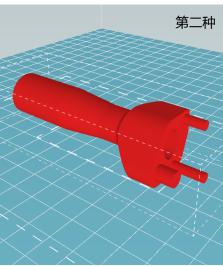

—— 在某些情况下,您可以将模型一定高度以下的部分切除(比如底面不平的模型),仅 打印上面部分;通过设置有些模型可以选段打印。见"专家设置"中"分层-高度范围"。

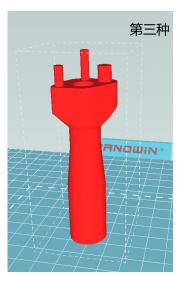

高度下限:指从底面切除一定尺寸;高度上限:指从顶端切除一定尺寸。例如下列参数。

—— 高度下限设置为35mm,点击查看分层。

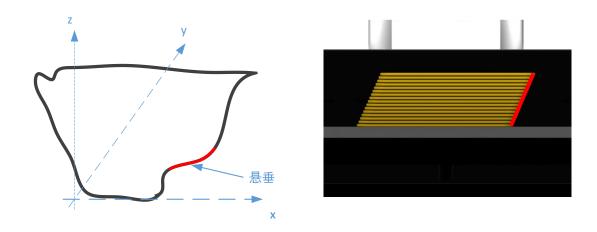


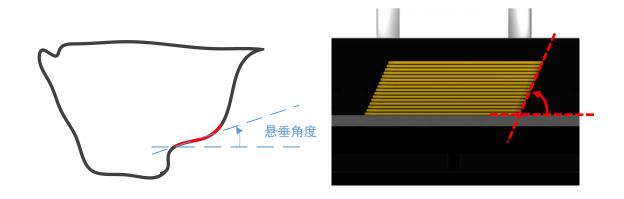



◆ 摆放角度


为了充分利用FDM的成型特点,在摆放模型时,应当选择最佳的角度,尽量减少支撑区域,以便达到更好的打印效果。

如下图所示的模型,有三种不同的摆放角度。选择<mark>第三种</mark>为最佳,此时模型无需添加 支撑即可进行打印。

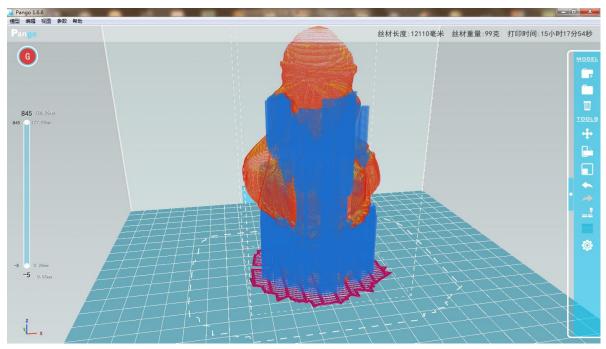




◆ 添加支撑

首先需要理解为什么需要加支撑? 先了解一个名词!垂悬结构:指模型沿Z向由低到高逐层向X或Y方向外扩形成的悬崖状结构。如下图。

—— 悬垂部位的外切面与水平面的夹角称为悬垂角度,用于定量描述模型向外扩展的陡峭程度。

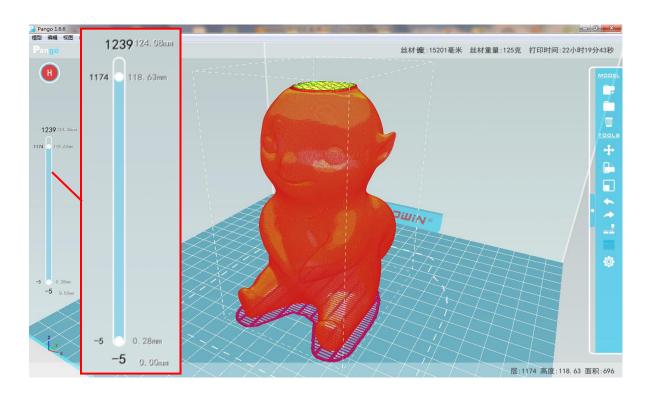


基于FDM逐层堆积的成型特点,当模型的悬垂角度较大时,通过材料的边缘支撑力可以形成无塌陷的悬垂结构。当模型的悬垂角度低于某个值时,就需要借助支撑结构来避免模型塌陷。

