Tutorials for Origin 9.0

Table of Contents

1 Introduction Tutorial 1
2 Origin 9 3
2.1 Data Filter 3
2.1.1 Summary 3
2.1.2 What you will learn. 3
2.1.3 Steps 3
2.2 Stacked 3D Surface Plots 6
2.2.1 Summary 6
2.2.2 What you will learn. 7
2.2.3 Steps 7
2.3 Parametric Surface with Colormap from Data 15
2.3.1 Summary 15
2.3.2 What you will learn. 16
2.3.3 Steps 16
2.4 Colormap from Second Matrix 27
2.4.1 Summary 27
2.4.2 What you will learn. 28
2.4.3 Steps 28
2.5 Scatter Matrix 34
2.5.1 Summary 34
2.5.2 What you will learn. 35
2.5.3 Steps 35
2.6 IIR Filter 43
2.6.1 Summary 43
2.6.2 What You Will Learn 43
2.6.3 Steps 44
3 Data Analysis 51
3.1 Gadgets 51
3.1.1 Quick Sigmoidal Fit Gadget. 51
3.1.2 Integrate Gadget 62
3.1.3 Curve Intersection Gadget 67
3.1.4 Rise Time Gadget 71
3.1.5 Interpolate Gadget 78
3.1.6 Cluster Gadget 81
3.2 Curve Fitting 89
3.2.1 Linear and Polynomial Fitting 89
3.2.2 Nonlinear Fitting 93
3.3 Signal Processing 213
3.3.1 FFT Filter 213
3.3.2 IIR Filter 219
3.4 Peak Analysis 225
3.4.1 Peak Finding 225
3.4.2 Peak Integration 228
3.4.3 Peak Fitting 230
3.5 Data Manipulation 241
3.5.1 Setting Column Values 241
3.5.2 Worksheet Data Operations 252
3.5.3 Pivot Table 255
3.6 Analysis Templates 261
3.6.1 Creating and Using Analysis Templates 261
3.6.2 Creating Analysis Templates using Set Column Value 264
3.6.3 Creating a Custom Report Sheet 268
3.7 Analysis Themes 272
3.7.1 Summary 273
3.7.2 What you will learn. 273
3.7.3 Steps. 273
3.8 Batch Processing 275
3.8.1 Analysis Template and Batch Processing 276
3.8.2 Batch Processing with Summary Report in External Excel File 279
4 Statistics 281
4.1 Hypothesis Tests 281
4.1.1 Summary 281
4.1.2 What you will learn. 281
4.1.3 Steps 281
4.2 Power and Sample Size 287
4.2.1 Summary 287
4.2.2 What you will learn. 288
4.2.3 (PSS)One-Sample t-Test 288
4.2.4 (PSS)Two-Sample t-Test 289
4.2.5 (PSS)Paired-Sample t-Test. 290
4.2.6 (PSS)One-Way ANOVA 292
4.3 Descriptive Statistics 293
4.3.1 Descriptive Statistics 293
4.3.2 Descriptive Statistics 293
4.3.3 2D_Binning 300
4.4 ANOVA 308
4.4.1 One Way ANOVA 309
4.5 Nonparametric Tests 315
4.5.1 Non-parametric Statistics Overview 315
4.6 Multivariate Analysis 325
4.6.1 Principal Component Analysis 325
4.6.2 Cluster Analysis 332
4.6.3 Discriminant Analysis 341
5 Graphing 353
5.1 Graphing Data From Multiple Sheets 353
5.1.1 Summary 353
5.1.2 Create a Plot Quickly by Selecting Data 353
5.1.3 Add Data to an Existing Graph with Drag and Drop Plotting 354
5.1.4 Create a Plot using Plot Setup 357
5.1.5 Customize and Save a Graph Template 360
5.1.6 Plot into a Saved Custom Template 364
5.1.7 Plot Groups 365
5.2 Line Symbol 367
5.2.1 Basic 2D Plotting 367
5.2.2 Line Graph with Recession Bars 374
5.2.3 Scatter Plot of Decay and Recovery Curves 378
5.2.4 Micro-Raman spectroscopy of complex nanostructured mineral systems 386
5.2.5 Scatter Central Plot 393
5.2.6 Line Graph with Masked Data 399
5.2.7 Mark out a segment of plot with different plot style 403
5.2.8 Adding a Data Plot to Existing Graph 406
5.2.9 Error Bars with Fill Area 408
5.3 Column Bar Pie 412
5.3.1 2D Pie Chart of a Population Study 413
5.3.2 Bar Graph of African Population 417
5.3.3 Bar and Scatter Plot with Error Bar. 422
5.3.4 Column Graph with Error Bars 426
5.3.5 Column/Bar Gap/Offset Across Layers 429
5.3.6 Stack Column With Labels 433
5.3.7 Clustered-Stacked Column Chart 440
5.4 Multi-Axis Multi-Panel 447
5.4.1 Double Y 447
5.4.2 3 Ys Y-YY 451
5.4.3 Multiple Layers with Linked Axis 458
5.4.4 Stack Lines by Y Offsets 469
5.4.5 Vertical 2 Panel Line 473
5.4.6 Multiple Axis Plot 481
5.4.7 Energy-Level Structure of the Er3+ Ion in A YAG Crystal. 486
5.4.8 Create an 8 layer multi-panel plot template 493
5.5 Contour 495
5.5.1 XYZ Contour 496
5.5.2 Contour Plot with Major and Minor Levels Filled by Using Color Palette 500
5.5.3 Contour Plots and Color Mapping 508
5.5.4 Polar Contour 520
5.5.5 Ternary Contour. 526
5.5.6 Combining Line and Contour Plots 532
5.5.7 Contour Graph with XY Data Points and Z Labels 538
5.5.8 Flattened Colormap Surfaces with Increasing Z Offset 542
5.5.9 Contour Plot with Vector Overlay 548
5.6 Statistical 558
5.6.1 Box Plot 559
5.6.2 Simple Dot Chart 562
5.6.3 Multi-Data Dot Chart 568
5.6.4 Add multiple fitted curves in a Histogram 583
5.6.5 Weibull Probability Plot 587
5.6.6 Q-Q Plot. 590
5.6.7 Scatter Matrix 592
5.7 Polar. 601
5.7.1 Polar Contour 601
5.7.2 Polar Plot with Error Bar 607
5.8 3D 611
5.8.1 Basic 3D Plotting 612
5.8.2 3D Pie Chart 619
5.8.3 3D Scatter Plot with Line Projections of Core Drilling Locations 621
5.8.4 Surface with Missing Values 631
5.8.5 Creating Intersecting Surface Plots from Worksheets 636
5.8.6 Surface with Symbols and Droplines 644
5.8.7 Intersecting Color Surfaces 650
5.8.8 Colormap from Second Matrix 655
5.8.9 Color Map Surface Graph 662
5.8.10 Parametric Surface with Colormap from Data 666
5.8.11 Stacked 3D Surface Plots 678
5.9 Vector 687
5.9.1 Vector Graph 687
5.9.2 3D Vector 689
5.10 Ternary 693
5.10.1 Ternary Contour 693
5.11 Waterfall 699
5.11.1 Waterfall with Y and Z Color Mapping 699
5.11.2 3D Waterfall Graph. 706
5.12 Specialized 710
5.12.1 Windrose Graph 710
5.12.2 Plot Functions with Parameters Defined in a Worksheet. 718
5.12.3 Open-High-Low-Close-Volume Stock Chart 722
6 Customizing Graphs 727
6.1 Customizing a Graph 727
6.1.1 Summary 727
6.1.2 Resize Layer 727
6.1.3 Customize Data Plot and Axes 729
6.1.4 Save and Reuse a Template 730
6.1.5 Changing graph using theme 732
6.1.6 Plotting Order 734
6.1.7 Customize points 734
6.1.8 Group plots 738
6.1.9 Plot a Color-mapped Waterfall 744
6.2 Themes 749
6.2.1 Copy and Apply a Plot Format to Another Plot 750
6.3 Color. 750
6.3.1 Plotting Overlapping Data and Setting Transparency 751
6.4 Add remove or reorder data plots 755
6.4.1 Summary 755
6.4.2 Add data plot to an active graph by drag-and-drop 755
6.4.3 Add data plot to an active graph by drag-and-drop 762
6.4.4 Reorder data plots 765
6.5 Layers 766
6.5.1 Adding and Arranging Layers 766
6.5.2 Merging and Arranging Graphs 768
6.6 Tick Labels 781
6.6.1 User-Defined Arbitrary Tick Positions 781
6.6.2 Plot and Customize Date Time Data on Graph 789
7 Importing Data 793
7.1 ASCII 793
7.1.1 Single ASCII 793
7.1.2 Import Wizard 795
7.1.3 Import Time Data. 799
7.1.4 Post Processing with Import Filter 804
7.2 Importing Data 805
7.2.1 Summary 805
7.2.2 Drag-and-Drop Importing of ASCII Files. 805
7.2.3 Customizing ASCII Import Dialog Settings and Saving a Theme 806
7.2.4 Saving ASCII Import Settings to Worksheet 808
7.2.5 Import Wizard and Import Filters 809
8 Exporting and Presentation 815
8.1 Exporting 815
8.1.1 Exporting Graphs 815
8.2 Presentation 823
8.2.1 Pasting or Embedding Graphs in Other Applications 823
9 Collaboration and Connectivity 829
9.1 Connectivity 829
9.1.1 Excel 829
10 Programming 845
10.1 LabTalk 845
10.1.1 Advanced Scripting using LabTalk 845
10.2 Origin C 858
10.2.1 Introduction to Origin C and Code Builder 859
10.2.2 The Code Builder Workspace 862
10.2.3 Adding New Origin C Functions to Origin 864
10.2.4 Organizing and Accessing Origin C Functions 865
10.2.5 Calling NAG Functions From Origin C 869
10.2.6 Accessing Internal Origin Objects by Origin C 873
10.3 X-Functions 876
10.3.1 Command Window and X-Functions 877
10.3.2 Introduction to X-Functions 884
10.3.3 How to Create a Wizard 888

1 Introduction Tutorial

Welcome to the Origin 9.0 Tutorial Guide

The material in this guide is designed to provide both new and advanced users with specific instructions on how to perform the most commonly used and powerful features in Origin. The tutorials in this guide handle many specific tasks, so we recommend you look through them at your leisure as you find you need some pointers on specific operations.

A general note before proceeding:
You will find references to buttons found on various toolbars in many of the tutorials in this guide.
These buttons are shortcuts to menu commands. If you don't see the button referenced in a tutorial, it may simply not be shown in your workspace. To open a toolbar, select View:

Toolbars, click on the checkbox next to the desired toolbar, and then click Close.

2 Origin 9

The tutorials in this chapter cover some of the new features in Origin 9. For a full list of features please browse our help files

Topics covered in this section:

1. Data Filter
2. Stacked 3D Surface Plots
3. Parametric Surface with Colormap from Data
4. Colormap from Second Matrix
5. Scatter Matrix
6. IIR Filter

2.1 Data Filter

2.1.1 Summary

The Data Filter is a column-based tool to reduce rows of worksheet data, and consequently also hide the undesired rows for relevant data analysis and graphing. Three data formats are supported: numeric, text and date/time.

Minimum Origin Version Required: Origin 9.0 SRO

2.1.2 What you will learn

This tutorial will show you how to:

- Use the data filter to reduce worksheet data
- Auto update the graphs and analysis results when apply a column filter
- Add a floating graph to a worksheet.

2.1.3 Steps

1. Create a new workbook by clicking the New Workbook button . Then click the Import Single ASCII button $\stackrel{\text { 盟贯 }}{ }$ to import the Automobile.dat file in the <Origin Folder $>\backslash$ Samples \backslash Statistics \backslash path. Both buttons are located in the Standard toolbar.
2. Highlight column C (Power), right click and choose Set As: \mathbf{X} in the context menu to set this column as X .
3. Highlight column C and G (hold Ctrl key when clicking), click the **|button on the 2D Graph toolbar to generate a scatter plot from these two columns.
4. Activate the generated graph and select Analysis:Fitting:Linear Fit from menu item to open the Linear Fit dialog. In this dialog, set Recalculate to Auto to ensure auto update of the analysis result, accept other settings as default and click OK to carry out the analysis.

5. A fitted curve and a result table will be added to the graph, activate the graph again and double click on the X axis to open the Axis dialog, in the Scale tab, choose Auto for Rescale. Do the same for the Y axis and also set its rescale mode to Auto.

6. Go back to the original worksheet automobile, click the Add New Columns button + 目 times to add seven new empty columns to the end of the worksheet to work as background later.
7. Right click in the gray area of the worksheet and select Add Graph... in the context menu to open the Graph Browser, in this dialog, select the previously generated graph in the left panel and click OK to add this graph as a floating chart to the worksheet. Resize and move the floating chart for clearer view.

8. Highlight column A and B and click the Add/ Remove Data Filter button ∇ on the Worksheet Data toolbar to add empty data filters to both columns.
9. Click the Filter icon on the column header of column B, clear the check boxes before Buick, Chrysler, GMC, Kia, Lincoln, Mercedes, Saab, Volvo to hide all rows with these entries, to leave only the Japanese makers. Click OK to apply the filter. The worksheet data, graph and analysis result will all be auto updated accordingly.
Clear Filter
Enable Filter
Custom Filter...
10. Click the Filter icon $\bar{\nabla}$ on the column header of column A and select Between, note that the data type of column A is numeric by default from importing. Accept default setting of the Between dialog and click OK. A data filter is applied to this column.
11. Again click the Filter icon $\sqrt{ }$ on column A and this time choose Custom Filter in the context menu to customize the filter, change the Condition as x.between(1996,2000) to set the From and To value respectively, click the Test button and in the original worksheet, only the rows meet this testing condition will be highlighted, this works as a preview of the data reduction.

Notes: In order to view the whole worksheet at this stage, you can minimize the Custom Filter dialog, then scroll up and down the worksheet freely. You can later restore the dialog for further settings.
12. Click the OK button to apply the new filtering condition and the data, graphs and analysis results are updated and the graph is also auto rescaled.

2.2 Stacked 3D Surface Plots

2.2.1 Summary

This tutorial shows how to create stacked 3D colormap surfaces from different matrix objects. The surfaces in the plot display the topology before and after volcanic eruption. And a graph animation is generated from LabTalk script for the plot rotation.

Minimum Origin Version Required: Origin 9.0 SRO

2.2.2 What you will learn

This tutorial will show you how to:

- Create stacked 3D colormap surfaces.
- Customize axes display and layer properties.
- Resize and rotate a 3D plot.

2.2.3 Steps

Create Multiple Colormap Surfaces

1. Click File: Open Sample Projects: 3D OpenGL Graphs from the Menu bar to open 3D OpenGL Graphs project. Go to the 3D OpenGL Graphs: 3D Surface: Stacked 3D Surface Plots folder in Project Explorer.
2. Activate the matrix book Mbook1 which contains two matrix objects, then click Plot: 3D Surface: Multiple Colormap Surfaces to create two 3D surfaces from these two matrix objects.

3. Double click on the plot to open the Plot Details dialog, you can see that there are two surfaces under the Layer1 node on the left panel. To shift the "After eruption" surface in Z axis, activate the second plot under Layer1 on the left panel, and in the right panel, select the Surface tab. Then check the box before Shift in \mathbf{Z} by percent of scale range, and enter $\mathbf{7 0}$ in the text box.

Surface Fill	Colormap / Contours	Mesh	Error Bar	Side Walls
Numeric Formats				
Display				
\square Flat				
\square Shift in Z by percent of scale range, $0=$ bottom, $100=$ top 70 Iransparency				

4. Go to the Fill tab. In the Front Surface section, uncheck the box before Self to fill contour by the same matrix object (Mat "Before") as the other surface used.

5. Select the Colormap / Contours tab. Click Level.. to bring up the Set Levels dialog. Set the parameters as shown in the following graph and click OK.

Click Line... to open the Contour Lines dialog. Uncheck the box before Show on Major Levels Only and select Hide All. Click OK.

6. Go to the Mesh tab, and uncheck the box before Enable to disable the mesh line.
7. Repeat steps 5 to 6 for the first plot under the Layer1 node.
8. In this project the two surfaces use the same matrix as contour fill, so they can share one color scale.

To set the numeric format of the color scale, activate the first plot on the left panel of the Plot Details dialog. Then select the Numeric Formats tab on the right panel. Select Scientific: 10^3 from the drop down list next to the Format, and set Significant Digits as 2. Click OK

To customize the color scale, double click on the color scale to open the Color Scale Control dialog. Check the box before Reverse Order and set Color bar thickness as 100. Click OK.

Customize Axes Display

In the Axes dialog, you can change the axes scale and tick labels' format. To open this dialog, click Format: Axes: X Axis...

1. Settings on the Scale node.
o Set scale from $\mathbf{5 5 8 0 0 0}$ to $\mathbf{5 6 6 5 0 0}$ for X Axis, from $\mathbf{5 1 0 8 2 0 0}$ to $\mathbf{5 1 2 1 8 0 0}$ for Y Axis, and from $\mathbf{0}$ to $\mathbf{1 0 0 0 0}$ for Z axis.
o For X axis, set Type of Major Ticks as By Counts and set Count as 5. For Y and Z axis, set Type of Major Ticks as By Increment and set Value as 2000. To hide all minor ticks, set Count of Minor Ticks as $\mathbf{0}$ for all axes.

2. Customize the Tick labels and Title.

O First, ensure that the Use Only One Axis for For Each Direction is enabled in the top of the Axis dialog. Therefore, only one axis is listed under each direction in the tree panel. That combined with the Select Others button allows you to quickly customize all axes with the same settings.

0 Select the Tick Labels node under X Axis. Click the Select Others button to select the tick labels of other axes. Check the box before Custom Format and select $\mathbf{P} * \mathbf{3}$ from the drop down list to show the tick label as base-10 scientific notation with 3 significant digits. Click OK. For more information about the options in this drop down list, please refer to Custom Display Format.

Customize Layer Properties

1. Double click on the blank space outside the plots or click Format: Layer Properties... from the menu to open Plot Details - Layer Properties dialog.
2. Activate the Miscellaneous tab on the right panel. Check the box before Enable in the Clipping section, which will clip the image outside the axes area according to the settings in the Clipping section.

3. Go to the Planes tab. Set Color as LT Gray for all planes. And select Front Corner from the drop-down list in the Cube section to show the cube's border.

4. Select the Lighting tab. In the Mode section, choose Directional to enable lighting mode. Set Light Color as shown in the following graph. Click OK.

Background	Size/Speed	Display	Miscella	neous	Axis	Planes Lighting
Mode None Directional Direction Horizontal \square 0 Vertical 90		Direction Horizontal \square 0 Vertical \square \square Dynamic Light Source				
Light Color						
Ambient Diffuse Specular		\qquad	ininess	64		

Resize and rotate the plot

1. Click on the cube (not the data plot) to activate the 3D toolbar. Click the Resize button 3D Cartesian coordinate will show up. Place the cursor on Y axis, which will then be highlighted,
at this moment drag-and drop the Y axis to stretch the plot in Y axis direction. Do the same to X direction and Z direction.
2. Click the rotate button

to activate rotation mode. A sphere will be displayed at the center of the plot. Rotate the plot to get a better view.

The 3D toolbar allows you to resize and rotate the plot freely. However, you can also achieve the same view as Graph1 in this sample project by setting the value in the Axis tab of Layer Properties dialog as shown in the following graph.

2.3 Parametric Surface with Colormap from Data

2.3.1 Summary

In this tutorial a 3D sphere is created using the data from three matrices. And the surface is filled to display the surface temperature contour using the data from another matrix.

Minimum Origin Version Required: Origin 9.0 SRO

2.3.2 What you will learn

This tutorial will show you how to:

- Create parametric surface from matrix data.
- Set contour fill from another matrix.
- Customize the 3D parametric surface plot.

2.3.3 Steps

1. Open the 3D OpenGL Graphs project(\Samples\3D OpenGL Graphs.opj), go to the 3D OpenGL Graphs: 3D Function Plot: Parametric Surface with Colormap from Data folder in Project Explorer.
2. Activate the matrix FUNCA: $1 / 4$, and click the ${ }_{\text {button on }}$ 3D and Contour Graph toolbar to create a colormap surface as below. You can also create this colormap surface by selecting Plot: 3D Surface: Color Map Surface.

3. Double click on the plot to open the Plot Details dialog. Click on the Surface tab. Check the box before Parametric Surface and set \mathbf{X} Matrix, \mathbf{Y} Matrix as Mat(2), Mat(3) respectively.

1 Plot Details - Plot Properties

| Function Surface Fill Colormap / Contours Mesh Error Bar Side Walls Nume |
| :--- | :--- | :--- | :--- | :--- |

- DisplayFlatShift in Z by percent of scale range, $0=$ bottom, $100=$ top

Iransparency

Click OK to close the dialog.
4. In order to show the complete colormap surface click the落 button on Graph toolbar and the colormap surface should look like the following image:

1

5. Double click on the plot to open Plot Details dialog. Go to the Fill tab. In Front Surface section uncheck the box before Self and set Contour fill from matrix as Mat (4). Click Apply.

6. Activate the Colormap / Contours tab. Click Level to open the Set Levels dialog. Click Find Min/ Max and set Major Levels, Minor Levels as 16, 8 respectively. Click OK.

7. Click Fill to open the Fill dialog. Set Load Palette as Temperature. Click OK.

8. Click on the Mesh tab. Set Line Width as $\mathbf{0 . 0 5}$ and Line Color in Font section as LT Gray. Click Apply.

Function	Surface	Fill	Colormap / Contours Mesh	Error Bar	Side Walls
\checkmark Enable					
Line Width 0.05					
Line Color \longrightarrow					
FrontUse Colormap					
\square Back Color					
Iransparency			-	0 人	\% \triangle Buto

9. Click on the Numeric Formats tab. Choose the Decimal Places radio button and set its value as $\mathbf{0}$.

Click OK to apply the settings and close the Plot Details dialog. The graph should look like the following image.

10. Double click on Z axis to open Axes Dialog. On the Scale node, set the value of From, To as $\mathbf{- 4 0 0}, \mathbf{4 0 0}$ respectively. Click OK.

Axes Dialog

Show Only One Axis For Each Direction
\boxplus XAxis
\boxplus YAxis
\square ZAxis
Scale

From		
To	-400	
Type	400	
Rescale	Linear	
■ Major Ticks		

Line and Ticks Special Tick Labels

Type	By Increment
Value	100
First Tick	\square
\square Minor Ticks	
Type	By Counts
Count	0

11. Double click on the XY Plane to open Plot Details - Layer Properties. Click the Display tab, and uncheck the box before \mathbf{X} Axes, \mathbf{Y} Axes, Z Axes in Show Elements section to hide the axes.

Plot Details - Layer Properties

Data Drawing Options
\square Clig Data to FrameData on Top of AxesGrid on Top of Data
Clipping is controlled by Miscellaneous tab for 3D
12. Click on the Planes tab, and uncheck the boxes before $\mathbf{Y Z}, \mathbf{Z X}$ to hide YZ and $\mathbf{Z X}$ planes. Set Color of XY as LT Gray. Click OK to close the dialog.

13. Go back to the graph, select Format:Axes Titles:X axis titles to open the Axes dialog with the Title node selected. Click the Select Others button. Uncheck the box after Show to hide axis title for all axes.

14. Double click on the color scale to open the Color Scale Control dialog. Set Text Font as Verdana. Check the box before Reverse Order. Click OK to apply the setting and close dialog. Move the color scale object to a proper place.

15. Right click on the white area of the graph layer to bring up a context menu and choose

Add/ Modify Layer Title. Select the text object added just now, right-click on it and select
Properties... on the shortcut menu to open the Object Properties dialog. Set text font as Verdana and type Surface Temperature ($\backslash \mathbf{+ (0) C)}$ in the content table. Click OK.

16. Click on the graph layer within 3D frame (not the data plot), and click the Rotate button as shown in the following to activate rotation mode.

Rotate the plot to get a better view. The graph might look like the following.

2.4 Colormap from Second Matrix

2.4.1 Summary

Origin can represent four-dimensional data by color-mapping a surface plot using a second matrix.

Minimum Origin Version Required: Origin 8.5 SRO

2.4.2 What you will learn

- Create a Color Fill Surface from a matrix.
- Color map a surface plot using a second matrix.
- Customize color map levels and palette.
- Control lighting on the graph (From Origin 9 SRO)

2.4.3 Steps

1. Click File : Open to open Colormap_from_Second_Matrix.ogm under the folder

Sample\Graphing \. You should see two image thumbnails above the matrix data, just under the title bar. (If you do not see image thumbnails, right-click on the matrix title bar and select Show I mage Thumbnails.) Select image thumbnail 1.
2. On the main menu, click Plot, point to 3D Surface, then click Color Fill Surface to generate a surface plot.

3. Double click on the plot to open the Plot Details dialog. In the left panel, select
(MBook1D) MSheet1. In the right panel, select the Fill tab. Choose Coutour Fill from Matrix. and select Mat(2) for front surface.

4. Go to Colormap/ Contours tab, click the Level... title to open the Set Levels dialog. In this dialog, click Find Min/ Max button and set the \#Major Levels and \#Minor Levels as 10 and 9.Click OK button to close the dialog.

5. Click the Fill... title to open the Fill dialog. select Load Palette and then click Select

Palette button to select Rainbow palette.Click OK button to close this dialog.

6. Check the Enable Contours check box. And then click Line... to open the Contour Lines dialog. In this dialog, check the Show on Major Levels Only check box and set the Line Properties as below. Click OK button to close the dialog.

7. Go to the Mesh tab, uncheck the Enable box to disable the mesh lines.
8. Select Layer1 in the left panel, go to Lighting tab in the right panel. Select Directional under Mode. Set Horizontal and Vertical as 124 and 40 , and change the color of Diffuse as LT Gray and Specular as Gray. Then set the Shininess as 37.

9. Go to the Planes tab, set the color as Gray and select Front Corner for the Cube dropdown menu.

10. Go to Axis tab and do settings as below. Click OK button to close this dialog.

11. Keep the graph window active. Select Graph: New Color Scale to add a new color scale in the graph window.
12. Double-click anywhere on the color scale to open the Color Scale Control dialog box. Change text Size to 14, and Color bar thickness to 150. Select the Reverse Order check box.

Click OK to close the Color Scale Control dialog box.
13. Double-click the X, Y and Z axis title and enter " X distance", " Y distance" and "Height". Add a text object "Pressure(psi)" above the color scale.
14. Your final graph should look like this:

2.5 Scatter Matrix

2.5.1 Summary

A scatter matrix is consists of several pair-wise scatter plots of variables presented in a matrix format. It can be used to determine whether the variables are correlated and whether the correlation is positive or negative. This tutorial will show you how to create a Scatter Matrix plot.

Minimum Origin Version Required: Origin 9.0 SRO

2.5.2 What you will learn

- How to create a Scatter Matrix plot with histogram
- How to customize Scatter Matrix plot
- How to set grouping range for showing color index

2.5.3 Steps

Creating Scatter Matrix plot

1. Start with an empty worksheet, select File: Import: Single ASCII ... to open the Import Single ASCII dialog, browse to the \Samples\Statistics subfolder of the Origin program folder, and import the file Fisher's Iris Data.dat.
2. Highlight columns $(A) \sim(D)$, and then select Plot: Statistics: Scatter Matrix from the Origin menu.
3. In the dialog, select Histogram in the Show in Diagonal Cells drop-down list.

4. Click OK to close the dialog. The graph should look like the following:

And the PlotDatal sheet for the scatter matrix plot is generated in the same workbook.

Customizing Scatter Matrix plot

There are multiple layers in the Scatter Matrix graph. This section will show you how to customize the background color, the type and color of a data plot and the tick label of axis of the scatter matrix.

1. Double click on a layer except in the diagonal cells to open the Plot Details dialog. Specify the type and color of the symbol as shown in the following image, and click OK.

2. Click to select the layer to be updated, right-click on it and select Copy format: Symbol, Line and Fill.

Then click on the white space of the graph, right-click, and select Paste Format. You can use the same method to copy the symbol color to other layers.
3. Right-click on that layer again, and select Copy Format: Colors. Then click on the white space of the graph, right-click, and select Paste Format.
4. Select Format: Page Properties to open the Plot Details dialog. Go to the Display tab, click on the Define Custom Colors button for the Color option.
5. In the Color dialog, specify the color as Red=235, Green=235, Blue $=255$. Then add as custom color and click OK.

6. To specify background color of the layers with scatter plots, select the Graph: Layer

Management to open the dialog, and go to the Display tab. Highlight all the layers listed in Layer Selection except the diagonal cells, and then specify the Background Color as White.
Click on the Apply button to preview the change in the right panel of the dialog.

Then click OK in the dialog.
7. Double click on a tick label in the graph to open the Axis dialog. In the Tick Labels tab, specify Point to 36. Then select the Point checkbox in the Apply To section, and choose This Window
in the drop-down list.

8. Highlight the variables in the diagonal cells, and use the Size button | 22 | in the Format |
| :--- | :--- | :--- | toolbar to set the size to $\mathbf{3 6}$. Then the graph will look like the following:

Add Grouping Range

1. To add a Grouping Range, click on the green lock icon on the upper-left corner. And then select Change Parameters to bring back the Plotting: plot_matrix dialog.
2. Click the triangle button next to the Grouping Range option. Click on the Select Columns to open the Column Browser dialog, and then choose column E (Species) as the group range. Click OK

3. Click the OK button in the Plotting: plot_matrix dialog.

Your final graph should look like this:

2.6 IIR Filter

2.6.1 Summary

In OriginPro, it is possible to design, analyze, and implement IIR (Infinite Impulse Response) digital filters. The IIR filter supports four methods, including Butterworth, Chebyshev Type I, Chebyshev Type II, and Elliptic.

This provides users more choices in signal processing.
Minimum Origin Version Required: 9.0 SRO

2.6.2 What You Will Learn

This tutorial will show you:

- How to design and apply an IIR filter
- A comparison between IIR filter and FFT filter

2.6.3 Steps

Design and Apply IIR Filter

1. Start with a new worksheet and import the EMG Recording.dat file from \Samples\Signal Processing $\$.
2. Highlight column B and Select Analysis:Signal Processing:IIR Filter from the top menu to open the dialog.
3. Change the Response type as High Pass, keep the Method as Butterworth, uncheck the Minimum for Filter Order and set it as 4. In the Frequency Specification branch, set the Cutoff Frequency (Fc) as 20, then check the Forward-Backward Filtering. The dialog settings should look like the following figure, and the IIR filter is designed.

4. Click OK to apply the created IIR filter to the input dataset.
5. A new column will be added to the original data as a new column of filtered data and a new SOS Matrix worksheet.

Compare Results with FFT Filter

1. Highlight column B in the original worksheet, perform FFT filter by Analysis:Signal Processing:FFT Filters.
2. In the opened dialog, choose High Pass for Filter Type and set $\mathbf{2 0}$ as Cutoff Frequency.

3. Column C in the EMGRecording worksheet is the filtered result of the previously designed IIR filter, highlight column B and column C to generate a line plot with the button (Graph 1).
4. Use the scale in button $\stackrel{\text { +1 }}{ }$ to zoom the area between 12.5 s and 13.3 s .
5. Column E in the EMGRecording worksheet is the filtered result of the FFT filter, highlight column B and column E to generate a line plot with the \quad button (Graph 2).
6. Also use the scale in button
 to zoom the area between 12.5 s and 13.3 s , the two graphs could be used for visualized comparison.

- Note that there are many ripples in the FFT filter result, but almost no ripples in the IIR filter result.

Ripples in FFT Filter

1. Highlight column E and click on the \qquad button to create a line plot (Graph 3).
2. Activate Graph 3, choose Gadget:FFT and set the X Scale as From 12.664 To 13.052.
3. Click OK to bring up the preview window, in which ripples are almost pure 20.125 Hz sine.

4. Now we would try to remove the ripples at 20.125 Hz by applying another high pass filter at 25 Hz , keep highlighting column E and select Analysis:Signal Processing:FFT Filters.
5. Select High Pass for Filter Type and set Cutoff Frequency as $\mathbf{2 5 .}$
6. The result is listed in Column G, highlight column G and click on the \qquad button to create a line plot(Graph 4).
7. Activate Graph 4, choose Gadget:FFT and set the X Scale as From $\mathbf{1 2 . 6 6 4}$ To 13.052, in the preview window, there are still ripples, and they are shifted from 20.125 Hz to 25.157 Hz .

- Note that the ripples could not be removed by FFT filter for this dataset.

3 Data Analysis

Topics covered in this section:

1. Gadgets (Tutorials)
2. Curve Fitting (Tutorials)
3. Signal Processing (Tutorials)
4. Peak Analysis (Tutorials)
5. Data Manipulation (Tutorials)
6. Analysis Templates (Tutorials)
7. Batch Processing (Tutorials)
8. Analysis Themes

3.1 Gadgets

3.1.1 Quick Sigmoidal Fit Gadget

Summary

The Quick Sigmoidal Fit gadget can be used to quickly perform a sigmoidal fit in the ROI (Region of Interest) range.

Minimum Origin Version Required: Origin 8.6 SRO
What you will learn

- How to use the Quick Sigmoidal Fit gadget on a graph.
- How to do the settings for fitting.
- How to switch to NLFit dialog.
- How to output the fitting result.
- How to find X / Y values on the fit curve.

Steps

This tutorial is associated with the Analysis: Quick Sigmoidal Fit Gadget folder in the Analysis project (\Samples\Analysis.opj) which can be opened by selecting File: Open Sample Projects: Analysis from the main menu.

Quick Fit

1. Highlight the $\operatorname{Col}(A) \sim \operatorname{col}(D)$ in workbook to plot a scatter graph.

2. Double-click the X axis to open Axis dialog. Set the Type as Log10 and click $\mathbf{O K}$ button to close the dialog.

3. Rescale the graph by clicking the Rescale button \qquad to show the plot in right scale.

4. Select Gadgets: Quick Sigmoidal Fit... from the main menu to open the addtool_sigmoidal_fit dialog. Select the function Logistic5 from the Function drop-down list in the Settings tab.

5. Go to the ROI Box tab, uncheck the parameter $x 0$, h, and s under the Parameter List branch.

6. Go to the Fit Curve tab, select Mean, SD from the Plot Type drop-down list and Source Book, New Sheet from the Output Fit Curve To drop-down list.

7. Click OK button to add the ROI box on the graph. At the top right corner of the ROI box, click the Arrorw button to select Expand to the Full Plots Range from the context menu. The ROI box will cover the full data range on the graph.

8. Click the arrow button again to select Preferences... from the menu to open the Sigmodial Fit Preferences dialog. In this dialog, go to the Report tab and set Output To as None.

9. Click OK button to close the dialog. Then click the arrow button to select Change Function: Logistic to change the fitting function as Logistic. The label text on top of the ROI box will be updated automatically.

10. Then click the arrow button to select New Output to output the fitting result to the worksheet and graph.

Connect to NLFit

Quick Sigmoidal Fit gadget provides ability to switch to NLFit tool. With this feature, you can get a detailed fit report with the current fitting settings in the gadget.

1. Redo step 1 through step 8 as shown above.
2. Click the arrow button to select Switch to NLFit... to open the NLFit dialog with the inherited settings.

3. Click Fit button to do fitting. The results will be output to the result sheets and the source graph.

Find X/Y

This gadget also provides ability to find X / Y value on the fitted curve quickly.

1. Redo step 1 through step 8 as shown in the first section.
2. Click the arrow button to select Find \mathbf{X} / \mathbf{Y}... from the menu to open the Find \mathbf{X} / \mathbf{Y} dialog.

3. Select the Worksheet radio box and enter 40;45;50 for \mathbf{Y}, then click Find \mathbf{X} to show the corresponding X values in the blank X box. After that, click the Output button, the X and Y values will be output to the specified worksheet.

4. Click Go button after the Worksheet radio box to open the Find \mathbf{X} / \mathbf{Y} workbook. Then click the Close button to close the Find \mathbf{X} / \mathbf{Y} dialog.

\#\# FindXY	$\square \square$				\times	
	$A(x)$	$\mathrm{B}(\mathrm{C})$			\wedge	
Long Name	Found X	Specified Y				
Units						
Comments		FindX of Logistic5 Fit on "Response 1"				
1	$7.95304 \mathrm{E}-7$	40				
2	$9.84936 \mathrm{E}-7$	45				
3	$1.21139 \mathrm{E}-6$	50				
4						
5				\checkmark		
6						
4 R		$1 \mid<$	\square	\geqslant	.	

3.1.2 I ntegrate Gadget

Summary

The Integrate Gadget performs numerical integration of a data plot to calculate the area under the curve. You can select an arbitrary range of the data plot using the region of interest (ROI) object displayed in the graph.

What you will learn

- How to easily integrate a data plot on a rectangular region.
- How to specify the integration limits and baseline.
- How to display the integral curve inside the ROI.
- How to calculate quantities including: peak area, peak height, peak center, and FWHM.

Integrate and output the quantities

1. Start with a new workbook and import the Origin sample data Multiple Peaks.DAT which is located in <Origin Program Folder> \Samples\Curve fitting.
2. Highlight the $\operatorname{Col}(\mathrm{C})$ and select Plot: Line: Line from the Origin menu to draw a graph.

3. Select Gadgets: Integrate from the Origin menu when a graph is active, to bring up the Data Exploration: addtool_curve_integ dialog box.
In Integration tab, choose Restrict to Rectangle in the Integral Curve drop-down list to plot the integral curve within the rectangle.

4. Click OK button. You will see that a yellow rectangle and a blue integral curve are added to the plot. The integral area is filled with gray, and the value is shown at the top of the rectangle.

5. Move the yellow region of interest rectangle to set the region for the single peak you want to integrate.

6. Click the triangle button at the top right corner of the ROI tool to open the fly-out menu and choose New Output. Then the Gadget Integration Results will display in the Script Window.

Integrate with a data plot baseline

1. Start with a new workbook and import the file <Origin Program Folder>\Samples\Spectroscopy \backslash Peaks with Base.DAT
2. Highlight $\operatorname{Col}(B)$ and $\operatorname{Col}(C)$ and select Plot: Line: Line from the Origin menu to draw a graph.

3. Select Gadgets: Integrate from the Origin menu when a graph is active, to bring up the Data Exploration: addtool_curve_integ dialog box.
4. In Baseline tab, choose Use Existing Dataset for the Mode. Then select Plot(2): Base as Dataset and click OK button.

5. Click the triangle button and select Expand to Full Plot(s) Range in the fly-out menu to integrate the total area for the curve.

3.1.3 Curve I ntersection Gadget

Summary

When there is more than one curve in a graph layer, you might want to calculate the intersection data points of these curves. Since Origin 8.6, a new gadget Intersect is available to calculate the intersection points of the input curves on the graph.

Minimum Origin Version Required: Origin 8.6 SRO

What you will learn

This tutorial will show you how to:

- Use the Intersect gadget on a graph.
- Tag the intersection points.
- Output the intersection points to worksheet.

Steps

This tutorial is associated with the Analysis: Curve Intersection Gadget folder in the Analysis project (\Samples\Analysis.opj) which can be opened by selecting File: Open Sample Projects: Analysis from the main menu.

1. Highlight the $\operatorname{Col}(A) \sim \operatorname{col}(D)$ in workbook Book6, and then click Plot:Line:Line to plot a line graph.

2. Select Gadgets: I ntersect... from the main menu to open the dialog. Go to the Options tab.

3. Check the Intersection Label check box in the Options tab, set Size as 15 , set Type as Y and set Rotate(deg.) as 0 .

4. Click OK button to go back to the graph window. The yellow ROI box will be added onto the graph.

5. Click the Arrow button at the top right of the ROI box, select Expand to Full Plot(s) Range from the context menu. The ROI box will be expanded to cover full plot range as shown below.

6. Click the Arrow button at the top right of the ROI box. Select Preferences... from the context menu to open the Intersect Preferences dialog. Go to the Output To tab and input [Book6]Intersections in the Result Worksheet Name box.

7. Click OK button to go back to the graph window. Click the arrow button at the top right of the ROI box, select New Output from the context menu.
8. The results will be output to the Script Window. Click the arrow button again, select Go To Report Worksheet from the menu. The X and Y coordinates of the intersection points will be listed in the results worksheet.

\# Book6				$\square \square$	x
	$A(x)$	$\mathrm{B}(\mathrm{C})$	C	D	\wedge
Long Name	Intersection X	Intersection Y	Curves	Intersection Method	
1	14.73898	-0.26305	Book6_日 vs. Book6_C	Linear	
2	26.4802	0.32401			
3	35.95356	0.79768			
4	25.56476	0.02267	Book6_B vs. Book6_D		
5	39.1559	-0.6852			
6	23.06123	0.15306	Book6_C Vs. Book6_D		
7					
8					\checkmark
				\geqslant	.

3.1.4 Rise Time Gadget

Summary

The Rise Time Gadget can be used to analyze the rising and falling stages of a step-like signal in a graph. With this gadget, you can intuitively select an area on the graph with a rectangle, and then calculate the rise time or fall time within that area.

What you will learn

- How to select a specific region of the signal by moving and resizing a region of interest (ROI).
- How to mark Rise Time (Fall Time) and Rise Range (Fall Range) in the graph.
- How to switch the tool between Rise Time and Fall Time.
- How to output analysis results of Rise Time (Fall Time).

Analyze Rise Time

This tutorial is associated with the Analysis - OriginPro: Rise Time (Pro Only) folder in the Analysis project (\Samples\Analysis.opj) which can be opened by selecting File: Open Sample Projects: Analysis from the main menu.

1. Highlight Column B and select Plot: Line: Line in the menu to create a graph.

2. Double-click the X axis to open the Axis dialog box. Go to the Scale tab, select Horizontal from the Selection box, and set the axis range from 400 to 600 . Set Increment as 50 . Then click Ok button.

3. Select Gadgets: Rise Time from the Origin menu to open the Data Exploration:
addtool_rise_time dialog box. Go to the Display on Graph tab, and click the Rise Time and Rise Range check boxes.

4. Click OK button, and you will see that a yellow rectangle is added to the plot. Move the rectangle horizontally on the rise signal step.

In the graph, you can see the Rise Time and Rise Range values are shown at the top of the rectangle.
The two blue vertical lines go through the two indicators marking the Rise Time.
The two blue horizontal lines that display the Low Reference Level and High Reference Level go through the two indicators marking the Rise Range.
The two red horizontal lines display Low State Level and High State Level.
5. Click the triangle button at the top right corner of the rectangle. Then select New Output. The results will be output to the Script Window.

Analyze Fall Time

1. This gadget also allows you to get the fall time and fall range in a graph. Move the rectangle horizontally on the fall signal step.

2. Click the triangle button and select Preferences in the fly-out menu to open the Rise Time Preferences dialog. Go to the ROI Box tab and select Fall Time in the Tool drop-down list.

3. Click the OK button, the Fall Time and Fall Range values are shown at the top of the rectangle.

4. Click the triangle button and select New Output. The results will be output to the Script Window.

3.1.5 I nterpolate Gadget

Summary

Origin supports the interpolate gadget to perform quick interpolation on a ROI (Region of Interest) range when a graph is active. And you can easily to change the interpolate region by moving the ROI.

What you will learn

- How to easily interpolate data points on a rectangular region.
- How to quickly find out an interpolated Y value from any given X value.
- How to output the interpolated values to Script Window, Result Log, or a specified worksheet.

Steps

This tutorial is associated with the Analysis: Interpolate Gadget folder in the Analysis project (\backslash Samples \backslash Analysis.opj) which can be opened by selecting File: Open Sample Projects: Analysis from the main menu.

1. Highlight the $\operatorname{Col}(A)$ and $\operatorname{col}(B)$ in workbook Book1R and plot a Line +Symbol graph.

2. Select Gadgets: Interpolate from the Origin menu when a graph is active, to bring up the Data Exploration: addtool_curve_intep dialog box.
3. Go to the Interpolate/ Exterpolate Options tab. Choose Cubic Spline for the Method, and then select Interpolate/ Extrapolate to Rectangle Edge for Fit Limits To.

OK
Cancel
4. Click OK button. It will add an interpolation line onto the plot. And the Y values of interpolation line at right and left are shown at the top of the rectangle region.

5. You can change the data range by moving or resizing the yellow region of interest rectangle, the interpolated curve displayed will update as the ROI is being moved.
Click the triangle button and select Expand to Full Plot(s) Range in the fly-out menu to interpolate the total area for the curve.

6. This gadget also allows you to find Y values from a given X value. Select Interpolate \mathbf{X} / \mathbf{Y} in flyout menu to open the Interpolate \mathbf{Y} from \mathbf{X} dialog. You can enter multiple X values and click the interpolate button. This tool will output the interpolated Y values for each of the X values.

7. The interpolated Y values can be output to Script Window, Result Log, or a specified worksheet.

3.1.6 Cluster Gadget

Summary

Origin supports the Cluster Gadget to perform simple statistics on a region of interest (ROI) in a graph. The gadget can also be used to edit, clear, or mask data points. The statistics results are dynamically updated as the ROI object is moved or resized.
Minimum Origin Version Required: Origin 8.5.1 (Pro only)
What you will learn

- How to perform simple statistics on a region of interest (ROI) in a graph.
- How to edit the data points such as clear, or mask points in graph using menu options or buttons.
- How to view or output the statistic for points inside and outside of the ROI.

Perform basic statistics

1. Start with a new workbook and import the Origin sample data Categorical Data.dat which is located in <Origin Program Folder> \Samples\Graphing.
Right-click on Col(D) and select Sort Worksheet: Ascending. Then you will see the worksheet is sorted by the category of Drug.
2. Pressing Ctrl key, highlight three parts of the $\operatorname{Col}(B)$ separately.

3. Select Plot: Symbol: Scatter from the main menu to create a graph. The graph with three plots display the recovery for each drug.

4. Right-click on the graph legend and select Properties to open Object Properties dialog. Then edit the legend as shown below. Click OK button.

5. Select Gadgets: Cluster from the Origin menu when a graph is active, to bring up the Data Exploration: addtool_cluster dialog box. Choose Circle in the Shape drop-down list of the ROI Box tab.

6. Click OK button. It will add a yellow circle for ROI on the plot and bring up the Cluster Gadget dialog.

7. Move the yellow circle to the region for which you want to get statistics and see the results shown on the I nner Points tab of the dialog.

8. Click the Output Statistics Report butt 国 Window, and the Cluster workbook.
9. Click the Go to Report Worksheet button $\stackrel{\text { " }}{ }$ 曲, then the Cluster workbook will be shown.

Exclude the data points in a cluster

In this section, we will show you how to exclude a specific plot from the cluster. Based on the example above, we will do simple statistics on Recovery of Drug A and Recovery of Drug B, excluding Recovery of Placebo.

1. Click the Data menu in the Cluster Gadget dialog and uncheck Plot(1) and $\operatorname{Plot}(\mathbf{2})$. The first and second rows become gray in the lower panel, and they can no longer be manipulated by the buttons in the dialog.
2. Click Mask Data Points button . The Recovery of Placebo data points in the ROI are masked and the color becomes red. At the same time the statistics results for Recovery of Placebo become missing values.

3. Click the Output Statistics Report button Window, and the Cluster workbook.

Get statistics results for points outside of the ROI

1. Click Settings: Preferences from the Cluster Gadget dialog's menu to open the Cluster Manipulation Preferences dialog.
2. Go to the Calculation tab. Click the Calculate Outer Points check box.

3. Click the OK button, the statistics results for points out of the ROI are shown on the Outer Points tab of the dialog.

4. Click the Output Statistics Report button 眲. The results for inner and outer points are shown in the Result Log, Script Window, and the Cluster workbook.

