
A Physical Pendulum With Damping

Due to Sliding Friction

A physical pendulum is described where the damping of the motion is due to sliding friction in
the support. The motion is shown to consist of damped oscillations, with the amplitude decreasing
linearly with time until the motion abruptly stops. The objective of the related experimental study
is to show that the observed motion is an good agreement with the predicted equations of motion.

I. INTRODUCTION

We consider a pendulum made up of a length, L, of a
2”x4” wooden board suspended by a horizontal circular
rod of radius, R, that passes through a square hole cut
through the board. The size of the sides of the square
hole are barely larger than the diameter of the rod. As
the board swings as a pendulum, the points of contact
between the square hole and the rod must slide around
the rod. This creates a sliding friction that provides the
main source of damping of the motion. The configuration
is similar to the situation shown in Figure 1.
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FIG. 1. The forces acting on the physical pendulum.

In this experiment the sonic rangefinder is used to
record the oscillatory motion of the pendulum in an ascii
file. The measured motion should then be compared in
detail with the motion predicted by Newton’s laws.

II. APPLICATION OF NEWTON’S LAWS TO

THE PENDULUM

We consider the limit where the coefficient of sliding
friction between the rod and the square hole is relatively

small so that we may assume µ2

k << 1. We also assume
that the initial angular amplitude of the swing is much
less than one radian, that is: |θ0| << 1, where the an-
gle is in radians. In this limit we may replace sin θ ' θ
and cos θ ' 1. One can write two simultaneous equations
relating the components of force parallel and perpendic-
ular to the board to the corresponding components of the
acceleration of the center of mass of the rod. For small
angles of rotation, the acceleration terms are small and
these two equations can be solved for the force on the
board due to the supporting rod. From these forces one
can derive the torque that will damp the motion of the
swinging board as,

τf ' −µkMgR sgn(dθ/dt). (1)

This torque always tends to slow down the pendulum
since it always tend to turn the object in the opposite
direction to the direction it is moving.

To describe the oscillation of the pendulum, we use
Iα =

∑

τi, where I is the moment of inertia of the rigid
body about the axis of rotation, α = d2θ/dt2 is the an-
gular acceleration of the rotating rigid body, and the τi

are the torques due to the external forces acting on the
board. One of these forces is due to the force of gravity,
which gives a torque equal to −Mgh sin θ. In the small
angle limit this becomes −Mghθ, where θ is the angle
between the vertical and the swinging board, M is the
mass of the board, h is the distance between the axis of
rotation and the center of mass of the board, and g is the
acceleration of a freely falling body under the action of
gravity. Using the parallel axis theorem for moments of
inertia, we find

I =M

(

h2 +
L2

12

)

. (2)

Solving for α, we find

d2θ

dt2
= −

(

gh

h2 + L2

12

)

θ (3)

−µk

(

R

h

)

(

gh

h2 + L2

12

)

sgn(dθ/dt).

Newton’s laws applied to the rotation of a rigid body have
led to a relation between θ and it’s derivatives. This re-
lation only holds for maximum angles of swing which are
less than 20o relative to the vertical equilibrium position.
To simplify this relation we let,

1



ω2 =
gh

h2 + L2/12
, (4)

and

∆θ0 = −4µk

(

R

h

)

. (5)

Equation (3) becomes

d2θ

dt2
+ ω2θ =

(

∆θ0

4

)

ω2sgn(dθ/dt). (6)

We now use the differential equation for θ to deter-
mine how the pendulum moves. Suppose that at t = 0
the pendulum starts from rest with θ(t = 0) = θ0. As the
pendulum swings toward the center sgn(dθ/dt) = −1, so
that until the motion stops at some negative value of θ,
we have

d2θ

dt2
+ ω2θ = −

(

∆θ0

4

)

ω2. (7)

The most general function of time which satisfies the last
equation is

θ = A cos(ωt+ α)−
∆θ0

4
, (8)

where A and α are constants to be determined by the
initial conditions: θ(0) = θ0, and (dθ/dt)t=0 = 0. Apply-
ing the second condition we find that α = 0. The first
condition gives θ0 = A − (∆θ0/4). We have for the first
half of a period of oscillation,

θ =

(

θ0 +
∆θ0

4

)

cos(ωt)−
∆θ0

4
. (9)

When ωt = π the object stops at the largest negative
value of θ. We examine how much the amplitude of os-
cillation decreases in a half-period.