—— 支撑结构与模型是一种弱粘连,这样打印完成后方便手工去除。打开模型时可以根据 垂悬状态选择是否添加支撑。(见于切片软件内"基础参数-附加")

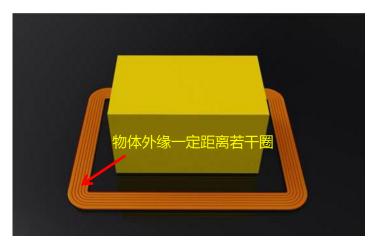
◆ 暂停打印(换丝控制)

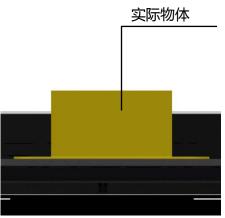
一一 优化模型整体效果,会需要使用到暂停打印;可以实现模型的多色打印。在菜单栏"参数—专家设置"(见于切片软件内"代码-暂停")



—— 例如下面这个胡巴,下面身体是白色的,头顶为绿色的部分。先通过分层工具,预览切片效果,观看头顶绿色部分需要的大概高度;后确定尺寸。

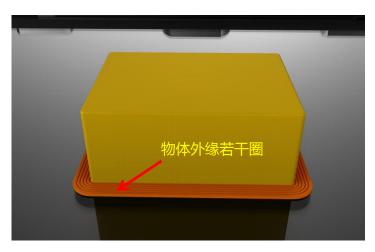
—— 胡巴高度124.08mm使用白色耗材打印,在约118mm尺寸处暂停,换成绿色耗材继续打印。即可完成一只双色胡巴。

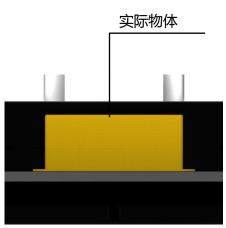

◆ 底面类型


—— 模型底面的作用是使模型底部更牢固地附着到打印平台上,防止打印过程中模型脱落。 主要三种类型:

【1】线圈

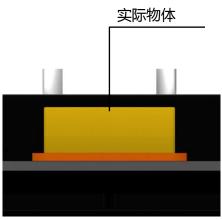
底面为线圈时,在打印的时候会在模型外圆生成一定圈数的参考线;在打印完成后也不和模型粘合,具有速度快、模型底部完整特点。为最常用的一种底面方式,能快速预览平台平整度,从而进行平台调节。





【2】裙边

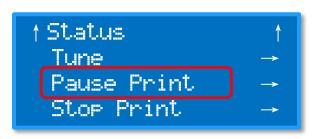
裙边是以模型最底层的边缘向外扩展若干圈绕线,并直接在打印平台上进行打印。 采用裙边类型时,需要将平台调整到较为水平的状态。



【3】底座

底座是在模型底部增加一个竹筏状的底座,其好处是通过多层材料的堆积,产生一个相对平整的附着面,再在上面打印模型,可以得到较好的模型底部。使用此项时在喷头能挤出丝料附着平台上时,则无需调平台。

☆ 断电重续打印功能为磐纹科技受专利保护的独家技术。


专利号: 201410190966.6

断电重续打印功能允许用户在打印机打印过程中,随时暂停打印或者意外断电。在暂停打印的过程中,用户可以方便地进行更换耗材、关闭电源,搬动机器等一系列操作。

断电重续打印的两种情况

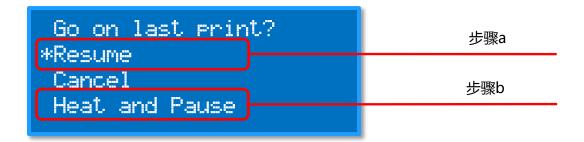
◆ 第一种:手动暂停打印

- —— 按下LCD控制面板右侧旋钮;
- —— 旋转旋钮,选择菜单中的Pause Print选项,按下旋钮; 此时,打印头喷嘴回到XY轴的原点位置。打印平台静止不动。