3.2 Curve Fitting

Topics covered in this section:

1. Linear and Polynomial Fitting (Tutorials)
2. Nonlinear Fitting (Tutorials)

3.2.1 Linear and Polynomial Fitting

- Tutorial:Linear_Fitting

Linear Fitting and Outlier Removal

Summary

An outlier is typically described as a data point or observation in a collection of data points that is "very distant" from the other points and thus could be due to, for example, some fault in the measurement procedure. Identification and removal of outliers is often controversial, and is typically "more acceptable" in situations where the model used to describe the data is well known and well accepted.

Minimum Origin Version Required: Origin 8.1 SR2

What you will learn

This tutorial will show you how to:

- Perform linear regression on a set of data points
- Examine the Residuals Table in the output and "identify" outliers
- Use the Masking Tool to remove the outlier points
- Use the Recalculation mechanism to automatically update the result after outlier removal

The procedure described in this tutorial is also applicable to other fitting tools such as Polynomial and Nonlinear Fitting

Steps

1. Start with a new workbook and import the file \Samples\Curve Fitting\Outlier.dat.
2. Click and select the second column and use the menu item Plot: Symbol: Scatter to create a scatter plot.
3. With the graph active, use the menu item Analysis: Fitting: Fit Linear to bring up the Linear Fit dialog. Note that if you have used the Linear Fit dialog before, there will be a fly-out menu and you need to select the Open Dialog... sub menu.
4. Under the Fit Options branch, clear the Apparent Fit check box.

Fix Slope
Fix Slope at
Use Reduced Chi-Sqr
Apparent Fit
5. Expand the Residual Analysis tree node in the dialog, and check the Standardized check box.

6. Change the Recalculate drop-down at the top of the dialog to Auto and press the OK button at the bottom of the dialog. The dialog will close and linear regression will be performed on the data.

7．Select the FitLinearCurvel result sheet in the data workbook and scroll to the right side to view the Standardized Residual column．You will note that the value in row 6 in this columns is－

2．54889：

\＃\＃\＃）Outlier－Outlier．dat					$\square \square$		
	A（X1）昜	B（\％1）${ }^{\text {（ }}$	C1 $\times 2$ ）$^{\text {P }}$	$\mathrm{C} 2\left(\mathrm{Y} 2\right.$ ）${ }^{\text {P }}$	C3（\％2）${ }^{\text {畣 }}$		\wedge
Long Name	Independe	Linear Fit of	Independ	Regular R	Standardize		
Parameters	Fitted Cul	uves Plot					
1	0.79	1.43673	0.79	0.23327	0.13281		
2	0.87202	1.51561	2.16	0.08563	0.04875		
3	0.95404	1.5945	2.56	1.08092	0.61539		
4	1.03606	1.67339	3.57	0.28951	0.16483		
5	1.11808	1.75227	4.43	－0．14762	－0．08404		
6	1.2001	1.83116	5.23	－4．47705	－2．54889		
7	1.28212	1.91004	5.55	－0．31482	－0．17923		
8	1.36414	1.98893	6.06	0.44467	0.25316		
9	1.44616	2.06781	6.67	2.41798	1.37662		
10	1.52818	2.1467	7.61	0.48391	0.2755		
11	1.6102	2.22558	8.91	－0．09641	－0．05489		v
1 P	A FitLinear 1	入FitLinearC	Curve1／	$1<$	IIII	\rangle	

8．Make the graph active and then click and hold down the mouse left button on the＂Regional Mask Tool＂button in the Tools toolbar．Select the＂Masked Points on Active Plot＂submenu which will be the first item in the fly－out menu：

9. With the above submenu selected, go to the graph and click on the 6th data point to mask the point.

This changes the input data to the linear fit operation and the auto update mechanism will trigger. The linear fit will be repeated with this particular masked point left out. The fit curve in the graph and the pasted parameters will automatically update. Your result graph should then look like below:

3.2.2 Nonlinear Fitting

Topics covered in this section:

1. Nonlinear Curve Fit Tool
2. NLFIT Built In
3. Global Fitting
4. User Defined Fitting Function using OC
5. Fitting Datasets
6. Fitting with Multiple Independent Variables
7. User Defined Fitting Funciton using GNU Scientific Library
8. Fitting with NAG Special Function
9. Fitting Integral Function with parametric limit using NAG Library
10. Fitting with Integral using NAG Library
11. Fitting with Integral using LabTalk Function
12. Fitting with Two Integrals using LabTalk Function
13. Fitting with Summation
14. Fitting Complex Function
15. Fitting With Convolution
16. Quoting Built in Functions in Your New Function
17. Fit Function with Non-constant Background
18. Fitting with Piecewise Functions
19. Fit Curve Through Certain Points
20. Peak Fitting on Frequency Count Result
21. Fitting Integral Function with a Sharp Peak
22. Fitting with Convolution of Two Functions
23. Surface Fitting with Multiple Peaks
24. Parameter Initialization for Rational Functions
25. Fitting with a Piecewise Linear Function
26. Nonlinear Multiple Variables Fitting
27. Fit Multiple Datasets by Fitting One and then Using Those Fit Parameters for Other Datasets
28. Adding Derived Parameters

Nonlinear Curve Fit Tool

Summary

Nonlinear fitting in Origin is performed using the NonLinear Fitting (NLFit) dialog box. The NLFit tool contains more than 200 built-in fitting functions used in many different disciplines.

Minimum Origin Version Required: 8.5

What you will learn

- How to fit with a built-in fitting function.
- How to change NLFit setting using Recalculate.
- How to define and fit with a user-defined function.

Use a built-in function to fit the data

1. Click File:Open... to open the Intro_to_Nonlinear Curve Fit Tool.opj from the \Samples\Curve Fitting folder and select the Built-In Function folder from the Project Explorer window.
2. With the Graph1 active, select the menu item Analysis: Fitting: Nonlinear Curve Fit to bring up the NLFit dialog, and then select Gauss from the Function drop-down list:

3. In the Parameter tab, initial parameter values are automatically assigned, because the built-in functions have parameter initialization code.
If you go to the Residual tab, you can see the current residuals and you can judge whether the current fit results is good.

4. A fitted curve determined by the initial values of the parameters is shown in the graph.

5. Click the Fit until converged button ${ }^{\text {泣 }}$, then the Messages tab displays number of iterations, reduced chi-sqr, and $\mathrm{R}^{\wedge} 2$ values.

6. Click on the OK button, the FitNL1 report sheet is created with fit results such as parameter values and fit statistics.

7. Reopen the Nonlinear Curve Fitting dialog. You can click on the green lock icon on the upper left corner of the graph and select Change Parameters to open it.

8. Go to the Parameter tab, change xc value to 25 and check Fixed checkbox.

9. Click the Fit until converged button 窃 and $\mathbf{O K}$ button again.
10. In the report sheet, you can see the error value of $x c$ is zero because parameter value was fixed.

Define and fit with a user-defined function

In this section, we will show you how to define and fit with the following fitting function: $y=y 0+a^{*} \exp \left(-b^{*} x\right)$

1. Expand Project Explorer, and go to User-Defined Function folder.
2. In the menu, select Tools: Fitting Function Builder to bring up the dialog.
3. Click Create a New Function on the Goal page, and then click Next button to go to the Name and Type page.

4. On the Name and Type page, you can create a category for the new fitting function, then name the function and select a Function Type.

0 Set MyFunction as the Function Name.
o Select Expression from the Function Type list. You can find Hints in the left panel.
O Click the Next button to go to the Variables and Parameters page.

5. On the Variables and Parameters page, make sure Independent Variables is x and Dependent Variables is y. Then input $y 0$, a, b into the Parameters textbox. Click the Next button.

6. On the Function Body page, you can:
o Set the Initial Values for parameters.
0 In the Function body edit box, enter y0+a*exp(-b*x).

O Use Quick Check to check the validity of a function. After entering value for the independent variables, click the Evaluate button 佥 $_{\text {to quickly check the fitting }}$ function.

7. Click Finish button.
8. Highlight column A and B, select the menu item Analysis: Fitting: Nonlinear Curve Fit to bring up the NLFit dialog. Select the function MyFunction on the Function Selection page, under the Settings tab:

9. Fitting three times by following the steps, you can see the change of parameter values as well as the fitted curve.

o Click the " 1 Iteration" button | Zit. |
| :--- |

o Click the " 1 Iteration" button Zis $_{\text {again. }}$

0 Click the Fit until converged button $\dot{\alpha}_{\substack{*}}$

10. Click the $\mathbf{O K}$ button, the FitNL1 report sheet is created with fit results such as parameter values and fit statistics.

Nonlinear Fitting with System Function

Summary

The NLFit dialog is an interactive tool which allows you to monitor the fitting procedure during the non-linear fitting process. This tutorial fits the Michaelis-Menten function, which is a basic model in Enzyme Kinetics, and shows you some basic features of the NLFit dialog. During the fitting, we will illustrate how to perform a Global Fit, which allows you to fit two datasets simultaneously and share some parameter values.
Minimum Origin Version Required: Origin 8.0 SR6

What you will learn

This tutorial will show you how to:

- Import a single ASCII file
- Perform a global fit with shared parameters
- Select a fitting range and fit part of the data
－Use the Command Window to perform simple calculation

Steps

Import the file
－Open a new workbook．
－Click the Import Single ASCII button $\stackrel{127}{⿻ 口 卄}{ }^{[7 /}$ to bring up the Open dialog．Browse to \Samples\Curve Fitting folder and select the file Enzyme．dat．Make sure to check the Show Options Dialog checkbox at the bottom of the dialog，and then click Open．
－In the impASC dialog，expand Import Options：Header Lines nodes，and select $\mathbf{3}$ from Comments From drop down．
－Click OK to import the file．

\＃\＃\＃Enzyme－Enzyme．dat			$\square \square$	
	$\mathrm{A}(\mathrm{C})$	B（）	C（1）	へ
Long Name	［S］	V	V	
Units	WM	WMimin	WMímin	
Comments	Substrate	No Inhibitor	Competitiv e Inhibition	
Sparklines				
1	0.5	580	350	
2	2	1180	690	
3	4	1485	970	
4	6	1630	1175	
5	8	1740	1345	
6	10	1810	1500	\checkmark
4 V Enzyme			｜＜III）＞	\therefore

Plotting the Data

－Highlight columns B \＆C and plot as a scatter plot by clicking the ：＂${ }^{\text {button．}}$

Fitting Michaelis-Menten Function

The single-substrate Michaelis-Menten function:

$$
v=\frac{V_{\max }[S]}{K_{m}+[S]}
$$

is a basic model in enzyme kinetics study, where v is the reaction velocity, [S] is the substrate concentration, $\mathrm{V}_{\text {max }}$ is the maximal velocity and K_{m} represents the Michaelis constant. We can determine the $\mathrm{V}_{\max }$ and K_{m} value, which are important enzyme properties, by fitting $\mathrm{M}-\mathrm{M}$ function on v vs. [S] curve.

There is no $\mathrm{M}-\mathrm{M}$ fitting function in Origin; however, we can use a more general model, the built-in Hill function to fit:

$$
\imath=V_{\max } \frac{x^{n}}{k^{n}+x^{n}}
$$

where n means the cooperative sites. For single-substrate model, we can just fix $\mathrm{n}=1$ during fitting and it will become the simplest form, the M-M function.

There are two curves, reaction without Inhibitor and reaction with Competitive Inhibitor in the graph, and the NLFit tool can fit these two curves simultaneously. Since for competitive inhibition reaction, the maximum velocity is the same with no inhibition reaction, we can share the $\mathrm{V}_{\text {max }}$ value during the fitting procedure, which can be implemented by a Global Fit.

- With the graph active, select the menu item Analysis: Fitting: Nonlinear Curve Fit to bring up the NLFit dialog. Select Hill function from Growth/Sigmoidal category on the Settings: Function
Selection page.

- On Settings: Data Selection page, click the triangular button next to the Input Data and choose Add all plots in active page to set the data.

- Select Global Fit from Multi-Data Fit Mode drop-down list on the Settings: Data Selection page.

- Switch to the Parameters tab, check the Share box on the Vmax row. These Share check boxes are only available when using Global Fit mode. Check the Fixed box for n and $n _2$, and make sure their values are 1.

After that, click the Fit button to generate reports. The fit result will also be pasted on the original graph. (We just show the parameter values in the following figure.)

From the fit result, we can conclude that the maximum velocity is $2162.8 \mu \mathrm{M} / \mathrm{min}$. and K_{m} for no inhibitor and competitive inhibitor model is $1.78 \mu \mathrm{M}$ and $4.18 \mu \mathrm{M}$, respectively.

Fitting Lineweaver-Burk Plot

As we know, the model parameters can also be estimated by the Lineweaver?Burk or doublereciprocal plot. The Lineweaver?Burk plot takes the reciprocal of both sides of the $\mathrm{M}-\mathrm{M}$ function and plots by $1 / \mathrm{v}$ vs. $1 /[\mathrm{S}]:$

$$
\frac{1}{\imath}=\frac{1}{V_{\max }}+\frac{K_{m}}{V_{\max }[S]}
$$

This is actually a linear function:

We will use the No Inhibitor data to illustrate how to calculate K_{m} and $V_{\max }$ by L-B plot.

- Go back to the raw data worksheet and add two more columns by clicking the ${ }^{+}$目 button. Rightclick on column D and select Set As: X from the context fly-out menu to set it as an X column. Right-click on column D again and select Set Column Values to bring up the Set Values dialog. In the dialog edit box, enter: $1 / \mathrm{Col}(\mathrm{A})$ and set the Recalculate mode as None, since we don't need to auto update the reciprocal values in this example.

Similarly, set column E's values as 1/Col(B). Enter the long name for column D \& E as 1 / [S] \& $1 / \mathrm{V}$, respectively. And then we have:

\#\# Enzyme - Enzyme.dat					$\square \square \times$	
	$\mathrm{A}(\mathrm{X1)}$	B(\%1)	C(V1)	$D(\times 2)$	E(V2)	^
Long Name	[8]	V	V	1/[S]	1 N	
Units	HM	uMimin	uMimin			
Comments	Substrate	No Inhibitor	Competitiv e Inhibition			
Sparklines						
1	0.5	580	350	2	0.00172	
2	2	1180	690	0.5	$8.47458 \mathrm{E}-4$	
3	4	1485	970	0.25	$6.73401 \mathrm{E}-4$	
4	6	1630	1175	0.16667	6.13497E-4	
5	8	1740	1345	0.125	$5.74713 \mathrm{E}-4$	
6	10	1810	1500	0.1	$5.52486 \mathrm{E}-4$	\checkmark
	FitNL1	FitNLCurve1	7	$1 \leqslant$	IIII	:

- Highlight columns D \& E and click *"|button to create a scatter plot.

From the above equation, we know there is a linear relationship between $1 / \mathrm{V}$ and $1 /$ [S], so we can use the NLFit tool to fit a straight line on this plot. (You can also use the Fit Linear tool from Analysis: Fitting: Fit Linear)

- Bring up the NLFit dialog again, select Line function from Polynomial category, and then click the Fit button Fit directly to generate results.

From the plot, one may doubt that this is the best fit curve since there is a point located far away. Actually, the right side of L-B plot is low substrate concentrations area, the measurement error may be large, so we'd better exclude these points during fitting.

- Click the lock icon on the graph upper-left corner, and select Change Parameters to bring back NLFit dialog.

In Settings: Data Selection page, click the button on Input Data node, and then choose Reselect All Data from Graph from fly-out menu.

Then the NLFit dialog rolls up and your cursors become

when you move to the graph page. Click and draw a rectangle to select data points you want to fit. The input range is labeled by vertical lines. You can also click-and-move these lines to change the input range.

Click the button on Select Data in Graph window to go back to NLFit dialog.

Select data in graph	X
$[G r a p h 2] 111 " 1 / N^{\prime \prime}[2: 11]$	

- Click the Fit button on the NLFit dialog to recalculate the result. You can see from the graph that the report table was updated.

- Since the intercept of the fitted curve is $1 / \mathrm{V}_{\max }$, it is equal to $4.76191 \mathrm{E}-4$ in this example. To get the $\mathrm{V}_{\text {max }}$ value, select Window: Command Window to open the command window, type

1/4.76191E-4 = and press ENTER:

Origin returns the value 2099, which is close to what we got above, 2160. (When fitting the hill function above, we shared $\mathrm{V}_{\text {max }}$ when fitting two datasets. If you fit the No Inhibitor data only, this value will be closer.)

Global Fitting with Parameter Sharing

Summary

Global fit is one of the fit modes in Origin when fitting multiple curves. It will fit all datasets simultaneously, allowing parameter sharing. Compared to concatenate fit, which combine all datasets into one, global fitting performs chi-square minimization in a combined parameter space, so the parameter errors, DOF, npts and even parameter values may be different from a concatenated fit. Therefore global fitting is only appropriate/necessary if you want to share parameters.

Minimum Origin Version Required: Origin 8.0 SR6

What you will learn

This tutorial will show you how to:

- Select multiple datasets for fitting.
- Select different fitting modes.
- Perform global fit with parameter sharing.

Steps

1. Start with a new workbook and import the file \Samples\Curve Fitting\Enzyme.dat.
2. Highlight column B and C and bring up the NLFit dialog from Analysis: Fitting: Nonlinear Curve Fitting. In the Function Selection page of NLFit dialog, choose Hill function from Growth/ Sigmoidal category. Go to Data Selection page, and select Global Fit mode from Multi-Data Fit Mode drop-down list:

Settings	Code	Parameters	Bounds			
Function Selection						
Data Selection			Multi-Data Fit Mode Weights	Global Fit	-	
Fitted Curves				Use Each Range's Setting		
Find $X /$						
Advanc			\square Input Data			... 1
Output						
			\pm Range 1	[Enzyme]Enzyme! [A', [S]', $\mathrm{B}^{\prime 2} \mathrm{~V}^{\prime \prime}$]		$\stackrel{\square}{ }$
			\pm Range 2			\downarrow

Then make sure the Recalculate mode is Manual in the Advanced page.
3. Active the Parameters tab. Check the Fixed checkbox for n and $n_{-} 2$ to fix their values to 1 .

| Settings | Code Parameters Bounds |
| :--- | :--- | :--- |

Automatic Parameter Initialization is enabled.

Param	Meaning	Share	Fixed	Value	Error
Vmax	Max velocity	\square	\square	1960	.-
k	Michaelis constant	\square	\square	2.59016	..
n	Cooperative sites	\square	\square	1	..
Vmax_2	Max velocity	\square	\square	1910	..
$\mathrm{k}_{2} 2$	Michaelis constant	\square	\square	5.56098	..
n_2	Cooperative sites	\square	\square	1	..

Click the Fit button to fit curves. You can see these results from the report worksheet:

		Value	Standard Error
	Vmax	2091.96109	33.62032
k	1.52432	0.13786	
	1	0	
	2428.49265	81.97136	
k	5.86377	0.56737	
n	1	0	

4. Since the maximum velocity, Vmax in this case, maybe the same. We now want to share this parameter value to fit. Click the lock icon in the report worksheet and select Change Parameters to bring back the NLFit dialog.

5. In the Parameters tab, check the Shared checkbox for Vmax.

Settings	Code	Parameters

Automatic Parameter Initialization is enabled.

Param	Meaning	Share	Fixed	Value	Error
Vmax	Max velocity	$\boxed{ }$	\square	1960	..
k	Michaelis constant	\square	\square	2.59016	..
n	Cooperative sites	\square	\square	1	..
$\mathrm{k}_{2} 2$	Michaelis constant	\square	\square	5.56098	..
$\mathrm{n} _2$	Cooperative sites	\square	\square	1	..

And then click the Fit button again to generate new results, you can see the Vmax values for both curves are the same. The asterisk in parameter name means that this parameter is shared:

		Value	Standard Error
	Vmax* *	2162.82534	42.2049
k	1.78077	0.19046	
n	n	1	0
Vmax* *	2162.82534	42.2049	
k	4.18392	0.33106	
n	1	0	

User Defined Fitting Function using Origin C

Summary

All the fitting functions in Origin are organized by the Fitting Function Organizer. Besides the builtin functions, you can also create user-defined functions in the Fitting Function Organizer or the Fitting Function Builder. Once a function is created, it can be accessed in the NLFit dialog. We will illustrate how to fit with a user-defined function below.

Minimum Origin Version Required: Origin 8.5 SR1

What you will learn

- How to create a user-defined fitting function using the Fitting Function Organizer.
- How to create a user-defined fitting function using the Fitting Function Builder.

Example

We will illustrate how to define the following fitting function:

$$
y=y 0+a e^{b x}
$$

Define the function in Fitting Function Organizer

1. Select Tools: Fitting Function Organizer from the menu (or press F9) to open the function organizer. Click the New Category button to create a function category, rename it as UserDefined, for example. Then press the New Function button to create a new function under this category

Fitting Function Organizer		
	Name NewCategory	New Category New Function Duplicate Add Remove Cancel OK Simulate Reset

2. Enter function definition as shown in the following image and Save:

3. To verify the correctness of the function, click the button beside the Function box to open the Origin Code Builder:

Function

\square

In the Code Builder, click the Compile button to compile the function. If passed, click the Return to Dialog button to return to the Fitting Function Organizer.

4. Click Save and $\mathbf{O K}$ to save the function and quit the Fitting Function Organizer.

Define the function in Fitting Function Builder

Since Origin 8.5, a new fitting function wizard Fitting Function Builder has been added, which can be used to create or edit a user-defined function. Below, let's define the fitting function using this wizard.

1. Select Tools: Fitting Function Builder... from the main menu (or press F8) to open the Fitting Function Builder. Select the Create a New Function radio box.

2. Click the Next button to go to the Name and Type page. Enter MyExp1 in the Function Name box and select the Origin C radio box for the Function Type.

3. Click the Next button to go to the Variables and Parameters page. Enter the variables and parameters as shown in the following screenshot:

4. Click the Next button to go to the Origin C Fitting Function page. Enter the function body in the Function Body box. To verify the correctness of the function, click the button beside the Function box to open the Origin Code Builder.

In the Code Builder, click the Compile button to compile the function. If passed, click the
Return to Dialog button to return to the Fitting Function Builder.

5. Click the Finish button to finish defining this function.

Fit data with the function:

Let's use the above user-defined function to do fitting.

1. Import \Samples\Curve Fitting\Exponential Decay.dat to Origin worksheet.
2. Highlight column B and select Analysis: Fitting: Non-linear Curve Fit from the menu to bring up the NLFit dialog.
3. Select the function just defined in the Settings tab, Function Selection page:

4. Switch to the Parameters tab, enter $80,100,-5$ on the Value column as initial values for $y 0, a$, b. Click the Fit until Converge button to fit the curve:

5. When the fit converges, click OK button to generate fitting reports.

From the Fitted Curves Plot, we see the fitting is fine.

And the fitting function is $\mathrm{y}=104.85968+193.3244 * \exp (-8.273 * x)$

		Value	Standard Error
Decay 1	yo	104.85968	0.69005
	a	193.3244	3.10614
	b	-8.273	0.21726

Reduced Chi-sqr $=24.6340584677$
$\operatorname{COD}\left(R^{\prime} 2\right)=0.98505461857169$
Iterations Performed $=4$
Total Iterations in Session $=4$
Fit converged. Chi-Sqr tolerance value of $1 \mathrm{E}-9$ was reached.

Fitting One Dataset as a Function of Other Datasets

Summary

Sometimes, one may want to perform "Dataset Fitting", that is, the output may be composed of one or several datasets, like:

Output $=A_{1} *$ Dataset $_{1}+A_{2} *$ Dataset $_{2}$
For example, you may want to analyze a composite spectrum to find the contributions/ratio from individual component spectra. This can be accomplished either by defining multiple independent variables or by calculating the "combination" inside the fitting function.

Minimum Origin Version Required: Origin 8.0 SR6

What you will learn

This tutorial will show you how to:

- Perform "Dataset Fitting"
- Define multiple independent variable fitting function

Steps

Import the Composite Spectrum. dat file from the \Samples\Curve Fitting \backslash folder. In this sample data, we can see that column A is the index, columns B and C are the values for the spectrum of components A and B . Column D contains values obtained after reading a composite spectrum of components A and B . By fitting column D to an equation determined by the component spectra of the pure forms of columns B and C, the coefficients for the contributions of B and C (call them c1 and c2 respectively) can be found. (Note: In this case, we supposed the independent and dependent variables have the same size. If not, interpolation is need.)

Bring up the Fitting Function Organizer and define a new fitting function as follow:

Function Name:	Multil ndep
Function Type:	User-Defined
Independent Variables:	a, b
Dependent Variables:	ab
Parameter Names:	$\mathrm{C} 1, \mathrm{C} 2$
Function Form:	Origin C
Function:	$\mathrm{ab}=\mathrm{C} 1 * \mathrm{a}+\mathrm{C} 2 * \mathrm{~b} ;$

Initialize both C1 and C2 to 1 in the Parameter Initialization edit box by entering:
$\mathrm{C} 1=1$;
C2 $=1$;
Save the fitting function and close Fitting Function Organizer. Highlight ONLY Column D and bring up the NLFit dialog, specify the input datasets in the Data Selection page as follow:

Then you can click the Fit button to generate results.

Results

You are supposed to get these results:

	Value	Standard Error

C1	0.37169	0.00483
C2	0.66469	0.0047

To verify the fitted results, you can add a new column and Copy + Paste the fitted value, which comes from the fitted Y in the worksheet FitNLCurve1, into it. Then Highlight the Composite and the fitted data and plot a line graph to see how good the fit is:

Fitting With Multiple Independent Variables

Summary

The Function Organizer tool can be used to create user-defined functions with more than one independent or dependent variable. The NLFit dialog can then be used to fit with such functions. The preview window in the fitter dialog is capable of plotting only one quantity versus another, however even if the preview does not make sense, the fitting process will correctly proceed once proper data and parameter assignments have been made.

Note that if you wish to fit multiple independent variables with an equation of the type $\mathrm{y}=\mathrm{A} 0+\mathrm{A} 1 * \mathrm{x} 1+\mathrm{A} 2 * x 2+\ldots$
you can make use of the Multiple Regression tool instead of the nonlinear fitter dialog.
Minimum Origin Version Required: Origin 8.0 SR6

What you will learn

This tutorial will show you how to:

- Create a user-defined fitting function with two independent variables and one dependent variable
- Fit with that function in NLFit

Steps

1. Start with a new workbook and import the file \Samples\Curve Fitting\Activity.dat.
2. Select Tools: Fitting Function Organizer from menu (or press F9) to bring up the Fitting Function Organizer and define a new fitting function named Multil ndep in NewCategory (create the category if not exist) as follow:

Function Name:	Multil ndep
Function Type:	User-Defined
I ndependent Variables:	substr, inhib
Dependent Variables:	act
Parameter Names:	ki,km,vm
Function Form:	Origin C
Function:	double mix $=\mathrm{inhib} / \mathrm{ki} ;$ act $=\mathrm{vm} * \operatorname{substr} /(\mathrm{km}+(1+\mathrm{mix}) *$ substr $) ;$

3. NOTE: Since we are using OriginC, case must match between defined names and their use in the function definition. e.g. Substr does NOT equal substr.
4. Click Save and then OK to save the function and close the Organizer.
5. For more details about User Defined Fitting Function please refer to User Defined Fitting Function using Origin C.
6. Highlight ONLY column C and select Analysis: Fitting: Non-linear Curve Fit from menu to bring up the NLFit dialog. Select the function Multil ndep from New Category on the Settings:

Function Selection page. Set the input datasets in the Data Selection page as follow:

7. Select the Fitted Curves page and expand the Fitted Curves Plot branch. Then select Sample as Input Data from the drop-down list next to the \mathbf{X} Data Type branch.

8. Select Parameters Tab and set the initial values as follow:

| Settings | Code | Parameters | Bounds |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Automatic Parameter Initialization is enabled.
 Param Meaning Fixed Value
 ki $?$ \square 0.01
 km $?$ \square 1
 vm $?$ \square .- | | | |

9. Click Fit button to generate the fitting reports. You can see these results from the report worksheet as below:
Parameters

		Value	Standard Error
Activity	ki	0.0373	0.00233
	km	7.30567	0.71748
	vm	653.1116	22.39698

Statistics

	Activity
Number of Points	18
Degrees of Freedom	15
Reduced Chi-Sqr	155.36102
Residual Sum of Squares	2330.41531
Adj. R-Square	0.98357
Fit Status	Succeeded(100)

From the Statistics table we can know that the fitting is fairly successful.

User Defined Fitting Function using GNU Scientific Library

This article demonstrates how to use GSL function as fit function.

Minimum Origin Version Required: Origin 8.0 SR6

1. We will fit the sample Data below by the following model:

$$
y=y_{0}+a \int_{0}^{x} e^{\beta \cdot t} d t
$$

$0.1 \quad 0.10517$
0.20 .2214
0.30 .34986
$0.4 \quad 0.49182$
0.50 .64872
$0.6 \quad 0.82212$
0.71 .01375
0.81 .22554
0.91 .4596
11.71828
1.12 .00417
$1.2 \quad 2.32012$
$1.3 \quad 2.6693$
$1.4 \quad 3.0552$
$1.5 \quad 3.48169$
$1.6 \quad 3.95303$
$1.7 \quad 4.47395$
1.85 .04965
1.95 .68589
26.38906
$2.1 \quad 7.16617$
2.28 .02501
2.38 .97418
2.410 .02318
$2.5 \quad 11.18249$

2.6	12.46374
2.7	13.87973
2.8	15.44465
2.9	17.17415
3	19.08554
3.1	21.19795
3.2	23.53253

2. Add the file ocgsl.h in (User Files folder), before next step, make sure the gsl dlls are copied to this same location, see Calling GNU Scientific Library.

ocgsl.h

```
#pragma dll(libgsl, header)
```

// this is OC special pragma,
// header keyword is to indicate libgsl.dll is in same location as this
file
\#define GSL_EXPORT // for OC, this is not needed, so make it empty
// you can directly search and copy gsl function prototypes here
typedef double (* FUNC)(double x, void * params);
struct gsl_function_struct
\{
FUNC function;
void * params;
\};
typedef struct gsl_function_struct gsl_function ;
typedef struct
\{
size_t limit;
size_t size;
size_t nrmax;
size_t i;
size_t maximum_level;
double *alist;
double *blist;
double *rlist;
double *elist;
size_t *order;
size_t *level;
\}
gsl_integration_workspace;
GSL_EXPORT gsl_integration_workspace *gsl_integration_workspace_alloc
(const size_t n);
GSL_EXPORT void gsl_integration_workspace_free
(gsl_integration_workspace * w);
GSL_EXPORT int gsl_integration_qag (const gsl_function * f,
double a, double b,

```
size_t limit,
```

workspace,
double epsabs, double epsrel,

```
int key,
gsl_integration_workspace *
```

double *result, double *abserr);
3. Press F9 to open the Fitting Function Organizer and then add a new function as follows:

4. Press the button on the right hand side of the Function Field to open the code builder and add the following codes and compile: _ nlfgsl_integration_qag.fit

```
#include "..\ocgsl.h"
static double f_callback(double x, void * params)
{
    double alpha = *(double *)params;
    return exp(alpha*x);
}
void _nlsfgsl_integration_qag(
// Fit Parameter(s):
double y0, double a, double beta,
// Independent Variable(s):
```

```
double x,
// Dependent Variable(s):
double& y)
{
    // Beginning of editable part
    double result, err, expected = -4.0;
    // Allocates a workspace suffcient to hold 1000 double precision
intervals,
    // their integration results and error estimates
    gsl_integration_workspace *ww =
gsl_integration_workspace_alloc(1000);
    gsl_function F;
    F.function = f_callback;
    F.params = &beta ;
    // integral interval (0, x), within the desired absolute
    // error 0 and relative error 1e-7
    gsl_integration_qag(&F, 0, x, 0, 1e-7, 1000, 0, ww, &result,
&err);
    // frees the memory associated with the workspace w
    gsl_integration_workspace_free (ww);
    y = y0 + a*result;
    // End of editable part
}
```

Furthermore, a more elaborate but efficient version of the fitting function is given as follows

```
//-----------------------------------------------------------------
//
#include <ONLSF.h>
#include "..\ocgsl.h"
static double f_callback(double x, void * params)
{
    double alpha = *(double *)params;
    return exp(alpha*x);
}
void _nlsfgsl_integration_qag(
// Fit Parameter(s):
double y0, double a, double beta,
// Independent Variable(s):
double x,
// Dependent Variable(s):
double& y)
{
    // Beginning of editable part
    NLFitContext *pCtxt = Project.GetNLFitContext();
    if ( pCtxt )
    {
```

```
static vector vInteg;
NLSFCURRINFO stCurrInfo;
pCtxt->GetFitCurrInfo(&stCurrInfo);
int nCurrentIndex = stCurrInfo.nCurrDataIndex;
B00L bIsNewParamValues = pctxt->IsNewParamValues();
if ( bIsNewParamValues )
{
    vector vx;
    pCtxt->GetIndepData(&vx);
    int nSize = vx.GetSize();
    vInteg.SetSize(nSize);
    // Allocates a workspace suffcient to hold 1000
double precision intervals,
    // their integration results and error estimates
    gsl_integration_workspace *ww =
gsl_integration_workspace_alloc(1000);
    gsl_function F;
    F.function = f_callback;
    F.params = &beta ;
    double result, err, expected = -4.0;
    for(int ii=0; ii<nSize; ++ii)
    {
        // integral interval (0, vx[ii]), within
the desired absolute
    // error 0 and relative error 1e-7
    gsl_integration_qag(&F, 0, vx[ii], 0, 1e-
7, 1000, 0, ww, &result, &err);
                        vInteg[ii] = result;
    }
    // frees the memory associated with the workspace
w
    gsl_integration_workspace_free (ww);
        }
        y = y0 + a*vInteg[nCurrentIndex];
        X;
    }
    // End of editable part
}
```

5. Add the following initilization codes:

Parameter Init

```
//Code to be executed to initialize parameters
```

sort(x_y_curve);
double coeff[2];
fitpoly(x_y_curve, 1, coeff);
a = coeff[0];

```
y0 = coeff[1];
beta=1.0
```

6. Fit using the user-defined function gsl_integration_qag, here are the results:

$$
\begin{aligned}
& y 0=-1.06363 \mathrm{E}-6 \\
& \mathrm{a}=1 \\
& \text { beta }=1
\end{aligned}
$$

Fitting with NAG Special Function

Summary

Origin allows user to define an Origin C fitting function using NAG special functions. You can call NAG routine to evaluate the special function.

Minimum Origin Version Required: Origin 8.0 SR6

What you will learn

This tutorial will show you how to:

- Create fitting function using Fitting Function Organizer
- Create fitting function using NAG special function

Example and Steps

We will fit the following model:

$$
\text { inorm }=A * \exp (-t d / 2.0 /(t-t 0)) *(I 0(t d / 2.0 /(t-t 0))+I 1(t d / 2.0 /(t-t 0)))
$$

Here A, td and t0 are the model parameters we want to obtain from the data fitting. IO and II are the first kind of Modified Bessel function of order 0 and order 1, respectively. For current example, we use the sample data in the end of this tutorial. The fitting procedure can be outlined into the following steps:

Press F9 to open the Fitting Function Organizer and then create a new Category named FittingWithNAGSpecialFunc. Define a new fitting function FittingWithBessel in the new category as follow:

Function Name:	FittingWithBessel
Function Type:	User-Defined
Independent Variables:	t
Dependent Variables:	inorm
Parameter Names:	A,t0,td
Function Form:	Origin C
Function:	

Click the button (icon) beside the Function box to open the code builder and define and compile and save the fitting function as follows:
\#include <origin.h>

```
// Add your special include files here.
// For example, if you want to fit with functions from the NAG library,
// add the header file for the NAG functions here.
#include <0C_nag8.h>
// Add code here for other Origin C functions that you want to define
in this file,
// and access in your fitting function.
// You can access C functions defined in other files, if those files
are loaded and compiled
// in your workspace, and the functions have been prototyped in a
header file that you have
// included above.
// You can access NLSF object methods and properties directly in your
function code.
// You should follow C-language syntax in defining your function.
// For instance, if your parameter name is P1, you cannot use p1 in
your function code.
// When using fractions, remember that integer division such as 1/2 is
equal to 0, and not 0.5
// Use 0.5 or 1/2.0 to get the correct value.
// For more information and examples, please refer to the "User-Defined
Fitting Function"
// section of the Origin Help file.
//-----------------------------------------------------------------
//
void _nlsfFittingWithBessel(
// Fit Parameter(s):
double A, double t0, double td,
// Independent Variable(s):
double t,
// Dependent Variable(s):
double& inorm)
{
    // Beginning of editable part
    //inorm= A* exp(-td/2.0/(t-t0)) * ( s18aec(td/2.0/(t-
t0),NAGERR_DEFAULT)+s18afc(td/2.0/(t-t0),NAGERR_DEFAULT) );
    static NagError fail1;
    static NagError fail2;
    double dtemp = td/2.0/(t-t0);
    inorm= A* exp(-dtemp) * (
s18aec(dtemp,&fail1)+s18afc(dtemp,&fail2) );
    if(fail1.code !=NE_NOERROR)
        printf("%s\n",fail1.message);
    if(fail2.code !=NE_NOERROR)
                printf("%s\n",fail2.message);
    // End of editable part
}
```

After the function body is defined, you can click the Compile button in Code Builder to check syntax errors. And then click Return to Dialog button to go back Fitting Function Organizer dialog box. Now click the Save button to generate the .FDF file (Function definition file).

Once you have a .FDF file, you can click the Simulate button to simulate a curve, this will be very helpful to evaluate the initial values. In the simcurve dialog, enter some proper parameter values and X range, and see what the curve looks like in the Preview panel.

Set the Initial Values for the Parameters

As it is a user-defined fitting function, you have to supply the initial guess values for the parameters before performing your fitting task for the data. You may do it by set them manually in the
Parameter tab in Nonlinear Curve Fit dialog. For the sample data shown below, you can just set the initial values for the parameters $A=1, t d=1, \mathrm{t} 0=1$. After the parameters are initialized, you can then do the fitting to obtain the fitting result, as shown to the right of the sample data.

Sample Data

Copy the below sample data and use Import Wizard to import the data from Clipboard, then do the fitting using the given initial values for the parameters: $A=1, t d=1, t 0=1$.

Sample Data		Results		
X	Y	\square Parameters		
2	0.7868954118			
2.080808081	0.8133022141		Value	Standard Error
2.161616162	0.8178216765	" ${ }^{\prime}$ "	A 0.96431	0.06562
2.242424242	0.8427866729		to 1.39545	0.40134
2.323232323	0.8315815363		td 0.53711	0.54076
2.404040404	0.8484657180	Reduced Chi-sqr $=1.02442755048 \mathrm{E}-4$ $\operatorname{COD}\left(\mathrm{R}^{\prime 2}\right)=0.92247024814828$ Iterations Performed $=11$ Total Iterations in Session $=11$ Fit converged - tolerance criterion satisfied.		
2.565656566	0.8618233553			
2.646464646	0.8745962570			
2.727272727	0.8921620316			
2.808080808	0.8687399759			

Fitting Integral Function with parametric limit using NAG Library

Summary

Before you start delving into this tutorial, you are recommended to read the relevant tutorial in Fitting with Integral using NAG Library. And as far as programming is concerned, the two tutorials are basically the same, except that here you will learn to define Origin C fitting function with fitting parameters in the integral limit, while in the previous tutorial we in fact define a fitting independent variable in the integral limit. Also note that a different NAG integrator is used here.

Minimum Origin Version Required: Origin 8.0 SR6

What you will learn

This tutorial will show you how to:

- Create a fitting function with Definite Integral using the NAG integration routine
- Create a fitting function with a parametric integral limit
- Use a log function to scale a large return value from the fitting function

Example and Steps

For example, we will fit the sample data at the bottom of this page with the following model:
$y=\int_{c}^{d} \frac{\cosh \left(\left(x_{i}+b^{2} \cdot x^{2}\right) /(b+x)\right)}{a+\left(x_{i}^{2}+x^{2}\right)} d x_{i}$
Note that we use x_{i} to indicate the integral independent variable while x indicates the fitting independent variable. The model parameters a, b, c, and d are fitted parameters we want to obtain from the sample data. To prepare the data, you just need to copy the sample data to an Origin Work sheet. The fitting procedure is similar to the previous tutorial:

Define Fitting Function in Fitting Function Organizer

Press F9 to open the Fitting Function Organizer and add the User-Defined integral fitting function nag_integration_fitting_ cosh to the Category FittingWithI ntegral, similar to the first tutorial.
Function Name: nag_integration_fitting_cosh
Function Type: User-Defined

Independent Variables: x
Dependent Variables: y
Parameter Names: a, b, c, d
Function Form: Origin C

Function:

Click the button (icon) beside the Function box to open the code builder and define and compile the fitting function as follows: (Note: Remember to save the Function after compiling it and returning to the Function Organizer Dialog):

```
#include <origin.h>
// Add your special include files here.
// For example, if you want to fit with functions from the NAG
library,
// add the header file for the NAG functions here.
#include <oc_nag8.h>
// Add code here for other Origin C functions that you want to
define in this file,
// and access in your fitting function.
struct user
{
    double a, b, fitX; // fitX the independent variable of
fitting function
```

```
};
static double NAG_CALL f_callback(double x, Nag_User *comm)
// x is the independent variable of the integrand
{
    struct user *sp = (struct user *)(comm->p);
    double aa, bb, fitX; // temp variable to accept the
parameters in the Nag_User communication struct
    aa = sp->a;
    bb = sp->b;
    fitX = sp->fitX;
    return
cosh((x*x+bb*bb*fitX*fitX)/(bb+fitX))/(aa+(x*x+fitX*fitX));
}
// You can access C functions defined in other files, if those
files are loaded and compiled
// in your workspace, and the functions have been prototyped
in a header file that you have
// included above.
// You can access NLSF object methods and properties directly
in your function code.
// You should follow C-language syntax in defining your
function.
// For instance, if your parameter name is P1, you cannot use
p1 in your function code.
// When using fractions, remember that integer division such
as 1/2 is equal to 0, and not 0.5
// Use 0.5 or 1/2.0 to get the correct value.
// For more information and examples, please refer to the
"User-Defined Fitting Function"
// section of the Origin Help file.
//------------------------------------------------------------------
//
void _nlsfnag_integration_fitting_cosh(
// Fit Parameter(s):
double a, double b, double c, double d,
// Independent Variable(s):
double x,
// Dependent Variable(s):
double& y)
{
    // Beginning of editable part
    double epsabs = 0.00001, epsrel = 0.0000001, result, abserr;
    Integer max_num_subint = 500;
                            // you may use epsabs and epsrel and this quantity to
enhance your desired precision
                    // when not enough precision encountered
```

 Nag_QuadProgress qp;
    ```
    static NagError fail;
    // the parameters parameterize the integrand can be input to
the call_back function
            // through the Nag_User communication struct
            Nag_User comm;
    struct user s;
    s.a = a;
    s.b = b;
    s.fitX = x;
            comm.p = (Pointer)&s;
    d01sjc(f_callback, c, d, epsabs, epsrel, max_num_subint,
&result, &abserr, &qp, &comm, &fail);
            // you may want to exam the error by printing out
error message, just uncomment the following lines
    // if (fail.code != NE_NOERROR)
            // printf("%s\n", fail.message);
    // For the error other than the following three errors which
are due to bad input parameters
    // or allocation failure NE_INT_ARG_LT NE_BAD_PARAM
NE_ALLOC_FAIL
    // You will need to free the memory allocation before calling
the integration routine again to
            // avoid memory leakage
    if (fail.code != NE_INT_ARG_LT && fail.code != NE_BAD_PARAM
&& fail.code != NE_ALLOC_FAIL)
    {
                NAG_FREE(qp.sub_int_beg_pts);
                NAG_FREE(qp.sub_int_end_pts);
                    NAG_FREE(qp.sub_int_result);
                    NAG_FREE(qp.sub_int_error);
    }
    y = log(result);
    // note use log of the integral result as return as
the integral result is large,
                            // you are not necessary to do so
    // End of editable part
}
In the above code, we define the integrand as a callback function f_callback just outside the fitting function body _ nlsfnag_integration_fitting_cosh. Note that we parametrize the integrand function with the variables \(\mathbf{a}, \mathbf{b}\) and fitX, and pass them into the callback funtion through the Nag_User struct. After that we perform the integration using NAG integrator d01sjc. Besides, you can also use other Quadrature Routines as you want. In the current example, we also use a log scale for the fitting function. (The sample data are already scaled by a log function)
Compile the code, return to the dialog and then Save the fitting function in the function Organizer and open the Nonlinear Curve Fit dialog in the Analysis-Fitting menu. You can then select this user-defined fitting function in the Function Selection page under Setting Tab.
```


Set the Initial Values for the Parameters

Similarly, as it is a user-defined fitting function, you have to supply the initial guess values for the parameters. You may manually set them in the Parameter tab in Nonlinear Curve Fit dialog. For current example, you can just set the initial values for the parameters $a=1, b=10, c=3, d=4$. After the parameters are initialized, you can perform the fitting to obtain the fitting result, as shown in the following.

Sample Data

| X | Y | Results: |
| :---: | :---: | :---: |
| -5 | 498.19046 | |
| -4.33333 | 329.43196 | |
| -3.66667 | 210.28005 | |
| -3 | 126.55799 | Value ${ }^{\text {Standard Error }}$ |
| -2.33333 | 69.01544 | a 0.99303 (0.06577 |
| -1.66667 | 31.3555 | b 10 10 $\quad 5.3108 \mathrm{E}-5$ |
| -1.66667 | 31.3555 | c $3.00083 \quad 0.0062$ |
| -1 | 9.1393 | d $4.00022 \quad 9.38713 \mathrm{E}-4$ |
| -0.33333 | -0.84496 | |
| 0.33333 | -0.99914 | |
| 1 | 6.86736 | |

Fitting with Integral using NAG Library

Contents

- 1 Summary
- 2 What you will learn
- 3 Example and Steps
o 3.1 Define the Function
o 3.2 Simulate the Function
o 3.3 Fit the Curve

Summary

Origin allows user to define an Origin C fitting function which involves an integral. You can call NAG functions to perform the integration while defining the fitting function. There are built-in functions in Origin C which perform integration. For the current example, the NAG solution is recommended. It has a better performance compared to the built-in integration algorithm. Note that an infinite NAG integrator is used here.

Minimum Origin Version Required: Origin 8.0 SR6

What you will learn

This tutorial will show you how to:

- Create a fitting function using the Fitting Function Organizer
- Create a fitting function with a Definite Integral using a NAG integration routine
- Set up the Initial Code for the fitting function

Example and Steps

We will fit the following model:

$$
y=y_{0}+\int_{-\infty}^{x} \frac{A}{w \sqrt{\frac{\pi}{2}}} e^{-2 \frac{\left(t-x_{c}\right)^{2}}{w^{2}}}, d t
$$

Here $y_{0} A, x c$ and w are the model parameters we want to obtain from the data fitting. The fitting procedure can be outlined into the following steps:

Define the Function

Press F9 to open the Fitting Function Organizer and then create a new Category named FittingWithl ntegral. Define a new fitting function nag_integration_fitting in the new category as follow:

| Function Name: | nag_integration_fitting |
| :--- | :--- |
| Function Type: | User-Defined |
| Independent Variables: | x |
| Dependent Variables: | y |
| Parameter Names: | y0, A, xc, w |
| Function Form: | Origin C |
| Function: | |

Click the button (icon) beside the Function box to open the code builder and define and compile and save the fitting function as follows:

```
#include <origin.h>
// Add your special include files here.
// For example, if you want to fit with functions from the NAG library,
// add the header file for the NAG functions here.
#include <oc_nag8.h>
// Add code here for other Origin C functions that you want to define
in this file,
// and access in your fitting function.
struct user // parameters in the integrand
{
    double amp, center, width;
};
// Function supplied by user, return the value of the integrand at a
given x.
static double NAG_CALL f_callback(double X, Nag_User *comm)
```