θ(π/ω) = −

(

θ0 +
∆θ0

4

)

−
∆θ0

4
= −θ0 −

∆θ0

2
. (10)

We see that in one-half of a period that the amplitude
decreases by ∆θ0/2. This decrease does not depend on
the amplitude. This is the decrease in amplitude that
will occur in any half period, π/ω. Thus, the ampli-
tude decreases at a constant rate with time. This rate is
the change in amplitude ∆θ0/2 divided by π/ω, the time
during which this change occurs.

dθ0(t)

dt
=
∆θ0ω

2π
= −2µk(R/h)(ω/π). (11)

Thus, the pendulum oscillates back and forth with the
same period that would describe the motion without fric-
tion. However, in each swing of the pendulum the am-
plitude decreases by the fixed amount, y∆θ0. This can
be put into a single equation,

θ =

(

θ0 −
2µkR

πh
ωt

)

cos(ωt+ α). (12)

III. COMPARING THEORY WITH

EXPERIMENT

It is then sensible to fit the motion data to the follow-
ing functional form

y = (a+ bx) sin(cx+ d) + e, a+ bx > 0, (13)

and,

y = e, a+ bx ≤ 0, (14)

where y is the distance of some point on the pendulum
from the rangefinder, x is the time in the language of
the curve fitting program dfita.exe, a is the initial am-
plitude of the motion, b is a negative number that takes
the sliding frictional damping into account, c it the same
as ω, d is a phase factor that depends on when the
clock was started, and e is the distance from the ori-
gin of displacements to the equilibrium point. This is
exactly choice # 16 with dfita.exe. We should compare
the value that dfita.exe gives for c with what is calculated
for ω from Eq. (4). The fit parameters determined by
dfita.exe are contained at the end of the file generated by
the program. The value of b should be compared with
2µkRωL′/(πh), where L′ is the distance from the axis of
rotation of the point on the pendulum being observed by
the rangefinder. To determine this effective point, mea-
sure the angle amplitude when the pendulum is started
and determine L′ so that a = L′θ0. To compare b with
theory you must make careful measurements of R and
the coefficient of kinetic friction between two similar sur-
faces. Even this is a bit crude, since finding a perfect
match between the two surfaces may be crude.

You should record the motion for at least three cases.
The differences between the parameters for the three
cases will give a good idea about the error in the mea-
surements. A major test of the theory lies in how well
the observed data agrees with Eqs. (13) and (14). This
is the main prediction of Newton’s laws. In addition to
the fit parameters dfita.exe writes the root mean square
difference between the data and the fit to the output file.
Part of this deviation is not a flaw in the theory, but is
due to the use of a diffuse reflector with the rangefinder
in order not to lose the signal when the angle of reflection
would be such that the reflection would miss the detec-
tor. This would otherwise occur for the larger amplitude
oscillations. The major subtle points and sources of error
should be discussed in your laboratory report.
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IV. AN EXAMPLE OF DATA ANALYSIS

Finally, we consider a case where the pendulum was
pulled back and started from rest with the data being
taken by the Sonic Rangefinder. The recorded motion is
shown in Figure 2.
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FIG. 2. Measured position as a function of time compared
with a curve fit with Equations (13) and (14)

This figure shows the kind of data and the agreement
with Eq. (13) that is expected with this study. To com-
pare with the results of the datafit we use L = 66 cm,
h = 24.5 cm, and R = 0.64 cm. We estimate the coeffi-
cient of friction of smooth steel against smooth steel that
is not oiled to be µk = 0.3. Calculating from Eq. (3) we
get ω = 4.99 /s, and 2µkRω/(πh) = 0.025 /s. If we take
the distance from the axis of rotation down to the point
where the reflection occurs to be 40 cm, we have L′ = 40
cm, so that our estimate of b in the fit to the data is
around b = −1.0 cm/s. The values obtained by fitting
with dfita.exe are a = 8.4 cm, b = −0.84 cm/s, c = 4.93
/s, d = −1.83, and e = 0.42 cm. Thus, the value of ω
differs from observation by a bit more than 1 % and the
functional shape of the decay is amazingly close to the
anticipate fitting function. The estimate of the damping
rate is good.
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