◆ 第二种:意外断电

—— 此种情况,一般是突然停电或者无意间触碰电源插座导致设备断电。断电后打印平台会 迅速降下一段距离,保护模型。

针对一些大模型、复杂模型,长时间打印难免出现外在突发情况发生,断电续打有效的防止了模型的中途报废情况。



☞ 开机后恢复打印

—— 重新接通电源后,若上次打印未完成,LCD屏幕会出现如下右提示,询问是否重续打印。

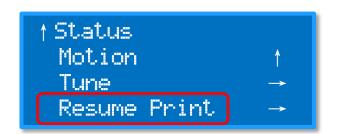
- —— a 若选择菜单中的Resume选项,按下旋钮。此时,打印机自动加热,加热完毕开始继续打印未完成任务。
- —— b 若选择菜单中的Heat and Pause选项,可以手动加热喷嘴和加热平台,加热完毕, 选择菜单Resume选项,按照 a 执行开始继续打印未完成任务。

(建议选择Heat and Pause选项,进行预热以后再开始打印。)

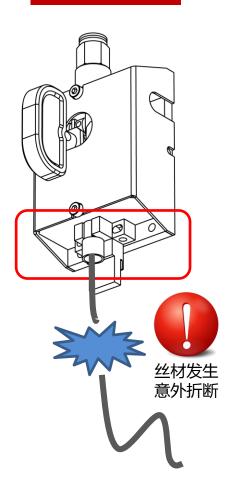
☆ 断丝报警及续打保护功能为磐纹科技受专利保护的独家技术。

专利号: 201420287871.

打印过程中,假如发生打印耗材丝料用尽、丝料意外折断、因绞丝而将丝料拉断等意外情况, 打印机通过专门的断丝检测装置(如下图中红色框内部分)实时发现异常并及时进行处置。


此时打印任务将被暂停,并在打印机的LCD液晶面板上显示警告信息,提醒用户重新安装打印耗材丝料,并且允许用户重续未完成的打印任务。以此避免用户额外的损失。

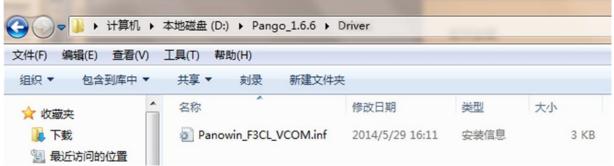
警告提醒信息


Error 8: Filament Run Out! Reload filament and Press to continue.

☞ 恢复打印

- 按下LCD控制面板右侧旋钮;可进入下一步操作。用户可重新准备耗材,执行自动进丝命令。
- —— 当丝料重新安装完毕,通过操作重续打印 Resume Print命令,可继续未完成的打印任务。

断丝检测装置



1 驱动安装

● 驱动文件在随机软件包 "Pango_x.x.x" 下的.\Driver目录下:

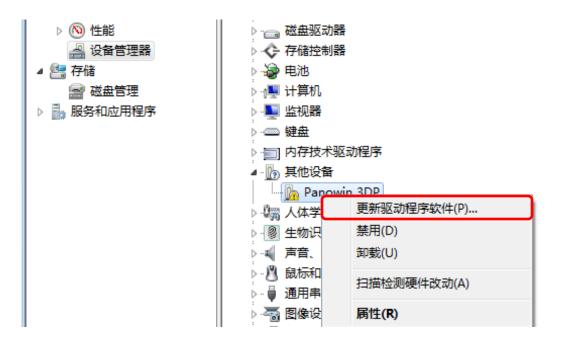
● 请按以下步骤进行驱动安装:

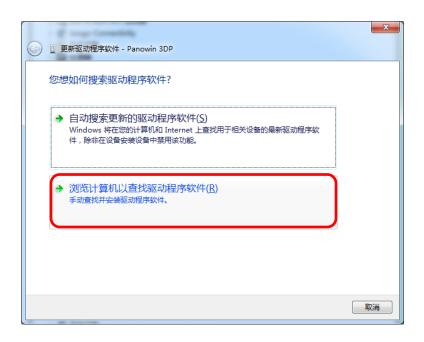
步骤【1】:将打印机用USB数据线与电脑连接;

步骤【2】: 打开 "计算机" -> "管理" ->

"设备管理器",在"其他设备"中,

将看到未安装驱动的设备


"Panowin_3DP" 。



步骤【3】: 右键点击 "Panowin_3DP" , 选择 "更新驱动程序软件" ;

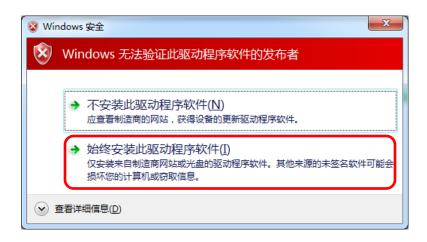
步骤【4】:在弹出的对话框中选择"浏览计算机以查找驱动程序软件",

步骤【5】:将搜索路径指向驱动存放目录,点击"下一步"