```
{
    struct user *sp = (struct user *)(comm->p);
    double amp, center, width; // temp variable to accept the
parameters in the Nag_User communication struct
    amp = sp->amp;
    center = sp->center;
    width = sp->width;
    return amp * exp( -2*(x - center)*(x - center)/width/width ) /
(width*sqrt(PI/2));
}
// You can access C functions defined in other files, if those files
are loaded and compiled
// in your workspace, and the functions have been prototyped in a
header file that you have
// included above.
// You can access NLSF object methods and properties directly in your
function code.
// You should follow C-language syntax in defining your function.
// For instance, if your parameter name is P1, you cannot use p1 in
your function code.
// When using fractions, remember that integer division such as 1/2 is
equal to 0, and not 0.5
// Use 0.5 or 1/2.0 to get the correct value.
// For more information and examples, please refer to the "User-Defined
Fitting Function"
// section of the Origin Help file.
//-----------------------------------------------------------
//
void _nlsfnag_integration_fitting(
// Fit Parameter(s):
double y0, double A, double xc, double w,
// Independent Variable(s):
double x,
// Dependent Variable(s):
double& y)
{
    // Beginning of editable part
    // Through the absolute accuracy epsabs, relative accuracy
epsrel and max_num_subint you can
    // control the precision of the integration you need
    // if epsrel is set negative, the absolute accuracy will be
used.
    // Similarly, you can control only relative accuracy by set the
epsabs negative
    double epsabs = 0.0, epsrel = 0.0001;
```

```
    // The max number of sub-intervals needed to evaluate the
function in the integral
    // The more diffcult the integrand the larger max_num_subint
should be
    // For most problems 200 to 500 is adequate and recommmended
    Integer max_num_subint = 200;
    // Result keeps the approximate integral value returned by the
algorithm
    // abserr is an estimate of the error which should be an upper
bound for the |I - result|
    // where I is the integral value
    double result, abserr;
    // The structure of type Nag_QuadProgress,
    // it contains pointers allocated memory internally with
max_num_subint elements
    Nag_QuadProgress qp;
    // The NAG error parameter (structure)
    static NagError fail;
    // Parameters passed to integrand by Nag_User communication
struct
    Nag_User comm;
    struct user s;
    s.amp = A;
    s.center = xc;
    s.width = w;
    comm.p = (Pointer)&s;
    // Perform integration
    // There are 3 kinds of infinite boundary types you can use in
Nag infinite integrator
    // Nag_LowerSemiInfinite, Nag_UpperSemiInfinite, Nag_Infinite
    d01smc(f_callback, Nag_LowerSemiInfinite, x, epsabs, epsrel,
max_num_subint, &result, &abserr, &qp, &comm, &fail);
    // you may want to exam the error by printing out error
message, just uncomment the following lines
    // if (fail.code != NE_NOERROR)
    // printf("%s\n", fail.message);
    // For the error other than the following three errors which are
due to bad input parameters
    // or allocation failure NE_INT_ARG_LT NE_BAD_PARAM
NE_ALLOC_FAIL
    // You will need to free the memory allocation before calling
the integration routine again to avoid memory leakage
    if (fail.code != NE_INT_ARG_LT && fail.code != NE_BAD_PARAM &&
fail.code != NE_ALLOC_FAIL)
    {
                NAG_FREE(qp.sub_int_beg_pts);
                NAG_FREE(qp.sub_int_end_pts);
                NAG_FREE(qp.sub_int_result);
                NAG_FREE(qp.sub_int_error);
    }
```

```
    // Calculate the fitted value
    y = y0 + result;
    // End of editable part
}
```

In the above code, we firstly define the integrand as a callback function f_callback just outside the fitting function body _ nlsfnag_integration_fitting. Note that we parametrize the integrand function with the variables amp, center and width, and pass them into the callback funtion through the Nag_User struct. Inside the fitting function, we perform the integration using NAG integrator d01smc.

Calling NAG functions should be more efficient than writing your own routines. Using an analogous method, you can perform finite, infinite, one-dimension and multi-dimension quadrature in your fitting function. Please read the NAG Quadrature page and select a proper routine.

Simulate the Function

After entering the function body codes, you can click the Compile button in Code Builder to check syntax errors. And then click Return to Dialog button to go back Fitting Function Organizer dialog box. Now click the Save button to generate the .FDF file (Function definition file).

Once you have a .FDF file, you can click the Simulate button to simulate a curve, this will be very helpful to evaluate the initial values. In the simcurve dialog, enter some proper parameter values and X range, and see what the curve looks like in the Preview panel.

Fit the Curve

Before you start to fit the curve, it is very helpful to simulate the function first. Performing integration may take some time, if there is any mistake, you may see Origin "freeze" after you click the Fit button. So in the Fitting Function Organizer dialog, select the function we defined and click the Simulate button. This will bring up the simcurve X-Function. Enter some "guess" values and click the Apply button. If the simulated curve looks like your source data, you can go further to fit.

To test the fitting function, import \Samples\Curve Fitting\Replicate Response Data.dat to Origin. Set $\operatorname{Col}(A)=\log (\operatorname{Col}(A))$ in the Set Column Values dialog. This will make a sigmoid curve. Highlight column A and B and create a scatter plot. Then bring up the NLFit dialog from Analysis: Fitting: Nonlinear Curve Fit menu item. Select the fitting function we just defined and go to the Parameters tab, initialize all parameters by 1 and fit. You are supposed to see these results:

| | Value | Standard Error |
| :---: | :--- | :--- |
| y0 | -0.00806 | 0.18319 |
| A | 3.16479 | 0.39624 |
| $\mathbf{x c}$ | -0.19393 | 0.10108 |
| \mathbf{w} | 1.77252 | 0.33878 |

Fitting with Integral using LabTalk Function

Contents

- 1 Summary
- 2 What you will learn
- 3 Example and Steps
o 3.1 The Fitting Model

```
0 3.2 Define the Function
O 3.3 Fit the Curve
```


Summary

Since version Origin 8.6, Origin introduces a new LabTalk function, integral(), to do onedimensional integration. This function returns the integral value of:

$$
\int_{\text {LowerLimit }}^{\text {Upper Limit }} f(t, \arg 1, \arg 2, \ldots), d t
$$

And the interface of the integral() function is defined as below:

```
integral(integrandName, LowerLimit, UpperLimit [, arg1, arg2,
...])
```

Where integrandName here is the function name of the integrand:

$$
f(t, \arg 1, \arg 2, \ldots)
$$

In other word, the integral() function do the following things:

- Accept another function (the first argument) as the integrand.
- Perform integration on specified lower and upper limit and return the integral value.
- If need, pass the subsequent arguments (Arg1, Arg2, ...) into the integrand function.

Using this feature, we can define a fitting function with integral() function, and pass proper fitting parameters to the integrand, to do integration in curve fitting.

In this tutorial, we will modify the other tutorial, calling NAG functions to do integration during fitting, into LabTalk form, and show you how simple and straightforward to fit an integration function.

Minimum Origin Version Required: Origin 8.6

What you will learn

This tutorial will show you how to:

- Create a fitting function using the Fitting Function Builder
- Create a fitting function with a Definite Integral using Labtalk function
- Set up the Initial Code for the fitting function

Example and Steps

The Fitting Model

The fitting model is described as below:

$$
y=y_{0}+\int_{-\infty}^{x} \frac{A}{w \sqrt{\frac{\pi}{2}}} e^{-2 \frac{\left(t-x_{c}\right)^{2}}{w^{2}}}, d t
$$

There are four parameters in the fitting function, and we need to pass three of them into the integrand, and use the independent variable as upper limit, to do integration. So you should define the integrand first, and then use the integral() function to perform integration inside your fitting function body.

Define the Function

1. Press F8 to open Fitting Function Builder dialog. Make sure choosing Create a New Function option, and click Next to navigate to the next page.
2. In the Name and Type page, enter a function name, say MyI ntegGauss. Leave the default function type as Expression, and then check the Include Integration During Fitting checkbox. This will lead you to a new page in the next step.

3. In the Integrand page, you can define the expression of the integrand. Currently, Origin supports one-dimensional integral only, so the integrand should have ONE integration variable. In this example, the expression of the integrand is:

The other variables, like xc, w, and A , are parameters of the integrand. To distinguish from fitting parameters, we named them Arguments here, and use the arguments name ixc, iw, and iA instead. Later, we can pass fitting parameters into these arguments. So, the integrand definition should looks like:

Fitting Function Builder - Integrand - MyIntegGauss

Note that this is a LabTalk function. To get the integration value, you must have a RETURN statement in the function body. And the integrand expression in this example should be:

$$
\text { return iA * } \exp \left(-2^{*}(t-i x c)^{\wedge} 2 / i w^{\wedge} 2\right) /\left(i w^{*} \operatorname{sqrt}(P I / 2)\right) ;
$$

4. When all set, click Next to go to the Variables and Parameters page to define the variables and parameters for the fitting function as below:

Fitting Function Builder－Variables and Parameters－MylntegGauss

5．The next Function page is where you define the fitting function body．Once you choose to include integration in your fitting function at the beginning of the fitting function builder wizard， there is an extra tab，Integrand，shown on this page．In this tab，you can map the fitting variables and parameters with elements of the integrand，including lower limit，upper limit，and integrand arguments．And in this example，we will map the variables as below：

| I ntegrand elements | Values pass into integrand |
| :--- | :--- |
| Lower Limit | －inf |
| Upper Limit | X |
| ixc | xc |
| iw | W |
| iA | A |

6．Once set up all the mappings as above table，click the I nsert button，then well prepared integral（）function is inserted into the Function Body box as：

```
integral(MyIntegrand, -inf ,x ,xc ,w ,A)
```

7．This expression means perform integration on the function，whose name is Mylntegrand， from negative infinite to x ，and pass the three fitting parameters，$x c, w$ ，and A to the integrand．
8. By adding the constant parameter, y 0 , into the expression, the whole fitting function body should be:

```
y0 + integral(MyIntegrand, -inf, x, xc ,w ,A);
```

9. And the page may looks as below:
10.

Fitting Function Builder - Expression Function - MyIntegGauss

Function Body
$y=y 0+$ integral(Myintegrand, -inf, x, xc , w A]

Copy and paste the following data into Origin worksheet:

| \mathbf{X} | \mathbf{Y} |
| :--- | :--- |
| -1.69897 | 0.13136 |
| -1.22185 | 0.34384 |
| -0.92082 | 0.6554 |
| -0.82391 | 0.73699 |
| -0.69897 | 1.00157 |
| 0 | 1.70785 |
| 0.30103 | 2.31437 |
| 0.69897 | 2.77326 |
| 1 | 2.79321 |

Highlight the Y column, and press Ctrl + Y to open the NLFit dialog. Select the function you just defined, and click Fit button to perform fitting. The fitting result should be the same like using NAG function directly:
Parameters

| | | Value | Standard Error |
| :---: | ---: | ---: | ---: |
| B | y 0 | -0.01749 | 0.20203 |
| | xc | -0.21058 | 0.11852 |
| | w | 1.76925 | 0.36484 |
| | A | 3.15913 | 0.42476 |

```
Reduced Chi-sqr =0.0114837622841
COD(R"2) = 0.99334903530799
Iterations Performed = 6
Total Iterations in Session =6
Fit converged. Chi-Sqr tolerance value of 1E-9 was reached.
```

Fitting with Two Integrals using LabTalk Function

Contents

- 1 Summary
- 2 What you will learn
- 3 Example and Steps
o 3.1 The Fitting Model
o 3.2 Define the Function
o 3.3 Fit the Curve

Summary

In some circumstance, one may want to create fitting function with multiple integrals:

$$
\int_{L L 1}^{U L 1} f(t, \arg 1, \arg 2, \ldots) d t+\int_{L L 2}^{U L 2} g(x, \arg 3, \arg 4, \ldots) d x
$$

We refer to Fitting with Integral using LabTalk Function for detailed description of parameters in the expression

In version Origin 8.6, however, Fitting Function Builder just supports one integral in fitting function. Bypassing complex Origin C code, we can use Fitting Function Organizer to reach the goal.

In this tutorial, we will show you how to create a fitting function comprised of two integrals using function organizer. Of course, one can include more integrals as desired.

Minimum Origin Version Required: Origin 8.6

What you will learn

This tutorial will show you how to:

- Create a fitting function using the Fitting Function Organizer
- Create a fitting function with two integrals using LabTalk function

Example and Steps

The Fitting Model

The fitting model is described as below:

$$
y=y_{0}+\int_{-5}^{x} A t d t-\int_{-\infty}^{x} B t \exp \left(-t^{2} / w^{2}\right) d t
$$

There are four parameters in the fitting function, and we need to pass three of them into the integrand, and use the independent variable as upper limit, to do integration.

Define the Function

1. Press F9 to open Fitting Function Organizer dialog. Add a new function by pressing New Function after you select a category in which you want to put your function. One can also add new category by pressing the New Category button.

2. Specify the function name in the Function Name edit box as you like. Define Independent Variables, Dependent Variables and Parameter Names in corresponding edit box.
3. Select the Function Form in the drop box. One can find explanations in the Hints tab at the bottom of the dialog.

4. In the Function edit box, define your fitting function. The integrals are written in the form of LabTalk integral function.
```
y=integral(polyint, -5, x, a)-integral(gaussint, -inf, x, b,
wc )+y0
```

5. As described in Fitting with Integral using LabTalk Function, x, a, b and wc are parameters passed into the integrand functions.
6. Press the button at the right corner of Parameter Settings box to active Parameter Settings dialog. Set initial values as well as other constraints such as lower bounds, upper bounds for each parameter.

7. Define the two integrals in the LabTalk Functions Definition and Initializations box. In this case, the functions should be:
```
function double polyint(double t, double ia)
{
    return ia*t ;
}
function double gaussint(t, ib, iwc)
{
    return ib *t* exp(-(t)^2/iwc^2) ;
}
```

8. We have successfully set our two integrals fitting function. You can set other information in corresponding box. Do not forget to Save your fitting function after you finish.

Fit the Curve

Copy and paste the following data into Origin worksheet:

| \mathbf{X} | \mathbf{Y} |
| :---: | :---: |
| -3 | 2.47613 |

| -2.6 | 2.24016 |
| :--- | :--- |
| -2.2 | 2.01543 |
| -1.8 | 1.83094 |
| -1.5 | 1.85038 |
| -1.1 | 2.17725 |
| -0.9 | 2.44967 |
| -0.7 | 2.61423 |
| -0.5 | 3.02305 |
| -0.3 | 3.23057 |
| -0.1 | 3.37822 |
| 0.1 | 3.2827 |
| 0.3 | 3.18775 |
| 0.5 | 2.86194 |
| 0.7 | 2.69104 |
| 0.9 | 2.39315 |
| 1.4 | 2.04046 |
| 1.8 | 1.85287 |
| 2.2 | 1.85325 |
| 2.6 | 2.20569 |

Highlight the Y column, and press CTRL $+Y$ to open the NLFit dialog. Select the function you just defined, and click fit button \quad Fit to perform fitting.

| Parameters | | | |
| :---: | :---: | :---: | :---: |
| | | Value | Standard Error |
| B | a | 0.26191 | 0.03201 |
| | b | 3.52819 | 0.21956 |
| | WC | 1.07153 | 0.04832 |
| | y0 | 4.57942 | 0.29938 |

Reduced Chi-sqr $=0.00376911042999$
$\operatorname{COD}\left(R^{\prime} 2\right)=0.98854442672216$
Iterations Performed $=7$
Total Iterations in Session $=7$
Fit converged. Chi-Sqr tolerance value of $1 \mathrm{E}-9$ was reached.

Fitting with Summation

Contents

- 1 Summary
- 2 What you will learn
- 3 Example and Steps
o 3.1 Define the Function

o 3.2 Fit the Curve

Summary

We have showed you how to perform fitting with an integral using the NAG Library, and now you'll learn how to do that without calling NAG functions. In this tutorial, we will show you how to do integration by the trapezoidal rule and include the summation procedure in the fitting function.
Minimum Origin Version Required: Origin 8.0 SR6

What you will learn

- How to include summation in your fitting function.
- Trapezoidal rule for integration.

Example and Steps

We will fit the same model as the integral fit using NAG:

$$
y=y_{0}+\int_{-\infty}^{x} \frac{A}{w \sqrt{\frac{\pi}{2}}} e^{-2 \frac{\left(x-x_{c}\right)^{2}}{w^{2}}}, d x
$$

The difference is that we will perform the integration within the fitting function. Using the trapezoidal rule, we will first divide the curve into pieces and then approximate the integral area by multiple trapezoids. The precision of the result then depends on how many trapezoids will be used. Since this is a semi-infinite integration, we will set an increment (steps) and construct trapezoids from the upper integral limit, x, to the lower integral limit, negative infinity and then accumulate the area of these trapezoids. When the increment of the area is significantly small, we will stop the summation. Before doing the summation, you should guarantee that the function is CONVERGENT, or you should include a convergence check in your code.

Define the Function
Select Tools:Fitting Function Organizer or alternatively press the F9 key to open the Fitting Function Organizer and then define the function as follows:

```
Independent Variables: x
Dependent Variables: y
Parameter Names: y0, A, xc, w
Function Form: Origin C
Function:
```

Click the button (icon) beside the Function box to open Code Builder. Define, compile and save the fitting function as follows:

```
#pragma warning(error : 15618)
#include <origin.h>
// Subroutine for integrand
double f(double x, double A, double xc, double w)
{
    return A * exp(-2*(x-xc)*(x-xc)/w/w) / w / sqrt(PI/2);
}
//----------------------------------------------------------
//
void _nlsfsummation(
// Fit Parameter(s):
double y0, double A, double xc, double w,
// Independent Variable(s):
double x,
// Dependent Variable(s):
double& y)
{
    // Beginning of editable part
    // Set the tolerance for stop integration.
    double dPrecision = 1e-12;
    // Initialization
    double dIntegral = 0.0;
    double dTrapezia = 0.0;
    // Steps, or Precision.
    double dStep = 0.01;
    // Perform integrate by trapezoidal rule.
    // Note that you should guarantee that the function is
CONVERGENT.
    do
    {
                // Trapezia area.
                dTrapezia = 0.5 * ( f(x, A, xc, w) + f((x-dStep), A, xc,
w) ) * dStep;
            // Accumulate area.
                    dIntegral += dTrapezia;
                x -= dStep;
    }while( (dTrapezia/dIntegral) > dPrecision );
    // Set y value.
    y = y0 + dIntegral;
    // End of editable part
}
```


Fit the Curve

We can use the same data to test the result.

1. Import \Samples\Curve Fitting\Replicate Response Data.dat.
2. Highlight the first column, right-click on it, and select Set Column Values from the context menu.
3. Set $\operatorname{Col}(A)=\log (\operatorname{Col}(A))$ in the $\operatorname{Set} \operatorname{Column}$ Values dialog. This will make a sigmoidal curve.
4. Highlight columns A and B and create a scatter plot.
5. Then bring up the NLFit dialog by pressing Ctrl $+\mathbf{Y}$. Select the fitting function we just defined and go to the Parameters tab, initialize all parameters to 1 and fit. You should see these results:

| | Value | Standard Error |
| :---: | :--- | :--- |
| y0 | -0.00806 | 0.18319 |
| \mathbf{A} | 3.16479 | 0.39624 |
| $\mathbf{x c}$ | -0.19393 | 0.10108 |
| \mathbf{w} | 1.7725 | 0.33878 |

Fitting Complex Function

Summary

When fitting with a complex function, we can easily separate the complex function to two functions: one corresponding to its real part and the other corresponding to its imaginary part. With these two functions, we can define the complex fitting function with two dependent variables by Fitting Function Organizer and can access it in NLFit dialog. We will illustrate how to fit with complex function below. More details about fitting with multiple dependent or independent variable please refer to Fitting with Multiple Independent Variables.

Minimum Origin Version Required: Origin 8.0 SR6

What you will learn

This tutorial will show you how to:

- Create a user-defined complex fitting function with two dependent variables and one independent variable
- Fit with such function in NLFit

Steps

1. Select whole form below (including header line) and right click to choose Copy to put the data in clipboard.

| Omega | Y1 | Y2 |
| :--- | :--- | :--- |
| 0 | 3 | 0 |
| 0.01 | 2.88462 | -0.28846 |
| 0.02 | 2.58621 | -0.51724 |
| 0.03 | 2.20588 | -0.66176 |
| 0.04 | 1.82927 | -0.73171 |
| 0.05 | 1.5 | -0.75 |
| 0.06 | 1.22951 | -0.7377 |

| 0.07 | 1.01351 | -0.70946 |
| :--- | :--- | :--- |
| 0.08 | 0.8427 | -0.67416 |
| 0.09 | 0.70755 | -0.63679 |
| 0.1 | 0.6 | -0.6 |
| 0.11 | 0.5137 | -0.56507 |

2. Select I mport/ I mport Wizard to open Import Wizard dialog. Then choose Clipboard in Data Source group and click Finish to import the data.

Import Wizard - Source

Data Type

- ASCII
Binary
User Defined

Data Source
File
© Clipboard
3. Select Tools: Fitting Function Organizer from menu (or press F9) to bring up the Fitting Function Organizer and define a new fitting function named ComplexFitting in New Category (create the category if not exist) as follow:

| Function Name: | ComplexFitting |
| :---: | :---: |
| Function Type: | User-Defined |
| I ndependent Variables: | omega |
| Dependent Variables: | y1,y2 |
| Parameter Names: | A,tau |
| Function Form: | Origin C |
| Function: | $\begin{aligned} & \text { complex cc = A/(1+1i*omega*tau); } \\ & \text { y1 = cc.m_re; } \\ & \text { y2 }=\mathrm{cc} . \mathrm{m}_{-} \mathrm{im} ; \end{aligned}$ |

4. Note: To use the imaginary unit " i " for creating complex numbers, you need to write it as " 1 i " in Origin C , as in the above Function row. And complex is a class that implements a complex number data type. It contains both a Real and an Imaginary component.
5. For more details about creating user-defined fitting function, please refer to User Defined Fitting Function using Origin C.
6. Highlight all the columns and select Analysis: Fitting: Non-linear Curve Fit from menu to bring up the NLFit dialog. Select the function ComplexFitting from New Category on the Settings: Function Selection page. Set the input datasets in the Data Selection page as
follow:

7. Select Parameters Tab and set the initial values as follows:

| Settings | Code | Parameters | Bounds | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Automatic Parameter Initialization is enabled. | | | | |
| Param Meaning Fixed Value Error
 A $?$ \square 1 .-
 tau $?$ \square 1 .- | | | | |

8. Click Fit to generate the fitting report sheet. You can see the results from the report worksheet as below:
Parameters

| | | Value | Standard Error |
| ---: | ---: | :---: | ---: |
| $\mathrm{Y} 1, \mathrm{Y} 2$ | A | 2.36712 | 0.15413 |
| | tau | 15.84746 | 1.94844 |

Statistics

| | Y1,Y2 |
| ---: | ---: |
| Number of Points | 24 |
| Degrees of Freedom | 22 |
| Reduced Chi-Sqr | 0.12339 |
| Residual Sum of Squares | 2.71451 |
| Adj. R-Square | 0.92387 |
| Fit Status | Succeeded (100) |

From the Statistics table, we can see that the fitting is fairly successful.

Contents

- 1 Summary
- 2 What you will learn
- 3 Example and Steps

0 3.1 Background
o 3.2 Define the Function
o 3.3 Fit the Curve

Summary

When performing curve fitting to experimental data, one may encounter the need to account for instrument response in the data. One way to do this is to first perform deconvolution on the data to remove the instrument response, and then perform curve fitting as a second step. However, deconvolution is not always reliable as the results can be very sensitive to any noise present in the data. A more reliable way is to perform convolution of the fitting function with the instrument response while performing the fitting. This tutorial will demonstrate how to perform convolution while fitting

Minimum Origin Version Required: Origin 8 SR6.

What you will learn

This tutorial will show you how to:

- Access fitting information during iterations.
- Perform convolution while fitting.

Example and Steps

Background

Let's start this example by importing \Samples\Curve Fitting\FitConv.dat.

| $\mathrm{A}(\mathrm{C})$ | $\mathrm{B}(\mathrm{O})$ | $\mathrm{C}(\mathrm{C})$ |
| ---: | ---: | ---: |
| Sampling | Signal | Impulse |
| 0 | -0.19775 | 0 |
| 0.1 | -0.32893 | 0 |
| 0.2 | 0.10055 | 0 |
| 0.3 | 0.09394 | 0 |
| 0.4 | -0.1292 | 0 |
| 0.5 | 0.06346 | $1.48672 \mathrm{E}-6$ |
| 0.6 | 0.19453 | $1.3383 \mathrm{E}-4$ |

The source data includes sampling points, output signal, and the impulse response. This experiment assumes that the output signal was the convolution of an exponential decay function with a Gaussian response:

Now that we already have the output signal and response data, we can get the exponential decay function by fitting the signal with the below model:

$$
y=y_{0}+\int_{-\infty}^{+\infty} A e^{-t x} \otimes \text { Response, } d x
$$

Define the Function

Obviously, column 1 and column 2 are x and y respectively in the function. How about column 3, the impulse response? We will access this column within the fitting function, and compute the theoretical exponential curve from the sampling points. Then we can use fast Fourier transform to perform the convolution.

Press F9 to open the Fitting Function Organizer and define a function like:

| Function Name: | FitConv |
| :--- | :--- |
| Function Type: | User-Defined |
| Independent Variables: | x |
| Dependent Variables: | y |
| Parameter Names: | yo, A, t |
| Function Form: | Origin C |

Function:

Click the button (icon) beside the Function box and write the function body in Code Builder:

```
#pragma warning(error : 15618)
#include <origin.h>
// Header files need to be included
#include <ONLSF.H>
#include <fft_utils.h>
//
//
void _nlsfTestConv(
// Fit Parameter(s):
double y0, double A, double t,
// Independent Variable(s):
double x,
// Dependent Variable(s):
double& y)
{
    // Beginning of editable part
```

```
    Worksheet wks = Project.ActiveLayer();
    NLFitContext *pCtxt = Project.GetNLFitContext();
    if ( pCtxt )
    {
    // Vector for the output signal in each iteration.
    static vector vSignal;
    // If parameters were updated, we will recalculate the
convolution result.
    BOOL bIsNewParamValues = pCtxt->IsNewParamValues();
    if ( bIsNewParamValues )
    {
        // Read sampling and response data from
worksheet.
    Dataset dsSampling(wks, 0);
    Dataset dsResponse(wks, 2);
    int iSize = dsSampling.GetSize();
    vector vResponse, vSample;
    vResponse = dsResponse;
            vSample = dsSampling;
            vSignal.SetSize(iSize);
            vResponse.SetSize(iSize);
            vSample.SetSize(iSize);
            // Compute the exponential decay curve
            vSignal = A * exp( -t*vSample );
                        // Perform convolution
                    int iRet = fft_fft_convolution(iSize, vSignal,
vResponse);
    }
    NLSFCURRINFO stCurrInfo;
    pCtxt->GetFitCurrInfo(&stCurrInfo);
    // Get the data index for the iteration
    int nCurrentIndex = stCurrInfo.nCurrDataIndex;
    // Get the evaluated y value
    y = vSignal[nCurrentIndex] + y0;
    // For compile the function, since we haven't use x
here.
    x;
    }
    // End of editable part
}
Traditionally, for a particular x , the function will return the corresponding y value. However, when convolution is involved, we need to perform the operation on the entire curve, not only for a particular data point. So, from Origin 8 SR2, we introduced the NLFitContext class to achieve some key information within the fitter. In each iteration, we use NLFitContext to monitor the fitted parameters; once they are updated, we will compute the convolution using the fast Fourier transform by the fft_fft_convolution method. The results are saved in the vSignal vector. Then for each x , we can get the evaluated \(y\) from vSignal with the current data index in NLSFCURRINFO.
```

Fit the Curve

In the fitting function body, we read the response data directly from the active worksheet. So, you should perform the fit from the worksheet.

1. Highlight column B and press Ctrl $+\mathbf{Y}$ to bring up the Nonlinear Fitting dialog.
2. Choose X Data Type from Fitted Curves page as Same as Input Data.
3. Go back to the Function Selection page to select the FitConv function you just defined.
4. Go to the Parameter tab to initialize the parameters as $\mathrm{y} 0=0, \mathrm{~A}=10, \mathrm{t}=1$.
5. Click the Fit button to generate the results.

Quoting Built-in Functions in Your New Function

Contents

- 1 Summary
- 2 What you will learn
- 3 Steps
o 3.1 Data
o 3.2 Define the Function

Summary

This tutorial will show you how to reference a built-in function when creating a user-defined fitting function.

Minimum Origin Version Required: Origin 8.0 SR6

What you will learn

This tutorial will show you how to:

- Define a piecewise fitting function
- Access built-in functions in you new function
- Auto initialize the parameters

Steps

Data

Start by importing the file \Samples\Curve Fitting\Asymmetric Gaussian.dat into a new workbook.
Highlight column B and create a graph. The peak in the data is slightly skewed to the right. How to fit such a curve? One idea is to divide the curve into two parts - We can consider this curve to be composed of two Gaussian function as below. These two Gaussian curves share the same baseline and peak center, but differ in peak width and amplitude.

Define the Function

Press F9 to open the Fitting Function Organizer and define the function as below:

| Function Name: | AsymmetricGauss |
| :--- | :--- |
| Function Type: | User-Defined |
| Independent Variables: | x |
| Dependent Variables: | y |
| Parameter Names: | $\mathrm{y} 0, \mathrm{xc}, \mathrm{w} 1, \mathrm{w} 2, \mathrm{~A} 1, \mathrm{~A} 2$ |
| Function Form: | Origin C |
| Function: | $\mathrm{y}=\mathrm{x}<\mathrm{xc}$? nlf_Gauss($\mathrm{x}, \mathrm{y} 0, \mathrm{xc}, \mathrm{w} 1, \mathrm{~A} 1):$ nlf_Gauss($\mathrm{x}, \mathrm{y} 0, \mathrm{xc}, \mathrm{w} 2, \mathrm{~A} 2)$; |

Note:

For versions before Origin 8.1, the function body should be defined as:

```
y = x<xc? nlfxGauss(x, y0, xc, w1, A1) : nlfxGauss(x, y0, xc, w2,
A2);
x; y0; xc; w1; w2; A1; A2;
```

Listing the parameters at the end is used to avoid the "parameter not used inside the function body" error, although you already use these parameters. This is required to compile the function successfully.

When calling nlf_FuncName to reuse built-in functions, the syntax is:
nlf_FuncName(independent variable, parameter list ...)
where FuncName is the fitting function name. Besides, the old notation, nIfxFuncName also supported.

The Parameter List follows the parameter order in function definition file for the built-in function (the FDF file. You can open the FDF file in Notepad. The files are located in the
Origin EXE
Folder \backslash FitFunc) . Note that, the function name we use is the DLL interface name. The actual name in the [General Information] section of the FDF file. Look at the Function Source item and the value is fgroup.FuncName, and use the FuncName. In most cases, this function name is consistent with the function name visible in the NLFit dialog. For a few few functions such as Voigt, these names are different.

For parameter initialization of this skewed gaussian function, we can simply copy the initialization code of the built-in gauss function, and make a few minor modifications:

```
xc = peak_pos(x_y_curve, &w1, &y0, &A1);
w2 = w1;
A2 = A1;
```

The final function body should be as below:

Once compiled successfully, save the function and fit the curve. The results should be as below:

| | | Value | Standard Error |
| ---: | ---: | ---: | ---: |
| | y 0 | 1.8 | $4.79 \mathrm{E}-5$ |
| | xc | 4.5 | $3.45 \mathrm{E}-5$ |
| | w 1 | 1.8 | $4.5 \mathrm{E}-5$ |
| | Amplitude | w 2 | 3 |

Fit Function with Non-constant Background

Contents

- 1 Summary
- 2 What you will learn
- 3 Example and Steps
o 3.1 Prepare the Data
0 3.2 Define the Function
O 3.3 Auto Parameter Initialization
o 3.4 Fit the Curve

Summary

Many of the Origin built-in functions are defined as:

$$
y=y_{0}+\ldots \ldots
$$

Where y0 can be treated as the "constant background". How about fitting a curve with a non-constant background? One option is to use the Peak Analyzer we provide. The Peak Analyzer includes multiple methods to subtract the baseline, including exponential or polynomial backgrounds. In this tutorial, we will show you how to fit such curves without using the Peak Analyzer.

Minimum Origin Version Required: Origin 8.0 SR6

What you will learn

- Review Worksheet Query.
- Quote a built-in function by nlfxFuncName method.
- Auto Initialize the parameters.

Example and Steps

Prepare the Data

Let's start this tutorial by importing \Samples\Spectroscopy\Peaks on Exponential Baseline.dat. From the worksheet sparkline, we can see that there are two peaks in the curve. To simplify the problem, we will fit just one peak in this example.

Now bring up the Worksheet Query dialog from Worksheet : Worksheet Query. And we will extract data from row 1 to row 240:

So the curve we will fit should look like this:

Define the Function

As illustrated below, we can consider the source curve is the combination of an exponential decay component (the background) with a Voigt peak:

So should we write down the whole equation to define the function? Like:

$$
y=y_{0}+A_{1} e^{-x / t 1}+A_{2} \frac{2 w_{L} \ln 2}{\pi^{\frac{3}{2}} w_{G}^{2}} \int_{-\infty}^{\infty} \frac{e^{-t^{2}}}{\left(\sqrt{\ln 2} \frac{w_{L}}{w_{G}}\right)^{2}+\left(\sqrt{4 \ln 2} \frac{x-x_{c}}{w_{G}}-t\right)^{2}} d t
$$

Well, this is a complicated equation and it includes infinite integration. Writing such an equation directly is painful. Now that we already have these two built-in functions:

ExpDec1:

$$
y=y_{0}+A e^{-x / t}
$$

Voigt:

$$
y=y_{0}+A \frac{2 w_{L} \ln 2}{\pi^{\frac{3}{2}} w_{G}^{2}} \int_{-\infty}^{\infty} \frac{e^{-t^{2}}}{\left(\sqrt{\ln 2} \frac{w_{L}}{w_{G}}\right)^{2}+\left(\sqrt{4 \ln 2 \frac{x-x_{c}}{w_{G}}}-t\right)^{2}} d t
$$

we can simply use the nlfxFuncName method to quote these two built-in functions and create a new one. Press F9 to open the Fitting Function Organizer and define a function as below:

Function Name: ExpVoigt

```
Function Type: User-Defined
Independent Variables: x
Dependent Variables: y
Parameter Names: y0, A1, t1, xc, A2, wG, wL
Function Form: Origin C
Function:
y = nlf_ExpDec1(x, y0, A1, t1) + nlf_Voigt(x, y0, xc, A2,wG,wL) - y0;
```


Note:

Some of the built-in function names do not consistent with the actual DLL function name. Just like this Voigt function, it's defined in Voigt5.FDF, and if you open the FDF file by Notepad, you can see a line under [GENERAL INFORMATION] section says:

Function Source=fgroup.Voigt5
The name after "fgroup" is the actual name we should put into nlf_FuncName.
Besides, for versions before Origin 8.1 SR2, the function body should use old nlfxFuncName notation and define as:

```
y = nlfxExpDec1(x, y0, A1, t1) + nlfxVoigt(x, y0, xc, A2,
wG, wL) - y0;
X; xC; A1; t1; A2; wG; wL;
```

Listing the parameters at the end is done to avoid the "parameter not used inside the function body" error, although you already use these parameters. If not, you will not compile the function successfully.

Click the $\xlongequal{\text { 㿽国 button on the right of the Parameter Settings and enter these parameter initial values: }}$
y0: 0
A1: 5
t1: 50
xc: 100
A2: 50
wG: 10
wL: 10
So the final function definition part should look like:

Auto Parameter Initialization

In the above section, we set fixed parameter initial values. If you know the possible fitted results, you can set the initial values in this way. But how about when the data is changed? Origin provides an Origin C interface to "guess" the initial values. To use the parameter initialization code, make sure to check the Enable Auto Initialization and Use OriginC checkboxes, and edit the code in Code

Builder by clicking the icon.
(P.S: If you know the initial values very well, or you don't like coding, please skip this section.)

Enable Auto Initialization \sqrt{V}
 Use OriginC
 Parameter Initialization

```
int nSign:
\(\mathrm{t} 1=\) get_exponent([x_data, y_data, \&y0, \& \(81,8 n\) Sign)];
\(\mathrm{t} 1=-1 / \mathrm{t} 1\)
\(A 1=n \operatorname{Sign} \times \exp (A, 1)\);
\(x_{-} y_{-}\)curve \(=x_{-} y_{-}\)curve \(\cdot\left(\mu 0+A 1^{*} \exp \left(-x_{-}\right.\right.\)data/t1)]);
\(x c=\) peak_pos(x_y_curve, \& \(w G, 8 y 0,8 A 2)\);
\(w L=w G ;\)
```

Now that the curve is composed by two components, we can guess the parameter values by separating these two parts, the initialization code includes:

1. Use the get_exponent function to fit the curve and get the parameter values for exponential component.
2. Remove the background -- exponential component -- from source data.
3. Approaching the peak by Gaussian peak using peak_pos function and set the initial values for peak component

So, the initialization code in Code Builder should look like this:

```
void _nlsfParamExpVoigt(
// Fit Parameter(s):
double& y0, double& A1, double& t1, double& xc, double& A2, double& WG,
double& WL,
// Independent Dataset(s):
vector& x_data,
// Dependent Dataset(s):
vector& y_data,
// Curve(s):
Curve x_y_curve,
// Auxilary error code:
int& nErr)
{
    // Beginning of editable part
    int nSign;
    // Evaluates the parameters' value, y0, ln(A) and R for y =
y0+A* exp(R*x).
    t1 = get_exponent(x_data, y_data, &y0, &A1, &nSign);
    // Set the exponential component values for the fitting
function.
    t1 = -1/t1;
    A1 = nSign*exp(A1);
    // Remove the exponential component from the curve;
    x_y_curve = x_y_curve - (y0 + A1 * exp(-x_data/t1));
    // Fit to get peak values.
    xc = peak_pos(x_y_curve, &wG, &y0, &A2);
    wL = wG;
    // End of editable part
}
```


Note:

When you check the Enable Auto I nitialization and enter the initialization code, this code will cover the initial values in Parameter Settings.

Fit the Curve

No matter what kind of parameter initialization method you used, highlight column B and press Ctrl + \mathbf{Y} to bring up the NLFit dialog, select the ExpVoigt function and fit. The result should be:

| | | Value | Standard Error |
| ---: | ---: | ---: | ---: |
| Amplitude | y 0 | 0.04862 | 0.00724 |
| | A 1 | 5.08842 | 0.02599 |
| | t 1 | 50.67096 | 0.51939 |
| | xc | 102.81043 | 0.07241 |
| | A 2 | 32.91106 | 0.92012 |
| | wG | 9.65255 | 0.67731 |
| | WL | 5.7529 | 0.81022 |

Fitting with Piecewise Functions

Contents

- 1 Summary
- 2 What you will learn
- 3 Example and Steps
o 3.1 Define the Function
O 3.2 Fit the Curve

Summary

We will show you how to define piecewise fitting function in this tutorial.
Minimum Origin Version Required: Origin 8.0 SR6

What you will learn

This tutorial will show you how to:

- Define piecewise (conditional) fitting functions.

Example and Steps

We can start this tutorial by importing the sample \Samples\Curve Fitting\Exponential Decay.dat data file. Highlight column D and plot a Scatter Graph. You can fit this curve using built-in functions under Growth/Sigmoidal category, however, in this tutorial, we will separate the curve into two parts by a piecewise function.

So the equation will be:

$$
y= \begin{cases}a+b x+e^{-\frac{x-x_{c}}{t 1}}, & \text { if } x<x_{c} \\ a+b x, & \text { if } x \geq x_{c}\end{cases}
$$

Define the Function

Press F9 to open the Fitting Function Organizer and define a function like:

| Function Name: | piecewise |
| :--- | :--- |
| Function Type: | User-Defined |
| Independent Variables: | x |
| Dependent Variables: | y |
| Parameter Names: | $\mathrm{xc}, \mathrm{a}, \mathrm{b}, \mathrm{t} 1$ |
| Function Form: | Origin C |
| Function: | |

Click the button on the right of the Function edit box and define the fitting function in Code Builder using:

```
void _nlsfpiecewise(
// Fit Parameter(s):
double xc, double a, double b, double t1,
// Independent Variable(s):
double x,
// Dependent Variable(s):
double& y)
{
    // Beginning of editable part
    // Divide the curve by if condition.
    if(x<xc) {
    y = a+b*x+exp(-(x-xc)/t1);
    y = = a+b*x;
    }
    // End of editable part
}
```


Fit the Curve

Press $\mathbf{C t r l}+\mathbf{Y}$ to bring up NLFit dialog with the graph window active. Select the piecewise function we defined and initialize the parameter values:
xc: 1
a: 1
b: -1
t1: 0.1
Click Fit button to generate the results:
xc: 0.24
a: 36.76585
b: - 24.62876
t1: 0.04961
Note that this function is sensitive to xc and t 1 , different initial values could generate different results.

Fit Curve Through Certain Points

Contents

- 1 Summary
- 2 What you will learn
- 3 Example and Steps

O 3.1 Fixing Function Parameters
o 3.2 Use Linear Constraint
o 3.3 Use weighting

Summary

This tutorial shows you three methods to force a fit curve to go thru a particular point. Choice of method depends on function expression and the data point you want the fit curve to go through.

What you will learn

- Learn different methods to force a curve to go through a point.
- Fix fitting parameters during nonlinear fitting.
- Use general linear constraints in nonlinear fitting.
- Fit with weights.

Example and Steps

Fixing Function Parameters

This method works only when the point you want to fit through is related to a function parameter. One typical example: force the fitted line to go through the origin point, (0,0), when fitting a straight line, $y=a+b * x$. In this particular case we know that if we let $a=0$, the line will go through $(0,0)$.

1. Import the data "\Samples\Curve Fitting\Linear Fit.dat" into an Origin worksheet.
2. Highlight one of the Y column, column D for example, and select Analysis: Fitting: Nonlinear Curve Fit to bring up the NLFit dialog.
3. Choose the Line function after selecting the Polynomial category.
4. Click the Fitted Curves page on Settings tab. Under the \mathbf{X} Data Type branch, make sure the Range option is Use Input Data Range + Margin, and then enter $\mathbf{1 0}$ in the Range Margin(\%) edit box. This option will lengthen the fitted curve.
5. Click the Fit until converged button $\underset{\text { 落 }}{ }$. You can see from the Fit Curve tab that the curve does not go through the origin point.

6. Now go to the Parameters tab, check the Fixed checkbox for parameter A and fix the value to 0. Click the Fit until converged to fit the curve again. Now you can see the curve go through zero.

Note: You can also use the Fix I ntercept option in the Linear Fit dialog to force the linear fitted line to go through the origin point.

Use Linear Constraint

This method works when the fitting function is based on a LINEAR model, such as Line, Parabola, or Cubic, etc.

We will show you how to force the fitted curve to go through a particular point by using linear constraint:

1. Import the data "\Samples\Curve Fitting\Polynomial Fit.dat" into Origin worksheet.
2. Highlight column B and press $\mathbf{C t r l}+\mathbf{Y}$ to bring up the NLFit dialog.
3. Select Parabola ($y=A+B * x+C * x^{2}$) from the Polynomial category. From the Fit Curve tab, we can see the initial value already fits the data very well.
4. Suppose we want to force the curve through $(10,100)$. Substitute $(10,100)$ to the fitting function $\left(y=A+B * x+C * x^{2}\right)$. we then have $100=A+10 * B+100 * C$. We can use this equation as a general linear constraint condition. Select the Constraints page on Code tab. Check the Enable Linear Constraints checkbox, and enter the following expression into the edit box.
```
A + 10*B + 100*C = 100
```

5. Click the Fit until converged button z_{i+1}. We can see the fitted curve deviates from the data points, but it goes through the specified point.

Use weighting

If the parameters are some eigenvalues such as upper or lower asymptotes, and your raw data includes the points you want to fit through, you can fit the curve by assigning larger weights to these particular points. This is not an analytical solution, but you can assign larger weights to reduce the error:

1. Prepare data by running the following script:
```
newbook;
string fname$ = system.path.program$;
fname$ += "Samples\Curve Fitting\Replicate Response Data.dat";
impasc fname$ options.PartImp.Partial:=1
options.PartImp.LastCol:=2;
wks.addcol();
col(a) = log(col(a)) + 5;
col(c)[1] = 100;
for(int ii = 2; ii < wks.maxrows; ii++)
{
    col(c)[ii] = 1;
}
```


col(c)[wks.maxrows] = 100;

2. First, let's see how the fitted curve looks when there is no weighting. Highlight column B and bring up NLFit dialog from Analysis: Fitting: Nonlinear Curve Fit. Select the Logistic function from Growth/ Sigmoidal category. Then click the Fit until converged button ${\underset{i}{i=1}}^{\alpha_{1}}$. From the Fit Curve tab, we can see the curve does not go through any points near the top.

3. Note that in the raw data worksheet, we have prepared column C and assigned large values for the first and last data points. If we use this column as weights, these two points will contribute more impact on the fitted curve and hence force the curve to go through these two points.

Now, activate the Data Selection page on the Settings tab. Expand the Input Data branch as below to expose the weighting option. Choose the Direct Weighting method and assign column C as the weighting dataset. Then click the Fit until converged button ${ }_{\text {㳯 }}$.

From the preview result, we can see that the fitted curve goes through the first and last data points.

Peak Fitting on Frequency Count Result

Summary

To know the location or scale parameters of a sample distribution, one can perform statistical tests on the data. However, you can also fit a probability density function on the binned data to get these values. This tutorial shows you how to estimate these parameters by curve fitting.

What you will learn

- Perform simple descriptive statistics.
- Perform frequency counts on dataset.
- Curve fitting on binned data.

Example and Steps

1. Run the following script to create sample dataset
```
newbook;
col(2) = normal(1000) * 2 + 5;
```

2. This script generates 1000 normally distributed points where mean ≈ 5 and $\sigma \approx 2$.
3. We can first perform simple descriptive statistics on this column to see the corresponding Moments output.

Highlight the data column and select Statistics: Descriptive Statistics: Statistics on Column to open the dialog. Make sure the Mean and Standard Deviation checkboxes are selected. And the click OK to generate report.

From the report worksheet, we can see the Mean and Standard Deviation are very close to the value we just set.
4. Besides, you can also estimate the moments by fitting a proper probability density function on binned dataset. For example, highlight the source data column and select Statistics:
Description Statistics: Frequency Counts from menu. This dialog will count the number of data points on specified bins.
o Expand the Computation Control branch, and make sure Bin Size radio button is check in Step by group. And then set the Bin Size to 0.5 .
o Make sure the Bin Center and Count check boxes under Quantities to Compute branch are selected. Then click OK to count the data.
5. In the frequency counts result sheet, the bin center value is set to X, while the bin counts is set to Y . You can fit the density function using these data.

Highlight the Counts column on the Frequency Counts result worksheet, and press Ctrl $+\mathbf{Y}$ to open the NLFit dialog. Then select the Gauss function from the Origin Basic Function category. Leave other options as defaults and click the Fit button directly to output fitting report.

From the fitting report, we can see that the fitted xc and sigma are close to 5 and 2 .

Surface Fitting with Multiple Peaks

Origin provides several built-in surface fitting functions which can be used to perform fitting on 3D data. The surface fitting function is similar to the nonlinear fitting function.

Surface Fitting is only available in OriginPro.
Minimum Origin Version Required: OriginPro 9.0 SRO

What you will learn

- How to do surface fitting on matrix data.
- How to fit the surface with multiple peaks.

Steps

This tutorial is associated with the Analysis - OriginPro: Surface Fitting (Pro Only) folder in the Sample project (\Samples\Analysis.opj).

1. With the matrix sheet active, click Analysis on the main menu, and then click Nonlinear Matrix Fit... to open the NLFit dialog. (Alternatively, you can plot the matrix as a 3D surface or contour, and then select Nonlinear Surface Fit... to open the same dialog.)
2. Click Function Selection, select Gauss2D from the Function dropdown menu.

3. Click Advanced, set Number of Replicas to 3, and set Peak Direction as Positive.

4. Click Fit to perform a multiple peak fit and generate a report worksheet with fitting results.

Fitting with a Piecewise Linear Function

Contents

- 1 Summary
- 2 What you will learn
- 3 Example and Steps
o 3.1 Import Data
0 3.2 Define Fitting Function
o 3.3 Fit the Curve
o 3.4 Fitting Results

Summary

In this tutorial we will show you how to define a piecewise fitting function consisting of two linear segments, perform a fit of the data using this fitting function, and calculate the intersection location for two linear segments from the fitting result.

Minimum Origin Version Required: Origin 8.6 SRO

What you will learn

This tutorial will show you how to:

- Define a piecewise (conditional) fitting function.
- Auto initialize parameters.
- Calculate the intersection location of the piecewise fit lines.

Example and Steps

Import Data

1. Open a new workbook.
2. Click the Import Single ASCII button $\stackrel{\text { 127 }}{\stackrel{18}{⿻} /}$ to bring up the Open dialog. Browse to \Samples\Curve Fitting folder and select the file Step01.dat.
3. Right click on the Sensor E x column (column J), and select Set As: \mathbf{X} from the context menu. Highlight Sensor Ey column, and select Plot: Symbol: Scatter from Origin menu. The graph should look like:

Define Fitting Function

From the above graph, the curve consists of two segments of lines. It can be fitted with a piecewise linear function. The function can be expressed as:

$$
y= \begin{cases}\frac{y_{1}\left(x_{3}-x\right)+y_{3}\left(x-x_{1}\right)}{x_{3}-x_{1}}, & \text { if } x<x_{3} \\ \frac{y_{3}\left(x_{2}-x\right)+y_{2}\left(x-x_{3}\right)}{x_{2}-x_{3}}, & \text { if } x \geq x_{3}\end{cases}
$$

where $\mathbf{x 1}$ and $\mathbf{x 2}$ are x values of the curve's endpoints and they are fixed during fitting, $\mathbf{x 3}$ is the x value at the intersection of two segments, and $\mathbf{y 1}, \mathbf{y 2}, \mathbf{y 3}$ are y values at $x_{i}, i=1,2,3$ respectively.

The fitting function can be defined using the Fitting Function Builder tool.

1. Select Tools: Fitting Function Builder from Origin menu.
2. In the Fitting Function Builder dialog's Goal page, click Next button.
3. In the Name and Type page, select User Defined from Select or create a Category dropdown list, type pwl2s in the Function Name field, and select Origin C in Function Type group. And click Next button.
4. In the Variables and Parameters page, type $\mathbf{x 1}, \mathbf{y 1}, \mathbf{x} \mathbf{2}, \mathbf{y 2}, \mathbf{x} \mathbf{3}, \mathbf{y 3}$ in the Parameters field. Click Next button.
5. In the Origin C Fitting Function page, click the button on the right of the Function Body edit box and define the fitting function in Code Builder as follows.
```
if( x < x3 )
    y = (y1*(x3-x)+y3*(x-x1))/(x3-x1);
```

```
else
    y = (y3* (x2-x)+y2* (x-x3))/(x2-x3);
```

6. Click Compile button to compile the function body. Then click Return to Dialog button. Click Next button.
7. In the Parameter Initialization Code page, click the button on the right of the I nitialization Code edit box and initialize the fitting parameters in Code Builder as follows.
```
int n1, n2, n3;
x_data.GetMinMax( x1, x2, &n1, &n2 );
x3 = x1 + (x2 - x1)/2;
y1 = y_data[n1];
y2 = y_data[n2];
vector vd;
vd = abs( x_data - x3 );
double xta, xtb;
vd.GetMinMax( xta, xtb, &n3 );
y3 = y_data[n3];
```

8. Click Compile button to compile it. Then click Return to Dialog button. Click Finish button.

Fit the Curve

1. Select Analysis: Fitting: Nonlinear Curve Fit from Origin menu. In the NLFit dialog, select Settings: Function Selection, in the page select User Defined from the Category drop-down list and pwl2s function from the Function drop-down list.
2. In the NLFit dialog, select Parameters tab, and fix parameters $\mathbf{x 1}, \mathbf{x 2}$ as shown in the dialog.

| Settings | Code | Parameters |
| :--- | :--- | :--- |
| Bounds | | |
| $\boxed{ }$ Auto Parameter Initialization | | |
| Double click cells to change operator. Right click cells for more options. Drag colt | | |

| NO. | Param | Meaning | Fixed | Value | Error | Dependency |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $x 1$ | $?$ | $\boxed{ }$ | 0.8 | -- | -- |
| 1 | $y 1$ | $?$ | \square | 0 | -- | -- |
| 1 | $x 2$ | $?$ | $\boxed{ }$ | 60 | -- | -- |
| 1 | $y 2$ | $?$ | \square | 0.90662 | -- | -- |
| 1 | $x 3$ | $?$ | \square | 30.4 | -- | -- |
| 1 | $y 3$ | $?$ | \square | 0.73608 | -- | -- |

3. Click Fit button to fit the curve.

Fitting Results

The fitted curve should look like:

Fitted Parameters are shown as follows.

| Parameter | Value | Standard Error |
| :---: | :--- | :--- |
| $\mathbf{x 1}$ | 0.8 | 0 |
| $\mathbf{y 1}$ | -0.0271 | 0.01063 |
| $\mathbf{x 2}$ | 60 | 0 |
| $\mathbf{y 2}$ | 0.95585 | 0.0083 |
| $\mathbf{x 3}$ | 22.26316 | 0.58445 |
| $\mathbf{y 3}$ | 0.66106 | 0.01197 |

Thus the intersection point for the two segments is (22.26316, 0.66106).
Note that fitting with a piecewise linear function for more than two segments can be done in a similar way.

Fitting Integral Function with a Sharp Peak

Contents

- 1 Summary
- 2 What you will learn
- 3 Example and Steps
o 3.1 Import Data
o 3.2 Define Fitting Function
O 3.3 Fit the Curve
0 3.4 Fitting Results

o 3.5 Sample Data

Summary

In this tutorial, we will show you how to define an integral fitting function with a sharp peak in the integral function, and perform a fit of the data using this fitting function.

Because the integral function contains a sharp peak, the integral should be performed in three segments so that the sharp peak can be integrated in a narrow interval.

Minimum Origin Version Required: Origin 9.0 SRO

What you will learn

This tutorial will show you how to:

- Define an integral fitting function.
- Integrate a function with a sharp peak.
- Divide the integral interval into several segments.

Example and Steps

Import Data

1. Open a new workbook.
2. Copy data in Sample Data to the workbook.
3. Highlight column B, and select Plot: Symbol: Scatter from Origin menu. The graph should look like:

Define Fitting Function

The fitting integral function is described as follows:

$$
y=\log \left(\int_{0}^{1} \frac{1}{\sqrt{2 \pi} b} e^{-\frac{(t-a)^{2}}{2 b^{2}}-x t} d t\right)
$$

where a and b are parameters in the fitting function.
Initial parameters are: $a=1 e-4, b=1 e-4$. Note that the integral function contains a peak whose center is about a and width is 2 b . And the peak's width ($2 \mathrm{e}-4$) is very narrow compared with the integral interval $[0,1]$. To make sure it is integrated correctly at the neighborhood of the peak center, the integral interval $[0,1]$ is divided into three segments: $\left[0, a-5^{*} b\right],\left[a-5^{*} b, a+5^{*} b\right],\left[a+5^{*} b, 1\right]$. It is integrated in each segment, and then the three integrals are summed up.

The fitting function can be defined using the Fitting Function Builder tool.

1. Select Tools: Fitting Function Builder from Origin menu.
2. In the Fitting Function Builder dialog's Goal page, click Next button.
3. In the Name and Type page, select User Defined from Select or create a Category dropdown list, type fintpeak in the Function Name field, and select Expression in Function Type group, check Include Integration During Fitting check box. And click Next button.
4. In the Integrand page, type myint in Integrand Name edit box, \mathbf{t} in Integration Variable edit box and $\mathbf{a}, \mathbf{b}, \mathbf{x}$ in Arguments edit box. Type the following script in Integrand Function box.
```
return 1/(sqrt(2*pi)*b)*exp(-(t-a)^2/(2*b^2)-x*t);
```

5. And click Next button.
6. In the Variables and Parameters page, type \mathbf{a}, \mathbf{b} in the Parameters field. Click Next button.
7. In the Expression page, click Parameters tab, and set Initial Value for parameters a and b to le-4, click Integrand tab, and set Value for Lower Limit and Upper Limit to 0 and 1, Value for $\mathbf{a}, \mathbf{b}, \mathbf{x}$ to $\mathrm{a}, \mathrm{b}, \mathrm{x}$ respectively.
8. In the Expression page, click Insert button. In the Quick Check group, type 0 in $\mathbf{x}=$ edit box, click Evaluate button, and it shows $\mathrm{y}=9.3 \mathrm{e}-21$. This implies that the peak is not integrated correctly because y should approach 1 for $x=0$. Divide the integral into three segments, and type following script in Function Body box.
```
integral(myint, 0, a-5*b, a ,b ,x)+integral(myint, a-5*b,
a+5*b, a ,b ,x)+
integral(myint, a+5*b, 1, a ,b ,x)
```

9. Click Evaluate button again, and it shows $y=0.84$, hence it is clear that the peak is integrated correctly this time.
10. In the Expression page, update the script in Function Body box as follows.
```
log(integral(myint, 0, a-5*b, a ,b ,x)+integral(myint, a-5*b,
a+5*b, a ,b ,x)
+integral(myint, a+5*b, 1, a ,b ,x))
```

11. Click Finish button.

Fit the Curve

1. Select Analysis: Fitting: Nonlinear Curve Fit from Origin menu. In the NLFit dialog, select Settings: Function Selection, in the page select User Defined from the Category drop-down list and fintpeak function from the Function drop-down list. Note that initial parameters have been set during defining the fitting function.
2. Click Fit button to fit the curve.

Fitting Results

The fitted curve should look like:

Fitted Parameters are shown as follows:

| Parameter | Value | Standard Error |
| :---: | :---: | :--- |
| \mathbf{a} | $4.98302 \mathrm{E}-4$ | $1.07593 \mathrm{E}-5$ |
| b | $1.94275 \mathrm{E}-4$ | $8.21815 \mathrm{E}-6$ |

The Adj. R-Square is 0.99799 . Thus the fitting result is very good.

Sample Data

| \mathbf{x} | \mathbf{y} |
| :--- | :--- |
| 0 | -0.00267 |
| 60 | -0.01561 |
| 240 | -0.05268 |
| 500 | -0.10462 |
| 1000 | -0.22092 |
| 1500 | -0.31004 |
| 2000 | -0.40695 |
| 3000 | -0.61328 |
| 4000 | -0.75884 |
| 5000 | -0.9127 |
| 6000 | -0.98605 |
| 7000 | -1.18957 |
| 9000 | -1.43831 |
| 10000 | -1.41393 |
| 12000 | -1.61458 |
| 15000 | -1.88098 |

Fitting with Convolution of Two Functions

Contents

- 1 Summary
- 2 What you will learn
- 3 Example and Steps
o 3.1 Import Data
o 3.2 Define Fitting Function
o 3.3 Fit the Curve
O 3.4 Fitting Results

Summary

In this tutorial, we will show you how to define a convolution of two functions, and perform a fit of the data with non-evenly spaced X using this fitting function.
Minimum Origin Version Required: Origin 9.0 SRO

What you will learn

This tutorial will show you how to:

- Sample a function.
- Calculate a convolution of two functions.
- Define constants in the fitting function.
- Pad zeroes before the convolution.
- Interpolate the convolution result for non-evenly spaced X.
- Use a parameter to balance the speed and the precision.
- Use Y Error Bar as weight.

Example and Steps

Import Data

1. Open a new workbook.
2. Click the Import Single ASCII button $\stackrel{123}{\stackrel{13}{⿻} /}$ to bring up the Open dialog. Browse to \Samples\Curve Fitting folder and select the file ConvData.dat. Note that column A is not evenly spaced. We can use LabTalk diff function to verify it.
3. Right click on column C, and select Set As: Y Error from the short-cut menu. Highlight column B and C, and select Plot: Symbol: Scatter from the Origin menu. The graph should look like:

Define Fitting Function

The fitting function is a convolution of two functions. It can be described as follows:

$$
y=y_{0}+b_{1} x+\frac{b_{2} A_{2}}{w_{2} \sqrt{\pi / 2}} e^{-\frac{2\left(x-x_{c}\right)^{2}}{w_{2}^{2}}}+(f * g)(x)
$$

$$
\begin{aligned}
& f(x)=\frac{s}{\pi} \cdot \frac{\tau_{L} x_{0}^{2}\left(x_{L}^{2}-x_{0}^{2}\right)}{\left(x-x_{c 1}\right) \tau_{L}\left(\left(x-x_{c 1}\right)^{2}-x_{L}^{2}\right)^{2}+\left(\left(x-x_{c 1}\right)^{2}-x_{0}^{2}\right)^{2}} \\
& g(x)
\end{aligned} \begin{aligned}
& w_{1 \sqrt{\pi / 2}}^{w_{1}} e^{-\frac{1}{-\frac{2 x^{2}}{w_{1}^{2}}}}
\end{aligned}
$$

And $x_{0}, x_{L}, T_{L}, s, y_{0}, b_{1}$ and b_{2} are fitting parameters. $w_{1}, x_{c 1}, w_{2}, x_{c 2}$ and A_{2} are constants in the fitting function.

The fitting function can be defined using the Fitting Function Builder tool.

1. Select Tools: Fitting Function Builder from Origin menu.
2. In the Fitting Function Builder dialog's Goal page, click Next.
3. In the Name and Type page, select User Defined from Select or create a Category dropdown list, type convfunc in the Function Name field, and select Origin C in Function Type group. And click Next.
4. In the Variables and Parameters page, type $\mathbf{x 0} \mathbf{x L} \mathbf{t} \mathbf{t}, \mathbf{s}, \mathbf{y 0} \mathbf{0} \mathbf{b 1}, \mathbf{b 2}$ in the Parameters field, $\mathbf{w 1 , x c 1 , w 2 , x c 2 , A 2}$ in the Constants field. Click Next.
5. In the Origin C Fitting Function page, set initial parameters as follows:
```
x0 = 3.1
xL = 6.3
tL = 0.4
s = 0.14
y0 = 1.95e-3
b1 = 2.28e-5
b2 = 0.2
```

6. Click Constants tab, set constants as follows:
```
w1 = 1.98005
xc1 = -0.30372
w2 = 5.76967
xc2 = 3.57111
A2 = 9.47765e-2
```

7. Click the button on the right of the Function Body edit box and define the fitting function in Code Builder as follows:
8. Include header files,
```
#include <ONLSF.H>
#include <fft_utils.h>
```

9. Define the function body
```
    NLFitContext *pCtxt = Project.GetNLFitContext();
    if ( pCtxt )
{
    // Vector for the output in each iteration.
    static vector vX, vY;
    static int nSize;
    B00L bIsNewParamValues = pCtxt->IsNewParamValues();
    // If parameters were updated, we will recalculate the
convolution result.
    if ( bIsNewParamValues )
    {
        //Sampling Interval
        double dx = 0.05;
        vX.Data(-16.0, 16.0, dx);
        nSize = vX.GetSize();
        vector vF, vG, vTerm1, vTerm2, vDenominator, vBase,
vAddBase;
        double Numerator = tL * x0^2 * (xL^2 - x0^2);
        vTerm1 = ( (vX - xc1) * tL * ( (vX - xc1)^2 - xL^2 ) )^2;
```

```
    vTerm2 = ( (vX - xc1)^2 - x0^2 )^2;
    vDenominator = vTerm1 + vTerm2;
    //Function f(x)
    vF = (s/pi) * Numerator / vDenominator;
    //Function g(x)
    vG = 1/(w1*sqrt(pi/2))*exp(-2*vX^2/w1^2);
    //Pad zeroes at the end of f and g before convolution
    vector vA(2*nSize-1), vB(2*nSize-1);
    vA.SetSubVector( vF );
    vB.SetSubVector( vG );
    //Perform circular convolution
    int iRet = fft_fft_convolution(2*nSize-1, vA, vB);
    //Truncate the beginning and the end
    vY.SetSize(nSize);
    vA.GetSubVector( vY, floor(nSize/2), nSize +
floor(nSize/2)-1 );
    //Baseline
    vBase = (b1*vX + y0);
    vAddBase = b2 * A2/(w2*sqrt(pi/2))*exp( -2*(vX-
xc2)^2/w2^2 );
        //Fitted Y
        vY = dx*vY + vBase + vAddBase;
    }
    //Interpolate y from x for the fitting data on the
convolution result.
    ocmath_interpolate( &x, &y, 1, vX, vY, nSize );
}
```

10. Click Compile button to compile the function body. And click the Return to Dialog button.
11. Click Evaluate button, and it shows $y=0.02165$ at $x=1$. And this indicates the defined fitting function is correct. Click Next.
12. Click Next. In the Bounds and General Linear Constraints page, set the following bounds:
```
0 < X0 < 7
0 < xL < 10
0 < tL < 1
0 <= s <= 5
0<b2 <= 3
```

13. Click Finish

Fit the Curve

1. Select Analysis: Fitting: Nonlinear Curve Fit from the Origin menu. In the NLFit dialog, select Settings: Function Selection, in the page select User Defined from the Category drop-down
list and convfunc function from the Function drop-down list. Note that \mathbf{Y} Error Bar is shown in the active graph, so column C is used as Y weight, and Instrument weighting method is chosen by default.
2. Click the Fit button to fit the curve.

Fitting Results
The fitted curve should look like:

Fitted Parameters are shown as follows:

| Parameter | Value | Standard Error |
| :---: | :--- | :--- |
| $\mathbf{x 0}$ | 3.1424 | 0.07318 |
| $\mathbf{x L}$ | 6.1297 | 0.1193 |
| $\mathbf{t L}$ | 0.42795 | 0.02972 |
| \mathbf{s} | 0.14796 | 0.00423 |
| $\mathbf{y 0}$ | 0.00216 | $1.76145 \mathrm{E}-4$ |
| $\mathbf{b 1}$ | $4.90363 \mathrm{E}-5$ | $1.61195 \mathrm{E}-5$ |
| $\mathbf{b 2}$ | 0.07913 | 0.02855 |

Note that you can set a smaller value for $\mathbf{d x}$ in the fitting function body, the result may be more accurate, but at the same time it may take a longer time for fitting.

Parameter Initialization for Rational Functions

Contents

- 1 Summary
- 2 What you will learn
- 3 Example and Steps
o 3.1 Algorithm
o 3.2 Import Data
o 3.3 Define Fitting Function and Initialize Parameters
o 3.4 Fit the Curve
0 3.5 Fitting Results
o 3.6 Sample Data

Summary

In this tutorial, we will show you how to calculate initial parameters for rational fitting functions using the multiple linear regression method, and perform a fit of the data using calculated initial parameters.

Minimum Origin Version Required: Origin 9.0 SRO

What you will learn

This tutorial will show you how to:

- Calculate initial parameters for rational fitting functions.
- Perform multiple linear regression using Origin C code.

Example and Steps

Algorithm

In this tutorial, we will use the following rational function as an example:

$$
y=\frac{a+b x+c x^{2}}{1+d x+e x^{2}}
$$

where \mathbf{x} is the independent variable, \mathbf{y} is the dependent variable, and $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}$ are fitting parameters.

Multiplying both sides by the denominator on the right side yields:

$$
y+d x y+e x^{2} y=a+b x+c x^{2}
$$

and the equation can be expressed as:

$$
y=a+b x+c x^{2}-d x y-e x^{2} y
$$

Substituting fitting data $\left(x_{i}, y_{i}\right) \quad i=1 \ldots N$ into the equation gives:

$$
\left\{\begin{array}{l}
a+b x_{1}+c x_{1}^{2}-d x_{1} y_{1}-e x_{1}^{2} y_{1}=y_{1} \\
a+b x_{2}+c x_{2}^{2}-d x_{2} y_{2}-e x_{2}^{2} y_{2}=y_{2} \\
\vdots \\
a+b x_{N}+c x_{N}^{2}-d x_{N} y_{N}-e x_{N}^{2} y_{N}=y_{N}
\end{array}\right.
$$

Hence estimating initial parameters for a rational polynomial fitting function becomes a multiple linear regression problem with linear coefficients $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}$.

$$
\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & -x_{1} y_{1} & -x_{1}^{2} y_{1} \\
1 & x_{2} & x_{2}^{2} & -x_{2} y_{2} & -x_{2}^{2} y_{2} \\
\vdots & & & & \\
1 & x_{N} & x_{N}^{2} & -x_{N} y_{N} & -x_{N}^{2} y_{N}
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d \\
e
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right]
$$

Origin provides a function ocmath_multiple_linear_regression in Origin C for multiple linear regression, which can be called in initialization code.

Import Data

1. Open a new workbook.
2. Copy data in Sample Data to the workbook.
3. Highlight column B, and select Plot: Symbol: Scatter from Origin menu. The graph should look like:

[^0]The fitting function can be defined using the Fitting Function Builder tool.

1. Select Tools: Fitting Function Builder from Origin menu.
2. In the Fitting Function Builder dialog's Goal page, click the Next button.
3. In the Name and Type page, select User Defined from the Select or create a Category dropdown list, type rationalfunc in the Function Name field, and select Expression in the Function Type group. Click the Next button.
4. In the Variables and Parameters page, type a, b, c, d, e in the Parameters field. Click the Next button.
5. In the Expression page, type the following script in the Function Body box.

$$
\left(a+b^{*} x+c^{*} x^{\wedge} 2\right) /\left(1+d^{*} x+e^{*} x^{\wedge} 2\right)
$$

6. Click the Evaluate button, and it shows $\mathrm{y}=1$ at $\mathrm{x}=1$, hence this implies the expression is correct. Click the Next button.
7. In the Parameter I nitialization Code page, click the Open Code Builder button ${ }^{\pi}$ to the right of the Initialization Code box, and initialize fitting parameters as follows, in terms of the algorithm.
```
    UINT nOSizeN = x_data.GetSize(); //Number of points
    UINT nVSizeM = 5; //Number of parameters
    matrix mX(nOSizeN, 5);
    //Construct matrix for data points of independent variables
    vector vCa(nOSizeN), vCb, vCc, vCd, vCe;
    vCa = 1;
    mX.SetColumn( vCa, 0 );
    vCb = x_data;
    mX.SetColumn( vCb, 1 );
    vCc = x_data^2;
    mX.SetColumn( vCc, 2 );
    vCd = -x_data*y_data;
    mX.SetColumn( vCd, 3 );
    vCe = -x_data^2*y_data;
mX.SetColumn( vCe, 4 );
    //Options for multiple linear regression
    LROptions stLROptions;
    stLROptions.UseReducedChiSq = 1;
    stLROptions.FixIntercept = 1; //Fix the intercept at 0.
    FitParameter stFitParameters[ 6 ]; // should be nVSizeM+1
    UINT nFitSize = nVSizeM + 1;
    int nRet = ocmath_multiple_linear_regression(mX, nOSizeN,
nVSizeM, y_data,
        NULL, 0, &stLROptions, stFitParameters, nFitSize );
if( nRet == STATS_NO_ERROR )
```

```
{
    a = stFitParameters[1].Value;
    b = stFitParameters[2].Value;
    c = stFitParameters[3].Value;
    d = stFitParameters[4].Value;
    e = stFitParameters[5].Value;
}
```

8. Click the Compile button to compile the code. And click the Return to Dialog button. Click

Finish to close the Fitting Function Builder dialog.

Fit the Curve

1. Select Analysis: Fitting: Nonlinear Curve Fit from Origin menu. In the NLFit dialog, select

Settings: Function Selection, in the page select User Defined from the Category drop-down list and rationalfunc function from the Function drop-down list.
2. Click the Parameters tab. Initial parameters calculated from initialization code are listed in the dialog, and the fitting function curve for initial parameters is shown as follows. It seems that initial parameters from initialization code are very good.

3. Click the Fit button to fit the curve.

Fitting Results

The fitted curve should look like:

Fitted Parameters are shown as follows:

| Parameter | Value | Standard Error |
| :---: | :--- | :--- |
| \mathbf{a} | 3.17139 | 0.30284 |
| b | -1.65602 | 1.76748 |
| \mathbf{c} | 0.26407 | 1.81764 |
| d | 3.6884 | 0.26362 |
| \mathbf{e} | 5.31812 | 0.55265 |

Sample Data

| \mathbf{x} | \boldsymbol{y} |
| :--- | :--- |
| -1.5 | 1.13173 |
| -1.39474 | 0.8262 |
| -1.28947 | 1.06999 |
| -1.18421 | 1.37155 |
| -1.07895 | 0.79569 |
| -0.97368 | 2.11346 |
| -0.86842 | 2.32006 |
| -0.76316 | 3.9205 |
| -0.65789 | 5.81904 |
| -0.55263 | 7.38037 |
| -0.44737 | 8.31272 |
| -0.34211 | 11.39718 |
| -0.23684 | 8.39808 |
| -0.13158 | 4.7305 |

| -0.02632 | 4.11105 |
| :--- | :--- |
| 0.07895 | 2.39105 |
| 0.18421 | 1.65394 |
| 0.28947 | 0.42953 |
| 0.39474 | 0.83337 |
| 0.5 | 1.18758 |

Note: You can also use this method to initialize parameters for other rational polynomial fitting functions.

Nonlinear Multiple Variables Fitting

Summary

Origin supports fitting functions with multiple dependent or independent variables. With the nonlinear fitting function, you can define multiple variables and separate them with semicolons. Since global fitting allows you to fit only one function at a time, this is a good way to defeat that limitation.

Origin ships with three built-in functions with multiple dependent and independent variables. These functions, available in the Multiple Variables category, are actually composites consisting of two ordinary functions. The GaussianLorentz function, for example, is a combination of the Gaussian and Lorentz functions, sharing y0 and xc:

$$
\begin{aligned}
& y_{1}=y_{0}+\frac{A_{1}}{w_{1} \sqrt{\pi / 2}} e^{-2 \frac{\left(x-x_{c}\right)^{2}}{w_{1}^{2}}} \\
& y_{2}=y_{0}+\frac{2 A_{2}}{\pi} \frac{w_{2}}{4\left(x-x_{c}\right)^{2}+w_{2}^{2}}
\end{aligned}
$$

This tutorial will demonstrate how to fit such multi-variable functions.

What you will learn

- Use Nonlinear Multiple Variables Fitting to fit a curve with two different functions.
- Assign data to fitting variables.

Steps

1. Start with a new project or create a new workbook and import the data file \backslash samples \backslash curve fitting \backslash Gaussian.dat.

2. Highlight Column(A) and Column(B). In the main menu, click Analysis, then point to Fitting, and then click Nonlinear Curve Fit.
3. In the NLFit dialog?s left panel, select Function Selection. In the right panel, select Multiple Variables in the Category dropdown menu. In the Function dropdown menu, select

GaussianLorentz.

As you can see on the Sample Curve tab, the equations in this fitting function share the same parameters, y0 and xc.

4. In the NLFit dialog?s left panel, select Data Selection. In the right panel, expand the Range node and assign data to the fitting variables. In this example, we have assigned column B to both y1 and y 2 , which means that both expressions will fit the same dataset.

5. Click Fit until converged to fit, then OK. In the results sheet, compare parameters A and w, with the Gaussian and Lorentz functions sharing the same offset and peak center.

Fit Multiple Datasets by Fitting One and then Using Those Fit Parameters for Other Datasets

Summary

In some cases, you might have multiple datasets, and want to fit them using the user-defined function without parameter initial code. For increased efficiency, you can fit one and then apply the fit parameters for other datasets.

Minimum Origin Version Required: Origin 8.6

What you will learn

- How to perform an independent fit.
- How to fit one of multiple datasets by doing 1-iteration, full-iteration.
- How to apply the parameter values of one dataset to other datasets.

Example

1. Create a user-defined function MyExp by following the steps in this tutorial.
2. Import \Samples\Curve Fitting\Exponential Decay.dat to Origin worksheet.
3. Highlight all columns and then select Analysis: Fitting: Non-linear Curve Fit from the menu to open the NLFit dialog.
4. Select the function just defined in Settings tab, Function Selection page:

5. Switch to Parameters tab, enter 80, 100, -5 on the Value column as initial values for y 0 , a, b of the first dataset. Then select 1 from the independent fit drop-down list and iterate the first dataset until converged.

6. The parameter values are calculated and the fitting result is hinted in the left corner of this dialog.

| - NLFit | (MyEx | (User)) | | | | | | | 0 | x |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dialog The | eme | | | | | | | | | - |
| Settings | Code | Parameters | Bounds | | | | | | | |
| \square Auto | Parameter | Initialization | | | | | | | Hide | |
| Double cli | lick cells | O change ope | erator: Ris | ight click cells for | Ior more option | s. Drag column hea | ader to change column | | | |
| NO. | Param | Meaning | Fixed | Value | Error | Dependency | Lower Conf Limits | Upper Conf Limits | Significant D | |
| 1 | yo | ? | \square | 104.85968 | 0.69005 | 0.48266 | -- | -- | System | |
| 1 | a | ? | \square | 193.3244 | 3.10614 | 0.54058 | -- | -- | System | |
| 1 | b | ? | \square | -8.273 | 0.21726 | 0.68609 | -- | -- | System | |
| 2 | yo_2 | ? | \square | -- | -- | -- | -- | -- | System | |
| 2 | a_2 | ? | \square | -- | -- | -- | -- | -- | System | |
| 2 | b_2 | ? | \square | -- | -- | -- | -- | -- | System | |
| 3 | yo_3 | ? | \square | -- | -- | -- | -- | -- | System | |
| \leqslant | | | | | | | | | , | |
| Fit converged. Chi-Sqr tolerance value of $1 \mathrm{E} \cdot 9$ was reached. | | | | | 1需鉒 | P) $51 x^{2}$ | | Fit
 Done | Cancel | $\stackrel{7}{7}$ |

7. To initialize the parameters of other datasets, apply the parameter values of the first dataset to other datasets by right-clicking the values, and then selecting Apply Whole Set of
"Value" to All Datasets from the fly-out menu.

| - NLFit (MyExp (User)) | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dialog Theme * | | | | | | | | |
| Settings | Code | Parameters | Boun | | | | | |
| \checkmark Auto Parameter Initialization | | | | | | | | |
| Double click cells to change operator. Right click cells for more options. Drag column header to change column orc | | | | | | | | |
| NO. | Param | Meaning | Fixed | Value | Error | Dependency | Lower Conf | Limits |
| 1 | y0 | ? | \square | 104.85 | Format Cells... | | | |
| 1 | a | ? | \square | 193.32 | | | | |
| 1 | b | ? | \square | -8.27 | Apply Same "Value" to All y0
 Apply Format to All y0 | | | |
| 2 | yo_2 | ? | \square | -- | | | | |
| 2 | a_2 | ? | | -- | | | | |
| 2 | b_2 | ? | \square | -- | Copy Value" of all yo
 Paste "Value" to all yo | | | |
| 3 | y0_3 | ? | \square | -- | | | | |
| 3 | a_3 | ? | \square | -- | | | | |
| 3 | b_3 | ? | \square | -- | Copy Whole Column Paste Whole Column | | | |
| \leqslant | | | | | | | | |
| Fit converged. Chi-Sqr tolerance value of $1 \mathrm{E}-9$ was reached. | | | | | | | | |
| | | | | | Apply Whole Set of "Value" to All Datasets | | | $1 \quad v$ |

8. Click Fit button to finish the fitting for all datasets.

Adding Derived Parameters

Summary

Derived parameters are additional parameters computed using the fitted parameter values. You can define your own derived parameters for any built-in or user-defined fitting functions.
They are not involved in the fitting process and are computed only at the end of the fitting session.

What you will learn

- How to add derived parameters in a built-in fitting function by Fitting Function Organizer.

Steps

The built-in Gauss function fits the peak area with the following equation:

Suppose that you also want to know the peak height, which can be computated as follows:

$$
h=\frac{A}{w \sqrt{\pi / 2}}
$$

1. Select Tool: Fitting Function Organizer in the menu. In the left panel of the dialog, select Origin Basic Funcions: Gauss.
2. Go to Derived Parameters section and input the $h=A /\left(w^{*} \operatorname{sqrt}(P I / 2)\right)$

Note:
o Each derived parameter should be specified in a separate row.
o Derived parameters cannot be computed from other derived parameters.
3. Click on Save and the OK button.
4. Create a new workbook and import the data file \samples curve fitting \backslash Gaussian.dat, using File: Import: Single ASCII .
5. Highlight column A and B, then select Analysis: Fitting: Nonlinear Curve Fit to open the Nonlinear Curve Fitting dialog, and select Gauss from the Function drop-down list.

6. Go to Code tab and click Derived parameters on the left panel. You can see the Derived Parameters listed on the right panel.

7. Click Fit button to generate report sheets. After fitting, Origin will compute the height and include the result in the Parameters table on the fitting results worksheet.

3.3 Signal Processing

3.3.1 FFT Filter

Summary

Origin offers an FFT filter, which performs filtering by using Fourier transforms to analyze the frequency components in the input dataset.

There are five types of filters available in the FFT filter function: low-pass, high-pass, band-pass, band-block, and threshold. Low-pass filters block all frequency components above the cutoff frequency, allowing only the low frequency components to pass. High-pass filters are just the opposite, they block frequency components that are below the cutoff frequency.

This tutorial will show you how to perform the high-pass, low-pass, and band-pass filtering using the FFT filter.

Minimum Origin Version Required: Origin 8.0 SR6
What you will learn

This tutorial will show you how to:

- Perform low pass filtering.
- Perform high pass filtering.
- Perform band pass filtering.

Steps

Low-pass Filter

This tutorial is associated with the Analysis: FFT Filter folder in the Analysis project (\backslash Samples \backslash Analysis.opj) which can be opened by selecting File: Open Sample Projects: Analysis from the main menu.

1. Highlight the $\operatorname{col}(A)$ and $\operatorname{col}(B)$ in the worksheet to plot a line graph.

In this graph, we are going to block the high frequency components to get the low frequency component, which shows the overall trend of this curve.
2. Select Analysis: Signal Processing: FFT Filters to open the fft filters dialog. Select Low Pass for the Filter Type drop-down list and set the Cutoff Frequency as 0.0151405 . Check the Auto Preview check box to preview the result.

3. Click OK button, the high frequency component will be exported to the source worksheet and source graph.

High-pass Filter

1. Start with a new workbook and import the file \Samples\Signal Processing\fftfilter2.dat.
2. Highlight $\operatorname{col}(A)$ and $\operatorname{col}(B)$ to select Plot: Line: Line from the main menu to plot a line graph.

In this graph, we are going to remove the low frequency component (less than 0.15 HZ).
3. Select Analysis: Signal Processing: FFT Filters to open the fft_filters dialog. Select High Pass for the Filter Type drop-down list and set the Cutoff Frequency as 0.15 . Check the Auto Preview check box to preview the result.

4. Click OK button, the high frequency component will be exported to the source worksheet.

Band-pass Filter

1. Start with a new workbook and import the file \Samples\Signal Processing\fftfilter2.dat.
2. Highlight $\operatorname{col}(A)$ and $\operatorname{col}(B)$ to select Plot: Line: Line from the main menu to plot a line graph.

In this graph, we are going to remove the low frequency components (less than 0.15 HZ) and high frequency components (more than 0.18 HZ).
3. Select Analysis: Signal Processing: FFT Filters to open the fft_filters dialog. Select Band Pass for the Filter Type drop-down list and set the Lower Cutoff Frequency and Upper Cutoff Frequency as 0.15 and 0.18 respectively. Check the Auto Preview check box to see preview the result.

4. Click $\mathbf{O K}$ button, the high frequency component will be exported to the source worksheet.

3.3.2 IIR Filter

Summary

In OriginPro, it is possible to design, analyze, and implement IIR (Infinite Impulse Response) digital filters. The IIR filter supports four methods, including Butterworth, Chebyshev Type I, Chebyshev Type II, and Elliptic.

This provides users more choices in signal processing.
Minimum Origin Version Required: 9.0 SRO

What You Will Learn

This tutorial will show you:

- How to design and apply an IIR filter
- A comparison between IIR filter and FFT filter

Steps

Design and Apply IIR Filter

1. Start with a new worksheet and import the EMG Recording.dat file from \Samples\Signal Processing\.
2. Highlight column B and Select Analysis:Signal Processing:IIR Filter from the top menu to open the dialog.
3. Change the Response type as High Pass, keep the Method as Butterworth, uncheck the Minimum for Filter Order and set it as 4. In the Frequency Specification branch, set the Cutoff Frequency (Fc) as 20, then check the Forward-Backward Filtering. The dialog settings should look like the following figure, and the IIR filter is designed.

4. Click OK to apply the created IIR filter to the input dataset.
5. A new column will be added to the original data as a new column of filtered data and a new SOS Matrix worksheet.

Compare Results with FFT Filter

1. Highlight column B in the original worksheet, perform FFT filter by Analysis:Signal

Processing:FFT Filters.

2. In the opened dialog, choose High Pass for Filter Type and set $\mathbf{2 0}$ as Cutoff Frequency.

3. Column C in the EMGRecording worksheet is the filtered result of the previously designed IIR filter, highlight column B and column C to generate a line plot with the button (Graph 1).
4. Use the scale in button $\stackrel{\text { +1 }}{ }$ to zoom the area between 12.5 s and 13.3 s .
5. Column E in the EMGRecording worksheet is the filtered result of the FFT filter, highlight column B and column E to generate a line plot with the \quad button (Graph 2).
6. Also use the scale in button
 to zoom the area between 12.5 s and 13.3 s , the two graphs could be used for visualized comparison.

- Note that there are many ripples in the FFT filter result, but almost no ripples in the IIR filter result.

Ripples in FFT Filter

1. Highlight column E and click on the button to create a line plot (Graph 3).
2. Activate Graph 3, choose Gadget:FFT and set the X Scale as From 12.664 To 13.052.
3. Click OK to bring up the preview window, in which ripples are almost pure 20.125 Hz sine.

4. Now we would try to remove the ripples at 20.125 Hz by applying another high pass filter at 25 Hz , keep highlighting column E and select Analysis:Signal Processing:FFT Filters.
5. Select High Pass for Filter Type and set Cutoff Frequency as $\mathbf{2 5}$.
6. The result is listed in Column G, highlight column G and click on the \square button to create a line plot(Graph 4).
7. Activate Graph 4, choose Gadget:FFT and set the X Scale as From 12.664 To 13.052, in the preview window, there are still ripples, and they are shifted from 20.125 Hz to 25.157 Hz .

- Note that the ripples could not be removed by FFT filter for this dataset.

3.4 Peak Analysis

Topics covered in this section:

1. Peak Finding (Tutorials)
2. Peak Integration (Tutorials)
3. Peak Fitting (Tutorials)

3.4.1 Peak Finding

- Picking and Marking Peaks

Picking and Marking Peaks

Summary

The Peak Analyzer provides several methods to pick peaks automatically. Also, user can opt to add/delete/modify the peaks manually.

Labels are added to the peak centers after they are found or added, to show user the positions of the current peaks.

Minimum Origin Version Required: Origin 8.0 SR6

What you will learn

- How to use and customize the auto peak finding in the Peak analyzer
- How to customize the labels for the peak centers

Steps

1. Start a new workbook and import the file <Origin Program Folder>\Samples\Spectroscopy\HiddenPeaks.dat.
2. Highlight the second column.
3. Create a line plot by selecting Plot: Line: Line.
4. With the graph active, select Analysis: Peaks and Baseline: Peak Analyzer to open the dialog of the Peak Analyzer.
5. In the first page (the Start page), select the Find Peaks radio button in the Goal group.

Then click the Next button to go to the next page.

Define a baseline, find and mark peak locations
GoalIntegrate PeaksCreate BaselineSubtract Baseline
(-) Find Peaks
Fit Peaks
6. In the Baseline Mode page, select None for Baseline Mode.

Click the Next button to go to the Find Peaks page.
7. In the find Peaks page:

1. Expand the Peak Finding Settings branch. Make sure that Local Maximum is selected for Method. Then click the Find button. Only five peaks are detected.

2. Change Method to 2nd Derivative (Search Hidden Peaks). Click the Find button again. This time, seven peaks are detected.

3. Click Finish to complete the analysis. We will get this final graph:

3.4.2 Peak Integration

Peak Integration

- Integrating Peaks

Integrating Peaks

Summary

Use the Peak Analyzer to integrate peaks and find their areas.
Minimum Origin Version Required: Origin 8.0 SR6

What you will learn

- How to pick an existing dataset as baseline
- How to subtract a baseline from the spectrum data
- How to calculate peak areas with the Peak Analyzer

Steps

1. Start a new workbook and import the file \Samples\Spectroscopy\Peaks with Base.DAT.
2. Highlight the second column.
3. In the main menu, click Analysis, then point to Peaks and Baseline, and then click Peak Analyzer.
4. In the first page (the Goal page) of the Peak Analyzer, select Integrate Peaks in the Goal group. Click Next to go to the Baseline Mode page.
5. On the Baseline Mode page, select Use Existing Dataset from the Baseline Mode dropdown list. Click the triangular button to the right of the Dataset dropdown menu, and then select [PeakswithBase]"Peaks with Base"!C"Base" on the fly-out menu. Click Next to go to the Baseline Treatment page of the Peak Analyzer.
6. Select the Auto Subtract Baseline check box. Click the Integrate Peaks page icon in the upper panel (or click Next twice to go to the Integrate Peaks page). In the preview graph, you will see two numbered yellow rectangles representing two peaks found with the default settings.
7. For Integration Window Width, select Adjust on Preview Graph. On the graph, click inside the rectangle marked with 1. A pair of "handles" appears on either side of the yellow integration window. Drag these handles to adjust the range for which integration will be performed. Click inside the rectangle marked with $\mathbf{2}$ and adjust the integration range for the second peak.

⿴囗⿱夂⺀⿺𠄌⺀大⿰⿱丶㇀⿱㇒丶亅㇒ PeakAnalyzerPreview

8．In the Integrate Peaks page of the Peak Analyzer，make sure all the desired quantities to compute have been selected in the Quantities group．For example，if you want to calculate the peak centroid for each peak，select the Peak Centroid check box．If you don＇t want to output the percent areas，clear the Percent Area check box．When you are done，click Finish to perform the analysis．The result is in a worksheet named Integration＿Result1．

| \＃\＃PeakswithBase－Peaks with Base．DAT | | | | | | | | $\square \square$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Index（鱼｜ | POM） | P 1 （）臽 | P2（19） | | P4（）${ }^{\text {易 }}$ | P5（Y）${ }^{\text {a }}$ | P6（\％）${ }^{\text {B }}$ | | \wedge |
| Comments | Integral R | Integral Re | Integral | Integral | Integral R | Integral | ntegral R | Integral Res | | |
| Long Name | Index | Area | Beginnin | Ending | FWMHM | Center | Height | Centroid | | |
| 1 | 1 | 26.62295 | 77 | 119 | 13.16915 | 103 | 1.87906 | 102.12429 | | |
| 2 | 2 | －27．62137 | 249 | 293 | 13.28994 | 277 | －1．9043 | 275.88972 | | |
| 3 | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | $>$ | |

If the Area check box was selected in the Quantities group，peak area data appears in the Area column of the result worksheet．

3．4．3 Peak Fitting

Topics covered in this section：

1．Peak Fitting with Baseline
2．Peak Fitting with Preset Peak Parameters
3. Setting the Fix Share Status or Bounds for Multiple Peak Parameters Simultaneously

Peak Fitting with Baseline

Summary

In OriginPro, the Peak Analyzer is capable of performing multiple peak fitting with several baseline subtraction options.

There are various ways to create a baseline for your spectrum data. You can select a few anchor points and then fit them with a function. The fitting of the baseline can be done along with the peak fitting.
Minimum Origin Version Required: OriginPro 8.0 SR6

What You Will Learn

- How to perform fitting of peaks
- How to fit the baseline

Steps

1. Start a new worksheet and import the file <Origin Program Folder>\Samples\Spectroscopy \backslash Peaks on Exponential Baseline.dat.
2. Highlight the second column in the worksheet.
3. Select Analysis: Peaks and Baseline: Peak Analyzer from the main menu to open the Peak Analyzer.
4. Select the Fit Peaks radio button in the Goal group on the first page. Click Next to go to the Baseline Mode page.
5. In the Baseline Mode page, select User Defined from the Baseline Mode drop-down list. Click the Find button in the Baseline Anchor Points group. Eight anchor points should be found.

Click Next to go to the Create Baseline page.
6. In the Create Baseline page, select Fitting with the Connect By drop-down list. In the Fitting group, select ExpDec2 from the Function drop-down list. Click Next to go to the Baseline Treatment page.
7. In the Baseline Treatment page, select the Fit Baseline with Peaks check box. Click Next to go to the Find Peaks page.
8. In the Find Peaks page, click the Find button to search peaks. Two peaks should be found.

Click Next to go to the Fit Peaks page.
9. In the Fit Peaks page, click the Fit Control button to open the Peak Fit Parameters dialog.
10. In the Peak Fit Parameters dialog, make sure that both peak types are Gaussian. Click the Fit Until Converge button. When the fitting is done, click OK to close the dialog.
11. Back in the Fit Peaks page, click Finish to complete the analysis. See the results in the source workbook and the graph report.

Peak Fitting with Preset Peak Parameters

Summary

In some cases, you may want to perform peak fitting with preset peak parameters. For example, you may have many datasets with fixed numbers of peaks and the centers of these peaks do not vary from dataset to dataset. What you are interested in is mainly other parameters of the peaks, for example, heights. Using the theme feature of the Peak Analyzer, you may carry out peak fitting with fixed peak parameters easily.

Minimum Origin Version Required: OriginPro 8.0 SR6

What You Will Learn

1. How to save Peak Analyzer settings in a theme and reuse them
2. How to fix peak parameters

Steps

1. Start a new worksheet and import the file <Origin Program

Folder>\Samples\Spectroscopy\HiddenPeaks.dat.
2. Highlight the second column and select Analysis: Peaks and Baseline: Peak Analyzer from the Origin menu to open the Peak Analyzer.
3. On the first page, select the Fit Peaks radio button in the Goal group. Click Next to go to the Baseline Mode page.
4. In the Baseline Mode page, select None with the Baseline Mode drop-down list. Click Next to go to the Find Peaks page.
5. In the Find Peaks page:
a. Clear the Enable Auto Find check box, because we want to find the peaks manually. Click the Peaks Info button to open the Peak Info dialog.
b. In the Peak Info dialog, click the Add button seven times to add 7 peaks. Enter the peak centers and heights as follows:

Click OK to return to the Peak Analyzer.
c. Click Next to go to the Fit Peaks page.
6. In the Fit Peaks page:
a. Click Fit Control to open the Peak Fit Parameters dialog.
b. In the Peak Fit Parameters dialog, click the Fix or release all peak centers button. Then click the Fit Until Converge button. When the fitting is done, click OK to return to the Peak Analyzer dialog.
c. Click the right-sided triangle button to the right of Dialog Theme in the upper panel. Select Save As from the short-cut menu. The Theme Save as dialog opens.
d. In the Theme Save as dialog, enter MyFitting after Theme Name. Clear and select the check boxes as the screenshot below:

Click OK to save the theme. This should bring you back to the Peak Analyzer dialog.
e. Click the Finish button in the Peak Analyzer to complete the analysis.

Reuse the theme

1. Start another new workbook and import the file <Origin Program Folder>\Samples\Spectroscopy\HiddenPeaks.dat.
2. Highlight the second column
3. Select Analysis: Peaks and Baseline: Peak Analyzer from the Origin menu to open the Peak Analyzer dialog.
4. On the first page of the Peak Analyzer, click the right-sided triangle button to the right of

Dialog Theme. From the short-cut menu, pick MyFitting
5. Click Next to check if the settings in every step are correct. Note that in the Find Peaks page, you can see the peak centers and heights are same as last time.
6. When you reach the last page, click the Fit Control button to open the Peak Fit Parameters dialog. Make sure that all peak centers are fixed and the values are the same as last time. Click OK to return to the Peak Analyzer.
7. Click Finish to complete the analysis. Check the results to see whether they are the same as the results we got last time.

Setting the Fix, Share Status or Bounds for Multiple Peak Parameters Simultaneously

Summary

When performing peak analysis, one often wants to fix parameter values, or share parameters between multiple peaks, or specify bounds. If your data has a few peaks, you can simply perform these settings for each peak. But if your data has many, it may be time consuming to set individually. To make the process more efficient, the Peak Analyzer offers context menus which can allow you to set the fix, share status or bounds for multiple peak parameters simultaneously. For more details about these settings, please refer to the Origin Help File.

Minimum Origin Version Required: OriginPro 8.0 SR6

What You Will Learn

- How to set share status of multiple peak parameters simultaneously.
- How to set upper bounds and upper bound values to multiple peak parameters simultaneously.

Steps

1. Start a new workbook and import the file <Origin Program Folder>\Samples\Spectroscopy\Positive \& Negative Peaks.dat.
2. Highlight the second column and select Analysis: Peaks and Baseline: Peak Analyzer to open the Peak Analyzer dialog. In the first page (the Start page), select the Fit Peaks radio button in the Goal group. Then press the Next button to go to the next page.
3. In the Baseline Mode page, select Constant with the Baseline Mode drop-down list and choose Mean in the Constant group. Then click Fit Peaks in the wizard map to directly go to the Fit Peaks page.

4. In the Fit Peaks page:
5. click Fit Control button to open the Peak Fit Parameters dialog. In the lower left corner of the dialog, set the fitting function to Voigt.
6. Make sure the Parameters tab is active and then select $\mathbf{1}$ in the Share column of the wG_1 row. Then right click on it and select Apply Same "Share" to All wG. Then you will find that all the parameters with the wG prefix are shared in the same group.

| \square Peak Fit Parameters | | | | | | | | $\square \times$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \checkmark Auto Parameter Initialization | | | | | | | | |
| Parameters Bounds | | | | | | | | Hide．． |
| NO． | Peak Type | Param | Meaning | Share | Fixed | Value | Error | Depen |
| 0 | Constant | $y 0$ | unknown | 0 | \square | 2.41368 | － | |
| 1 | Voigt | xc＿1 | center | 0 | \square | 30 | － | |
| 1 | Voigt | A＿1 | area | 0 | \square | 690.72758 | － | － |
| 1 | Voigt | wG＿1 | Gaussian widh | 1 | | me＂Share＂to | | － |
| 1 | Voigt | wL＿1 | Lorentzian width | 0 | Apply | me＂share to | WG | － |
| 2 | Voigt | 8 c －2 | center | 0 | Clear | | | |
| 2 | Voigt | A＿2 | area | 0 | \square | －309．8783 | ．－ | |
| 2 | Voigt | wG＿2 | Gaussian width | 0 | \square | 5.29802 | ． | － |
| 2 | Voigt | wL＿2 | Lorentzian width | 0 | \square | 5.29802 | － | － |
| 3 | Voigt | xc＿3 | center | 0 | \square | 110 | － | － |
| 3 | Voigt | A＿3 | area | 0 | \square | －1276．09849 | － | － |
| 3 | Voigt | wG＿3 | Gaussian width | 0 | \square | 5.29802 | － | － |
| 3 | Voigt | wL＿3 | Lorentzian width | 0 | \square | 5.29802 | ．－ | － |
| 4 | Voigt | xc＿4 | center | 0 | \square | 170 | ．－ | － |
| 4 | Voigt | A．4 | area | 0 | \square | 481.05301 | － | － |
| 4 | Voigt | wG＿4 | Gaussian width | 0 | \square | 5.29802 | － | － |
| 4 | Voigt | wL＿4 | Lorentzian width | 0 | \square | 5.29802 | ． | － |
| \leqslant | | | | III | | | | \geqslant |
| Voigt | \checkmark | 取 $\downarrow_{\text {者 }}$ | 等 㘶N | P | χ^{2} | 準 | OK | \approx |

3．Then select $\mathbf{2}$ in the Share column of the wL＿1 row．Then right click on it and select Apply Same＂Share＂to All wL．Then you will find that all the parameters with the wL prefix are shared in the same group．After this，the Parameters tab should look like below：

| Peak Fit Parameters | | | | | | | \square | $\square x$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \checkmark Auto Parameter Initialization | | | | | | | | |
| Parameters Bounds | | | | | | | Hide... | |
| NO. | Peak Type | Param | Meaning | Share | Fixed | Value | Error | Depe |
| 0 | Constant | $y 0$ | unknown | 0 | \checkmark | 2.41368 | .. | |
| 1 | Voigt | xc_1 | center | 0 | \square | 30 | .- | |
| 1 | Voigt | A_1 | area | 0 | \square | 690.72758 | .- | |
| 1 | Voigt | wG__1 | Gaussian width | 1 | \square | 5.29802 | .- | |
| 1 | Voigt | WL_1 | Lorentzian width | 2 | \square | 5.29802 | .- | |
| 2 | Voigt | xc _2 | center | 0 | \square | 70 | .- | |
| 2 | Voigt | A_2 | area | 0 | \square | -309.8783 | .- | |
| 2 | Voigt | WG_2 | Gaussian width | 1 | \square | 5.29802 | .. | |
| 2 | Voigt | WL__2 | Lorentzian width | 2 | \square | 5.29802 | .- | |
| 3 | Voigt | $x \mathrm{c}$ _ 3 | center | 0 | \square | 110 | .- | |
| 3 | Voigt | A_3 | area | 0 | \square | -1276.09849 | .. | |
| 3 | Voigt | WG__3 | Gaussian width | 1 | \square | 5.29802 | .- | |
| 3 | Voigt | WL__3 | Lorentzian width | 2 | \square | 5.29802 | .. | |
| 4 | Voigt | xc_4 | center | 0 | \square | 170 | .. | |
| 4 | Voigt | A_4 | area | 0 | \square | 481.05301 | .. | |
| 4 | Voigt | wG__4 | Gaussian width | 1 | \square | 5.29802 | .. | |
| 4 | Voigt | WL__4 | Lorentzian width | 2 | \square | 5.29802 | - | \geq |
| \leqslant | | | | | | | | |
| Voigt | \checkmark | | | P) | x^{2} | 落 | OK | Σ |

4. Activate the Bounds tab. Double-click in the cell in the first Gaussian width row and the second < or <= column. And you will find <= is shown in this cell (the $<$ will be shown if you double-click in the cell for one more time). Then type $\mathbf{5}$ into the Upper Bounds column in the same row.
5. Then right click on it and select Apply Same "Bounds" to All wG.

After this, the Bounds tab should look like:

| Peak Fit Parameters | | | | | | | $\square \square$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \square Auto Parameter Initialization | | | | | | | | |
| Parameters Bounds | | | | | | | | |
| NO. | Meaning | Value | Lower Bounds | <or<= | Param | <or<= | Upper B | |
| 0 | unknown | 2.41368 | -- | | y0 | | -- | |
| 1 | center | 30 | - | | xc_1 | | | |
| 1 | area | 690.72758 | -- | | A.1 | | | |
| 1 | Gaussian width | 5.29802 | 0 | < | WG_1 | < | 5 | |
| 1 | Lorentzian width | 5.29802 | 0 | < | wL_1 | | | |
| 2 | center | 70 | | | $x \mathrm{c}$-2 | | | |
| 2 | area | -309.8783 | | | A_2 | | | |
| 2 | Gaussian width | 5.29802 | 0 | < | WG_2 | < | 5 | |
| 2 | Lorentzian width | 5.29802 | 0 | < | wL_2 | | | |
| 3 | center | 110 | - | | xc_3 | | | |
| 3 | area | -1276.0984: | - | | A-3 | | | |
| 3 | Gaussian width | 5.29802 | 0 | < | WG_3 | < | 5 | |
| 3 | Lorentzian width | 5.29802 | 0 | < | wL_3 | | | |
| 4 | center | 170 | - | | xc_4 | | .. | |
| 4 | area | 481.05301 | | | A_4 | | | |
| 4 | Gaussian width | 5.29802 | 0 | < | WG_4 | < | 5 | |
| 4 L | Lorentzian width | 5.29802 | 0 | < | wL_4 | | .- | |
| | | | | | | | | |
| Voigt | | | gN N A | (1) x^{2} | | | OK | v |

5. Click the Fit Until Converged button. When the fitting is done, click OK to close the dialog.
6. Back in the Fit Peaks page, click Finish to complete the analysis. See the results in the source workbook and the graph report.

3.5 Data Manipulation

Topics covered in this section:

1. Setting Column Values (Tutorials)
2. Worksheet Data Operations (Tutorials)
3. Pivot Table

3.5.1 Setting Column Values

- Setting Column Values

Setting Column Values

Summary

Origin provides several ways to fill a worksheet column with values. Use Auto Fill or script commands to fill a series of values. Use the Set Values dialog box to define a mathematical formula to generate or transform a data set. Refer to values in other columns from the same sheet or from other sheets and books. Select from a large collection of built-in functions to compute values. Create variables from metadata stored in worksheets or column headers, and use these variables in your column formula.

This tutorial will show you how to compute column values by:

- Filling a Column with an Arithmetic Series
- Using Built-in Functions
- Using Other Columns
- Using Cell Values
- Using Variables from Workbook Metadata

Filling a Column with Arithmetic Series

Origin provides multiple methods to fill a column with arithmetic series.

Using Auto Fill

Enter a few starting values in cells.

| \# Book1 | | \square | | | \times |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $\mathrm{A}(\times)$ | $\mathrm{B}(1)$ | А | | |
| Long Name | | | | | |
| Units | | | | | |
| Comments | | | | | |
| 1 | 1 | | | | |
| 2 | 3 | 3 | | | |
| 3 | | | | | |
| 4 | | | | | |
| 5 | | | | | |
| 6 | | | | | |
| 7 | | | | | |
| 8 | | | | | |
| 9 | | | | | |
| 10 | | | | | |
| 11 | | | | | |
| 12 | | | | | |
| 4 V | | $11 \leqslant$ | IIII) | $>$ | 安 |

1. Select the two cells.
2. Move the mouse to the bottom right-hand corner of the second cell. The cursor will change to display "+".

3. Drag the mouse toward the bottom of the column. The column will be filled with $1,3,5,7, \ldots$.

Note that a row can also be auto filled by dragging towards the right. To repeatedly copy values instead of generating new values, hold down the CTRL key and drag the mouse toward the bottom of the column.

Using Data List

Type the following script in the Command window.
$\operatorname{col}(B)=\{1: 2: 23\} ;$

Column B will be filled with values: 1, 3, 5, 7,, 23

\{v1:vstep: vn\} produces the same result as the function data(v1,vn,vstep).

Using Built-in Functions

1. Create a new workbook. Import US Metropolitan Area Population. dat from the \Samples \backslash Data Manipulation\folder.
2. Click the Add New Columns button + 目 on the Standard toolbar to add a new column E. Highlight this column and right-click, and then click Set Column Values... to open the Set Values dialog.
3. In the $\mathbf{F}(\mathbf{x})$ menu, point to String, and then click Right(str\$, $\mathbf{n}) \$$ to insert this formula into the Column Formula panel.
4. Highlight the characters str\$. In the $\mathbf{F}(\mathbf{x})$ menu, point to String and then click Trim(str\$[,n])\$. Your formula should look like this: Right(Trim(str\$)\$,n)\$.
5. Highlight the characters str\$. In the wcol(1) menu, point to wcol(4). Your formula should look like this: Right(Trim(wcol(4))\$,n)\$.
6. Replace \mathbf{n} with 2. Your formula should look like this:

7. Click OK. The last column will fill with the state abbreviations from column 4.

| \#\#\# USMetropolita - US Metropolitan Area Population. dat | | | | | $\square \square$ | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $A(x)$ | B(\%) | C(1) | D(1) | E(V) | \triangle |
| Long Name | Population | Sq. Mi. | Density | Metropolitan Area | | |
| 1 | 119655 | 915.7 | 130.7 | Abilene, TX | TX | |
| 2 | 112561 | 685.5 | 164.2 | Albany, GA | GA | |
| 3 | 874304 | 3248.5 | 269.1 | Albany-Schenectady-Troy, NY | NY | |
| 4 | 480577 | 1166.2 | 412.1 | Albuquerque, NM | NM | |
| 5 | 131556 | 1322.7 | 99.5 | Alexandria, LA | LA | |
| 6 | 686688 | 1461 | 470 | Allentown-Bethlehem, PA-NJ | NJ | |
| 7 | 130542 | 525.8 | 248.3 | Altoona, PA | PA | |
| 8 | 187547 | 1823.9 | 102.8 | Amarillo, TX | TX | |
| 9 | 226338 | 1697.6 | 133.3 | Anchorage, AK | AK | |
| 10 | 130669 | 452.2 | 289 | Anderson, IN | IN | |
| 11 | 145196 | 718 | 202.2 | Anderson, SC | SC | |
| 12 | 116034 | 608.5 | 190.7 | Anniston, AL | AL | - |
| 4 Shee | 11 | | | 4 | \cdots | $1 /$ |

Note that some columns had two states at the end of the Metropolitan Area name, so to get both names change the formula to:

Right(Col(Metropolitan Area),Len(Col(Metropolitan Area))-Find(Col(Metropolitan Area),",")-1)\$

When referring to another column in the same worksheet, you can use index, short name, or long name to identify the column.

Using Other Columns

1. We will continue with the steps from above to show you how to use other columns in the Set Values dialog. Add a new column to the worksheet (right-click to the right of the last column in the worksheet and select Add New Column from the context menu). Change the Long Name of the column to "Population/Sq. Mi."
2. Highlight this column and right-click on it. Select Set Column Values to bring up the dialog. Click the $\operatorname{Col}(A)$ menu and choose $\operatorname{Col}(" P o p u l a t i o n "): A$ and then enter the / character. Click the $\operatorname{Col}(A)$ menu again and choose $\mathbf{C o l (" S q . ~ M i . ") : B . ~ T h e ~ f o r m u l a ~ s h o u l d ~ l o o k ~ l i k e : ~}$

CoI("Population")/ Col("Sq. Mi.")

3. Click OK and the column will get computed using data from the other two columns.

Using Columns from Other Sheets

The Set Values dialog provides an Insert menu to easily insert range variables that point to columns in other books/sheets, which can then be used to compute column values for the current column.

1. Open the project Samples\Data Manipulation\Setting Column Values.OPJ and switch to the Columns from Other Sheets subfolder.
2. Right-click on the Sample sheet and select Duplicate Without Data. Rename(by doubleclicking on the current name) the new sheet as: Corrected Sample.
3. Now you will fill these three columns with data based on formulas that reference columns in the other sheets. Highlight the first column and right-click on it to select Set Columns Values to open the dialog. Select Variables: Insert Range Variables to open the Range Browser dialog. You will use this dialog to add a range variable to the Before Formula Scripts panel, according to the instructions in the image below:

Click OK to close the dialog. range $\mathbf{r l}=\mathbf{S a m p l e}$! \mathbf{A} will be automatically inserted into the Before Formula Scripts panel. Please rename it as:

```
range rTime = Sample!A;
```

4. Then enter rTime in the Column Formula and click the Apply button to generate data for the first column.

5. Click the $\left.\gg\right|_{\text {button to go to the next column. Then select Variables: Insert Range Variables }}$ to open the Range Browser dialog. You will use this dialog to insert two range variables to the Before Formula Script panel. Sort the data sets by long name (Click the LName heading to sort it). Insert two range variables that refer to Transducer1 columns in both the Reference worksheet and the Sample worksheet. Rename them as:
```
range rRef = Reference!B;
range rSample = Sample!B;
```

6. Then input the following expression into the Column Formula:
rSample - (rSample[1] - rRef[1])
7. Click the Apply button to generate data for the second column of the Corrected Sample worksheet. Don't click the OK button yet.
8.

| \# Book1 | $\square \square$ | | | \times |
| :---: | :---: | :---: | :---: | :---: |
| | A(X) | B() | CO | \triangle |
| Long Name | Time | Transducer 1 | Transducer 2 | |
| Units | sec | mV | mv | |
| Sparklines | | | | |
| 13 | 12 | 19.99 | | |
| 14 | 13 | 19.78 | | |
| 15 | 14 | 19.84 | | |
| 16 | 15 | 20.16 | | |
| 17 | 16 | 20.01 | | |
| 18 | 17 | 19.51 | | |
| 19 | 18 | 19.04 | | |
| 20 | 19 | 19.49 | | |
| 21 | 20 | 18.91 | | |
| 22 | 21 | 18.52 | | |
| 23 | 22 | 19.34 | | |
| 24 | 23 | 19.19 | | |
| 25 | 24 | 19.03 | | \checkmark |
| | | | | |

You reference a particular cell value with square brackets, so [1] in the formula above means the first element.

Your formulas can be saved and reloaded into other columns to generate new data.

1. Now we will edit the range variables in the Before Formula Scripts panel and use another expression to get the same results. Remove the column names B"Transducer 1" of the two range variables and select $\mathbf{F}(\mathbf{x})$: Variables and Constants: wcol(_ThisNumCol) in both lines so it looks as follows:
```
range rRef = Reference!WCol(_ThisColNum);
range rSample = Sample!WCol(_ThisColNum);
```

2. Leave the expressions in the Column Formula panel unchanged and click Apply to generate data. You will find that it gives you the same results, but the formula can now be applied to any column in the Corrected Sample worksheet, and the range variables will point to the same column, by index, in the Reference and Sample worksheets.
3. Select Formula: Save to open the Save dialog and name it "My Correction". Click the OK button to save it.
4. Click the $\gg \mid$ button to go to the next column. Select Formula: Load: My Correction and click the Apply button to generate data for the third column.

| \# Book1 | $\square \square$ | | | | \times |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $A(x)$ | 日() | | | \triangle |
| Long Name | Time | Transducer 1 | Tran | cer 2 | |
| Units | sec | mv | | | |
| Sparklines | | | | | |
| 13 | 12 | 19.99 | | 7.94 | |
| 14 | 13 | 19.78 | | 7.86 | |
| 15 | 14 | 19.84 | | 7.81 | |
| 16 | 15 | 20.16 | | 7.83 | |
| 17 | 16 | 20.01 | | 7.78 | |
| 18 | 17 | 19.51 | | 7.85 | |
| 19 | 18 | 19.04 | | 7.74 | |
| 20 | 19 | 19.49 | | 7.7 | |
| 21 | 20 | 18.91 | | 7.73 | |
| 22 | 21 | 18.52 | | 7.71 | |
| 23 | 22 | 19.34 | | 7.65 | |
| 24 | 23 | 19.19 | | 7.71 | |
| 25 | 24 | 19.03 | | 7.72 | \checkmark |
| 1 | Corrected | Sample/ | 4 | - | $1 /$ |

Using Cell Values

Values contained in specific worksheet cells can be referenced and used to compute the formula for setting column values. This provides an easy way to use worksheet cells as control cells for updating values in a column.

1. Open the project \Samples\Data Manipulation\Setting Column Values.opj and switch to the Cells in a Worksheet subfolder in Project Explorer.
2. Right-click on column C and select the Set Column Values... context menu to bring up the Set Values dialog.
3. Use the Variables: Insert Range Variable... menu item to open the Range Browser. Then select the column with the long name (LName) Value. Press the Add button to insert a variable. Press the OK button to close the dialog.
4. In the Before Formula Scripts panel, change the name of the range variable to be rControl and add these additional lines so that the script looks like below
```
range rControl = G"Value";
int nOrder = rControl[2];
int nPoints = rControl[3];
differentiate -se iy:=(1,2) order:=1 smooth:=1 poly:=nOrder
npts:=nPoints
oy:=(1,3);
```

5. The script calls the differentiate X-Function and passes the cell values from column G as arguments for polynomial order and number of points, which controls the Savitzky-Golay smoothing performed during the differentiation.
6. Set the Recalculate drop-down to Auto and press OK to close the dialog.

7. Now you can try to change the values in column G, to change the output.

Note: Allowed values of polynomial order are 1 to 9 .

The graph shown in the worksheet was first created and then embedded into the worksheet by merging a group of cells.

Using Variables from Workbook Metadata

Metadata stored in the workbook, such as variables saved when importing data using the Import Wizard, can be referenced and used for computing column values.

1. Open or continue working with \Samples\Data Manipulation\Setting Column Values.OPJ, and switch to the Worksheet Metadata subfolder from the Project Explorer window.
2. Select column A and right-click to select the Insert menu option. A new column is inserted to the left of column A.
3. Select the first column (this newly inserted column) and right-click on it. Then select the Set Column Values menu item to open the Set Values dialog.
4. Select the Variables: Insert Info Variable menu item to open the Insert Variables dialog. Select Numeric int from the Variable Type drop-down list. Then select NumberOfPoints and press the Insert button to insert this variable into the Before Formula Scripts panel.

5. Next, set Variable Type to Numeric double. Hold the Shift key down to select both

StartFrequencyKHz and StepFrequencyKHz, and then press Insert to insert these two variables. Press the Close button to close the dialog.
6. In the upper Column Formula panel, input \{d1:d2:d1+(n1-1)*d2\} and then press the OK button to generate data and close the dialog. The column will be filled with frequency values.
7. Highlight the first and second columns, right-click on them and select Set As: XYY to change the plotting designations to X and Y . After you change the long name of the first column to

Frequency, the worksheet should look like:

| \#\# ${ }^{\text {\# }}$ Book4 | | | $\square \square$ | |
| :---: | :---: | :---: | :---: | :---: |
| | C1(0) | AM) | 日(1) | \wedge |
| Long Name | Frequency | Real | Imaginary | |
| Sparklines | | | 少\|thriproveran | |
| 1 | 500 | 6.35 | -4.39 | |
| 2 | 500.25 | 5.98 | -4.27 | |
| 3 | 500.5 | 5.86 | -3.91 | |
| 4 | 500.75 | 6.23 | -3.66 | |
| 5 | 501 | 6.47 | -3.42 | |
| 6 | 501.25 | 6.47 | -3.3 | |
| 7 | 501.5 | 6.71 | -2.69 | |
| 8 | 501.75 | 6.1 | -3.05 | |
| 9 | 502 | 5.74 | -2.32 | |
| 10 | 502.25 | 6.23 | -2.2 | |
| 11 | 502.5 | 6.1 | -1.71 | |
| 12 | 502.75 | 5.86 | -2.08 | |
| 13 | 503 | 5.74 | -2.08 | |
| | | | | |

3.5.2 Worksheet Data Operations

| Topics covered in this section: |
| ---: |
| 1. |

Worksheet Query

Summary

This tutorial will show you how to use the Worksheet Query dialog.
Minimum Origin Version Required: Origin 8.5.1 SRO

What you will learn

This tutorial will show you how to:

- Extract numeric and time data
- Use an alias in an extraction condition
- Use LabTalk functions in an extraction condition

Dialog overview

Start with a new workbook and import the file \Samples\Statistics\body.dat, click the menu item Worksheet: Worksheet Query to open the dialog as follows:

Basically, there are two main panels in the Worksheet Query dialog. The left panel lists all the columns in the active worksheet, you can right-click and select some column properties you want to see, such as Format, 1st Value, etc.

Note the Extract column in this panel, only data selected in the Extract checkbox will be extracted.
The right panel is where you set and test extract conditions. For example, you can select the column you want to use in the extract condition, and then click the $\Rightarrow>$ button to move it into the Select Column Variable for If Test group.

Set the conditions

Extract Numerical Data

When there are available columns in the Select Column Variable for If Test group, the Condition edit box becomes editable for you to set conditions. For example, select height and weight to the group, Origin will automatically set an alias for each column. You can click into the Alias cell and rename the alias:

These alias can be used directly in the extract condition. Let's keep the default alias, h and w in this example.

The buttons on the right side of Condition edit box can be help to establish extract conditions. For example, to extract data that height is greater and equal to 160 cm , highlight the column on Select Column Variable for If Test and click Add and build the first condition as follow:

When there are multiple conditions, you can also combine these conditions by logical operation. Click AND button to add one more condition. Then highlight w on Select Column Variable for If Test group and click ADD again, this time, we are looking for weight less than or equal to 50 kg :

When the condition is done, click All Rows button to select all rows, then click the Test -- select if true button and Origin will return 5 found records. Of course, if you familiar to logical operation syntax, you can type the condition on the edit box directly:
$h>=160$ AND $\mathrm{w}<=50$

Accept other default settings and click the OK button. A new workbook is created with these 5 records.

Extract Strings

When extracting strings, you need to enclose the string by double quotation marks ". For example, select the gender column into the Select Column Variables for If Test group. Using the alias g, you can extract all female data by:
$\mathrm{g}==$ "F"

Extract Time Data

Date and Time data are internally saved as numeric values in Origin. Date is the integer part of the numeric value, while Time is the fractional part. In Origin, you can use the int() and frac() functions to return the integer and fractional part of a number, and use the Date(MM/DD/YY) and Time (HH:mm:ss) functions to transfer string to time data. We can combine these functions to extract time data.

For example, using data from Import Time Data tutorial, you can extract data within time period 10:00~11:00 by:
frac(B) $>$ Time(10:00:00) AND frac(B) < Time(11:00:00)
You can see Origin found 120 records. Similarly, if you want to extract Date data, you can try some condition like:

```
int(A) > Date(01/24/2004)
```


3.5.3 Pivot Table

Summary

The Pivot Table provides a quick way to summarize your data, and to analyze, compare, and detect relationships in your data. This tool can sort, count, sum, or compute minimum, maximum, or mean of data stored in a worksheet.

Minimum Origin Version Required: Origin 8.1 SRO
What you will learn

- How to summarize data by a Pivot Table.
- How to sort output by row or column totals in Pivot Table.
- How to combine small values in columns or rows, and custom extra value.

Create a Pivot Table

1. Import the Origin sample data automobile.dat which is located in <Origin Program Folder> \Samples\Statistics.

| \#\#\# automobile - automobile.dat | | | | | $\square \square$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $A(C)$ | $\mathrm{B}(1)$ | CO | D(1) | $\mathrm{E}(1)$ 스 |
| Long Name | Year | Make | Power | $0 \sim 60 \mathrm{mph}$ | Weight |
| Units | | | kw | sec | kg |
| Comments | | | | | |
| Sparklines | | | $\mathrm{NH}_{1} \mathrm{~N}_{1}$ $171 .{ }^{1}$ |
 | $\operatorname{lan}_{1 / 2}$ |
| 1 | 1992 | Buick | 132 | 14 | 22 : |
| 2 | 1992 | Acura | 154 | 12 | 23. |
| 3 | 1992 | GMC | 158 | 13 | 15: |
| 4 | 1992 | Chrysler | 132 | 10 | $20:$ |
| 5 | 1992 | Kia | 121 | 12 | 121 |
| 6 | 1992 | Suzuki | 106 | 10 | 14. |
| 7 | 1992 | Volvo | 95 | 14 | 161 |
| 8 | 1992 | Mercedes | 132 | 14 | 221 |
| 9 | 1992 | Acura | 128 | 13 | 14. |
| 10 | 1992 | Isuzu | 124 | 17 | 15. |
| 4 Vauton | ile | | | $1 \leqslant$ IIII | |

2. Highlight Column B and select Worksheet: Pivot Table from the main menu to open the dialog.
3. Specify the following settings in the dialog:
o Select column A for Pivot Table Column Sources.
o Select Max from the Summarize by drop-down list, and then select column C for Pivot Table Data Source.
o Expanding Options branch, check Total for Rows and Total for Columns check boxes, and select Row Label Ascending from the Sort Output Rows drop-down list.

4．Click the OK button to create the Pivotl worksheet which will display as shown below：

| \＃\＃\＃automobile－automobile．dat | | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\mathrm{A}(\times)$ 峇 | 日（递） | C（迤） | | E（迢） | F（\％） | G（通） | H（0） | （09 | J（\％） | K（迢） | L（0） | M（栭） | $\mathrm{N}(0)$ | O（迤） | \wedge |
| Long Name | Make | Max of Power | | | | | | | | | | | | | | |
| Year | | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | Total | |
| 1 | Acura | 154 | 110 | 97 | 110 | 71 | 75 | 63 | 71 | 65 | 58 | 61 | 51 | 0 | 154 | |
| 2 | Buick | 132 | 106 | 110 | 88 | 106 | 71 | 80 | 88 | 68 | 66 | 55 | 60 | 0 | 132 | |
| 3 | Chrysler | 132 | 165 | 124 | 80 | 73 | 80 | 77 | 80 | 63 | 66 | 62 | 54 | 0 | 165 | |
| 4 | GMC | 158 | 110 | 80 | 73 | 77 | 80 | 72 | 55 | 85 | 64 | 45 | 47 | 0 | 158 | |
| 5 | Honda | 147 | 110 | 121 | 124 | 66 | 64 | 64 | 70 | 44 | 66 | 51 | 38 | 52 | 147 | |
| 6 | Infiniti | 117 | 128 | 169 | 132 | 73 | 77 | 64 | 64 | 59 | 58 | 51 | 52 | 38 | 169 | |
| 7 | Isuzu | 124 | 161 | 77 | 102 | 91 | 64 | 77 | 66 | 83 | 64 | 36 | 49 | 49 | 161 | |
| 8 | Kia | 145 | 128 | 102 | 113 | 80 | 74 | 71 | 73 | 58 | 44 | 66 | 49 | 0 | 145 | |
| 9 | Lexus | 116 | 112 | 110 | 88 | 69 | 80 | 71 | 59 | 64 | 61 | 55 | 49 | 0 | 116 | |
| 10 | Lincoln | 95 | 108 | 139 | 110 | 110 | 89 | 73 | 71 | 55 | 69 | 51 | 44 | 47 | 139 | |
| 11 | Mazda | 139 | 165 | 110 | 73 | 73 | 102 | 84 | 80 | 70 | 71 | 58 | 70 | 0 | 165 | |
| 12 | Mercedes | 132 | 121 | 110 | 80 | 121 | 62 | 78 | 69 | 58 | 66 | 55 | 55 | 54 | 132 | |
| 13 | Nissan | 110 | 113 | 111 | 95 | 69 | 102 | 80 | 84 | 66 | 84 | 47 | 49 | 0 | 113 | |
| 14 | Saab | 110 | 158 | 106 | 139 | 80 | 80 | 69 | 91 | 69 | 67 | 61 | 49 | 55 | 158 | |
| 15 | Saturn | 165 | 110 | 104 | 77 | 106 | 62 | 57 | 55 | 67 | 63 | 57 | 51 | 66 | 165 | |
| 16 | Suzuki | 106 | 158 | 73 | 99 | 79 | 77 | 80 | 80 | 61 | 77 | 38 | 57 | 38 | 158 | |
| 17 | Toyota | 128 | 110 | 110 | 102 | 73 | 80 | 82 | 55 | 67 | 61 | 52 | 55 | 0 | 128 | |
| 18 | Volvo | 152 | 110 | 145 | 132 | 73 | 73 | 84 | 62 | 84 | 55 | 49 | 52 | 0 | 152 | |
| 19 | Total | 165 | 165 | 169 | 139 | 121 | 102 | 84 | 91 | 85 | 84 | 66 | 70 | 66 | 169 | |
| | mobile A Pi | ot1／ | | | | | | | | | ＜ | | | | \geq | ． |

Combine Small Values

In this section，we will show you how to show just the top 5 columns of Total value，and combine small value columns into a column．

1．Based on the above example，click on the lock icon in the Pivot1 worksheet，and select Change
Parameters to open the dialog again．

| \＃w automobile－automobile．dat | | |
| :---: | :---: | :---: |
| | A（X）M M inalunal | |
| Long Name | Make | Recalculate |
| Year | | Change Parameters．．． |
| Year | | Delete |
| 1 | Acura | Go to Source |
| 2 | Euick | |
| 3 | Chrysler | \checkmark Recalculate Mode：Manual |
| 4 | GMC | Recalculate Mode：Auto |
| 5 | Honda | Recalculate Mode：None |
| 6 | Infiniti | Show Info（wpivot） |
| 7 | Isuzu | Generate Script |
| 8 | Kia | |
| | Lexus | Repeat this Analysis to All Y columns |

2. Specify the following settings in the dialog:
o Select Count in Summarize by drop-down list.
o Expanding Combine Smaller Values branch, select Column in the Combine Direction drop-down list, Top N of Grand Total in Mode drop-down list, and enter 5 in Top \mathbf{N} textbox.
o Select Descending by Column Totals in Sort Output Columns drop-down list.

3. Click OK button. The pivot table shows the summarization of data by Count. And only the columns that are top 5 total values have been kept, and other columns are merged into a single column Others.

4. To show additional values for 1999 and 2004 columns in the pivot table, reopen the wpivot dialog. Then enter 1999|2004 in the Column Source Extra Values textbox.

5．Click OK button． 1999 column and 2004 column are displayed in the pivot table．

| \＃\＃utomobile－automobile．dat | | | | | | | | | | $\square \square$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | A（0）峇 | B（道 | C（逄 | D （＊） | E（逄） | F（\％） | G（\％） | $\mathrm{H}\left({ }^{\text {a }}\right.$ | $1 \mathrm{O})^{\text {a }}$ | J（0） | 人 |
| Long Name | Make | | | | | Coun | | | | | |
| Year | | 1995 | 1998 | 2000 | 2001 | 1997 | 1999 | 2004 | Others | Total | |
| 1 | Acura | 3 | 1 | 2 | 1 | 2 | 2 | 0 | 8 | 19 | |
| 2 | Buick | 2 | 1 | 2 | 1 | 2 | 2 | 0 | 9 | 19 | |
| 3 | Chrysler | 2 | 2 | 2 | 2 | 2 | 1 | 0 | 7 | 18 | |
| 4 | GMC | 2 | 2 | 2 | 1 | 2 | 1 | 0 | 9 | 19 | |
| 5 | Honda | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 8 | 19 | |
| | Infiniti | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 8 | 19 | |
| 7 | Isuzu | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 8 | 19 | |
| 8 | Kia | 2 | 2 | 2 | 1 | 2 | 1 | 0 | 9 | 19 | |
| 9 | Lexus | 2 | 2 | 2 | 1 | 2 | 1 | 0 | 9 | 19 | |
| 10 | Lincoln | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 8 | 19 | |
| 11 | Mazda | 2 | 2 | 2 | 1 | 2 | 1 | 0 | 9 | 19 | |
| 12 | Mercedes | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 8 | 19 | |
| 13 | Nissan | 2 | 2 | 2 | 2 | 2 | 1 | 0 | 7 | 18 | |
| 14 | Saab | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 8 | 19 | |
| 15 | Saturn | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 8 | 19 | |
| 16 | Suzuki | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 8 | 19 | |
| 17 | Toyota | 2 | 2 | 2 | 2 | 2 | 1 | 0 | 8 | 19 | |
| 18 | Volvo | 2 | 2 | 2 | 1 | 2 | 1 | 0 | 9 | 19 | |
| 19 | Total | 37 | 33 | 32 | 29 | 29 | 24 | 8 | 148 | 340 | v |
| | mobile λ Pi | 00t1／ | | | | | | ＜ | | | $1 \mid$ |

3．6 Analysis Templates

Topics covered in this section：

1．Creating and Using Analysis Templates
2．Creating Analysis Templates using Set Column Value
3．Creating a Custom Report Sheet

3．6．1 Creating and Using Analysis Templates

Summary

Routine tasks can be simplified by creating an Analysis Template. Such templates can contain multiple analysis results and also custom report sheets. A new instance of the template can then be opened any time and source data can be changed to update all analysis results and custom reports.

Minimum Origin Version Required: Origin 8.0 SR6

What you will learn

- How to create analysis template (OGW)
- How to re-use analysis template with new data

Steps

Importing Data

1. Start with a new workbook.
2. Click the Import Wizard button on the Standard Toolbar, or invoke the Import: Import

Wizard... menu item. the Import Wizard dialog will open.
3. Click the ... button next to the File edit box and select the file <Origin EXE
folder>\Samples\I mport and Export\ S15-125-03.dat.
4. Verify that the Import Filters for Current Data Type drop-down shows Data Folder: VarFromFileNameAndHeader.
5. Change the Import Mode drop-down to Replace Existing Data.
6. This is an import filter shipped with the sample file, that specifies how to import the file and what header and file name strings to parse to create import variables. Walk through the wizard pages to view the settings (Optional) and then click Finish button to import the file.
7. Right-click on workbook title bar and select Show Organizer to turn on organizer panel. Expand branches and verify that variables have been created and saved, as in the picture below:

Performing Analysis

1. Highlight column D and use the Analysis: Fitting: Nonlinear Curve Fit... menu item to open the NLFit dialog.
2. Fit the data with Gauss function. This will add a hierarchical report sheet to the book, with result tables and embedded graph with data and fit curve.
3. Go to the FitNL1 report sheet and double-click to open the graph containing data and fit curve. Perform some customization of the graph such as adding grid lines, changing font size etc. Click the \mathbf{X} button on the graph window to put the modified graph back into the report.

Saving the Analysis Template

1. Go to the source data sheet of the workbook, which should be the first sheet. Select the Worksheet: Clear Worksheet... menu item and press OK in the dialog that opens. This will clear all the data from the sheet. The analysis report sheet will now be empty. Clearing the data is optional, and it makes the size of the analysis template file to be smaller.
2. Use the File: Save Window As... menu item and save the book as an OGW file under your User Files Folder with a suitable name such as Analysis Template. This OGW file can now serve as an Analysis Template for future analysis of similar data.

Re-using the Analysis Template

1. Start a new project and then select the menu item File: Recent Books and from the fly-out options select the Analysis Template saved earlier.
2. Make the data sheet active, and select File: Import: Import Wizard... and select the file <Origin EXE path>\Samples\I mport and Export\S21-235-07.dat.
3. Make sure the filter drop-down shows VarsFromFileNameAndHeader and change the I mport Mode drop-down to Replace Existing Data and click Finish.
4. Press the Recalculate button on the Standard toolbar. Origin will recalculate the analysis results and update the custom report sheet links, and at this point you can view and print the custom report sheet.

3.6.2 Creating Analysis Templates using Set Column Value

Summary

This tutorial will demonstrate how to add a column, set up Before Formula Script and have that script run whenever data changes in other columns. This technique can be used to create an Analysis Template for repeated analysis of similar data.

Minimum Origin Version Required: Origin 8.0 SR6
What you will learn

- How to use Set Column Values to create an analysis template
- How to select rows via the Go to function

Steps

1. Import the data from \Samples\Statistics\automobile.dat into a newly created workbook, as below. In this example, we will extract data, according to the Make column, into different worksheets.

| \# Book1 | | | | | $\square \square$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | A(C) | B(C) | CO | DC | E(V) | \wedge |
| Long Name | Year | Make | Power | $0 \sim 60 \mathrm{mph}$ | Weight | |
| Units | | | kw | sec | kg | |
| Comments | | | | | | |
| 1 | 1992 | Buick | 132 | 14 | 2238 | |
| 2 | 1992 | Acura | 154 | 12 | 2324 | |
| 3 | 1992 | GMC | 158 | 13 | 1531 | |
| 4 | 1992 | Chrysler | 132 | 10 | 2088 | |
| 5 | 1992 | Kia | 121 | 12 | 1202 | |
| 6 | 1992 | Suzuki | 106 | 10 | 1417 | |
| 7 | 1992 | Volvo | 95 | 14 | 1661 | |
| 8 | 1992 | Mercedes | 132 | 14 | 2208 | |
| 9 | 1992 | Acura | 128 | 13 | 1412 | |
| 10 | 1992 | Isuzu | 124 | 17 | 1518 | \checkmark |
| 4 |] | | | \|< | \rangle | 安 |

2. Add an empty column to the worksheet and bring up the Set Column Values dialog of the column. In the Before Formula Script box, enter the script below.
```
// Data range on which to perform discrete frequency count
range makeCol = !col(make);
// Worksheet to be extracted
range sourceWks = !;
// Clear worksheets
int sheetNum = page.nlayers;
int colNum = wks.ncols - 1;
if (sheetNum>1)
{
    for (jj=2; jj<=sheetNum; jj++)
    {
        layer -d 2;
}
// Tree variable to hold discfreqs outputs
tree tr;
// Perform discrete frequency count
discfreqs irng:=makeCol rd:=tr;
// String array to get result from tree
StringArray sa;
sa.append(tr.FreqCount1.Data1);
if( sa.GetSize() != NANUM )
{
    // Loop to extract data
    for (ii=1; ii<=sa.GetSize(); ii++)
    {
        string sn$ = sa.GetAt(ii)$;
        // Extract condition string
```