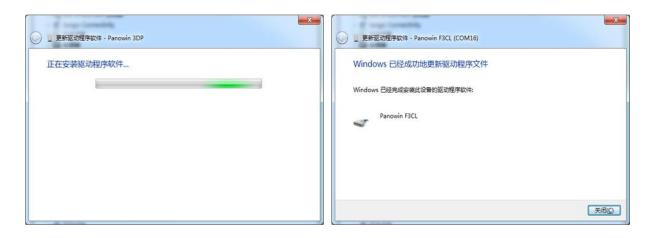
② ① 更新驱动程序软件 - Panowin 3DP

浏览计算机上的驱动程序文件

在以下位置搜索驱动程序软件:


D:\Pango_1.6.6\Driver

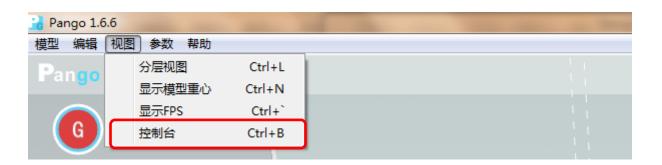
② 包括子文件夹()


→ 从计算机的设备驱动程序列表中选择(L)
此列表将显示与该设备兼容的已安装的驱动程序软件,以及与该设备处于同一类别下的所有驱动程序软件。

步骤【6】: 若出现系统验证提示,点击"始终安装此驱动程序软件"即可。

步骤【7】: 系统将自动安装驱动程序;

步骤【8】:完成后,可在"设备管理器"中看到已识别的打印机串口号。



2 固件升级

● 驱动安装完成后,即可进行固件升级。

步骤【1】: 打开切片软件主界面,点击菜单"视图"->"控制台";

步骤【2】:在对话框中,选择"升级固件",查询后缀为.hex文件,点击"打开"按钮。.hex文件位于压缩包中自带的固件文件。

步骤【3】:打印机将自动进行固件升级,在完成之前请不要断开打印机电源或拔出USB数据线。

升级固件	<u> </u>	Ş	
升级固件			

步骤【4】:升级完成后,打印机将自动重启,并运行新升级的固件。

特别提醒:

1:禁止使用非我司提供的固件系统文件进行升级,如擅自操作损坏设备不在我司质保范围。通过选择LCD控制面板内的"About"菜单,可以查看最新 固件的版本日期。

2:如操作异常,请立即停止;并及时反馈到磐纹科技客服部进行技术指导。

为了保证打印机运行的稳定性,极大提高模型打印成功率,F3CL具有可靠的系统自我保护功能;当打印过程中系统发生一些异常情况时,打印机能够立即自动暂停打印任务,并通过LCD控制界面提示错误代码,伴随蜂鸣器鸣响。

当异常情况得到排除时,您可以手动恢复打印。以下为错误代码表及分析说明,您可在打印机提示相应故障时尝试排查和解决。

◆ 错误代码表

保护类型	错误代码	说明
温度异常	Error 0: Nozzle Max Temp	喷头温度超过最大值
温度异常	Error 1: Nozzle Heat Fail	喷头加热失败
温度异常	Error 2: Nozzle Temp Drops	打印时喷头温度下降
温度异常	Error 3: Nozzle No Feedback	喷头温度无反馈
温度异常	Error 4: Bed Max Temp	平台温度超过最大值
温度异常	Error 5: Bed Heat Fail	平台加热失败
温度异常	Error 6: Bed No Feedback	平台温度无反馈
机械异常	Error 7: Auto Home Failed	自动归零失败
断料检测	Error 8: Out of Filament	材料耗尽
断电检测	Error 9: Power Off	打印过程中设备断电
机械异常	Error 10: CL Timeout	闭环控制超时
机械异常	Error 11: Hit Z-max	打印过程中触发Z-Max开关
意外操作	Error 12: Card Removed	打印过程中SD卡拔出
文件错误	Error 15: Invalid pcode file	SD卡中所选的.pcode为非法文件

◆ 分析说明

>> Error 0: Nozzle Max Temp

此错误是由于打印机检测到喷头温度超出最大允许温度值(260度)。可能的原因为:

- A 打印喷头实际温度确实过高,请您及时关闭打印机,停止喷头加热;检查打印喷头两侧冷却导管是否松动或者角度偏移,待冷却后调整固定对焦于喷头。
- B 打印喷头实际温度较低或并未加热,则可能是测温传感器故障,请您联系客服人员进行维修。

>> Error 1: Nozzle Heat Fail

此错误是打印机启动加热一定时间后,喷头温度一直无法达到预设温度。可能的原因为:

- A 喷头两芯加热线接触不良,导致无法加热,请重新插拔或紧固加热线插头即可;
- B 打印喷头实际温度很高,但显示的当前温度值很低或不变化,则可能是测温传感器故障,请您联系客服人员进行维修。

>> Error 2 : Nozzle Temp Drops

此错误是打印过程中,喷头温度下降到170度以下,为了避免材料未融化就强制挤出,打印机将自动暂停打印以保护喷头。可能的原因为:

A 喷头两芯加热线接触不良,导致无法加热,请重新插拔或紧固加热线插头即可;

>> Error 3 : Nozzle No Feedback

此错误是打印机接收不到喷头的测温反馈信号。可能的原因为: A 喷头三芯测温线接触不良,请重新插拔或紧固测温线插头即可;

>> Error 4: Bed Max Temp

此错误是由于打印机检测到平台温度超出最大允许温度值(120度)。可能的原因为:

- A 平台实际温度确实过高,请您及时关闭打印机,停止平台加热;
- B 平台实际温度较低或并未加热,则可能是平台测温传感器故障,请您联系客服人员进行 维修。

>> Error 5 : Bed Heat Fail

此错误是打印机启动加热一定时间后,平台温度一直无法达到预设温度。可能的原因为:

- A 平台四芯温控线接触不良,导致无法加热,请重新插拔或紧固温控线插头即可;
- B 平台实际温度很高,但显示的当前温度值很低或不变化,则可能是平台测温传感器故障, 请您联系客服人员进行维修。

>> Error 6: Bed No Feedback

此错误是打印机接收不到平台的测温反馈信号。 可能的原因为: A 平台四芯温控线接触不良,请重新插拔或紧固四芯温控线插头即可。

>> Error 7: Auto Home Failed

此错误是打印机进行自动归零时某个轴无法正常执行归零检测步骤,根据实际情况会提示是X轴,Y轴或Z轴。可能的原因为:

- A 机械轴卡顿,运行不畅,请尝试添加润滑油。
- B 某个方向对应的最小位置限位开关无法正常工作,请联系客服人员解决。

>> Error 8 : Out of Filament

此错误是断料报警检测保护功能触发,请取出剩余的一段材料,更换新材料后手动恢复 打印即可。

>> Error 9: Power Off

此错误是在打印过程中意外断电,您可以再下次上电时继续恢复打印。

>> Error10 : CL Timeout

此错误是打印过程中闭环运动控制系统反馈超时,为了避免损坏机械结构,打印机将自动暂停打印任务。可能的原因为:

- A XY运行机构被异物卡住、光轴运动不畅等,请完成机械结构清理后尝试恢复打印。
- B XY运行机构某个方向无法运动或运动异常,请联系客服人员解决。

>> Error 11 : Z-max

此错误是打印过程中平台下方的Z-max限位开关被意外触发。可能的原因为:

- A 有异物落入Z-max限位开关遮挡孔内,请完成清理后尝试恢复打印;
- B Z-max限位开关损坏,请联系客服人员解决。

>> Error 12 : Card Removed

此错误是打印过程中SD卡被意外拔出,请重新插回SD卡后手动恢复打印。

>> Error 15 : Invalid pcode file

此错误是是SD卡中所选的.pcode为非法文件,可能的原因:

- A SD卡中的.pcode文件未复制完整,请重新复制一遍即可;
- B 用户误将其他文件后缀命名为.pcode文件,导致打印机无法识别。

日常维护及注意事项

- I. 磐纹科技建议用户的工作环境温度在20度至30度之间。在此温度范围以外的环境下,需要客户根据实际环境调整打印参数,以达到良好的打印效果。
- II. 请在干燥环境下使用打印机。
- III. 打印时,打印头喷嘴温度可高达200摄氏度以上,请用户注意高温,避免烫伤。
- IV. 磐纹科技建议用户使用磐纹科技提供的专业3mmPLA打印耗材。 PLA耗材无毒无害,可降解,为高科技环保材料。 若用户使用ABS耗材,ABS耗材打印时有异味产生,请保持环境空气通畅。
- I. 请随时保持打印机的清洁,使打印机处于良好工作状态,保证打印机运动结构能正常工作。 假如运动机构粘有异物,请随时清洁处理。随时检查运动机构是否润滑。