```
    string cond$ = "makeCol$ = " + sn$;
    // Create worksheet with different Make name
    newsheet name:=sn$ cols:=colNum outname:=on$
active:=0;
    // Extract data
    wxt test:=cond$ iw:=sourceWks c2:=colNum
ow:=on$;
}
```

3. This script will first perform a discrete frequency count on the Make column to get distinct values for Make. It will then create a new worksheet for each brand and extract data into these sheets.

4.
5. Make sure the recalculate mode is set to Auto and click OK. The data will be separated into different worksheets. Then the empty column (H) with a green lock icon indicates that this procedure can be updated automatically.

| \#\#\# Book1 | | | | $\square \square$ | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | E(V) | F(V) | G() | HN0 㦹 | , |
| Long Name | Weight | Gas Mileage | Engine Displacement | | |
| Units | kg | mpg | cc | | |
| Comments | | | | | |
| 1 | 2238 | 11 | 5736.5 | | |
| 2 | 2324 | 11 | 5212 | | |
| 3 | 1531 | 10 | 5900.4 | | |
| 4 | 2088 | 12 | 6277.4 | | |
| 5 | 1202 | 12 | 5736.5 | | |
| 6 | 1417 | 14 | 5736.5 | | |
| 7 | 1661 | 13 | 5031.7 | | |
| 8 | 2208 | 12 | 5736.5 | | |
| 9 | 1412 | 12 | 5736.5 | | |
| 10 | 1518 | 13 | 5900.4 | | v |
| 4 \checkmark
 a | ile Acu | A Buick ${ }^{\text {S }}$ S | uzuki (GMC A $1<$ | IIII $>$ | $\geqslant \ldots$ |

6. There are 18 makes of cars in the source data, so 18 new worksheets were created. Now we can check whether auto-update works.
Go to the Honda tab. Notice that there are 19 rows.
7. Switch to the first sheet. Scroll down and delete the last row.

Then auto-update will be triggered. Go to the Honda tab. You will see there are only 18 rows.

| automobile - automobile.dat | | | | | | | $\square \square$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | A(C) | B () | CM | D(\%) | E(V) | F(\%) | G(9) | ^ |
| Long Name | Year | Make | Power | $0 \sim 60 \mathrm{mph}$ | Weight | Gas Mileag | Engine Dis | |
| Units | | | kw | sec | kg | mpg | cc | |
| Comments | | | | | | | | |
| Sparklines | | | | | | | | |
| 13 | 1999 | Honda | 70 | 18 | 1067 | 24 | 2196.3 | |
| 14 | 2000 | Honda | 44 | 13 | 1210 | 24 | 1606.2 | |
| 15 | 2001 | Honda | 64 | 17 | 746 | 27 | 1589.8 | |
| 16 | 2001 | Honda | 66 | 14 | 1847 | 26 | 2474.9 | |
| 17 | 2002 | Honda | 51 | 17 | 1240 | 29 | 1475.1 | |
| 18 | 2003 | Honda | 38 | 19 | 1024 | 31 | 1245.6 | |
| 19 | | | | | | | | |
| 20 | | | | | | | | |
| 21 | | | | | | | | |
| 22 | | | | | | | | |
| 23 | | | | | | | | v |
| | yota A | Saturn AN | A Chrysler | λ Honda | $1 \mid<$ | | > | |

3.6.3 Creating a Custom Report Sheet

Summary

Worksheets in Origin can be customized by merging cells and placing various objects such as graphs, external images, links to variables and tables/cells in other sheets, in order to create custom reports. Such custom reports can be part of an analysis template, thus allowing user to open the analysis template, change data, and simply print their updated custom report.

Minimum Origin Version Required: Origin 8.0 SR6
What you will learn

- How to create a custom report sheet
- How to save custom report as part of Analysis Template (OGW) and re-use with new data

Steps

Note: First finish the previous tutorial named "Creating and Using Analysis Templates" where an analysis template named Analysis Template.OGW is created.

Importing Data

1. Use the File :Open menu item and open the Analysis Template Analysis Template.OGW. This analysis template already has a nonlinear fitting analysis operation set up for data from column D of the first sheet.
2. Click the Import Wizard button on the Standard Toolbar, or invoke the Import: I mport Wizard... menu item. the Import Wizard dialog will open.
3. Click the ... button next to the File edit box and select the file <Origin EXE
folder>\Samples\Import and Export\S15-125-03.dat.
4. Verify that the Import Filters for Current Data Type drop-down shows "Data Folder: VarFromFileNameAndHeader".
5. Verify that the Import Mode drop-down is set to Replace Existing Data.
6. This is an import filter shipped with the sample file, that specifies how to import the file and what header and file name strings to parse to create import variables. Walk thru the wizard pages to view the settings (Optional) and then click Finish button to import the file.
7. Right-click on workbook title bar and select Show Organizer to turn on organizer panel. Expand branches and verify that variables have been created and saved, as in the picture below:

8. Press the Recalculate button on the Standard toolbar to update the analysis result sheet. Verify that the analysis was updated and the embedded graph shows the new raw data and fit curve.

Creating Custom Report Sheet

1. Right click on one of the worksheet tabs and select Add to add a new worksheet. Rename this worksheet as Custom Report.
2. Make the Custom Report sheet active and add multiple blank columns.
3. Go to FitNL1 worksheet and right click on the graph with data and fit curve and select Copy from the context menu.
4. Go to Custom Report and right click in 1st column in a middle row and select Paste Link. This will paste a link to the embedded graph. Click and select a group of cells with this pasted cell at the top-left. Then click the Merge Cells button 屋気 on the Styles toolbar. This will merge the group of cells and the graph image will be shown larger in size.
5. Go to FitNL1 report sheet and right click on the Parameters node and select Copy Table from the context menu.
6. Go to the Custom Report sheet and right click in a cell to the right of the graph and select Paste Link from the context menu. This will place links to all values of the parameter table entries in the custom report.
7. Select the numeric value cells and right-click and select Format Cells... to bring up format dialog. Change the Digits drop-down to Set Decimal Places= and enter 2 in the Decimal Number edit box and click OK to format the numbers.
8. Select various cells in the table and use the Style toolbar controls to change foreground and background color, and use the Standard toolbar to change font size etc.
9. Right-click on top-left cell in the custom report sheet and select I nsert I mages from Files... context menu and select some image such as a company logo image. Click and drag to cover more cells and then click the Merge Cells button to increase the size of the logo display.
10. Click inside a cell on top-right and type in the string var:/ / @D and press Enter. Right click on cell and select Format Cells..., set the Format as Date, and then elect a suitable format from the Display drop-down. This will place the current date, pointed to by @D LabTalk variable, into the worksheet cell. Click and expand the selection to multiple cells and press the Merge Cells button to show the date with larger font size.
11. Right-click on a cell below the logo and date, and select Insert Variables context menu. In the dialog that opens, select User.Variables branch and select Sample. Check the Insert as Link check box on top and press I nsert to insert variable as link into the report sheet.

Click on a cell to the left of the inserted variable, and enter the static text Sample.
12. Insert more variables and format the cells for color and font.
13. Invoke the Format: Worksheet... menu item to open the Worksheet Properties dialog. Under the View tab, expand Show Headers and uncheck the column and row header check boxes. Expand the show Grid Lines branch and uncheck the column and row grid check boxes. Select the Format tab and check the Show Missing as Blank check box. Click OK to close this dialog.
14. Right-click on worksheet title bar and select View: Long Name to turn off long name row. Also turn off Units and Comments.
15. Select the File: Print menu item to open the print dialog, and press Options button, and uncheck the Horizontal/Vertical grid lines. Select File: Print Preview. Your custom report sheet should look like the image below:

Saving the Analysis Template

1. Go to the source data sheet of the workbook, which should be the first sheet. Select the Worksheet: Clear Worksheet... menu item and press OK in the dialog that opens. This will clear all the data from the sheet. The analysis report sheet and the custom report sheet will now be empty. Clearing the data is optional, and it makes the size of the analysis template file to be smaller.
2. Use the File: Save Window As... menu item and save the book as an OGW file under your User Files Folder with a suitable name such as My Custom Analysis. This OGW file can now serve as an Analysis Template for future analysis of similar data.

Re-using the Analysis Template

1. Start a new project and then select the menu item File: Recent Books and from the fly-out options select the Analysis Template saved earlier.
2. Make the data sheet active, and select File: I mport: I mport Wizard... and select the file <Origin EXE path>\ Samples\I mport and Export\ S21-235-07.dat.
3. Make sure the filter drop-down shows VarsFromFileNameAndHeader and change the Import Mode drop-down to Replace Existing Data and click Finish.
4. Press the Recalculate button on the Standard toolbar. Origin will recalculate the analysis results and update the custom report sheet links, and at this point you can view and print the custom report sheet.

3.7 Analysis Themes

3.7.1 Summary

In Origin 8, analysis procedures can be controlled by Themes. Themes are actually XML files which save settings in the analysis dialog.For example, after performing the analysis, there will now be a <Last Used> theme for this dialog which has saved the most recently used settings. You can assign a proper name for the theme and use it in the future.

For this tutorial, the Statistics on Columns dialog will be used to demonstrate how to create and use an analysis theme. This analysis provides descriptive statistics about the data such as mean, standard deviation, minimum, maximum, and more. For visualization, a histogram or box chart can also be created in the Analysis Result Sheet.

Minimum Origin Version Required: Origin 8.0 SR6

3.7.2 What you will learn

This tutorial will show you how to:

- Perform simple descriptive statistics
- Create an Analysis Theme
- Use the theme

3.7.3 Steps

Save the analysis procedure as Theme

1. Start with a new workbook and import the file \Samples\Statistics\automobile.dat.
2. Highlight column C and use the menu item Statistics: Descriptive Statistics: Statistics on Columns to open the dialog.
3. Expand the Moments tree node, and check the N Total, Mean, Standard Deviation, SE of Mean and Sum box.
4. Expand the Plots tree node, and check the Histograms and Box Charts check boxes. You will then get the corresponding histogram as well as box chart graphs.
5. Your selections in this analysis dialog can be saved as your theme, so that you may easily repeat the procedure. Click the "Save Theme as..." button:

to bring up this dialog:

6. Type a proper theme name, such as "MyTheme" and click OK button.
7. Click the OK button in the Statistics on Columns dialog. You will see the result in a new worksheet named DescStatsOnCols1.
T Descriotive Statistics $\boldsymbol{-}$ |

| | N total | Mean | Standard Deviation | SE of mean | Sum |
| ---: | ---: | ---: | ---: | ---: | :---: |
| Power | 340 | 79.85 | 28.07561 | 1.52261 | 27149 |

Repeat the analysis procedure by Theme

Once you save a theme, there are many ways to use it. For example, you can highlight column E and perform the same statistics on it.

- Open the Statistics on Columns dialog from the Most Recently Used menu. Most of the menu accessible dialogs can be found from MRU.

When you open the dialog from MRU, the default theme is <Last Used>. To use the MyTheme theme, select MyTheme from the Dialog Theme drop-down list. The settings from that theme will then be displayed in the dialog. Click the OK button to do the analysis.

- Another way to apply the analysis theme is to use the cascaded menu item. Once you use an analysis dialog, or save a theme for a dialog, there will be one more menu level added. You can choose the MyTheme menu.

When selecting, Open Dialog..., the dialog will open to the <Factory Default> theme. To change the settings of your theme, you can select your theme name from the Dialog Theme drop-down list inside the dialog, make changes, and resave the theme. Alternatively, to open a dialog with a saved theme without performing the analysis, hold down the shift key while selecting the theme from the menu. This will bring up the dialog with your theme applied so you can make changes as needed.

3.8 Batch Processing

Topics covered in this section:

1. Analysis Template and Batch Processing
2. Batch Processing with Summary Report in Excel

3.8.1 Analysis Template and Batch Processing

Summary

The idea of batch processing is that the same analysis process could be repeated easily and quickly. Origin allows users to perform batch processing of multiple files or data sets in columns, using an analysis template.

What You Will Learn

This tutorial will show you how to:

- Create an analysis template
- Perform batch processing with multiple columns
- Perform batch processing with multiple data files

Steps

Batch processing could be applied to multiple columns on the same worksheet. In this example, the input worksheet contains multiple columns, each stands for a curve to be fitted. We will first create an analysis template fitting the first curve, and then use batch processing for other columns. Later, the analysis template could also be used for other files.

To carry out the example, follow the steps below:

Creating an Analysis Template

1. Start with a new project and import the file Multiple Gaussians.dat under the path <Origin Folder>/Samples/Curve Fitting by selecting from top menu File:I mport:Single ASCII;
2. Highlight column $\mathbf{B}(\mathbf{Y})$ and choose Analysis: Fitting: Nonlinear Curve Fit from the top menu (or press Ctrl +Y) to open the NLFit dialog;
3. Select Gauss in the Function drop-down list, and click Fit to do the fitting;
4. Click Yes when asked if you want to view the report sheet;
5. On the FitNL1 report sheet, right-click on the word Summary above the summary peak fit results table and choose Create Copy as New Sheet.

6. Double-click on the sheet name, Sheet $\mathbf{2}$ and rename it as Results. Here, a custom report sheet is created, and will be included in the analysis template
7. Select File: Save Workbook as Analysis Template and give it a descriptive name such as My Gauss Results.

Performing Batch Processing with Multiple Columns

1. Make the original worksheet, Multiple Gaussians active.
2. Highlight columns $\mathbf{B}(\mathbf{Y})$ through $\mathbf{E}(\mathbf{Y})$.
3. Select File: Batch Processing from the menu or click on the Batch Processing button里蒈
4. Select the Load Analysis Template checkbox for the Batch Processing Mode.
5. In the Analysis Template drop-down, select the My Gauss Results.ogw file we saved earlier.
6. Select Use Existing XY Datasets from the Data Source drop-down list.
7. Make sure the Data Sheet drop-down is set as the original sheet, Multiple Gaussians.
8. Make sure the Result Sheet is set as Results. The settings should look like the following figure:

9. Click OK to perform the batch processing, and generate your Summary: Results Sheet.

| Summary | $\square \square$ | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $A(x)$ | BCO | $\mathrm{C}(\mathrm{yEr} \pm)$ | D(0) | $\mathrm{E}(\mathrm{yEr} \pm)$ | へ |
| Long Name | | y0 | yo | XC | XC | |
| Parameters | | Value | tandard Erro | Value | tandard Err | |
| 1 | Amplitude | 1.93312 | 0.16542 | 24.88788 | 0.24743 | |
| 2 | Error | 4.95445 | 0.05699 | 20.04554 | 0.1437 | |
| 3 | B | 0.14703 | 0.01585 | 24.97347 | 0.2421 | |
| 4 | B | -2.03288 | 0.04799 | 20.01455 | 0.05341 | |
| 5 | | | | | | |
| 6 | | | | | | |
| 7 | | | | | | \checkmark |
| 4 Results | | | | | | |

Performing Batch Processing with Multiple Data Files

1. Start with a new project.
2. Click on the Batch Processing button.
3. Select Load Analysis Template radio button for the Batch Processing Mode.
4. In the Analysis Template drop-down, select the My Gauss Results.ogw file we saved earlier.
5. Select I mport From Files in the Data Source drop-down list.
6. Click on the Browse button in the File List section and select the Gauss Lorentz.dat and Gaussian.dat from the Samples\Curve Fitting folder.
7. Click Add File(s), then click OK.
8. Make sure Data Sheet is set as Multiple Gaussians.
9. Make sure Result Sheet is set as Results.

10. Click OK.

| \#\#\# Summary | | | | | | $\square \square$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $A(x)$ | $\mathrm{B}(1)$ | CbEr ? | $\mathrm{D}(1)$ | $\mathrm{E}(\mathrm{yEr}$? | F(1) | 1^ |
| Long Name | | yo | y0 | $\times \mathrm{C}$ | x 0 | w | |
| Parameters | | Value | tandard Errc | Value | tandard Errc | Value | \tan |
| 1 | B | 16.835 | 1.7526 | 148.26 | 1.2418 | 28.22 | |
| 2 | Amplitude | 5.342 | 0.58341 | 24.907 | 0.086661 | 10.17 | |
| 3 | | | | | | | |
| 4 | | | | | | | \checkmark |
| 4 P | | | | | $1<$ - III | | \geqslant |

This time all three files, each having multiple columns of data have been processed using the My Gauss Results analysis template we created earlier. This is a quick and easy way to process many files of data into a single custom report sheet.

3.8.2 Batch Processing with Summary Report in External Excel File

Summary

This tutorial is associated with the Sample Origin Project: \Samples\Batch Processing\Batch Processing with Summary Report in External Excel File.OPJ

Minimum Origin Version Required: Origin 8.1 SR2
What you will learn

- How to perform batch processing of multiple data files
- How to send results to an external Excel file and save that file

Steps

1. Make the 'Raw Data' Worksheet in the 'Book1' Workbook active.
2. Select File : Batch Processing... from the menu or click the Batch Processing button the Standard Toolbar.
3. Select the Repeatedly Import into Active Analysis Template Window radio.
4. Set Data Source as I mport From Files.
5. Check the Use Import Setting in Workbook check box.
6. Click the ... browse button next to File List.
7. Select All Files (*.*) in Files of Type and browse to Origin's \Samples\Batch Processing folder.
8. Select all 10 .csv files in the folder, click Add File(s) then click OK.
9. Data Sheet should be set to 'Raw Data'. Note: 'Raw Data' is the first sheet of 'Analysis Template', it will be renamed as the file name of last import file by default if this template has already been used and re-saved.
10. Result Sheet should be set to 'My Results'.
11. Click the button to the right of the "Output Sheet" edit box. This will minimize the main dialog. Then click on the title bar of the Excel book (Book2), and press the button to the right of the scrolled up dialog to expand it again.
12. Expand the Options branch and check the Clear Output Sheet on Start check box and enter $\mathbf{7}$ as the Starting Row of Output Sheet.
13. Check the Append Label Rows check box.
14. Click OK

4 Statistics

Topics covered in this section:

1. Descriptive Statistics (Tutorials)
2. ANOVA (Tutorials)
3. Nonparametric Tests (Tutorials)
4. Multivariate Analysis (Tutorials)
5. Hypothesis Tests
6. Power and Sample Size

4.1 Hypothesis Tests

4.1.1 Summary

Hypothesis tests are frequently used to measure the quality of sample parameters or to test whether estimations for two samples on a given parameter are equal .

With parametric methods, assumptions are made about the underlying distribution from where the sample populations are selected. Usually, it requires that the data are independently sampled from a normal distribution.

4.1.2 What you will learn

This tutorial will show you:

- How to carry out hypothesis tests for practical data with Origin
- How to interpret the generated results

4.1.3 Steps

Hypothesis Tests in Origin

| Data Type | Goal | Method |
| :--- | :--- | :--- |
| One Sample | Compare the mean with a given value | One-Sample t-Test |
| | Compare the varariance with a given value | One-Sample Test for Variance |
| Two Samples | Test whether the means are equal | Two-Sample t-Test |
| | Test whether the variance are equal | Two Sample Test for Variances |
| Paried Samples | Test whether the means are equal | Pair-Sample t-Test |

[^1]Suppose a manufacturer produces high-quality screw nuts that must equal 21 millimeters in diameter. The quality control department randomly drew 120 nuts from the finished products, measureed the
diameters for each and stored the results in Diameters.dat file.They want to examine whether the mean diameter of the nuts is equal to 21 or not. The distribution of the measured diameters is known as close to normal historically, but the standard deviation of the population is unknown. Hence they may use the One-Sample t-Test in Origin following the steps below:

1. Start with a new workbook and import the file \Samples\Statistics\diameter.dat.
2. Open the One-Sample t-Test dialog by using the menu item Statistics:Hypothesis

Testing:One-Sample t-Test

3. Select the first column as Input Data Range, specify a two-sided test and type 21 as the test mean; and select the confidence level as 95%.

4. Note that by default the test procedure provides descriptive statistics of the variable and the hypothesis test results. Additionally, it is possible to produce a histogram of the data and a confidence interval for the mean.
5. Click the OK button to finish the analysis and generate results.

The Descriptive Statistics table shows the sample size, mean, standard deviation, and standard error for the variable. The sample mean, 21.00459 , is comparatively little bigger than the hypothesis mean 21, and the standard error of the mean(SEM) is 0.00156 .

| Descriptive Statistics | - | | | |
| :---: | :---: | :---: | :---: | :---: |
| "diameter" | 100 | 21.005 | 0.0156 | 0.00156 |

From the t-Test table, the t statistic (2.94337) and the associated p-value (0.00404) provide evidence that the average diameter of screw nuts is significantly different with 21 at the $?=0.05$ level.

| | t Statistic | DF | Prob> $>$ ti |
| :---: | :---: | :---: | :---: |
| "diameter" | 2.9437 | 99 | 0.00404 |
| Null Hypothes Atemative Hy "diameter": | : Mean = 21
 othesis: Mean
 the 0.05 lev | > 21 | population m |

The confidence interval indicates that it is 95% confident that the true mean of the variable lies within the interval [21.0015, 21.00769].

| | Conf. Levels in \% | Lower Limits | Upper Limits |
| :---: | :---: | :---: | :---: |
| "diameter" | 95 | 21.0015 | 21.00769 |

Pair-sample t-Test

1. Start with a new workbook and import the file \Samples\Statistics\abrasion_raw.dat.
2. Open the Pair-sample t-Test dialog by using the menu item Statistics:Hypothesis

Testing:Pair-sample t-Test.

3. Set column tireA as 1st Data Range and column tireB as 2 nd Data Range, enter 0 to be Test Mean.

4. Accept other settings as default and click the $\mathbf{O K}$ button to generate results.

From the t -Test table, the t statistic (2.83119) and the associated p -value (0.02536) indicate that the difference between the two means is significant, that is to say, the two types of tires have different abrasion resistance.

Two-Sample independent t-Test

A physician is evaluating the effect of two kinds of soporifics. To test the effectiveness of these two medicines, 20 insomniacs patients are randomly selected. Half took medicine A and the other half took medicine B, The extended sleeping time were recorded after each patient took the medicine. The result is saved as the time_raw.dat file.
To determine whether the two medicine have different effect on patients, we could carry out a twosample independent t -test with the following steps:

1. Start with a new workbook and import the file \Samples Statistics time_raw.dat.
2. Open the Two-Sample t-Test dialog by using the menu item Statistics:Hypothesis Testing:Two-Sample t-Test.
3. Select "Raw" for the Input Data Form; set column A and column B as the first and second data range respectively.

4. Accept other settings as default and click the $\mathbf{O K}$ button to generate results.

T-Test procedure automatically provides two tests of the mean difference. One is based on the assumption that the variances of two samples are equal and the other is not. In this example, both tests indicate that there is no significant evidence for a difference in cure effects between medicine A and medicine B. (p-values are 0.0738 and 0.074 , both greater than the significance level 0.05 .)

| | t Statistic | DF | Prob $=1$ \| |
| :---: | :---: | :---: | :---: |
| Equal Variance Assumed | 1.89811 | 18 | 0.07384 |
| Equal Variance NOT Assumed (Welch Correction) | 1.89811 | 17.8248 | 0.074 |
| Null Hypothesis: mean 1-mean2 $=0$ Atemative Hypothesis: mean 1-mean2 <> At the 0.05 level, the difference of | e population | eans is N | significan |

Note that both equal variance and unequal variance assumptions are supported.To determine whether the two samples have equal variances, we may select from top menu Statistics:Hypothesis Testing:Two-Sample Test for Variance to use the two-sample test for variance for testing

Two-Sample Test for Variance

1. Continue with a new workbook and import the file \Samples \Statistics \backslash time_raw.dat.
2. Open the Two-Sample Test for Variance dialog by using the menu item

Statistics:Hypothesis Testing:Two-Sample Test for Variance.

3. Select "Raw" for the Input Data Form; set column A and column B as the first and second data range respectively.

4. Accept other settings as default and click the $\mathbf{O K}$ button to generate results.

According to result, P_vaule $=0.77181>0.05$, therefore , it fail to reject null hypothesis, so two population variances are not signification difference.

4.2 Power and Sample Size

4.2.1 Summary

Power and sample size analysis is useful for researchers to design their experiments. Insufficient data and lack of the power to reject a false null hypothes is may lead to wrong conclusion and too much data is a waste of time and money. Therefore, it is essential to determine the sample size requirements of a experiments. The power of the experiment can be computed for a given sample size, as well as the required sample size for given power values.

4.2.2 What you will learn

This tutorial will show you how to calculate sample size or estimate power value to design experiments under different practical situations.

4.2.3 (PSS)One-Sample t-Test

Background:

A sociologist wants to determine whether the average infant mortality rate in the United States is equal to 8 . In experiment design, the difference of rate cannot vary more than 0.5 . And it is already known that the standard deviation should be 2.1 from pilot studies.

Question:

What would the sample size be, in order to estimate the average infant mortality rate at a confidence level of $95 \%(a=0.05)$ for power values of $0.7,0.8$ and 0.9 ?

Steps in Origin:

1. Active an empty worksheet, select Statistics: Power and Sample Size: (PSS) One-sample ttest;
2. Use the settings in the following figure for the pop-up PSS_tTestl dialog and click OK.

Origin Output:

A result sheet will be generated, and listing the calculated sample size for hypothetical powers.
T Sample Size(s) for Hypothetical Power(s)

| Alpha | Power | Sample Size |
| ---: | ---: | ---: |
| 0.05 | 0.7 | 111 |
| 0.05 | 0.8 | 141 |
| 0.05 | 0.9 | 188 |
| Null Mean $=8 ;$ | Atemate Mean $=8.5 ; \quad \mathrm{SD}=2.1 ;$ | 2-Sided Test |

Result I nterpretation:

According to the calculation, for experiment design, the sociologist should conduct a survey of 111 samples for power value $0.7,141$ samples for power value 0.8 and/or 188 samples for power value 0.9.

4.2.4 (PSS)Two-Sample t-Test

Background:

A doctor's office participates in two local insurance plans, Healthwise and Medcare. The purpose is to compare the mean time (in days) until reimbursement of claims for the two plans. Historical data shows that for Healthwise plan, the average time is 32 days and standard deviation is 7.5 days. For the Medcare plan, the average reimbursement time is 42 days and the standard deviation is 3.5 days.

Question:

If 5 claims from each plan were selected and the corresponding reimbursement times were recorded, what is the power to detect the difference in mean reimbursement times between the 2 plans by 5% or more?

Steps in Origin:

1. Compute the pooled standard deviation as:

$$
\sqrt{\left((5-1) * 7.5^{\wedge} 2+(5-1) * 3.5^{\wedge} 2\right) /(5+5-2)}=5.85235
$$

*Note that this value will be used as the standard deviation later for the power calculation.
2. Sample size of $1^{\text {st }}$ group and $2^{\text {nd }}$ group should be $5+5=10$,
3. Active an empty worksheet, and select Statistics: Power and Sample Size: (PSS) Two-

Sample t-Test,

4. Use the settings as the following figure in the pop-up PSS_tTest2 dialog and click OK.

Origin Output: A result sheet will be generated, showing the calculated power.

| Alpha | Sample Size | Power |
| ---: | ---: | ---: |
| 0.05 | 10 | 0.95054 |
| Group1 Mean $=32 ;$ Group2 Mean $=42 ; \quad \mathrm{SD}=5.85235 ;$ 2-sided Test | | |

Results I nterpretation:

According to the result, we can conclude that the doctor's office has a $0.95054: 1$ (or 95%) chance of detecting a difference if it collects 5 claims for each plan, in other words, the chance that you will fail to reject the null hypothesis and incorrectly conclude that the two means are not different is 4.946\%(1-0.95054)

4.2.5 (PSS) Paired-Sample t-Test

Background:

There are two same type measuring machines to measure the depth of a-Si thin film . In order to analysis whether there is any difference in the two machines measuring results, engineer would like to do an experiment to measure depth of a-Si thin film at the same position by the two machines in different products. According to a previous study on depth of a-Si thin film, the standard deviation of the difference was found to be $2 \mu \mathrm{~m}$. This will be used as an estimation of the standard deviation of the differences to plan this experiment. The difference in the measuring result of the two machines cannot be more than 0.5 , and the average depth of measured by machine 1 is $5000 \mu \mathrm{~m}$.

Question:

How many samples must be taken at a confidence level of 99% for power values of $0.8,0.9,0.95$?

Steps in Origin:

1. According to the information above, it is concluded that the mean of $1^{\text {st }}$ group is $5000 \mu \mathrm{~m}$ and mean of $2^{\text {nd }}$ group is $5000.5 \mu \mathrm{~m}$
2. Active an empty worksheet and select Statistics: Power and Sample Size: (PSS) Paired tTest
3. Set following in the pop-up PSS_tTestPair dialog and click OK

Origin Output:

A result sheet will be generated, listing the calculated sample size(i.e. number of samples) according to different power value.
Sample Size(s) for Hypothetical Power(s)

| Alpha | Power | Sample Size | |
| ---: | ---: | ---: | :---: |
| 0.01 | 0.8 | 191 | |
| 0.01 | 0.9 | 242 | |
| 0.01 | 0.95 | 289 | |
| | | | |
| Group1 Mean $=5000 ;$ Group2 Mean $=5000.5 ;$ SD $=2 ; 2$-Sided Test | | | |

Results I nterpretation:

According to result report, we can concluding that engineer has 80% chance of detecting a difference if measures 191 thin film ,90\% chance if measures 242 thin film and 95% chance if measures 289
thin film .(Note?Each number you enter is considered to be the sample size for each set of paired observations.)

4.2.6 (PSS)One-Way ANOVA

Background:

Researchers are interested in whether different plants have different nitrogen contents. They planned to record nitrogen contents in milligrams for 4 kinds of plants (20 observations per kind of plant). Previous research suggests that the square root of MSE(Mean Squared Error) is 60 and the CSS(corrected sum of squares) of mean is 400 .

Question:

Is the plan feasible? (i.e. will the calculated power be acceptable?)

Steps in Origin:

1. Calculate the sum of sample size of 4 groups by $20 * 4=80$
2. Active an empty worksheet and select Statistics: Power and Sample Size: One Way ANOVA
3. Use the settings in the following figure for the pop-up PSS_ANOVA1 dialog and click OK.

Origin Output:

A result sheet is generated, and the power value is calculated from the known condition.

Results I nterpretation:

The original research plan is not so good. There is only 69% chance to detect a difference from each group. To get more reliable results, researches should collect more samples per kind of plant.

4.3 Descriptive Statistics

4.3.1 Descriptive Statistics

- Descriptive Statistics
- 2D Binning

4.3.2 Descriptive Statistics

Summary

Origin provides comprehensive Descriptive Statistics support including basic statistics (mean, median, variance, etc.), frequency counts, and correlation coefficients of data you select. In addition to strong plotting features, Origin's statistical tools help you summarize and analyze your data.

This tutorial will show you how to:

- Use the Statistics on Column Dialog to calculate descriptive statistics for grouped data.
- Copy statistical results to a new worksheet for further processing.
- Unstack Columns to a graph.
- Analyze data sets with the Correlation Coefficient Tool.

Finding Frequency Information for Groups

Start with some data. We can use the Discrete Frequency Tool to quickly obtain frequency information for groups of data.

1. Start with a new project or a new workbook. Import the data file
\Samples\Statistics\automobile.dat by using I mport Single ASCII ${ }^{\text {127. }}$
2. Highlight the first two columns. Select Statistics: Descriptive Statistics: Discrete Frequency to open a dialog. Column A and Column B are automatically picked as Input Data. Click OK

Results of discrete frequency are sorted in descending order of Count; the most frequently occurring data will appear first. You can rearrange the results by sorting worksheets even though there are locks on the columns.

Calculating Descriptive Statistics on Grouped Data

Using the Statistics on Columns tool, we can find basic statistics for each group of data.

1. Switch back to the first sheet.
2. Select Statistics: Descriptive Statistics: Statistics on Columns to open the Statistics on Columns dialog.
3. Open the Range 1 branch and click the interactive button 星. The dialog will "roll up" and you can set Data Range as Column $C \sim$ Column G by selecting $C(Y)$ and dragging to $G(Y)$ in the Worksheet. Click the button in the rolled up dialog to restore the dialog. To set Group Range to $\mathbf{B}(\mathbf{Y}):$ Make, click the triangle button next to Grouping Range and select $\mathbf{B}(\mathbf{Y})$: Make.
4. Here, we will show how to make a box plot for the grouped data and put all groups in a graph for a quick comparison. Do the following: 1) Expand the Output Settings branch and the Graph Arrangement sub-branch. Select the Arrange Plots of Same Type in One Graph check box. 2) Expand the Plots branch, and select the Box Charts check box.

5. Click the $\mathbf{O K}$ button to get the results in a report sheet.

You can double-click to open the graph containing the box plot and customize the graph. Click the Close button on the graph to restore the modified graph to the Report Worksheet.

Using Statistical Results for Further Operations

After using the Statistics on Columns dialog to produce a report tree, you may wish to do further analysis and plotting on the statistical results.

For example, to get average attribute values (i.e. horsepower, $0-60 \mathrm{mph}$ time, weight, mileage) by vehicle Make from 1992 to 2004, perform the following:

1. In the report sheet, right-click on the title of the Descriptive Statistics table and select Create Copy as New Sheet from the short-cut menu.

2. When the new sheet is active, select Worksheet: Unstack Columns.
3. In the dialog that comes up, set columns D and E as Data to be Unstacked. Since the triangle button fly-out menu supports only one selection, you need to use the interactive button昆
4. Set column A as Group Variables.
5. Select the Include Other Columns check box and set Other Columns to column B.
6. Set Put Grouping Info. to to Long Name. Click the OK button.

7. In the result of Unstack Columns, we get the mean and standard deviation of Power, 0~60 mph time, Weight, Gas Mileage and Engine Displacement for the 18 different car makes.
8. Highlight the whole result worksheet. Select Plot: Multi-Curve: Stack from the main menu.
9. In the pop-up dialog, all columns in the worksheet are automatically set as Input. Set Plot Type to Scatter and click the OK button.

In the above screenshot, the top X-Axis Tick Labels have been rotated 45 degrees for clarity. To do this, double-click on the tick labels to open the \mathbf{X}-Axis dialog. Set the Rotation on the Custom Tick Labels tab.

Analyzing the Relationship between different Indicators

We can use a correlation coefficient to explore the relationship between columns of our automobile data. In addition, we can plot a scatter matrix with a confidence ellipse to get a graphical representation of the correlation.

1. Go to the original worksheet with the source data. Highlight the last five columns.
2. Select Statistics: Descriptive Statistics: Correlation Coefficient from the Origin menu to open the Correlation Coefficient tool. Note that Pearson is the default selection. This method is suitable for quantitative data.
3. Under the Plots branch, select the Add Confidence Ellipse check box. The Scatter Plot check box should then be automatically selected. This means that the tool will create a scatter matrix with a confidence ellipse added to each scatter plot. Click OK.

Note the high positive correlation between Engine Displacement and Power and the high negative correlation between Gas Mileage and Engine Displacement.

4.3.3 2D_Binning

Summary

The 2D Frequency Count/Binning operation counts the frequencies for data with two variables. If needed, a 3D bar graph and/or an image plot of the result will be generated to provide an intuitive demonstration of the distribution of the data points.

Minimum Origin Version Required: Origin 8.0 SR6
What you will learn

- How to count the frequencies for data with two variables.
- How to add the outliers into the bins.

Steps

1. Create a new project and import the Origin sample data 2D Binning 1.dat which is located in <Origin Program Folder> \Samples\Statistics.

2. Highlight column A and column B, select menu Statistics: Descriptive Statistics: 2D Frequency Count/ Binning to bring up the TwoDBinning dialog.
3. Specify the following settings to in the dialog:
o Select Auto from the Recalculate drop-down list.
o In the \mathbf{X} branch, uncheck Auto for Minimum Bin Beginning, Maximum Bin End, and Bin Size and enter 40, 60, and 5 into the three text boxes, respectively. The same parameters in the \mathbf{Y} branch are set to be 50, 70, and 10, respectively.
o Choose Sum from the Quantity to Compute drop-down list. Check Output Matrix check box. In the Matrix Plots branch, check both 3D Bars and I mage Plot.

Tutorials for Origin 9.0

4．Click the OK button，then you will get the following outputs：
o Worksheet

| \＃\＃\＃A2DBinning1－2D Binning 1．dat | | | | $\square \square$ | | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $A(\ldots)$ 㙖 | 日（1） | C（19） | | | \wedge |
| Long Name | Bin Ends of＂ x ＂ | Sum | Sum | | | |
| Bin Ends of＂ Y ＂ | | 60 | 70 | | | |
| Comments | | 50－60 | 60－70 | | | |
| 1 | 45 | 3228 | 8596 | | | |
| 2 | 50 | 2929 | 7324 | | | |
| 3 | 55 | 2271 | 5985 | | | |
| 4 | 60 | 2164 | 4033 | | | |
| 5 | | | | | | |
| 6 | | | | | | |
| 7 | | | | | | |
| 8 | | | | | | |
| 4 2D Binn | ing 1 入TwoDBin | | $1 \leqslant$ | IIII | \rangle | |

o Matrix

o 3D Bars

충 Graph1-3D Bar
 -回図

1

o I mage Plot

5. To add the outliers for Y variable into the bins, click on the lock icon in the TwoDBin1 worksheet, and select Change Parameters to open the dialog again.
6. In the \mathbf{Y} branch, expand Border Options node, then check both Include Outliers<Minimum and Include Outliers>=Maximum.

7. Click the OK button. Two columns for the outliers are added to the TwoDBin1 worksheet.

Matrix，3D Bars Graph，and the Image Plot will be updated as well．

| 鳊 Mat2DBin1 ： $1 / 1$ Sum | | | | $\square \square \times$ | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 2 | 3 | 4 | 回 |
| 1 | 225 | 315 | 135 | 135 | ヘ |
| 2 | 3228 | 2929 | 2271 | 2164 | |
| 3 | 8596 | 7324 | 5985 | 4033 | |
| 4 | 13440 | 13298 | 11193 | 9367 | |
| TwoDBin1 | | | | | |
| | | | | | |

8. Double click on Y axis and open Axes Dialog, chage scale fromand to to 45 and 90 . Click Z axis scale, and chage to to be 14000 .

4.4 ANOVA

4.4.1 One Way ANOVA

Summary

There are two main modes of datasets in Statistics - indexed and raw. When you perform an analysis, you do not need to use the whole dataset, so Origin provides several ways to select data. For example, you can use the interactive Regional Data Selector button to graphically select the data or you can use the Column Browser dialog to make your selection.

In this tutorial, you'll use the Analysis of Variance (ANOVA) statistical test, to learn how to use these two different modes of data to perform analysis and how to select data by using the Column Browser dialog.

ANOVA is a kind of parametric method for means comparison and is an extension of t-test. When there are more than two groups to be compared, pairwise t-test is not appropriate and ANOVA should be used. ANOVA requires normality and equal variance. Otherwise, non-parametric analysis should be used.

Minimum Origin Version Required: Origin 8.0 SR6

What you will learn

This tutorial will show you how to:

- Use different input data mode on statistical analysis dialog
- Test normality for special part of dataset
- Perform one-way ANOVA
- Select data by Column Browser

Steps

Origin can calculate ANOVA in indexed as well as raw data mode. For One-Way ANOVA, when using indexed mode, data should be organized in two columns : one for Factor and the other for data.

| Book1 - nitrogen.txt | | $\square \square$ | |
| :---: | :---: | :---: | :---: |
| | A (1) | B(0) | \wedge |
| Long Name | plant | nitrogen | |
| Comments | Factor | Data | |
| 1 | PLANT3 | 18.15473 | |
| 2 | PLANT3 | 12.90409 | |
| 3 | PLANT2 | 18.61197 | |
| 4 | PLANT1 | 17.7111 | |
| 5 | PLANT4 | 11.81661 | |
| 6 | PLANT3 | 11.68327 | |
| 7 | PLANT2 | 23.43165 | |
| | PLANT2 | 14.01454 | v |
| (1) ${ }^{\text {a }}$ nitrog | gen/ | < | |

When using Raw data mode, the different levels are in different columns.

| \#\# Book1 - nitrogen_raw.txt | | | | $\square \square$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\mathrm{A}(\times)$ | B(C) | CO | D(1) | | \wedge |
| Long Name | Plant1 | Plant2 | Plant3 | Plant4 | | |
| Comments | Level1 | Level2 | Level3 | Level4 | | |
| 1 | 17.7111 | 18.61197 | 18.15473 | 11.81661 | | |
| 2 | 32.15046 | 23.43165 | 12.90409 | 2.39438 | | |
| 3 | 17.70871 | 14.01454 | 11.68327 | 1.09914 | | |
| 4 | 28.07729 | 12.17685 | 23.52293 | 16.00756 | | |
| 5 | 7.83567 | 4.86902 | 16.00594 | 13.85077 | | |
| 6 | 2.06008 | 18.93963 | 3.04056 | 9.22245 | | |
| 7 | 22.81923 | 29.92086 | 14.29516 | 14.86523 | | \checkmark |
| 1 nitrog | n_raw | | < | IIII ${ }^{\text {\| }}$ | $>$ | |

Indexed data mode

Nitrogen content has been recorded in milligrams for 4 kinds of plant, and we are interested in whether different plants have different nitrogen content. We will perform One-Way ANOVA using index data mode for this example.

1. Start with a new workbook and import the file \Samples\Statistics\nitrogen.txt. Make sure you select .txt from the drop-down menu Files of type. First, we should perform a normality test on each group of data to determine if they are from a normal distribution.
2. Highlight the first column, right-click and select Sort Worksheet from the Worksheet menu and choose Ascending.
3. Highlight the second column from row 1 to row 20 - which belongs to "PLANT1" - and open the Normality Test dialog by choosing the menu item Statistics: Descriptive Statistics:

Normality Test.

| \#\# Book3 - nitrogen.txt | | | x |
| :---: | :---: | :---: | :---: |
| | $A(x)$ | B(Y) | \wedge |
| Long Name | plant | nitrogen | |
| Units | | | |
| Comments | | | |
| Sparklines | | | |
| 1 | PLANT1 | 12.25362 | |
| 2 | PLANT1 | 18.62515 | |
| 3 | PLANT1 | 19.41474 | |
| 4 | PLANT1 | 17.7111 | |
| 5 | PLANT1 | 6.22726 | |
| 6 | PLANT1 | 18.20339 | |
| 7 | PLANT1 | 22.81923 | |
| 8 | PLANT1 | 2.06008 | |
| 9 | PLANT1 | 32.15046 | |
| 10 | PLANT1 | 28.07729 | |
| 11 | PLANT1 | 17.70871 | |
| 12 | PLANT1 | 20.60228 | |
| 13 | PLANT1 | 25.23966 | |
| 14 | PLANT1 | 16.73526 | |
| 15 | PLANT1 | 20.75954 | |
| 16 | PLANT1 | 30.35227 | |
| 17 | PLANT1 | 31.14475 | |
| 18 | PLANT1 | 17.58991 | |
| 19 | PLANT1 | 12.39297 | |
| 20 | PLANT1 | 7.83567 | |
| 21 | PLANT2 | 18.93963 | |
| 22 | PLANT2 | 29.92086 | |
| 23 | PLANT2 | 12.17685 | |
| 24 | PLANT2 | 18.61197 | |
| | Difant? | 2nacton | |
| | $n /$ | $\square \leqslant \square\rangle$ | |

4. Use the default setting of the dialog and click OK. From the p-value of result, p-value $=0.58545$, we can see "PLANT1" follows a normal distribution.
5. In a similar way, you can highlight the range of data "PLANT2", "PLANT3" and "PLANT4" and test for Normality. Our sample data has normal distribution for all plants.
6. With our nitrogen data worksheet active, open the ANOVAOneWay dialog by using the menu item Statistics: ANOVA: One-Way ANOVA. Set the Input Data mode as Indexed, assign the "plant" and "nitrogen" column as Factor and Data respectively using the right-arrow buttons. Click the + to expand the Means Comparison node, set Significance Level as 0.05 and check the Tukey Means Comparison method. Check Levene | | from Tests for Equal Variance branch. Click the OK button to perform One-Way ANOVA.

Explaining the result:

- From the "Homogeneity of Variance Test" table of one-way ANOVA result, we can see that the four groups have equal variance, since the p-value is bigger than 0.05 .

- From the result of Overall ANOVA we can conclude that at least two groups of the four have significant different means, since the p -value is smaller than 0.05 .

| | DF | Sum of Squares | Mean Square | F Value | Prob $>F$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Model | 3 | 1996.36652 | 665.45551 | 12.86214 | 6.99338E-7 |
| Error | 76 | 3932.05317 | 51.73754 | | |
| Total | 79 | 5928.41969 | | | |

Null Hypothesis: The means of all levels are equal.
Atemative Hypothesis: The means of one or more levels are different. At the 0.05 level, the population means are significantly different.

- To research further, we expand the results of "Means Comparisons".

Sig equals 1 indicates that the means difference is significant at the 0.05 level. Sig equals 0 indicates that the means difference is not significant at the 0.05 level.

Here we see that PLANT4 has significantly different means when compared to each of the other three groups.
raw data mode

1. Select File : Open and choose WorkBooks from Files of type drop-down list, and browse to \Samples\Statistics folder and open the file Body.ogw
2. Select menu item Statistics: ANOVA : One-Way ANOVA to bring up the ANOVAOneWay dialog. Choose Raw as Input Data mode. Enter the Level1 Name and Level2 Name as "Male Weight" and "Female Weight" respectively.
3. Now we will use the Data Browser to select data in the Data branch. Click the triangle icon beside Male Weight edit box, in the fly-out menu, select Select Columns... to open the

Column Browser dialog.

In the Column Browser dialog, you can select in Current Book from List Columns drop-down list to see all available worksheet columns in the current book. Select Weight in the sheet [Body]Male and click Add and OK to add it to Male Weight edit box. Similarly, assign Weight from [Body]Female to Female Weight edit box.

4. Accept other default settings in the ANOVAOneWay dialog and click OK. From the output report footnote, we can conclude that at the 0.05 level, the population weight means between male and female are not significantly different.

4.5 Nonparametric Tests

4.5.1 Non-parametric Statistics Overview

Summary

Nonparametric tests is widely used when you don't know whether your data follows normal distribution, or you have confirmed that your data do not follow normal distribution. Meanwhile, hypothesis tests are parametric tests based on the assumption that the population follows a normal distribution with a set of parameters.

What you will learn

This tutorial will show you:

- An introduction on non-parametric tests in Origin
- How to run the non-parametric tests for different practical situations
- How to calculate correlation coefficient in non-parametric statistics

Introduction: Nonparametric Tests in Origin

Nonparametric tests does not require the normality assumption. It is commonly used in the following situations:

- Small sample size
- Categorical/Binary/Ordinal data
- Normal distribution can not be assumed

| | | Nonparametric | Parametric |
| :---: | :---: | :---: | :---: |
| | | Data from any distribution | Data from normal distribution |
| | | Small Samples | Large Samples |
| One Sample | | Wilcoxon Signed Rank Test | One Sample T-Test |
| Two Samples | Independent Samples | - Mann-Whitney test
 - Kolmogorov-Smirnov test | Two Sample T-Test |
| | Paired Samples | - Wilcoxon signed rank Test
 - Sign Test | Paired Sample T-Test |
| Multiple Samples | Independent Samples | - Kruskal-Wallis ANOVA
 - Mood's Median Test | One Way ANOVA |
| | Related Samples | Friedman ANOVA | One Way Repeated Measure ANOVA |

| | Correlation in
 Samples | \bullet
 \bullet
 Kendall | Pearson |
| :--- | :--- | :--- | :--- |

One Sample Independent Tests

The One-Sample Wilcoxon Signed Rank test is designed to examine the population median relative to a specified value. You may choose a one- or two-tailed test. The Wilcoxon signed rank test hypotheses are H0: median = hypothesized median versus H 1 : median ? hypothesized median. In this example, a quality engineer in a production shop is interested in whether median (or average) of the weight of product is equal to 166 . So select 10 product at random and measured their weight . The data measured as following:
151.5152 .4153 .2156 .3179 .1180 .2160 .5180 .8149 .2188 .0

The engineer perform Normality Test to determine if the distribution of the data is normal distribution

1. Open a new worksheet and input the above data in col(A). Select Statistics: Descriptive Statistics: Normality Test... to open the Normality Test dialog.
2. Select $A(X)$ as Data range.

3. Click the $\mathbf{O K}$ button to generate results.
Shapiro-Wik

| | DF | Statistic | p-value | Decision at level(5\%) |
| :---: | :---: | :---: | :---: | :---: |
| 日 | 10 | 0.83472 | 0.03814 | Reject normality |

B: At the 0.05 level, the data was not significantly drawn from a normally distributed population.

According to result, P -value $=0.03814$,the distribution of the data is not normal distribution at the 0.05 level. So, perform One-Sample Wilcoxon Signed Rank test:

1. Select Statistics: Nonparametric Tests: One-sample Wilcoxon Signed Rank Test... to open the dialog.
2. Set column A as Data Range.
3. Input $\mathbf{1 6 6}$ in Test Median text box.

4. Click the OK button to generate results
Descriptive Statistics

| | N | Min | Q1 | Median | Q3 | Max |
| :---: | :---: | :---: | :---: | ---: | :---: | :---: |
| A | 10 | 149.2 | 152.175 | 158.4 | 180.35 | 188 |

| | Test Statistics | - | | |
| :--- | ---: | ---: | ---: | ---: |
| A | 28 | 0 | Extact Prob $>\|W\|$ | Asymp. Prob $>\|W\|$ |

Null Hypothesis: Median = 166
Altemative Hypothesis: Median <> 166
A: At the 0.05 level, the population median is NOT significantly different from the test median (166).

According to the result, it fails to reject null hypothesis at the 0.05 level and concludes that the median is equal to 166.

Two Sample Independent Tests

Origin provides two tests for non-parametric statistics of two sample independent system: the MannWhitney Test and Two Sample Kolmogorov-Smirnov Test

This following example shows the practical use of Mann-Whitney Test. The abrasions(in mg) are measured for two types of tires(A and B), 8 experiments were carried out for each tire type. The data is indexed and stored in abrasion indexed.dat file.

1. Import the abrasion_indexed.dat file from \Samples\Statistics \backslash

Select Statistics: Nonparametric Tests: Mann-Whitney Test to open the dialog.
Keep I nput Data Form as Index
4. Set column A as Group Range, set column B as Data Range.
5. Select the Exact \mathbf{P} Value check box.

6. Click the $\mathbf{O K}$ button to generate results, which should be in the MannWhitney1 sheet

| Test Statistics \quad - | | | | | | |
|---|---|---|---|---|---|---|
| | U | Z | Exact Prob=\|U| | Asymp. Prob=\|U| |
| | 34.5 | 0.2102 | 0.82191 | 0.83351 |
| | Null Hypothesis: $F(x)=G(y)$
 Atemative Hypothesis: $F(x)$ <> $G(y)$ | | | |

$0 \mathbf{U}$: The \mathbf{U} statistic can be simply calculated from the rank of two groups. It is the number of times a score in the 2nd group is larger than a score in the 1st group.
o Z: The approximate Normal test statistic. It provides an excellent approximation as the sample size grows.

0 Exact Prob: The exact p-value, only available when Exact P Value is selected in the dialog. However, it could be very CPU-time consuming for large sample size.

0 Asymp.Prob: The asymptotic p-value calculated from the approximate Normal test statistic, Z

Non-parametric Measures of Correlation

Correlation coefficient is used as a measure of relationship between two variables.It is possible to calculate the correlation coefficient for non-parametric statistics.

Origin provides two non-parametric methods to measure the correlations between variables:

- Spearman: common substitution of Pearson correlation coefficient,Spearman's coefficient can be used when both dependent (variable and independent variable are ordinal numeric, or when one variable is a ordinal numeric and the other is a continuous variable. However, it can also be appropriate to use Spearman's correlation when both variables are continuous.
- Kendall: Used with ordinal variables for assessing agreement among raters

The following example shows how to calculate correlation coefficient for non-parametric situations.

1. Import the abrasion_raw.dat file from Samples Statistics;
2. Highlight Column A and column B. Select Statistics:Descriptive Statistics:Correlation Coefficient to open the corrcoef dialog;
3. Check Spearman and uncheck Pearson;

4. Click the OK button to generate the results, in the CorrCoef1 sheet.

From the value of Spearman Corr., it can be concluded that the abrasion between tire A and tire B are strongly related.

Paired Sample wilcoxon Signed Rank Tests

We will compare the two medians of tire A and tire B in above example.

1. Continue with the abrasion_raw.dat file from Samples \backslash Statistics;
2. Select Statistics: Nonparametric Tests: Paired Sample wilcoxon Signed Rank Tests to open the dialog;
3. Selcet Column A as 1st Range Data and column B as 2nd range Data;

4. Click the $\mathbf{O K}$ button to generate the results.

We can conclude that two medians are significantly different. Obviously, median of group A is larger than that of group B.

Multiple Independent Samples Test

In this example, the gas mileage of four car makers are measured. Several experiments are carried out for each car makers. The results are listed in the sample data table.

| GMC/ mpg | Infinity/ mpg | Saab/ mpg | Kia/ mpg |
| :--- | :--- | :--- | :--- |
| 26.1 | 32.2 | 24.5 | 28.4 |
| 28.4 | 34.3 | 23.5 | 34.2 |
| 24.3 | 29.5 | 26.4 | 29.5 |
| 26.2 | 35.6 | 27.1 | 32.2 |
| 27.8 | 32.5 | 29.9 | |
| 30.6 | 30.2 | | |
| 28.1 | | | |

To evaluate whether the gas mileage of the four car makers are equal, and which one is the most efficient, Kruskal-Wallis ANOVA is chosen as the nonparametric test method.

1. Create a new workbook in Origin, copy the sample data and paste into it;
2. Select Statistics:Nonparametric Tests:Kruskal-Wallis ANOVA to open the kwanova dialog;
3. Specify Raw as Input Data Form;
4. Click the triangle button next to Input, and select All Columns in the context menu;

| StatisticsWonparametric Tests: kwanova | | | | $?$ | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Dialog Theme
 Description Perform Kruskal-Wallis ANOVA | | | | | |
| | | | | | |
| Results Log Output \square
 Recalculate
 Manual | | | | | |
| | | | | | |
| Input Data Form Raw v | | | | | |
| Input [Book 1]Sheet1!1:end | | | | | |
| Significance Level
 Output Results | 0.05 | | | | |
| | [<input>] | | | 星 | |
| | | | OK | Canc | |

5. Click the OK button to generate results, the results are stored in a new worksheet KWANOVA1.

From the p-value we can conclude that gas mileage of the four car makers are significant different.

| Chi-Square | DF | Prob>Chi-Square | | |
|---|---|---|---|---|
| 12.596 | 3 | 0.0055958 | | Null Hypothesis:The samples come from the same population |
| :--- |
| Atemative Hypothesis:The samples come from different populations |
| : At the 0.05 level, the populations are significantly different |

From the rank table we can conclude that Infinity is the most efficient one.

| Ranks | | | |
| ---: | ---: | ---: | ---: |
| "GMCimpq" | 7 | 7.7857 | 54.5 |
| "Infinity/mpg" | 6 | 17.833 | 107 |
| "Saabimpg" | 5 | 6.2 | 31 |
| "Kiaimpg" | 4 | 15.125 | 60.5 |

Multiple Related Samples Test

Ophthalmologists are investigating whether laser He-Ne therapy works for children. They have data from 2 groups, 6-10 Years Old and 11-16 Years Old. Each data set contains study of 5 persons' naked-eye eyesight difference after 3 period of therapy. The results are stored in the eyesight.dat.

Due to the small sample size, non-parametric statistics would be needed in analysis, following the steps below:

1. Import the eyesight. dat file from \Samples\Statistics\;
2. Select Statistics:Nonparametric Tests:Friedman ANOVA to open the friedman dialog;
3. Select Column A as Data Range, Column C as Factor Range, and Column D as Subject Range;

4. Click the OK button to generate results.

The p -value of $\mathcal{X}_{6 t o l 0}$ is 0.0067379 , which is less than 0.05 . The populations are significantly different, indicating that the therapy are effective for the age group 6-10.

In a similar way, choose column B as Data Range and the rest setting of I nput are the same with Step 3 previously.

Check the result, we can see that p -value of $\mathcal{Z}_{1} 1$ ol6 is 0.02599 , less than 0.05 or 0.10 . So we can also conclude that eyesight of 11-16 years old kids is better after 3 period of therapy.

And we can see that $\mathcal{X}_{t+010}>\mathcal{X}_{1} 1$ ol6 , that means, laser He-Ne therapy works better on 6-10 years old kids. The earlier children are to be involved in therapy, the more their eyesight can be improved.

4.6 Multivariate Analysis

4.6.1 Principal Component Analysis

Summary

Principal Component Analysis is useful for reducing and interpreting large multivariate data sets with underlying linear structures, and for discovering previously unsuspected relationships.

We will start with data measuring protein consumption in twenty-five European countries for nine food groups. Using Principal Component Analysis, we will examine the relationship between protein sources and these European countries.

Selecting Principal Methods

To determine the number of principal components to be retained, we should first run Principal Component Analysis and then proceed based on its result:

1. Open a new project or a new workbook. Import the data file \samples\Statistics \backslash Protein

Consumption in Europe.dat

2. Select the entire worksheet and then select Statistics: Multivariate Analysis: Principal

Component Analysis.
3. Accept the default settings in the open dialog box and click OK.
4. Select sheet PCA1.
5. In the Eigenvalues of the Correlation Matrix table, we can see that the first four principal components explain 86% of the variance and the remaining components each contribute 5% or less. We will keep four main components.

| Eigenvalues of the Correlation Matrix | | | |
| :--- | ---: | :--- | :--- |
| | Eigenvalue | Percentage of Variance | Cumulative |
| 1 | 4.00644 | 44.52% | 44.52% |
| 2 | 1.635 | 18.17% | 62.68% |
| 3 | 1.12792 | 12.53% | 75.22% |
| 4 | 0.95466 | 10.61% | 85.82% |
| 5 | 0.46384 | 5.15% | 90.98% |
| 6 | 0.32513 | 3.61% | 94.59% |
| 7 | 0.27161 | 3.02% | 97.61% |
| 8 | 0.11629 | 1.29% | 98.90% |
| 9 | 0.09911 | 1.10% | 100.00% |

6. A scree plot can be a useful visual aid for determining the appropriate number of principal components. The number of components depends on the "elbow" point at which the remaining eigenvalues are relatively small and all about the same size. This point is not very evident in the scree plot, but we can still say the fourth point is our "elbow" point.

7. Click the lock icon 盒in the results tree and select Change Parameters in the context menu. Set Number of Components to Extract to 4. Do not close the dialog; in the next steps, we will retrieve component diagrams.

Request Principal Component Plots

In the Plots branch of the dialog, users can choose whether they want to create a scree plot or a component diagram.

- Scree Plot

The scree plot is a useful visual aid for determining an appropriate number of principal components.

- Component Plot

Component plots show the component score of each observation or component loading of each variable for a pair of principal components. In the Select Principal Components to Plot group, users can specify which pair of components to plot. The component plots include:

0 Loading Plot

The loading plot is a plot of the relationship between the original variables and the subspace dimension. It is used to interpret relationships between variables.
o Score Plot
The score plot is a projection of data onto subspace. It is used to interpret relationships between observations.

O BiPlot

The biplot shows both the loadings and the scores for two selected components in parallel.

1. In the dialog that was opened in the preceeding steps, open the Plots branch. Make sure Scree Plot, Loading Plot, and Biplot are selected.
2. The first two components are usually responsible for the bulk of the variance. This is why we are going to plot the component plot in the space of the first two principal components. In the Select Principal Components to Plot group, set Principal Component for X Axis to 1, and set Principal Component for Y Axis to 2. Click OK.
Statistics M 4 ultivariate Analysis: pca
Dialog Theme
Description Perform Principal Component Analysis

Select Principal Components to Plot

Loading Plot
Score Plot
Biplot
Output Settings
\qquad Cancel

Interpreting The Results

1. In the Correlation Matrix, we can see that the variables are highly correlated. Many values are greater than 0.3. Principal Component Analysis is an appropriate tool for removing the collinearity.

- Correlation Matrix

| | Red Meat | White Meat | Eggs | Milk | Fish | Cereals | Starch | Nuts | Fruits \& Vegetables |
| ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Red Meat | 1 | 0.153 | 0.58561 | 0.50293 | 0.06096 | -0.49988 | 0.13543 | -0.34945 | -0.07422 |
| White Meat | 0.153 | 1 | 0.62041 | 0.28148 | -0.23401 | -0.4138 | 0.31377 | -0.63496 | -0.06132 |
| Eggs | 0.58561 | 0.62041 | 1 | 0.57553 | 0.06557 | -0.71244 | 0.45223 | -0.55978 | -0.04552 |
| Milk | 0.50293 | 0.28148 | 0.57553 | 1 | 0.13788 | -0.59274 | 0.22241 | -0.62109 | -0.40836 |
| Fish | 0.06096 | -0.23401 | 0.06557 | 0.13788 | 1 | -0.52423 | 0.40385 | -0.14715 | 0.26614 |
| Cereals | -0.49988 | -0.4138 | -0.71244 | -0.59274 | -0.52423 | 1 | -0.53326 | 0.651 | 0.04655 |
| Starch | 0.13543 | 0.31377 | 0.45223 | 0.22241 | 0.40385 | -0.53326 | 1 | -0.47431 | 0.08441 |
| Nuts | -0.34945 | -0.63496 | -0.55978 | -0.62109 | -0.14715 | 0.651 | -0.47431 | 1 | 0.37497 |
| Fruits \& Vegetables | -0.07422 | -0.06132 | -0.04552 | -0.40836 | 0.26614 | 0.04655 | 0.08441 | 0.37497 | 1 |

2. The main component variables are defined as linear combinations of the original variables.

The Extracted Eigenvectors table provides coefficients for equations.

| Extracted Eigenvectors | | | | | | |
| ---: | ---: | ---: | ---: | ---: | :---: | :---: |
| Red Meat | Coefficients of PC1 | Coefficients of PC2 | Coefficients of PC3 | Coefficients of PC4 | | |
| White Meat | 0.30261 | -0.05625 | -0.29758 | 0.64648 | | |
| Eggs | 0.31056 | -0.23685 | 0.6239 | -0.03699 | | |
| Milk | 0.42668 | -0.03534 | 0.18153 | 0.31316 | | |
| Fish | 0.37773 | -0.18459 | -0.38566 | -0.00332 | | |
| Cereals | 0.13565 | 0.64682 | -0.32127 | -0.21596 | | |
| Starch | -0.43774 | -0.23349 | 0.09592 | -0.0062 | | |
| Nuts | 0.29725 | -0.42033 | 0.35283 | 0.24298 | | |
| Fruits \& Vegetables | -0.11042 | 0.14331 | -0.05439 | -0.33668 | | |

PC1 $=0.30261$ * RedMeat +0.31056 * WhiteMeat +0.42668 * Eggs +0.37773 * Milk + 0.13565 * Fish -0.43774 * Cereals +0.29725 * Starch -0.42033 * Nuts -0.11042 * FruitsVegetables

PC2 $=-0.05625 *$ RedMeat $-0.23685 *$ WhiteMeat $-0.03534 *$ Eggs -0.18459 Milk + $0.64682 *$ Fish $-0.23349 *$ Cereals $+0.35283 *$ Starch $+0.14331 *$ Nuts $+0.53619 *$ FruitsVegetables

PC3 $=-0.29758$ * RedMeat +0.6239 * WhiteMeat +0.18153 * Eggs - 0.38566 * Milk 0.32127 * Fish +0.09592 * Cereals +0.24298 * Starch $-0.05439 *$ Nuts +0.40756 * FruitsVegetables

PC4 $=0.64648 *$ RedMeat $-0.03699 *$ WhiteMeat +0.31316 Eggs $-0.00332 *$ Milk -
$0.21596 *$ Fish $-0.0062 *$ Cereals $-0.33668 *$ Starch $+0.33029 *$ Nuts $+0.46206 *$
FruitsVegetables
3. The Loading Plot reveals the relationships between variables in the space of the first two components. In the loading plot, we can see that Red Meat, Eggs, Milk, and White Meat have similar heavy loadings for principal component 1. Fish, fruit, and vegetables, however, have similar heavy loadings for principal component 2.

4. The biplot shows both the loadings and the score for two selected components in parallel. It can reveal the projection of an observation on the subspace with the score points. It can also find the ratio of observations and variables in the subspace of the first two components. (Note: Doubleclick the graph to open and customize.)
5. Use the Data Reader tool 町|to open the Data Info window and examine the plot in greater detail. We can see that Spain and Portugal's protein sources differ from those of other European countries. Spain and Portugal rely on fruits and vegetables, while eastern European countries such as Albania, Bulgaria, Yugoslavia, and Romania prefer cereals and nuts.

To display country information in the Data Info window, as in the image above:

1. Right-click the Data Info window and select Preferences....
2. In the Rows tab, move Country from the left panel to the right. Click OK.

4.6.2 Cluster Analysis

Summary

We will perform cluster analysis for the mean temperatures of US cities over a 3-year-period.
The starting point is a hierarchical cluster analysis with randomly selected data in order to find the best method for clustering. K-means analysis, a quick cluster method, is then performed on the entire original dataset.

Hierarchical Cluster Analysis

1. Start with a new project or a new workbook. Import the data file \Samples\Graphing \backslash US Mean Temperature.dat.
2. Highlight Column D through Column O.
3. Select Statistics: Multivariate Analysis: Hierarchical Cluster Analysis
4. Click the triangle button next to Variables, and then click Select Columns... in the context menu.

5. In the lower panel of the Column Browser dialog, click the ... button. Set the data range from 1 to 100. Click OK.

6. In the dialog, make sure Cluster is set to Observations, and Number of Clusters is $\mathbf{1}$. Select Furthest Neighbour for Cluster Method and then click OK.

7. Go to the Cluster 1 sheet. Based on the resulting dendrogram, we choose to cluster data into 5 groups.

8. Click the lock icon in the dendrogram or the result tree, and then click Change Parameters in the context menu.
9. Set Number of Clusters to $\mathbf{5}$ and then select the Cluster Center check box in the Quantities branch. Click OK.

10. In the resulting dendrogram, we can clearly see how observations are clustered. (Note, you can double-click to open and customize the dendrogram.)

茼 1 目 Hierarchical Custer Analysis

1

A|•\US Mean Temperature λ Cluster Report||< \longrightarrow
11. Due to the large number of observations, tick labels overlap in this dendrogram. Use the Scale In $\stackrel{\text { }}{\text { (}}$. $^{\text {tool to select an area to magnify. }}$

G Dendrogramf[USMeanTempera]"Cluster Report"... $-\square$ 1

Analyzing Original Data with K-Means Cluster

1. Right-click on Cluster Center and select Create Copy as New Sheet in the context menu. We are going to use the newly created Sheet2 as the Initial Cluster Centers in our kmeans cluster analysis.

2. Go back to the worksheet with the source data (US Mean Temperature), and highlight col(D) through col(O). Select Statistics: Multivariate Analysis: K-Means Cluster Analysis.
3. Select the Specify I nitial Cluster Centers check box. Click the interactive button next to I nitial Cluster Centers. The dialog will "roll up".
4. Go to Sheet 2 and hightlight $\operatorname{Col}(\mathrm{D})$ through $\mathrm{Col}(\mathrm{O})$. Click the button on the rolled-up dialog to restore the dialog.
5. In the Plot branch, select Group Graph. Click the interactive button 暑 next to \mathbf{X} Range. The dialog will "roll up". Go back to the source worksheet US Mean Temperature, and highlight Col(B):Longtitude. Click the button in the rolled up dialog to restore.
6. Click the triangle button next to \mathbf{Y} Range, and then select $\mathbf{C}(\mathbf{Y})$, Latitude. Click $\mathbf{O K}$.

7. Activate the worksheet \mathbf{K}-Means1. Observe that data has been clustered into 5 groups corresponding to the latitudes of the cities.

4.6.3 Discriminant Analysis

Summary

The Iris flower data set, or Fisher's Iris dataset, is a multivariate dataset introduced by Sir Ronald Aylmer Fisher in 1936. This dataset is often used for illustrative purposes in many classification systems. The dataset consists of fifty samples from each of three species of I rises (iris setosa, iris virginica, and iris versicolor). Four characteristics, the length and width of sepal and petal, are measured in centimeters for each sample. We can use discriminant analysis to identify the species based on these four characteristics.

We will use a random sample of 120 rows of data to create a discriminant analysis model, and then use the remaining 30 rows to verify the accuracy of the model.

Discriminant Analysis

1. Open a new project or a new workbook. Import the data file \Samples\Statistics\Fisher's I ris Data.dat
2. Highlight columns A through D. and then select Statistics: Multivariate Analysis:

Discriminant Analysis to open the Discriminant Analysis dialog. Column A~D are automatically added as Training Data. Click the triangle button next to Group for Training Data and select $\mathbf{E (Y) : S p e c i e s ~ i n ~ t h e ~ c o n t e x t ~ m e n u ~}$

3. Open Quantities branch, and then select Discriminant Function Coefficients check box. Select Canonical Coefficients check box under Canonical Discriminant Analysis branch. Accept all other default settings and click OK

Interpreting Results

Go to sheet Discrim1

Canonical Discriminant Analysis

The Canonical Discriminant Analysis branch is used to create the discriminant functions for the model.

1. Using the Unstandardized Canonical Coefficient table we can construct the canonical discriminant functions.
T Unstandardized Canonical Coefficients

| | Canonical Variable 1 | Canonical Variable 2 | |
| ---: | ---: | ---: | ---: |
| Constant | | -2.10511 | |
| Sepal Length | | -0.82938 | |
| Sepal Width | | -1.53447 | |
| Petal Length | | 2.20121 | |
| Petal Width | | 2.81046 | |

> D1 $=-2.10511-0.82938 * S L-1.53447 * S W+2.20121 * \mathrm{PL}+2.81046 * \mathrm{PW}$
> $\mathrm{D} 2=-6.66147+0.0241 * \mathrm{SL}+2.16452 * \mathrm{SW}-0.93192 * \mathrm{PL}+2.83919 * \mathrm{PW}$
where SL $=$ Sepal Length, SW $=$ Sepal Width, PL $=$ Petal Length, PW $=$ Petal Width
2. The Eigenvalues table reveals the importance of the above canonical discriminant functions. The first function can explain 99.12% of the variance, and the second can explain the remaining 0.88\%.
Eigenvalues

| | Eigenvalue | Percentage of Variance | Cumulative | Canonical Correlation |
| ---: | ---: | :--- | :--- | ---: |
| 1 | 32.19193 | 99.12% | 99.12% | 0.98482 |
| 2 | 0.28539 | 0.88% | 100.00% | 0.4712 |

3. The Wilk's Lambda Test table shows that the discriminant functions significantly explain the membership of the group. We can see that both values in the Sig column are smaller than 0.05 . Both values should therefore be included in the discriminant analysis.
Wiks'Lambda Test

| | Wilks' Lambda | Chi-square | df | Sig. |
| ---: | ---: | ---: | ---: | ---: |
| 1 to 2 | 0.02344 | 546.1153 | 8 | $8.87078 \mathrm{E}-113$ |
| 2 to 2 | 0.77797 | 36.52966 | 3 | $5.78605 \mathrm{E}-8$ |
| At the 0.05 level, the dimensionality is significantly 2. | | | | |

Classification

1. In order to classify observations, the score of the observations from the coefficients of the linear discriminant function is calculated and then evaluated.
T Coefficients of Linear Discriminant Function

| | setosa | versicolor | virginica |
| ---: | ---: | ---: | ---: |
| Constant | -86.30847 | -72.85261 | -104.36832 |
| Sepal Length | 23.54417 | 15.69821 | 12.44585 |
| Sepal Width | 23.58787 | 7.07251 | 3.68528 |
| Petal Length | -16.43064 | 5.21145 | 12.76654 |
| Petal Width | -17.39841 | 6.43423 | 21.07911 |

2. Switch to the worksheet Training Result. For the seventh observation, we can compute the score of each group from the Coefficient of Linear Discriminant Function table (above).

Score(setosa) $=-86.30847+23.54417 * 4.6+23.58787 * 3.4-16.43064 * 1.4-$
$17.39841 * 0.3=73.971051$
Score(versicolor) $=-72.85261+15.69821 * 4.6+7.07251 * 3.4+5.21145 * 1.4+$
$6.43423 * 0.3=32.631989$
Score(virginica) $=-104.36832+12.44585 * 4.6+3.68528 * 3.4+12.76654 * 1.4+$ $21.07911 * 0.3=-10.390569$
3. We can see that the score (setosa) 73.971051 is the maximum value, i.e., the seventh observation should be assigned to the group setosa.
4. The Classification Summary for Training Data shows that the classification in the groups setosa is 100% correct. For versicolor, only two observations are mistakenly classified as virginica, and for virginica, only one is mistakenly classified. The error rate is only 2.00%. This model is good.

Error rate for classification of training data is 2.00%.

Model Validation

The Classification Summary of Training Data evaluate the observation via discriminant functions derived from the same data. But usually "error rate" is larger when user evaluate the test data, which are not used for discriminant function estimation. There are two methods to correct this.

- Cross-validation:

In cross-validation, each training data is treated as the test data, exclude it from training data to judge which group it should be classified as, and then verify whether the classification is correct or not.

- Subset Validation:

Usually we will randomly divide the set of observations into subsets, the first of which is used for the estimation of discriminant model (training set) and the second is for testing the reliability of the results (test set).

Preparing Data for Analysis

We are going to sort the data in random order, and then use the first 120 rows of data as training data and the last 30 as test data.

1. Go back to sheet Fisher's I ris Data
2. Add a new column and fill the column with Normal Random Numbers.
3. Select the newly added column. Right-click and select Sort Worksheet: Ascending from the shortcut menu.

Notes: Origin will generate different random data each time, and different data will result in different results.

In order to get the same results as shown in this tutorial, you could open the Analysis.opj under the Samples folder, browse in the Project Explorer and navigate to the Discriminant
Analysis subfolder under the Analysis-Origin Pro folder, then use the data from column (F) in the Fisher's I ris Data worksheet, which is a previously generated dataset of random numbers.

Run Discriminant Analysis

1. Select columns A through D.
2. Select Statistics: Multivariate Analysis: Discriminant Analysis to open the Discriminant Analysis dialog.
3. To set the first 120 rows of columns A through D as Training Data, click the triangle button next to Training Data, and then select Select Columns in the context menu.

4. In the Column Browser dialog, click the ... button in the lower panel. Set data range from 1 to 120. Click OK.

5. To set first 120 rows of $\mathrm{Col}(\mathrm{E})$ as Group for Training Data, click the triangle button to Group for Training Data and select $\mathbf{E (Y) : ~ S p e c i e s ~ i n ~ t h e ~ c o n t e x t ~ m e n u . ~ T h e n ~ c l i c k ~ t h e ~}$ Group for Training Data triangle button \square again, select Select Columns in the context menu, and set range from 1 to 120 with column browser. Click OK.
6. Select Predict Membership of Test Data check box. Click the Test Data interactive button㿟

The dialog will "roll up". Select columns A through D in the worksheet. Click the button in the rolled up dialog to restore the dialog. Then click the triangle button to open Column Browser by selecting Select Columns in the context menu. Click ... button in lower panel, and set range from 121 through 150.
7. Open Settings branch, and then select Cross Validation check box. Click OK.

Cross-validation

Go to sheet Discrim2. Cross-validation Summary for Training Data table provides prediction error rate by classifying each case while leave it out from the model calculations. However, this method is still "optimistic" than subset validation.

Subset Validation

1. The Classification Summary for Test Data provide information that how the test data are classified.

2. On the worksheet Fisher's I ris Data, copy the last 30 rows (121 through 150) of $\mathbf{C o l}(\mathbf{E})$: Species.
3. On the worksheet Test Result, add one column, Col(I), to the worksheet. Paste the copied values in the new column.
4. Add a new column, Col(J) to the worksheet, right click on it and select Set Column Values in the context menu. In the opened dialog, type Compare(col(e),col(i)) in the pop-up dialog and click OK.

5. None of 30 values is 0 , it means the error rate the testing data is 0 . Our discriminant model is pretty good.

Adjusting Prior Probabilities

Discriminant analysis assumes that prior probabilities of group membership are identifiable. If group population size is unequal, prior probabilities may differ. We can use Proportional to group size for the Prior Probabilities option in this case.

1. Go to sheet Discrim2, Prior row of the Error Rate table under Classification Summary for Training Data branch indicate the prior probabilities for membership in groups. It is assumed that a case is equally likely to be one of the three groups. Adjusting the prior probabilities according to the group size can improve the overall classification rate.
Q Error Rate

| | setosa | virginica | versicolor | Total |
| :---: | :---: | :---: | :---: | :---: |
| Prior | 0.33333 | 0.33333 | 0.33333 | |
| Rate | 0.00% | 2.63% | 5.26% | 2.63% |

Error rate for classification of training data is 2.63%.
2. Click on the 畄button and select Change Parameter from the context menu. Select Proportional to group size for Prior Probabilities radio box. Click OK button.

StatisticsWultivariate Analysis: discrim
Dialog Theme
Description Discriminant Analysis and Canonical Discriminant Analysis

| Recalculate | Manual \vee |
| :---: | :---: |
| \square Input Data | |
| Group for Training Data | sD]'Fisher's lris Data'!E"Species'[1:120] |
| Training Data | [A"Sepal Length [1]]:D"Petal Width'[120] 戒 |
| Predict Membership for Test Data | \square |
| Test Data | Sepal Length'[121]:D"Petal Width' $[150]$ E- |
| \square Settings | |
| Prior Probabilities | Equal Proportional to group size |
| Discriminant Function | \bigcirc - Linear |
| Canonical Discriminant Analysis | ■ |
| Cross Validation | V |

3. We can see the classification error rate is 2.50%, it is better than 2.63%, error rate with equal prior probabilities.

Prior Probabilities $=$ Poportional to group

| | Error Rate | | | |
| :---: | :---: | :---: | :---: | :---: |
| setosa | virginica | versicolor | Total | |
| Prior | 0.36667 | 0.31667 | 0.31667 | |
| Rate | 0.00% | 2.63% | 5.26% | 2.50% |

Prior Probabilities = Equal
T Error Rate

| | setosa | virginica | versicolor | Total |
| :---: | :---: | :---: | :---: | :---: |
| Prior | 0.33333 | 0.33333 | 0.33333 | |
| Rate | 0.00% | 2.63% | 5.26% | 2.63% |

5 Graphing

Topics covered in this section:

1. Line Symbol (Tutorials)
2. Column Bar Pie (Tutorials)
3. Multi-Axis Multi-Panel (Tutorials)
4. Contour (Tutorials)
5. Statistical (Tutorials)
6. Polar (Tutorials)
7. 3D (Tutorials)
8. Vector (Tutorials)
9. Ternary (Tutorials)
10. Waterfall (Tutorials)
11. Specialized (Tutorials)
12. Graphing Data From Multiple Sheets

5.1 Graphing Data From Multiple Sheets

5.1.1 Summary

Origin provides close to 150 built-in graph templates that can be used to create a wide variety of plots. You can modify these templates or create your own to add to the collection. Creating a graph in Origin is as simple as selecting the desired data and then selecting a template from a menu or from the Graphing toolbars. The Plot Setup dialog offers more flexibility in creating plots, such as plotting data from multiple books or sheets.

This tutorial will show you how to:

- Select data in a worksheet and quickly create a plot
- Add data to an existing graph with drag-and-drop plotting
- Use Plot Setup to plot data from multiple sheets
- Create and save a custom graph template
- Plot groups of plots by label

5.1.2 Create a Plot Quickly by Selecting Data

1. Select File: Recent Imports: impASC: My Multifile Import from the main menu. (My

Multifile Import is a theme saved in another tutorial. If you have never saved it, please perform the steps in the tutorial to create it.)
2. Import the files S15-125-03.dat, S21-235-07.dat and S32-014-04.dat from \Samples I mport and Export \backslash. Note that the settings in the theme are used to import the files, so Origin will import each file to a different worksheet of the same workbook. The file names are used as the worksheet names.

| | 4 | 0.04 | 39.6 | 112.5 | 100.6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 5 | 0.05 | 40.5 | 113.1 | 101.7 |
| | 6 | 0.06 | | | 101.3 |
| | 7 | 0.07 | | | 100.4 |
| | 8 | 0.08 | | | 101.1 |
| | 9 | 0.09 | | 115.4 | 101 |
| | | | | | |

3. Make the third worksheet, S32-014-4, active. To create a three layer graph, highlight the three Y columns, Delta Temperature, Magnetic Field, and Position, and then select Plot: Multi-Curve: 3Ys Y-YY. Note: There is no need to highlight the Time column, as Origin will automatically plot the Y columns against the associated X column in the worksheet.

5.1.3 Add Data to an Existing Graph with Drag and Drop Plotting

1. Go back to the book with the three sheets of data from the above example.
2. Highlight the Delta Temperature column (Column B) from the first sheet and then select Plot:

Line: Line to create a line plot.
3. Go back to the workbook, and for the other two sheets, one at a time, select the Delta

Temperature column, and position the cursor at the edge of the column, until you see the
cursor turn into

Then you can drag-and-drop the column into the graph page. Another curve will be added to the
current layer.

4. After adding the other curves, right click on the layer icon and select Plot Setup from the context menu.

5. The Plot Setup dialog opens with the bottom panel visible. (Note: The Plot List panel is the only one you need, but if you wish, you can click the \square button to expand and show the other two panels of the dialog.) Hold the Shift key while selecting all three data plot entries, and then right-click and select Group. Click OK to close the dialog.

Grouping the plots allows for quick creation of presentation-ready graphs, because each selection in the group is assigned a differentiating set of plot attributes (line color = black, red, green; symbol shape = square, circle, triangle; etc...).
6. Select Graph: Update Legend to open the legendupdate X-Function dialog. Set the Auto Legend Translation Mode to Custom. Enter @WS for Legend Custom Format. Click OK and the legend will now contain the worksheet name for each data plot.

5.1.4 Create a Plot using Plot Setup

The Plot Setup dialog box is useful for a variety of plotting tasks, including creating graphs, modifying the plot type, adding plots to or removing plots from the graph, grouping or ungrouping plots, and editing the plot range.

1. Using the same workbook as in the above examples, select no data. It doesn't matter what worksheet is active; what is important is that no columns are highlighted.
2. Select Plot: Multi-Curve: 4 Panel from the menu. Without any data selected, Origin will open the Plot Setup dialog, allowing you to choose the data you wish to plot.
3. Expand the top panel by clicking the へ人 button. Hold down the Shift key to highlight the three worksheets. Alternatively, you can just click and drag your selection so that all three worksheets are highlighted.

4. In the middle panel, common columns in all three sheets are displayed. In this case, all three sheets have similar data with matching column names. Click the double arrow button $\boldsymbol{\leftrightarrows}_{\text {to }}$ show the plot column list. This mode is easier because you don't have to check the X and Y designation check boxes.

| X | Y | yEr | L | Column | Long Name | Comments |
| :---: | :---: | :---: | :---: | :--- | :--- | :--- |
| \square | \square | \square | \square | <autoX> | From/Step= | |
| \square | \square | \square | \square | A | Time | |
| \square | \square | \square | \square | B | Delta Temperature | |
| \square | \square | \square | \square | C | Magnetic Field | |
| \square | \square | \square | \square | D | Position | |

| Column | Long Name | Comments | Sampling Interval |
| :--- | :--- | :--- | :--- |
| $\mathrm{B}(\mathrm{Y})$ | Delta Temperature | | |
| $\mathrm{C}(Y)$ | Magnetic Field | | |
| $\mathrm{D}(\mathrm{Y})$ | Position | | |

5. Open the bottom panel of the dialog, the Plot List, if it is not already visible. Layer $\mathbf{1}$ is highlighted. Select Delta Temperature in the middle panel, and then click the Add button. Since you already selected the three worksheets in Step 3, this will add the Delta Temperature
column from each of the three worksheets to layer 1.

6. Repeat these steps to add Magnetic Field and Position into layer 2 and layer 3, respectively.

Note that in each layer, the three data plots are automatically grouped.
7. Click the OK button to create the graph.

5.1.5 Customize and Save a Graph Template

In the above examples, the $\mathbf{3 Y s} \mathbf{Y}-\mathbf{Y Y}$, Line and $\mathbf{4}$ Panel plots are each created from a different, specific built-in plot template. If you don't see the exact graph you need, you can often create it and save it as your own template to reuse later with similar data.

1. Continue with the 4 panel plot from above. Select the empty 4th layer and press the Delete key on the keyboard to get rid of it.

2. Select Graph: Layer Management from the menu to bring up the Layer Management dialog. On the Arrange tab, set column=1, row=3; check the Show Axes Frame check box; expand the

Spacing(\% of Page) branch and set the Vertical Gap to 0. Click Apply and then click OK.

All linked layer[s] with \% of Linked Layer as Units will keep its spatial relationship in arrangement. Press F1 for more info.

Undo
Cancel
3. Select File: Page Setup from the menu and change the Orientation to Portrait.
4. Select Graph: Update Legend: Open Dialog. Leave the destination as Whole Page to update the legend in all layers on the graph page. Set the Auto Legend Translation Mode to Custom.

Enter @WS for Legend Custom Format, and click OK. Your graph will look as follows:

To align the left Y-axis titles, you can hold down Shift and select them, and then use the Left Align button on the Object Edit toolbar.
5. Now that you have customized the graph, select File: Save Template As. In the dialog that opens, save as a new template with a new name such as PAN3 under the UserDefined category.

Now you can reuse this template in the next example.

5.1.6 Plot into a Saved Custom Template

1. Go back to the workbook, and in the menu, select Plot: Template Library to bring up the Template Library dialog. All of the Origin templates, including Graph, Workbook, and Matrix templates, are listed here. Expand the UserDefined category under Graph Template, and you'll
see the one that you just saved in the last example.

2. Click the Plot Setup button. Then you can use the same steps from the Create a Plot using

Plot Setup section to create a three-panel graph directly.

5.1.7 Plot Groups

Origin offers a plotting option, Multiple Panels by Label, that allows you to create a multilayer graph, each layer of which contains multiple plots, identified by the same label.

1. Open the file Samples \backslash Graphing \backslash Automobile Data.ogw .

| \#\# Book2 - Automobile Data | | | Group Identifier | | | | $\square \square$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | A(X1) | B(\%1) | c/1) | D(11) | E(Y1) | $F(\times 2)$ | G(\%2) | \triangle |
| Long Name | Year | Mean | dinimum | Median | Maximum | Year | Mean | M |
| Quantity | Power | Power | Power | Power | Power | 0~60 mbh | 0~60 mph | |
| 1 | 1992 | 125.46 | 94 | 126 | 165 | 1992 | 13.35 | |
| 2 | 1993 | 122.32 | 100 | 112 | 165 | 1993 | 13.52 | |
| 3 | 1994 | 103.57 | 52 | 108 | 169 | 1994 | 14.86 | |
| 4 | 1995 | 92.19 | 57 | 91 | 139 | 1995 | 15.57 | |
| 5 | 1996 | 78.96 | 62 | 73 | 121 | 1996 | 15.73 | |
| 6 | 1997 | 73.48 | 62 | 73 | 102 | 1997 | 15.86 | |
| 7 | 1998 | 68.42 | 39 | 69 | 84 | 1998 | 15.70 | |
| 8 | 1999 | 69.96 | 55 | 69 | 91 | 1999 | 16.75 | |
| 9 | 2000 | 60.72 | 33 | 62 | 85 | 2000 | 16.16 | |
| 10 | 2001 | 63.10 | 44 | 64 | 84 | 2001 | 16.59 | |
| 11 | 2002 | 52.24 | 36 | 51 | 66 | 2002 | 15.57 | |
| 12 | 2003 | 51.27 | 38 | 50 | 70 | 2003 | 17.32 | |
| 13 | 2004 | 49.88 | 38 | 50.5 | 66 | 2004 | 16.00 | \checkmark |
| 1 Data | | | | | | 4 ${ }^{\text {l }}$ | | - $1 /$ |

2. Click on top left corner of the worksheet to select the entire sheet. Select Plot: Multi-Curve: Multiple Panels by Label to open the plotbylabel dialog.
3. Set the dialog options as follows, and click the OK button to create the graph.

The graph should look like this:

5.2 Line Symbol

Topics covered in this section:

1. 2D Plotting
2. Line Graph with Recession Bars
3. Scatter Plot of Decay and Recovery Curves
4. Micro-Raman spectroscopy of complex nanostructured mineral systems
5. Scatter Central Plot
6. Line Graph with Masked Data
7. Mark out a segment of plot with different plot style
8. Adding Plot
9. Error Bars with Fill Area

5.2.1 Basic 2D Plotting

Summary

Origin provides flexible ways to create 2D plots. You can easily customize plot attributes, arrange layers, and select different datasets for each layer. This tutorial will teach you the basic plotting skills.

Minimum Origin Version Required: Origin 8.0 SR6

What you will learn

This tutorial will show you how to:

- Perform simple row statistics
- Create a graph and save as a template
- Plot into your template
- Use the Plot Setup dialog

Steps

Simple row statistics

1. Start with an empty worksheet, select File: Import: Single ASCII... to open the Import Single ASCII dialog, browse to the \Samples\Curve Fitting subfolder of the Origin program folder, and import the file Dose Response - No Inhibitor.dat.
2. Highlight columns 2 through 4 and select Statistics: Descriptive Statistics: Statistics on Rows. Make sure to check the Mean and Standard Deviation check boxes on Quantities to Compute > Moments branch to output these results.

3. After you click the OK button, two new columns, Mean(\mathbf{Y}) and SD(yErr) are added to the source worksheet. Here, yErr means that this is an error column and the data in this column can be used to plot error bars.

Note: To simplify plotting, each column in an Origin worksheet has a plotting designation. To change a column's plotting designation, select the column and click on the Column menu. Alternatively, right-click on the column and choose Set As from the context menu.

Create a graph and save as a template

1. Highlight the Mean (Y) and $\mathrm{SD}(\mathrm{yEr}-)$ columns and select Plot: Line+Symbol: Line+Symbol to create the plot:

2. To change the X scale to Log, double-click on the \mathbf{X} axis to bring up the \mathbf{X} Axis dialog. On the Scale tab, change the axis Type to Log10:

Click the OK button to close the dialog.
3. Select Graph: Rescale to Show All from the menu, which will rescale the X and Y axes of the graph. :

4. To edit the curve, double-click on any plot symbol to bring up the Plot Details dialog.

Alternatively, right-click inside the graph and choose Plot Details from the context menu. On the Line tab of right panel, select B-Spline as connect line to get a smoother curve.

Click the $\mathbf{O K}$ button to close the dialog.
5. When all modifications have been made and the graph looks the way you want it, you can use this graph to create a template, to be used in the future with similar data. Select File: Save Template as to open the Save Template dialog. In the Category drop-down list, select UserDefined; and then type a proper Template Name. In this example, we use MyTemplate. Click $\mathbf{O K}$ to save the template.

Save a graph/workbook/matrix window to a template

Plot into graph template with the Plot Setup dialog

1. Click the $\|$ button to open a new workbook, and import the file \Samples\Curve Fitting\Dose Response - Inhibitor.dat as above. Perform Statistics on Rows, calculating the Mean and SD of this worksheet as you did above and by following the same steps.
2. Select Plot: Template Library to open the Template Library. Select MyTemplate from the UserDefined category.

Click the Plot Setup button to select the data from which to create the plot. If you click the Plot button, Origin will plot whatever data is highlighted in the worksheet.
3. In the Plot Setup dialog, you can choose which columns are to be plotted. (There are three panels in Plot Setup dialog, click the $\begin{aligned} & \\ & \text { or } \\ & \text { 人 }\end{aligned}$ button to expand them) To finish creating the plot from your template, please follow the steps a-e outlined on the picture below.

And then you will have:

5.2.2 Line Graph with Recession Bars

Summary

This tutorial will show how to create a line graph with vertical bars spanning across the layer from top to bottom. This type of graph is common when plotting economics data with periods of recession marked as vertical bars.

Minimum Origin Version Required: Origin 8.0 SR6

What you will learn

- Plot a line graph
- Use Span Vertical Bars between Missing Values to show recession bars
- Set date display format in the Axes dialog

Steps

This tutorial is associated with the 2D and Contour Graphs: Line and Symbol: Recession Bars in the 2D and Contour Graphs project(\Samples $\backslash 2 \mathrm{D}$ and Contour Graphs.opj).

1. Open the Recession Bars folder in 2D and Contour Graphs.opj and active the workbook Book1G.
2. Highlight all four colums in the worksheet and then right-click to select Set as: XY XY from the context menu. After that, choose "Plot: Line: Line" menu to plot a line graph.
3. Double-click the plot to show the Plot Details dialog box. In the Group tab of right panel select I ndependent.

4. In the left panel of the dialog box, choose the first plot node of recession data $(A(X): B(Y))$. Select the Line tab and set Width to 0 and click the Fill Area Under Curve check box to show the drop-down list. Then choose Span Vertical Bars between Missing Values from the drop down list.

5. Go to the Pattern tab, set Color in the Fill group as LT Gray. Click Apply button to apply these settings.

6. After that, go to the Graph level, and set Color in the Display tab as Dark Cyan. Then go to the Layer level, set the Color in Backgroud tab as White. Click OK button to close this dialog.

Print/Dimensions Miscellaneous Display Legends/Titles

7. Double-click the X axis to open the Axis dialog. Go to Tick Labels tab to change the Display item as 1991.

8. Go to Scale tab to set the From, To, I ncrement and \#Minor Ticks item as 1950, 2010, 10year and 9. Then choose Vertical in the selection, set the From item to 0. Click OK button.

X Axis - Layer 1

9. Delete the Legend for this graph. Double-click the X title and edit the title as Year. Do the same to Y title and edit Y title as (Index $2002=100$).
10. Do the following steps to customize the aixs label and grid lines:

1. Double-click the x axis to open the Axis dialog. Go to the Custom Tick Labels Tab and set the Rotation(degree) as 90.
2. Click the Grid lines tab, choose Horizontal in the Selection, check Major Grids box and set Line Color as LT-Gray.
3. Go to the Title \& Format tab, select Top in the Selection, check Show Axis \& Ticks box and set Major ticks and Minor Ticks as None. Do the same to Right in the Selection. Click OK.
4. Right-click on the layer, and select Add/ Modify Layer Title to add title. Type Industrial Production: Durable Consumer Goods (IPDCONGD) in the text box. Highlight the text and click the \mathbf{B} button in the Format toolbar. Adjust the text to an appropriate size by selecting number from | 22 | - |
| :--- | :--- |
| | in the Format toolbar. |

After all, you will get the final graph.

5.2.3 Scatter Plot of Decay and Recovery Curves

Summary

The scatter plot below depicts 3 decay and recovery curves obtained after taking two-photon fluorescence measurements of reversible photodegradation in a dye-doped polymer. To learn more about the graph, please read the case study.

Minimum Origin Version Required: Origin 8.5.1 SRO
What you will learn

- How to use the Plot Setup dialog to arrange plots in a layer
- How to customize the symbols in your graph

Steps

1. Download the zip file from here and extract the text files.
2. Open Origin and click the Import Multiple ASCII button $\xlongequal[\substack{\text { 䍣 }}]{\text { 2. }}$ on the Standard toolbar to open the ASCII dialog and then import the text files.

3. In the impASC dialog, set Import Mode as Start New Sheets. Click OK to finish importing.

4. We will use the Plot Setup dialog to create a graph with 8 plots. Active the workbook, and make sure that no datasets are now selected. Click the to open the Pot Setup dialog.
o Show all of the three panels of Plot Setup dialog (if not all of them are shown) by clicking the

o First, we will add 4 line plots into a graph by using the Plot Details dialog. Highlight all dataset in the top panel, and then select column Timemin as X, column Theory as $Y s$ in the middle panel. Then add them into the bottom panel.
$0 \quad$ Then we will add 4 scatter plots in to the same graph. Select Scatter from the Plot Type drop-down list, make sure all dataset in the top panel has been selected, and then select column Timemin as X, column NormData as Ys in the middle panel. Then add them into the bottom panel.

o In bottom panel, if there is a Group branch under Layer1, right-click on it to select Ungroup from the short-cut menu to ungroup these plots.

o Click OK to generate the graph which look like the following image shows.

5. Double-click the layer icon at the top-left corner of graph window to open the Layer

Contents dialog. Then group the Theory plots and NormData Plots as Group 1 and Group 2 using the Group button after highlight the 4 Theory/Norma Data plots separately by using mouse and the Shift key,

6. Then we will customize the 8 plots in the Plot Details dialog. Select Format: Plot Properties to open the Plot Details dialog. In the left panel of the dialog, you could see there are 8 plots: the first 4 plots contain a word Theory are line plots, the other 4 contain NormData are scatter plots.
7. We will first customize the 4 line plots. Select the first line plot, in the Line tab, select BSpline from the Connect drop down list and set the Width to 3. Then click the Apply button. In the Group tab, click the button that next to the Line Color as the screenshot shows to change the color of the 4 lines to Black. Click OK to apply these settings.

8. Then customize the 4 scatter plots. Select the first Scatter plot, in the Symbol tab, change the Size to 8.

0 In the Group tab, we will mainly customize the symbols in the list box that in the middle of the tab. In the Symbol Type row, select By one in the Increment column. Click the \cdots button to open the I ncrement Editor dialog, in the dialog select UpTriangle, Circle,Hexagon and Square for the first 4 rows.

0 In the Symbol Edge Color row, select By one in the Increment column. Click the
button to open the Increment Editor dialog, in the dialog select Green,
Blue, Blue and Red for the first 4 rows.
o In the Symbol Interior row, select By one in the Increment column. Click the ... button to open the Increment Editor dialog, in the dialog select Solid, Solid,Half Left and Solid for the first 4 rows.

Click OK button to close the Plot Details dialog, then the graph will look like.

9. Then customize the Axes of the graph. Double click on the X axis, in the Scale tab, change From to -5, To to 690. Then click Vertical icon in the Selection box, change From to 0.61 and To to 1.01. In the Title\&Format tab, select Top in the Selection box, enable the Show Axis\&Tick check box, and select In from both Major Ticks and Minor Ticks drop-down lists. Then select Right from the Selection box, and do the same thing as we did for the Top.
10. Then we will customize the titles and the legend. Change the titles as the following images shows. Right click on the legend and select Properties from the context menu, and input the following strings into it.

(5) $1.7 \backslash \mathrm{~g}(\mathrm{~m}) \mathrm{J} /$ pulse
\} 1 (6) 3 \backslash \mathrm { g } (\mathrm { m }) \mathrm { J } / pulse
\I(7) $3.5 \backslash \mathrm{~g}(\mathrm{~m}) \mathrm{J} /$ pulse
\I(8) $4.5 \backslash \mathrm{~g}(\mathrm{~m}) \mathrm{J} /$ pulse
The final graph will look like

5.2.4 Micro-Raman spectroscopy of complex nanostructured mineral systems

Contents

- 1 Summary
- 2 Steps
- 3 Sample Data

Summary

This tutorial will show you how to create a multiple line plot and how to customize it.

Minimum Origin Version Required: Origin 8.5.1

Steps

1. Create a new worksheet. Import the binned data.

| \#\# Micro-Raman spectroscopy of complex nanostructured mineral systems | | | | | | | | $\square \square$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $A(x)$ | B() | C1() | C2() | C3(Y) | C4() | C5(V) | C6슬 |
| Long Name | | | | | | | | |
| Units | | | | | | | | |
| 1 | 100.263 | 762.24 | 100.263 | 947.9676 | 100.263 | 9966.063 | 100.263 | 1091! |
| 2 | 101.997 | 765.94 | 101.997 | 951.6754 | 101.997 | 9940.0309 | 101.997 | 10928 |
| 3 | 103.728 | 771.5 | 103.728 | 944.2353 | 103.728 | 9954.8876 | 103.728 | 1091: |
| 4 | 105.461 | 765.92 | 105.461 | 957.2229 | 105.461 | 9936.3143 | 105.461 | 1092: |
| 5 | 107.194 | 769.61 | 107.194 | 936.8001 | 107.194 | 9951.1572 | 107.194 | 1091? |
| 6 | 108.927 | 767.74 | 108.927 | 944.2147 | 108.927 | 9956.7125 | 108.927 | 1092! |
| 7 | 110.657 | 767.73 | 110.657 | 959.035 | 110.657 | 9943.7279 | 110.657 | 1093: |
| 8 | 112.389 | 784.39 | 112.389 | 955.3154 | 112.389 | 9969.6578 | 112.389 | 1092 |
| 9 | 114.121 | 760.3 | 114.121 | 955.3027 | 114.121 | 9945.5715 | 114.121 | 1092! |
| 10 | 115.85 | 762.14 | 115.85 | 951.589 | 115.85 | 9952.9684 | 115.85 | 1093: |
| 11 | 117.581 | 765.83 | 117.581 | 940.4814 | 117.581 | 9945.5616 | 117.581 | 1092t |
| 12 | 119.312 | 773.21 | 119.312 | 947.8704 | 119.312 | 9928.9203 | 119.312 | 1093t |
| 13 | 121.041 | 763.95 | 121.041 | 962.6417 | 121.041 | 9952.9419 | 121.041 | 109. |
| 14 | 122.771 | 767.63 | 122.771 | 934.9271 | 122.771 | 9945.5469 | 122.771 | 1092: |
| 15 | 124.501 | 771.31 | 124.501 | 942.3073 | 124.501 | 9951.0786 | 124.501 | 1092' |
| 16 | 126.228 | 784.21 | 126.228 | 938.6123 | 126.228 | 9947.3817 | 126.228 | 1092: |
| 17 | 127.957 | 765.75 | 127.957 | 945.9827 | 127.957 | 9938.1579 | 127.957 | 1092: |
| 18 | 129.686 | 774.95 | 129.686 | 955.1878 | 129.686 | 9963.9533 | 129.686 | 10928 |
| 19 | 131.413 | 762.04 | 131.413 | 947.8086 | 131.413 | 9945.5224 | 131.413 | 10936 |
| 4 M | man spect | -0py of | mp7 | | | く~1..] | | \cdots |

2. Highlight all the columns in the worksheet. Right-click and select Set As: XY XY from the context menu. Then click the Line button on the 2D Graphs toolbar.

Delete the legend. The graph should look like:

3. Double-click on the \mathbf{X} axis to bring up the \mathbf{X} Axis dialog box. In the Scale tab, select

Horizontal in the Selection list box. Then set the options as the screenshots below.

Select Vertical in the Selection list box. Then set the options as the screenshots below.

Click OK.

4. Then we apply a graph theme to add a top \mathbf{X} axis and a right \mathbf{Y} axis. Select Tool: Theme

Organizer to open the Theme Organizer dialog. Activate the Graph tab and select
Opposite Lines from the table. Then click the Apply Now button. Click the Close button to close the dialog.

Theme Organizer
A system theme can be applied automatically when making new graphs
Current system theme: Dark Colors Light Grids
Right-click to set system theme or to choose other operations

| Graph | Worksheet | Dialog | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | | | Size | Date | Path | \wedge |
| Dark Colors * Light Grids | | | 15 | 2009-04-20 16:17:00 System | | |
| FDALandscape | | | 3 | 2009-04-20 16:17:00 | System | |
| FDAportrait | | | 3 | 2009-04-20 16:17:00 | System | |
| Indicate Active Dataset in Legend | | | 1 | 2009-04-20 16:17:00 | System | |
| Night Sku | | | 11 | 2009 04-20 16:17.00 Sustem | | |
| Doposite Lines | | | 1 | 2009-04-20 16:17:00 | System | |
| Physical Review Letters | | | 20 | 2009-04-2016:17:00 System | | |
| Plot Group Simple Line + Symbol | | | 6 | 2009-04-20 16:17:00 System | | |
| く- | | | III | | | |

Exclude increment lists
5. Click the Line button on the Tools toolbar and draw a line across the peaks' centers as the sample image shows. Please hold down the SHI FT key while drawing the line to force it to be a vertical line. Double-click on the line. In the Line tab, select Dash with the Type dropdown list. Click OK.

6. Click the Text button in the Tools toolbar. Add a text object near the line object and enter 461 in it.

Right-click on the label and select Properties from the short-cut menu. Then set the dialog options as the screenshot below. Click OK.

7. Right-click on the title of the Y axis and select Properties from the short-cut menu. Then set the dialog options as the screenshot below. Click OK.

8. Right-click on the title of the X axis and select Properties from the short-cut menu. Then set the dialog options as the screenshot below. Click OK.

The graph should look like

Sample Data

Download the Micro_Raman_Spectroscopy.txt file from
http://www.originlab.com/ftp/graph_gallery/data/Micro_Raman_Spectroscopy.txt. Click the Import

The following table contains part of the sample data.

| $\mathbf{A (X 1)}$ | $\mathbf{B}(\mathbf{Y 1})$ | $\mathbf{A}(\mathbf{X 2)}$ | $\mathbf{B (Y 2)}$ | $\mathbf{A (X 3)}$ | $\mathbf{B}(\mathbf{Y 3})$ |
| :---: | :--- | :--- | :--- | :--- | :--- |
| 100.263 | 762.24 | 100.263 | 947.9676 | 100.263 | 9966.063 |
| 101.997 | 765.94 | 101.997 | 951.6754 | 101.997 | 9940.0309 |
| 103.728 | 771.5 | 103.728 | 944.2353 | 103.728 | 9954.8876 |
| 105.461 | 765.92 | 105.461 | 957.2229 | 105.461 | 9936.3143 |
| 107.194 | 769.61 | 107.194 | 936.8001 | 107.194 | 9951.1572 |
| 108.927 | 767.74 | 108.927 | 944.2147 | 108.927 | 9956.7125 |
| 110.657 | 767.73 | 110.657 | 959.035 | 110.657 | 9943.7279 |
| 112.389 | 784.39 | 112.389 | 955.3154 | 112.389 | 9969.6578 |
| 114.121 | 760.3 | 114.121 | 955.3027 | 114.121 | 9945.5715 |
| 115.85 | 762.14 | 115.85 | 951.589 | 115.85 | 9952.9684 |

5.2.5 Scatter Central Plot

Summary

Scatter central plot is a graph with the X and Y axes located in the middle of the layer. In this tutorial, a scatter central plot will be created, then the symbol and the axes will be customized.

Minimum Origin Version Required: Origin 8.1 SRO

- Set column values by using Set Values dialog
- Create a scatter central plot
- Change the color and shape of the scatter points
- Customize the tick label of axis

Steps

1. Set column values by using Set Values dialog. Highlight column A, right-click and select Fill Column with: Row Numbers from the context menu. Right-click column A again and select Set Column Values to open the Set Values dialog. Type Col(a)-11 in the middle text box and then click the OK button to finish setting values for column A.

2. Do the same thing for column B, highlight it and select Set Column Values dialog from the right-clicking menu to open the Set Values dialog again. Type $\mathbf{C o l}(\mathbf{a})^{\wedge} \mathbf{2}+\mathbf{C o l}(\mathbf{a})+\mathbf{1}$ in the middle text box this time. Change the Recalculate to Auto, then click the OK button to finish setting values for column B.

3. Create a scatter central plot. highlight column B and select Plot: Symbol: Scatter Central from the Origin main menu to create a scatter central plot.

4. Change the color and shape of the scatter points. Double click on the scatter plot to open the Plot Details dialog. In the Symbol tab of right panel, click the button beside Preview and choose the solid circle symbol. And then click the button beside Symbol Color and choose Individual Color: Red. Click the OK button to close the Plot Details dialog.

5. Customize the tick label of axis. Double click on the vertical axis to open the dialog for axes settings. Change the To value to 450 .

6. Switch to the Custom Tick Labels tab, select the Hide radio on the Special row and then type $\mathbf{2 0 0}$ in the At Axis Value box.

7. Click the Bottom option in the Selection panel, and then select the Hide radio on the At Axis End row.

8. Click the OK button to finish axes settings and the scatter central graph looks like below.

9. Now, delete the legend and change the label of axes, \mathbf{A} to \mathbf{X} and \mathbf{B} to \mathbf{Y}. Move the \mathbf{X} to the end of X axis. Add a text object to the graph, the text says $\mathbf{Y}=\mathbf{X}^{2}+\mathbf{X}+\mathbf{1}$. The final graph looks like below.

1
(

5.2.6 Line Graph with Masked Data

Summary

In a line graph, masking data is supported. In this tutorial, a line graph will be created first, then the masking tool is used to mask the low peaks on the graph.

Minimum Origin Version Required: Origin 8.1 SR0
What you will learn

- Plot a line graph
- Set the scales of axes
- Mask data on the line graph

Steps

1. To start this tutorial, please download the data file from ftp.
2. Click the I mport Single ASCII $\stackrel{\text { 1䉑 }}{ } \mid$ button to open the file browser, then select the file just downloaded and keep the default settings to import this file.
3. Highlight both columns in the worksheet and select Plot: Line: Line from the Origin main menu to plot a line graph.

4. Double click on the X axis to open the axes setting dialog, then change the Increment to 0.25 .

5. Select the Vertical in the Selection panel, then change the From to 0.139 and the I ncrement to 0.002 . Click the $\mathbf{O K}$ button to finish axes settings.

6. Delete the legend on the graph. Then change the X label to Time[s] and the Y label to Signal[A.U.]. And then add a text object as the title, say Time Series. Set font size of both axes labels to 28 and the title to 36 .

Eapaph1
 $\square \square$

1
Time Series

7. Activate this graph, then click down on the Regional Mask Tool button on the Tool toolbar until a context menu appears. Then select Mask Points on Active Plot from this menu to get in the masking mode.

8. Click the proper place on the graph and drag a regional to select the low peaks, at the same time, mask them. Repeat it until all low peaks are masked. Then click the Pointer button on the Tool toolbar to end the masking mode.

5.2.7 Mark out a segment of plot with different plot style

Summary

In Origin, you can mark out a segment of plot with different plot style, such as a segment of dashed in a solid line plot.

Minimum Origin Version Required: Origin 8.0 SR6
What you will learn

- Use the Plot Setup dialog to create a graph
- Mark out the special segment of a plot

Steps

1. Start with an empty worksheet. Select File: Import: Single ASCII... from the Origin menu to open the Import Single ASCII dialog. Browse to the \Samples\Graphing subfolder of the Origin program folder, and import the file AXES.DAT .
2. Click the button on the Standard toolbar to create a new graph window and then select Graph: Plot Setup from the main menu to bring up the Plot Setup dialog.
3. Show all of the three panels of the Plot Setup dialog. Select the AXES worksheet in the top panel. Then go to the middle panel to select \mathbf{A} as X and \mathbf{B} as Y . After that, click Add to add this data plot to the bottom panel. Repeat this step three times. Three data plots should be listed in the bottom panel.

4. In the lower panel, click in the Range column that corresponds to the first data plot. The

button should be activated. Then click this button to open the Range dialog box.

| Plot | Range | Show | Plot Type | Legend |
| :---: | :---: | :---: | :---: | :---: |
| -! Layer 1 | \checkmark Rescale | \checkmark | | |
| , [AXES.DAT]AXES! A(X), B(Y) | $\left[1^{*}: 40 \times\right] 1<X<40,-1.08804<Y<1.582$ | 4 | Line | B |
| Wm [AXES.DAT $]$ XES! A (X), B (Y) | [1*:40* $1<X<40,-1.08804<Y<1.58261$ | \square | Line | B |
| \cdots W [AXES.DATIAXES! A $(X), \mathrm{B}(\mathrm{Y})$ | [1** $\left.40^{*}\right] 1<X<40,-1.08804<Y<1.58261$ | \square | Line | B |

5. Clear the Auto check boxes (if they are selected) and then set From to $\mathbf{1}$ and $\mathbf{T o}$ to $\mathbf{2 0 .}$

Click OK to close the dialog.

6. Similarly, set the ranges for other two data plots to " 20 to 30 " and " 30 to 40 " respectively.

| Plot | Range | | Show | Plot Type | Legend |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -iL Layer 1 | \square Resc | | \checkmark | | |
| Wh [AXES.DAT $] A X E S!A(X]), \mathrm{B}(\mathrm{Y}]$ | [1:20] | $1<X<20,-0.96201<Y<0.3638$ | \square | Line | B |
| Wh [AXES.DAT]AXES! A (X), $\mathrm{B}(\mathrm{Y}]$ | [20:30] | $20<X<30,-0.96201<Y<1.35909$ | \square | Line | B |
| We [AXES.DAT]AXES! A $(X), B(Y)$ | [30:40] | $30<X<40,-1.08804<Y<1.58261$ | V | Line | B |

7. Click the OK button to close the Plot Setup dialog. You should get a graph like this:

8. Double-click on the curve in the graph window to open the Plot Details dialog. Select the second data plot from the left panel. In the right panel, change the Style to Short Dash, and then click the $\mathbf{O k}$ button.

9. Finally, we get the plot with a range marked out.

5.2.8 Adding a Data Plot to Existing Graph

Summary

The Plot Setup dialog can be used to add/reorder/arrange data plots in an exiting graph. This dialog provides flexibility in selecting the desired data sheet and then selecting data to be plotted using column meta data such as long name.

Minimum Origin Version Required: Origin 8.0 SR6

What you will learn

This tutorial will show you how to:

- Use the Plot Setup Dialog Top Panel to find your dataset
- Add the chosen dataset to existing graph

Steps

Choosing the Data Source

1. Click the New Project button on the Standard toolbar, to begin with a new project.
2. Click the Import Wizard button on the Standard toolbar. The Import Wizard opens. (Note that if this is the first time that you have started the Import Wizard, you will experience a slight delay as Origin compiles the necessary files.)
3. Verify that the ASCII radio button is selected in the Data Type group.
4. Click the browse button to the right of the File text box. Navigate to the Origin folder; browse to the Samples folder and then the Import and Export folder.
5. Double-click to select S15-125-03. dat from the list of files. Repeat for files, S21-235-07.dat and S32-014-04.dat.
6. Click OK.
7. Leave the I mport Filters for current Data Type as Data Folder:

VarsFromFileNameAndHeader. (This filter has the settings to use when importing the file.)
8. Set the I mport Mode as Start New Sheets.
9. Click the Finish button. The three data files import into the workbook, each as a new sheet. You will have a book with three sheets: Trial Run 1, Trial Run 2, and Trial Run 3.

Plotting the Data

1. Select Trial Run 1 sheet.
2. Highlight the $\mathrm{D}(\mathrm{Y})$ column.
3. Click the Line button on the 2D Graphs toolbar. A new graph is created.

Adding data to the graph

1. Double-click on the layer 1 icon in the upper-left hand corner of the graph. Click Plot Setup button in the opened Layer Contents dialog.
2. Select Layer $\mathbf{1}$ in the Plot List.
3. Click the blue arrows in the upper right corner of the dialog to Show Plot Designations.
4. Again click the blue arrows in the upper right corner of the dialog to Show Available Data.
5. Select Trial Run $\mathbf{2}$ from the Available Data list.
6. Check Time as X and Position as Y.
7. Click Add.
8. Check the Rescale checkbox.
9. Click OK

Updating the Legend and Formatting the Plot

1. Select Graph:New Legend.
2. Double-click on the line symbol for the second data plot in the legend. The Plot Details dialog opens.
3. Change the Color from Black to Red.
4. Click OK

5.2.9 Error Bars with Fill Area

Summary

This graph displays three datasets with error bars. The error bars have been set to draw as lines with fill areas. Transparency has been set for all three curves so that data in overlapping regions can be clearly seen.

Minimum Origin Version Required: Origin 8.5.1 SRO
What you will learn

- Plot the error bar with fill area
- Set transparency for error bar
- Set and save custom color

Steps

This tutorial is associated with the 2D and Contour Graphs: Line and Symbol: Error Bars with Fill Area folder in the 2D and Contour Graphs project(\Samples\2D and Contour Graphs.opj).

1. Highlight all columns in the worksheet. In the main menu, click Plot: Line, and then click

Line.

2. Double-click on the plot to open the Plot Details dialog. Select the first plot node under Layer1 in the left panel. In the right panel activate the Group tab. Choose Independent in Edit Mode.

3. On the Line tab set Width as 3. To set a custom color click on the button right to Color and select Custom from the drop list.

Right-click on the Custom button to bring up Color dialog. Click on Define Custom Colors to expand the right panel. For further use save the custom color in the Custom colors: palette:

1. Select an blank box under the Custom colors: palette.
2. Set Red, Green, Blue as 155, 187, 89 respectively in the right panel.
3. Click Add to Custom Colors to save this color to the Custom colors palette.

Click OK to close the dialog. Set Transparency as 50
4. Repeat the step 3 for the other two plots. Except, set the colors of the second plot and the third plot as $\operatorname{RGB}(\mathbf{1 9 2}, \mathbf{8 0}, \mathbf{7 7})$, $\mathbf{R G B}(\mathbf{7 9}, 129,189)$ respectively.
5. In the left panel, select the first of the three error plots. On the Error Bar tab, set Connect as Straight, then the Fill Area Under Curve option will show up in Style section. Check the box before it and the Pattern tab should now be available.

Dataset Name: [Book1E]Meca!P9'Error"

Fill Area Under Curve

Set Color as Automatic.

6. On the Pattern tab, change the fill color to the custom color saved before to match the line color, and set Transparency to 50.

7. Repeat the last two steps for the other two error plots. Click $\mathbf{O K}$ to complete the graph.

5.3 Column Bar Pie

Topics covered in this section:

1. 2D Pie Chart of a Population Study
2. Bar Graph of African Population
3. Bar and Scatter Plot with Error Bar
4. Column Graph with Error Bars
5. Column Bar Gap Offset Across Layers
6. Stack Column With Labels
7. Clustered-Stacked Column Chart

5.3.1 2D Pie Chart of a Population Study

Summary

Pie charts created by the default template has a 3D view. However, you can easily convert it to a 2D chart. In addition, you can set the size and rotation of the chart to further customize it. This tutorial will show you how to create and customize a 2D Pie chart.

Minimum Origin Version Required: Origin 8.5.1 SRO

What will you learn

This tutorial will show you how to

- Create a 2D Pie chart
- Customize the Pie chart

Steps

1. Create a new worksheet. Import the sample data (See the sample data here).

| \#\#\# 2D Pie Chart of a Population Study $\square \square \times$ | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $\mathrm{A}(4)$ | $\mathrm{B}(1)$ | CO | | \wedge |
| Long Name | | | | | |
| Units | | | | | |
| 1 | Hispanic | 45.4 | | 1 | |
| 2 | White | 35.7 | | 8 | |
| 3 | African American | 9.3 | | 9 | |
| 4 | American Indian | 0.4 | | 0 | |
| 5 | Asian/Pacific | 8.9 | | 4 | |
| 6 | Other | 0.3 | | 8 | |
| 7 | | | | | |
| 8 | | | | | |
| 9 | | | | | v |
| 1 - ${ }^{\text {a }}$ 2 Pi | Chart of a Popu | tion 5 | IIII | ? | |

2. Highlight column B and select the Pie Chart button on the 2D Graphs toolbar.

The graph should look like this:

3. Now we further customize the chart. Right-click on it and select Plot Details from the shortcut menu to open the Plot Details dialog. In the Pie Geometry tab, set the options as the screenshot below.

4. In the Labels tab, set the dialog as the screenshot below.

Click OK to close the Plot Details Dialog. Rearrangethe text label of each pie wedge.
5. Right click on the Legend and select Delete from the short-cut menu.
6. Select the Text button from the Tools toolbar. Then click near the top of the layer. Enter Population by Major Ethnic Groups to add a title for the graph. Then you can use the tools in the Format toolbar to customize the text. The graph should look like:

Sample Data

Download the 2D_Pie_Chart.txt file from
http://www.originlab.com/ftp/graph_gallery/data/2D_Pie_Chart.txt. Click the Import Single ASCII 118.
button $\stackrel{\text { 曲 }}{ }$. Select the file to import it into Origin.
The following table contains part of the sample data.

| $\mathbf{A (X)}$ | $\mathbf{B (Y)}$ | $\mathbf{C (Y)}$ |
| :--- | :--- | :--- |
| Hispanic | 45.4 | 1 |
| White | 35.7 | 18 |
| African American | 9.3 | 19 |
| American Indian | 0.4 | 20 |
| Asian/Pacific | 8.9 | 24 |
| Other | 0.3 | 18 |

5.3.2 Bar Graph of African Population

Summary

In this tutorial, a graph will be created to show the African population distribution, 2010 versus 2050.

Figure 1. African populaion by five-year age groups and sex, 2010 versus 2050

Source: Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat, World Population Prospects: The 2008 Revision, http://esa.un.org/unpp, Monday,April?2,2010; 3:19:17PM.

Minimum Origin Version Required: Origin 8 SRO
What you will learn

- Set axis scale to reverse bar chart
- Merge graphs

Steps

1. Download the source data files bar_graph_of_African_population_01.txt and bar_graph_of_African_population_02.txt from our ftp. Import these two files into an Origin
workbook with two worksheets, each for one .txt file. The Import Multiple ASCII dialog can be set as follow:

2. Highlight the "male" column in the "bar_graph_of_African_population1" sheet and click the Bar button on the 2D Graphs toolbar to plot a bar graph.
3. In the bar graph you just created, double-click X-axis to open the X-Axis dialog box. Go to the Grid Lines tab. Select Horizontal in the Selection box and then uncheck Minor Grids to hide the grid lines.
4. Go to the Scale tab. Select Horizontal in the Selection box. Change From and To to 17 to 0 , respectively. Set increment to -5.

Then select Vertical in the Selection box and select Manual from the Rescale drop-down list. Click OK to apply.

5. Double-click on the bar graph to open the Plot Details dialog. Go to the Pattern tab and change Color (in the Fill box) to Blue. Click OK to change the bar fill color to blue.
6. Delete the XY axis titles and the Legend.
7. Highlight the "female" column in the "bar_graph_of_African_population1" worksheet and click the Bar button to plot another bar graph.
8. Repeat step 3 to turn off the grid lines. Then do the same things as above to reset the axis scale. However this time, change the Horizontal axis? From and To values to 0 to 16 , respectively, and set Increment to 5 .
9. Delete the XY axis Tick Labels, Title and Legend.
10. Repeat steps 2 through 9 to plot two more bar graphs from the worksheet "bar_graph_of_African_population_". At this time, set the X-Axis scale in the male bar graph to go From 10.0116 To 0, by an Increment of -2. Leave the Axis scale in the female bar graph as the default and change only the Y -axis to Manual.
11. Now you have four bar graphs. To merge these four graphs, activate one of the four graph windows and select Graph: Merge Graph Windows... from the main menu. Doing so opens the merge_graph dialog box. Change the settings as follows to merge these four bar graphs into one graph window.

12. In the merged graph, add text boxes: "Percent" and "Age (years)", as axis titles of the upper and lower graphs. Also add some other text boxes, such as a graph title: "Figure 1. African population by five ? year age groups and sex, 2010 versus 2050", to better describe this graph.

5.3.3 Bar and Scatter Plot with Error Bar

Summary

Below graph is made of bar chart and scatter plot.