建议用户定期对运动机构加注润滑油。

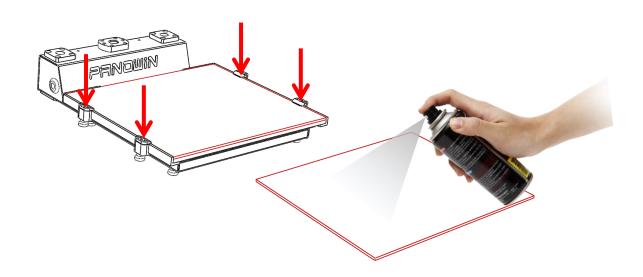
注意:光轴请使用液体润滑油,丝杆请使用固体润滑油。

- I. 磐纹科技3D打印机完全具备长时间打印大型物体的能力。长时间打印时,用户不必在离开时暂停打印。假如遇到必须断电暂停打印的情况,可使用磐纹科技专利技术断电重续打印功能。(请参见第四章4-1内容介绍。)
- II. 假如长时间不打印,建议将打印耗材从打印头喷嘴内取出。先加热喷嘴,再使用自动退丝功能即可。(自动退丝步骤请参见第二章2-4内容介绍。)
- III. 更换不同颜色耗材情况下,需要送丝完成后/打印前手动挤出残留在喷头内的耗材;待颜色正确时再选择文件打印。
- IV. Panowin F3CL打印机操作界面为英文版, SD卡导入.Pcode文件不能有中文名。

- 1. 请按照手册指导,调节平台水平,喷头和平台距离。这个是打印出成功模型的首要条件。 丝料粘不住、不成形,往往是喷头离平台太远。
- 2. 加热打印平台(使用磐纹科技提供的专业3mmPLA耗材,请使用45度至55度温度)。

```
Ω 205 °/205 ° > 5%

≌ 45 °/45 ° 0 00: 03


S 20mm/s Z 000.00

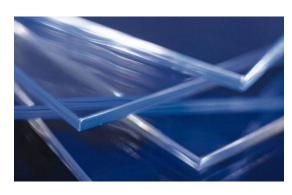
Dark_stick.pcode
```

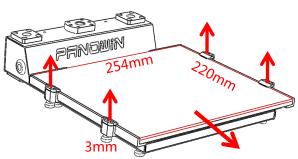
在平台上使用增加粘性的材料,防止不粘、翘边问题。
 待打印平台冷却,旋松打印平台两边压紧玻璃平板的锁扣螺丝(如左下图箭头所指位置),小心取下玻璃平板,放置于平整桌面上。

妙招

磐纹科技推荐用户每次打印物品时,在玻璃平台上涂抹液体胶(文具店内有售);且在清洗玻璃平台晾干后均匀地喷涂一层自喷漆(选用型号为光油透明自喷漆即可,普通五金商店或者装修商场皆有出售)。

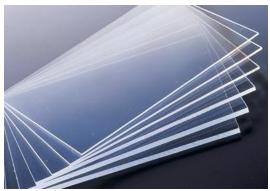
常用3D设计软件的STL格式输出方法




Alibre	File(文件) -> Export(输出)-> Save As(另存为,选择.STL)-> 输入文件名-> Save(保存)				
	输出模型必须为三维实体,且XYZ坐标都为正值。在命令行输入命令"Faceters"-> 设定FACETRES为1 到10 之间				
AutoCAD	的一个值 (1为低精度 , 10为高精度) -> 然后在命令行输入命令 "STLOUT" -> 选择实体 -> 选择 "Y" ,输出二进				
	制文件 -> 选择文件名				
中望3D	"文件"→输入到3D打印机→设置3D打印信息				
CADKey	从Export(输出)中选择Stereolithography(立体光刻)				
	File (文件)-> Export (输出)-> Rapid Prototype File (快速成形文件)-> 选择输出的模型->Select				
I-DEAS	Prototype Device (选择原型设备) > SLA500.dat -> 设定absolute facet deviation (面片精度) 为 0.000395 -				
	> 选择Binary (二进制)				
Inventor	Save Copy As (另存复件为) -> 选择STL类型 -> 选择Options (选项) ,设定为High (高)				
IronCAD	右键单击要输出的模型 -> Part Properties (零件属性) > Rendering (渲染) -> 设定 Facet Surface Smoothing				
	(三角面片平滑)为 150 -> File (文件) > Export (输出) -> 选择 .STL				
	使用AMSTLOUT命令输出STL文件。				
	下面的命令行选项影响STL文件的质量,应设定为适当的值,以输出需要的文件。				
	1. Angular Tolerance (角度差) $\overline{}$ 设定相邻面片间的最大角度差值,默认 15 度,减小可以提高STL文件的精度。				
Mechanical Desktop	2. Aspect Ratio (形状比例) — 该参数控制三角面片的高/宽比。1标志三角面片的高度不超过宽度。默认值为0,				
wechanical Desktop	忽略。				
	3. Surface Tolerance (表面精度) — 控制三角面片的边与实际模型的最大误差。设定为0.0000 ,将忽略该参数				
	•				
	4. Vertex Spacing (顶点间距) — 控制三角面片边的长度。默认值为0.0000, 忽略。				
	1. File (文件)-> Export (输出)-> Model (模型)				
ProE	2. 或者选择File (文件) -> Save a Copy (另存一个复件) -> 选择 .STL				
PIOE	3. 设定弦高为0。然后该值会被系统自动设定为可接受的最小值。				
	4. 设定Angle Control (角度控制)为1				
	1. File (文件) -> Save a Copy (另存一个复件) -> Model (模型) -> 选择文件类型为STL (*.stl)				
ProE Wildfire	2. 设定弦高为0。然后该值会被系统自动设定为可接受的最小值。				
	3. 设定Angle Control (角度控制)为1				
Rhino	File (文件) -> Save As (另存为 .STL)				
SolidDesigner					
(Version 8.x)	File(文件)-> Save(保存) -> 选择文件类型为STL				
SolidDesigner (not	File (文件) -> External (外部) -> Save STL (保存STL) -> 选择Binary (二进制) 模式 ->选择零件-> 输入				
sure of version)	0.001mm作为Max Deviation Distance (最大误差)				
SolidEdge	1. File (文件) -> Save As (另存为) -> 选择文件类型为STL				
	2. Options (选项)				
	设定 Conversion Tolerance (转换误差)为 0.001in 或 0.0254mm				
	设定Surface Plane Angle (平面角度)为 45.00				
SolidWorks	1. File (文件) -> Save As (另存为) -> 选择文件类型为STL				
	2. Options (选项) -> Resolution (品质) -> Fine (良好) -> OK (确定)				
Think3	File (文件) -> Save As (另存为) -> 选择文件类型为STL				
Unigraphics	1. File (文件) > Export (输出) > Rapid Prototyping (快速原型) -> 设定类型为 Binary (二进制)				
	2. 设定Triangle Tolerance (三角误差)为 0.0025				
	设定Adjacency Tolerance (邻接误差) 为 0.12				
	设定Auto Normal Gen (自动法向生成)为 On (开启)				
	设定Normal Display (法向显示) 为 Off (关闭)				
	设定Triangle Display (三角显示) 为On (开启)				
	1 7 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				

磐纹科技Panowin F3CL桌面3D打印机原装可拆卸打印平台材料为普通玻璃板。

(此玻璃板经过我司多方检测表面平整度,检验合格产品)


我司打印机采用灵活拆卸平台的设计,目的是推崇打印平台材料多样化! (方便使用者尝试、挖掘更多优质材料)

目前打印平台(玻璃板)尺寸:长254mm、宽220mm、厚3mm;

如果您有足够的创新能力、动手能力,只需准备同等尺寸的其他材质打印平台,即可体验。

目前市面上如:亚克力板、铝板、大理石板等

机器售后保障:

磐纹科技3D打印机整机质保期为1年。售后保障范围仅限中国大陆地区。耗材,随机附件,赠品等其他物品不享受质保。

配件质保及售后维修:

- □ 用户收到3D打印机12日之内,经确认为产品质量问题,为用户维修或免费更换配件,送修来回运费由磐纹科技承担。
- □ 用户收到3D打印机12日至1年之内,经确认为产品质量问题,为用户维修或免费更换配件, 送修来回运费由用户承担。
- □ 用户收到3D打印机1年之后,遇到的产品问题,如需更换配件,用户可以与磐纹科技的客服联系,在磐纹科技的官方网站上购买所需配件。
- □ 对质保期内更换的零配件的质保,仅限于整机维修的1年期限之内。

机器退换货须知:

- □ 机器不支持无理由退换货。
- □ 用户收到货物超过12日,不再接受退换货要求。用户需在12日期限到达之前,与磐纹科技的客服联系以明确退货意愿,并且发送邮件提交退货申请(邮箱service@panowin.com)。确认退货后,并于自收到货物12日期限到达之前,联系快递将退货机器返厂,提交快递单号。凡存在与以上约定不符合之情况,不接受退货要求。
- □ 机器一旦开具发票,不再接受退换货要求。
- □ 凡有人为拆卸配件痕迹及行为,不再接受退换货要求。
- □ 因使用方式不当或其他方式造成机器损坏,不再接受退换货要求。
- □ 务必保证商品外包装、商品配件、随机附件,及资料的完整性,否则不再接受退换货要求。
- □ 退货款中将扣除相应的损耗费用,包括2%的包装及手续费用,来回运费,易损耗配件费用, 耗材费用,以及返厂后经检查评估发现的其他各类损失费用。 假如随机包中的附件包装被 拆开,退机费用中将扣除此附件损耗费用。
- □ 退换货时请按照收到货物时的标准认真包装 , 并将所有物品一并寄回。
- □ 退换货请务必使用磐纹科技指定的快递公司,否则因返厂运输造成的损失由买家承担。

售后维修及退换货流程:

- □ 与客服联系并留言,简述问题。
- □ 致信service@panowin.com,简述问题并附照片(注:邮件内必须附照片。信件抬头请注明"退货/维修/更换:机器型号/配件名",并请在邮件内标明买家帐号,机器序列和验码信息)。对于缺少买家帐号,机器序列和验码信息的情况,不予进行售后维修及退换货的处理。
- □ 寄回机器或需要送修的配件,并留下快递单号。
- □ 等待我们寄回更换的机器或维修好的配件。

注:用户一旦购买了我们的产品,将视为您完全认可我们的售前和售后条款。

谢谢您的支持与配合!

尊敬的客户:

您好!

感谢您购买磐纹科技的产品。请您在使用前务必认真阅读使用手册,以备准确地使用打印机。如果发生故障,请对照使用手册检查操作。在使用手册中不能排除故障的情况,请尽早洽询磐纹科技售后服务部门联系,磐纹科技将为您提供优秀的维修服务。

联系电话: 021-60950805 联系传真: 021-60950807 淘宝旺旺: wm122011

售前电邮:sales@panowin.com 售后电邮:service@panowin.com

我们会在最短的时间内给您最满意的答复。谢谢!

产品维修卡					
产品型号		机器编码			
购买日期		机器验证码			
用户姓名		用户联系电话			
用户地址					
经销商信息					
维修记录					

磐纹科技(上海)有限公司 Panowin Technologies Co., Ltd.

电话: 021-60950805, 021-60950806

传真: 021-60950807

售前电邮:sales@panowin.com 售后电邮:service@panowin.com

办公地址:上海市杨浦区邯郸路100号

复旦科技园 69号楼1019室

邮政编码:200433

官方网址:www.panowin.com

官方微博: Panowin磐纹科技桌面型3D打印机

第八章 联系方式 8-1

声明

Copyright©2013 磐纹科技 (上海)有限公司。

版权所有,保留所有权利。

未经磐纹科技(上海)有限公司明确书面许可,任何单位及个人不得擅自仿制、复制、眷抄及转译本书部分或者全部内容。不得以任何形式及任何方式(电子、机械、影印、录制及其它方式)进行商品传播或用于任何商业、盈利目的。

アヨハコ辿iN® 为磐纹科技(上海)有限公司注册商标。

此版本为Panowin_201512020001

本手册所提到的产品规格和信息仅供参考,如有内容更新,恕不另行通知。

可随时查阅我们的网站http://www.panowin.com。

除非有特殊约定,本手册仅作为使用指导,本手册中的所有陈述、 信息等均不构成任何形式的担保。