```
C/T The Whole Province
    - The South Area
B (Other Parts in the Province except the South Area)
```


Minimum Origin Version Required: Origin 8.0 SRO

What will you learn

- How to add a scatter plot to a bar graph
- How to set the Plus and Minus error bar

Steps

This tutorial is associated with the 2D and Contour Graphs: Column, Bar?Bar Plot with Errors folder in the 2D and Contour Graphs project (\Samples\2D and Contour Graphs.opj) which can be opened by selecting File: Open Sample Projects? 2D and Contour Graphs from the main menu.

1. Active the workbook Book2N, right-click the col(C) to select Set as: Y Error from the context menu.
2. Highlight $\operatorname{Col}(A), \operatorname{col}(B)$ and $\operatorname{col}(C)$, select Plot: Column/Bar/ Pie: Column from the main menu to plot a column graph with Y error bar.

3. Active the graph window, and then select Graph: Exchange X-Y Axes.

4. Highlight the col(D) in the worksheet and then active the graph window again. Select Graph: Add Plot to Layer: Scatter from the main menu to add the col(D) as scatter to the column graph.

5. Double-click the column graph to open the Plot Details dialog. Set the Color and Pattern options in the Fill group of Pattern Tab as below.

6. Select the scatter plot in the left panel, then set the Symbol as below. Then click OK button to close the dialog.

7. Active the graph window, hold the Ctrl key and select the first bar to set its pattern as Dense as below from the Style toolbar.

8. Delete the legend, then select Graph: New Legend from the main menu to add a new legend for graph.
9. Right-click the legend to select Properties from the context menu to open the Objects

Properties dialog. Set Background as Black Line. Then edit and move the legend as below.

5.3.4 Column Graph with Error Bars

Summary

This custom graph illustrates how Origin can include error bars along with its data plots. The same Y data is plotted twice, once as a scatter plot and again as a column plot. The error bars are attached to the scatter plot in this case. Error bars can be included in the graph in both the Y and X directions.

What you will learn

- Create and customize column graph
- Use Plot Setup dialog to add a new data plot into your graph

Steps

This tutorial is associated with the 2D and Contour Graphs project: \Samples\2D and Contour Graphs.opj. (If you don't have the Project file, please download the data file from here)

1. Open the Project file, and browse to the folder 2D and Contour Graphs: Column, bar: Column with Error Bar. Active the worksheet and make sure the column type as X, Y, Y Error and Label accordingly.
2. Highlight column 2 and select Plot: Column/ Bar/ Pie: Column to create a column graph.
3. With the graph window active, select Graph: Plot Setup to bring up the Plot Setup dialog. We will add the scatter and error bars from this dialog as below:

Click the Add button to add scatter data to column plot. Then click OK to go back to column graph window.
4. Double-click the columns to bring up the Plot Details dialog to customize the graph in Pattern tab as below:

5. Double-click the Y axis, and set the Vertical axis scale From 0 To 35. Then active the Grid Lines tab, enable Horizontal Major Grid with Dash line. Then check the Opposite checkbox for both Horizontal and Vertical axis.Go to the the Tick Labels tab, choose the Bottom icon from the left panel. Choose Text from dataset from the Type drop-down list and choose [Book01]Data!D from the Dataset drop-down list. Click OK to apply these settings.
6. Delete or customize the legend and axis title as you need.

5.3.5 Column/ Bar Gap/ Offset Across Layers

Summary

This tutorial will show you how to create a multiple-layer column graph with gap across layers.

Minimum Origin Version Required: Origin 8.5.1 SRO
What will you learn

This tutorial will show you how to

- Create double-Y column graph
- Add gap for the column plots in different layers

Steps

1. Copy and paste the sample data to an new Origin worksheet. Set the first row as Long Name and the second row as Units.

| 吿 Book1 | \square | | | | X |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $\mathrm{A}(\mathrm{x})$ | $\mathrm{B}(\mathrm{C})$ | CO | | \wedge |
| Comments | | | | | |
| Long Name | Site | potassium | phosphoru | | |
| Units | -- | mgikg | mg/kg | | |
| 1 | 1 | 38.22409 | 6.25809 | | |
| 2 | 2 | 12.83141 | 6.56709 | | |
| 3 | 3 | 21.27226 | 5.32531 | | |
| 4 | 4 | 86.46412 | 7.74898 | | |
| 5 | 5 | 42.91068 | 9.90374 | | |
| 6 | 6 | 48.95083 | 1.63804 | | |
| 7 | 7 | 96.68733 | 4.5168 | | |
| 8 | | | | | |
| 9 | | | | | |
| 4 Sheet1 | | | $1 \leqslant$ | \rangle | 1 . |

2. Plot a double-Y graph: Highlight all columns. In Origin?s main menu, click Plot, point to Multi-Curve, and then click Double-Y. Alternatively, you can simply click the Double-Y button on the 2D Graphs toolbar.

3. Double-click then graph to open the Plot Details dialog. In this dialog?s left menu, select a plot (as below) and change the plot type to Column/Bar. Do this for both plots.

4. In the Plot Details dialog?s left menu, select the top level (Graph2 in the example below). On the Miscellaneous tab, select the Column/Bar Gap/Offset Across Layers check box.

5. In the left panel, select the first plot and set the appearance of its columns as shown below. Do the same for the second plot, using the second image below as reference.

6. Click OK to close the dialog. Your final graph should look like this:

12

Sample Data

The following table contains the sample data.

| Site | potassium | phosphorus |
| :--- | :--- | :--- |
| $\boldsymbol{- -}$ | $\mathbf{m g} / \mathbf{k g}$ | $\mathbf{m g} / \mathbf{k g}$ |
| 1 | 38.22409 | 6.25809 |
| 2 | 12.83141 | 6.56709 |
| 3 | 21.27226 | 5.32531 |
| 4 | 86.46412 | 7.74898 |
| 5 | 42.91068 | 9.90374 |
| 6 | 48.95083 | 1.63804 |
| 7 | 96.68733 | 4.5168 |

5.3.6 Stack Column With Labels

Summary

This graph displays a stacked column plot. Each data point in each column has been labelled using the data value with custom formatting.

U.S. Population by Race

Minimum Origin Version Required: 8.5 SRO
What will you learn

This tutorial will show you how to

- Create a stack column
- Add labels for columns
- Customize the column graph

Steps

This tutorial is associated with the 2D and Contour Graphs project:\Samples\2D and Contour Graphs.opj.

1. Open the Project file, and browse to the folder 2D and Contour Graphs\Column, Bar\Stack Column With Labels.
2. Activate the worksheet and select columns B through E. In the main menu, click Plot, then point to Column/ Bar/ Pie, and then click Stack Column. Alternatively, you can simply click the Stack Column button on the 2D Graph toolbar.

3. Double-click the X axis to open the Axis dialog. On the Tick Labels tab, select Text from dataset from the Type menu, and select [Book1H]Sheet1!A from the Dataset menu.
```
X Axis - Layer 1 
```


4. On the Title \& Format tab, select the Top icon in the Selection box. Select Show Axis \& Ticks, and then set Major Ticks and Minor Ticks to None.

Select Right in the Selection box. Select Show Axis \& Ticks, and then set Major Ticks and Minor Ticks to None.

5. On the Scale tab, select Vertical in the Selection box. Set To to $\mathbf{1 0 2}$ and click OK.
6. Double-click the plot to open the Plot Details dialog. On the Group tab, set the Fill Color as below:

7. On the Label tab, select Enable. Set the Font, Color, and Size to Verdana, white, and 18. Set Label Form to Custom, and then enter " $\$((y), .0) \%$ " for the Format String.

8. On the Spacing tab, set Gap Between Bars(in \%) to $\mathbf{3 0}$.
Group Pattern Spacing Label

Gap Between Bars (in \%)

9. On the Pattern tab, set Gradient Fill as below:

10. In the left panel, select Layer1. On the Background tab, set Color and Gradient Fill as below:

11. Click OK to close the dialog. To complete the graph, change the X and Y axis labels to "Year" and "Population (\%)", and then add the graph title ?U.S. Population by Race.?

5.3.7 Clustered-Stacked Column Chart

Summary

This tutorial will show you how to create a clustered-stacked column chart in Origin. This graph consists of two graph layers, each of which has a stacked column.

Minimum Origin Version Required: Origin 8.5.1 SRO
What will you learn

This tutorial will show you how to

- Create a stacked column graph.
- Create a graph that has two stacked column graphs.
- Customize a column chart.

Steps

1. Import the sample data Data 1 and Data 2 into different worksheets in Origin. Set the first line as Long Name for them and set the sheet names as 2010 and 2011 respectively.

| \# ${ }_{\text {\# }}$ Book1 | | - | | | \square | \times |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $A(x)$ | B() | $\mathrm{C}(1)$ | D(1) | | 슷 |
| Long Name | | Product A | Product 日 | Product C | | |
| Units | | | | | | |
| Comments | | | | | | |
| 1 | Jan | 42 | 33 | 40 | | |
| 2 | Feb | 88 | 85 | 37 | | |
| 3 | Mar | 99 | 34 | 82 | | |
| 4 | Apr | 51 | 43 | 38 | | |
| 5 | May | 21 | 66 | 52 | | |
| 6 | Jun | 74 | 31 | 28 | | |
| 7 | | | | | | \checkmark |
| 4 - 2010 | $2011 /$ | | | < \quad IIII | \geqslant | \therefore |

2. Create a new graph layer by selecting File: New : Graph from the main menu. And then select Graph: New Layer: No Axes(Link XY Scale and Dimension) from the main menu to add another layer to the graph window you just created.
3. Right-click on the graph to select Plot Setup... from the context menu to open the Plot Setup dialog. In this dialog, select Stacked Column/ Bar in the Plot Type box, select worksheet 2010 and 2011 in the top panel respectively, assign col(A) as X and $\operatorname{col}(B) \sim \operatorname{col}(D)$ as Y in the middle panel, and then click the Add button to add them to Layer 1 and NoAxes layer respectively.

4. Click OK button to close the Plot Setup dialog. Click the Rescale button, you will get a graph with two stacked column graphs overlapped as shown below:

5. Double-click on the graph to open the Plot Details dialog. Select Graph1 level in the left panel, go to the Miscellaneous tab in the right panel, and check the Column/ Bar
Gap/ Offset Across Layers check box.

6. Click OK button, you will see the plot with two stacked columns will show side by side with an auto gap.

7. Double-click on the graph to open the Plot Details dialog again. Set the Border Color and Fill Color respectively, as shown below:

8. Go to the Pattern tab to set the Transparency as 40, Border Width as 0.2 , and Gradient Fill as shown for both graph layers:

9. Click OK button to close the Plot Details dialog.

10. Right-click on the graph legend, select Update Legend from the context menu to open the LegendUpdate dialog. Set the Update Mode as Reconstruct, Legend as One Legend for AlI, and Order as Descending.

11. Click OK button to close the dialog and then update the axis labels, you will get the final graph shown below:

Sample Data

Data 1

| | Product A | Product B | Product C |
| :--- | :--- | :--- | :--- |
| Jan | 42 | 33 | 40 |
| Feb | 88 | 85 | 37 |
| Mar | 99 | 34 | 82 |
| Apr | 51 | 43 | 38 |
| May | 21 | 66 | 52 |
| Jun | 74 | 31 | 28 |

Data 2

| | Product D | Product E | Product F |
| :--- | :--- | :--- | :--- |
| Jan | 96 | 87 | 35 |
| Feb | 62 | 66 | 15 |
| Mar | 65 | 86 | 51 |
| Apr | 32 | 24 | 87 |
| May | 77 | 26 | 34 |
| Jun | 69 | 33 | 71 |

5.4 Multi-Axis Multi-Panel

Topics covered in this section:

1. Double Y
2. 3 Ys Y-YY
3. Multiple Layers with Linked Axis
4. Stack Lines by Y Offsets
5. Vertical 2 Panel Line
6. Multiple Axis Plot
7. Energy-Level Structure of the Er3+ Ion in A YAG Crystal
8. Multi-panel plot template

5.4.1 Double Y

Summary

This tutorial will show how to create a graph with double Y axes.

What you will learn

- Create a graph with double Y axes
- Customize settings of data scatters
- Change axis scale, type, title, etc.
- Update legend

Steps

This tutorial is associated with the project: \Samples\Graphing\Double Y.opj.

1. Open the project <Origin Installation Directory>\Samples\Graphing\Double Y.opj and active the workbook.
2. Highlight four columns in the data worksheet, then choose menu Plot: Multi-Curve: Double-Y to create a graph with double Y axes.
3. Customize settings of data scatters.
o Double click on the plot to open the Plot Details dialog. In the left panel, select the plot in Layer1, and then set the plot type as Scatter, symbol as Triangle and size as 10.

o Choose the Annealing plot in Layer2, then change the Plot Type, Size and Color as below.

o Choose the Err plot in Layer2, then change Color to Gray in the Error Bar tab.
o Click the OK button to finish scatter settings.
4. Double click on X axis, in the opened dialog, select the Scale tab and change From 92 To 83 with I ncrement of -2. Then choose the Title \& Format tab and set Title to Transition Temperature (K). Click the OK button.

5. Double click on the left Y axis, in the opened dialog, do the same thing as last step (step 4), but with scale type of Log10, scale From 1E-4 To 100, Increment of 1, and Title to Deposition Pressure (Torr).
6. Double click on the right Y axis, in the opened dialog, do the same thing as step 4, but with scale From 765 To 795, Increment of 10, Title to Annealing Temperatrature ($\backslash+(0) \mathrm{C}$), and both Major Ticks and Minor Ticks to In.
7. Click the legend to select it and then choose the Properties from the right-click menu to open the Object Properties dialog. Change Background to Black Line, and in the text field, enter the following text.

II(1.1) As Grown
\I(2.1) Annealed

8. Move the legend to the proper position.

5.4.2 3Ys Y-YY

Summary

This tutorial will show how to create a graph with three Y axis, one left Y axes and double right Y axis.

What you will learn

- Create a graph with three Y axis, one left and double right
- Customize settings of data scatters
- Change axis scale, type, title, etc.
- Show a axis
- Update legend

Steps

This tutorial is associated with the 2D and Contour Graphs project:\Samples\2D and Contour Graphs.opj.

1. Open the 2D and Contour Graphs project <Origin Installation Directory> Contour Graphs.opj, and then browse to the 2D and Contour Graphs: Multi Axis and Multi Panel: 3Ys Y-YY folder in Project Explorer.
2. Highlight all columns in the data worksheet, then choose menu Plot: Multi-Curve: $\mathbf{3 Y s} \mathbf{Y}-\mathbf{Y Y}$ to create a graph with three Y axes, one left Y and two right Y .
3. Customize data plots.

O Double click on the plot to open the Plot Details dialog. In the left panel, select the plot in Layer1, then change the plot type, symbol and color as below.

o Choose the Annealing plot in Layer2, then change the plot type to Line + Symbol. In the right panel, go to the Line tab, set Connect to No Line.

o Choose the Err plot in Layer2, then change color to Black.

O Choose the plot in Layer3, then in the Symbol tab of the right panel, change the plot type to Line + Symbol and symbol to solid circle.

o Select the Line tab when the plot in Layer 3 is selected and change Connect to BSpline.

4. Double click on X axis, in the opened dialog, select the Scale tab and change From 93 To 82 with I ncrement of -2 , and select Manual for Rescale. Then choose the Title \& Format tab and set Title to Transition Temperature (K). Click the OK button.

5. Double click on the left Y axis, in the opened dialog, do the same thing as last step (step 4), but with scale type of Log10, scale From 1E-4 To 100, Increment of 1, and Title to Deposition Pressure (Torr).
6. Double click on the right red Y axis, in the opened dialog, do the same thing as step 4, but with scale From 765 To 795, Increment of 10, Title to Annealing Temperatrature ($\backslash+(0) \mathrm{C}$).
7. Double click on the right blue Y axis, in the opened dialog, do the same thing as step 4, but with scale From 0 To 6 , I ncrement of 1 , Title to $\backslash \mathrm{g}(\mathrm{D}) \mathrm{T} \backslash$-(c$)(\mathrm{K})$.
8. Show the top axis.

O Double click on the bottom X axis, in the opened dialog, select the Title \& Format tab and then choose Top from the Selection box. Check the Show Axis \& Ticks check-box.

o Switch to the Tick Labels tab, check the Show Major Labels check-box.

9. Click the legend to select it and then choose the Properties from the right-click menu to open the Object Properties dialog. Change Background to Shadow, and in the text field, enter the following text. Then move the legend to the proper position.

II(1) As Grown
II(2.1) Annealed

10. Add a text with Characteristics of Samples Grown Under Different Conditions as the graph title.

5.4.3 Multiple Layers with Linked Axis

Summary

This tutorial will show how to merge four graphs to one graph, which contains multiple layers with linked axis.

What you will learn

- How to make a Line + Symbol plot
- How to merge graphs
- How to link axis of layers
- How to customize axis

Steps

This tutorial is associated with the 2D and Contour Graphs project:\Samples\2D and Contour Graphs.opj.

1. Open the 2D and Contour Graphs project, open the folder 2D and Contour Graphs: Multi Axis and Multi Panel: Multiple Layers with Step Plot in the Project Explorer.
2. Activate the workbook and highlight column Valuel and make a graph by selecting Origin menu Plot: Line + Symbol: Line + Symbol.
3. Activate the graph, right-click the legend and choose Properties from the context menu. In the Object Properties dialog, change the Background to White Out, Size to 36 and put the following text in the text field: $\backslash b$ (Vertical).

Click the OK button. Move the legend to the correct position.

4. Double click on the open white space in layer of the graph to open the Plot Details dialog. In the left panel, select Layer1. Activate the Background tab in the right panel, choose LT Gray for the Color. Then select the plot in Layer1 from the left panel, under the Symbol tab in the right panel, set Size to 15 and Symbol Color to red. Switch to the Line tab, choose Step Vert from the Connect drop-down list and set Width to 4.

5. Repeat step 2 to step 4 for column Value2, Value3 and Value4 respectively. For each column, the legend text and Connect drop-down list will be different, listed below.

For column Value2:
legend text $=\backslash b$ (Vertical Center)
Connect $=$ Step V Center
For column Value3:
legend text $=\backslash b$ (Horizontal)
Connect $=$ Step Horz
For column Value4:
legend text $=\backslash b$ (Horizontal Center)
Connect $=$ Step H Center
6. Activate a graph and then select Origin menu Graph: Merge Graph Windows to open the merge_graph dialog. Change the settings as the following image shows. Then click the OK button to merge these graphs.

7. Activate the new merged graph, choose Origin menu Graph: Layer Management to open the Layer Management dialog. In the Layer Selection panel, rename the layers by double clicking on the name and reorder the layers by clicking on the layer index and dragging up and down. Make sure the final layers' names and order are the same as the image shows below (In the Preview panel, the layers' indices and positions can be shown).

8. In the Layer Selection panel, press Ctrl key on the keyboard to select the following layers: Vertical Center, Horizontal and Horizontal Center. Go to the Link tab, select 1 from the Link To drop-down list. Then both \mathbf{X} Axis Link and \mathbf{Y} Axis Link are set to Straight(1 to 1).
Then click the Apply button.

9. Go to the Axes tab, select Vertical layer from the left panel, then check all Axis check-boxes under Bottom branch, Left branch, Top branch and Right branch. Also, uncheck the Title check-box under Bottom branch and select In for Tick drop-down list under Top branch. Click the Apply button.

10. Select Vertical Center layer, in the Axes tab, Bottom branch, Left branch and Right branch share the same settings. And settings for Top branch shows in the image below. Click the Apply button.

11. Select Horizontal layer, in the Axes tab, check the Axis check-boxes under both Top branch and Right branch. Click the Apply button.

12. Select Horizontal Center layer, in the Axes tab, uncheck the Title check-box under Left branch and check the Axis check-box under Top branch. Click the Apply button.

13. Click the OK button to close the Layer Management dialog.
14. Double click on the X axis of the lower-left layer to open the \mathbf{X} Axis dialog. In the Scale tab, select Horizontal from the Selection panel, change From, To, Increment and Minor Ticks as the following image shows.

15. Select Vertical from Selection panel, change the settings as the following image shows.

16. Go to the Tick Labels tab, select Bottom from the Selection panel, set Type to Date and Display to $1 / 2$.

17. Go to the Custom Tick Labels tab, select Bottom from the Selection panel, choose Hide for the At Axis End.

18. Repeat step 14 to step 17 for the X axis of the lower-right layer.
19. Select the labels of X axis and Y axis, then in the Format toolbar, change the size to 30 and click down the Bold button.
20. Change the Y title to Price and then set size of X and Y title to 36 .

5.4.4 Stack Lines by Y Offsets

Summary

This tutorial will show how to create a graph with stack lines by Y offsets.

What you will learn

- How to create a graph with stack lines by Y offsets
- How to customize a rectangle object
- How to add new XY scaler

Steps

This tutorial is associated with the 2D and Contour Graphs project:\Samples\2D and Contour Graphs.opj.

1. Open the 2D and Contour Graphs project <Origin Installation Directory>\Samples\2D and Contour Graphs.opj, and then browse to the 2D and Contour Graphs: Multi Axis and Multi Panel: Stack Lines by Y Offsets folder in Project Explorer.
2. Highlight all columns in the data worksheet of Book6A, then choose menu Plot: Multi-Curve:

Stack Lines by Y Offsets to create a graph with stack lines by Y offsets.
3. Delete the following objects by selecting them and then pressing the Delete key on your keyboard:

Legend
Y axis
Y axis labels
Y axis title
X axis title

4. Double click on the X axis to open the Axis Properties dialog. In the Scale tab, make sure that Horizontal is selected in the Selection list. Change To to 10. Click OK to close the dialog.

5. Click the Rectangle button on the Tools toolbar and then create a rectangle on the graph.
6. Double click on the rectangle to open its properties dialog. Change the following settings.

Fill Pattern tab

Fill Color $=$ LT Yellow

Dimensions tab

Units = scale
Left $=.25$
Top $=9000$
Width $=3.5$
Height $=4000$

7. Click OK to close the Object Properties dialog.
8. Select Graph: New XY Scaler from the Origin menu to create a new XY scaler.
9. Double click on the scaler to open the Scaler Properties dialog. Set the following properties in the dialog:
Font Settings branch
Font Size $=24$
X branch
Length(Scale) $=2$
Title $=2$
\mathbf{Y} branch
Position $=$ Right
Length(Scale) $=2500$
Title $=2500$
\mathbf{X} (in the Offset branch under the Title Properties branch) $=10$

10. Click OK to close the Scaler Properties dialog.
11. Move the Scaler object onto the rectangle you created.

5.4.5 Vertical 2 Panel Line

Summary

This tutorial will show you how to merge two graphs and how to customzie them.

Minimum Origin Version Required: Origin 8.0 SR6

Steps

1. Create a new worksheet. Import the data.

| Vertical 2 Panel Line. dat | | | | | | | | $\square \square$ | | |
|---|---|---|---|---|---|---|---|---|---|---|
| | $\mathrm{A}(0)$ | B(C) | CO | D(\%) | E(V) | F(1) | G(1) | $\mathrm{H}(1)$ | \wedge |
| Long Name | Year | All Persons | All Males | All Females | Black Males | White Males | Black Females | White Females | |
| Units | | | | | | | | | |
| 1 | 1965 | 42.3 | 51.6 | 34 | 59.2 | 50.8 | 32.1 | 34.3 | |
| 2 | 1974 | 37.2 | 42.9 | 32.5 | 54 | 41.7 | 35.9 | 32.3 | |
| 3 | 1979 | 33.5 | 37.2 | 30.3 | 44.1 | 36.5 | 30.8 | 30.6 | |
| 4 | 1983 | 32.2 | 34.7 | 29.9 | 41.3 | 34.1 | 31.8 | 30.1 | |
| 5 | 1985 | 30 | 32.1 | 28.2 | 39.9 | 31.3 | 30.7 | 28.3 | |
| 6 | 1987 | 28.7 | 31 | 26.7 | 39 | 30.4 | 27.2 | 27.2 | |
| 7 | 1990 | 25.4 | 28 | 23.1 | 32.2 | 27.6 | 20.4 | 23.9 | |
| 8 | 1991 | 25.4 | 27.5 | 23.6 | 34.7 | 27 | 23.1 | 24.2 | |
| 9 | 1992 | 26.4 | 28.2 | 24.8 | 32 | 28 | 23.9 | 25.7 | |
| 10 | 1993 | 25 | 27.5 | 22.7 | 33.2 | 27 | 19.8 | 23.7 | |
| 11 | 1994 | 25.5 | 27.8 | 23.3 | 33.5 | 27.5 | 21.1 | 24.3 | |
| 12 | | | | | | | | | v |
| \| 4 | Vertical 2 Panel Line \square | | | | | | | | \rangle | 仿 |

2. Select column $\mathbf{2}$ to column 4. Click the Line + Symbol button on the 2D Graphs toolbar.

The first graph should look like

Go back to the worksheet. Select column $\mathbf{5}$ to column $\mathbf{8}$ and then click the Line + Symbol button on the 2D Graphs toolbar to create a new graph. The second graph should look like

3. To merge two graphs, select Graph: Merge Graph Windows from the menu. Accept the default settings. Click OK to merge two graphs. The merged graph should look like

4. Double-click on the \mathbf{Y} axis of Layer 1 to open the Axis Properteis dialog. In the Scale tab, set the dialog options as the screenshot below.

In Tick Labels tab, set the dialog options as the screenshot below. Click OK to finish.
5. Delete the \mathbf{X} title in Layer 1.

Set the same scale for the Y axis of Layer 2. After all of these operations, the graph should look like

6. Now, apply a theme to add a top \mathbf{X} axis and a right \mathbf{Y} axis. Select Tool: Theme Organizer from the main menu to open the Theme Organizer dialog. Activate the Graph tab and select the Opposite Lines from the table. Then click the Apply Now button. Click the Close button to close the dialog.

7. Select the Legend of Layer1 and right-click on it to select Properties from the short-cut menu. Then set the dialog options as following image shows:

Move the legend to the position as the sample image shows.
8. Click the Line button on the Tools toolbar and draw a line on the Layer 1 as the sample image shows. Hold down the SHIFT key while drawing to ensure that the line is vertical. Double-click on the line to open the properties dialog of the line object. In the Line tab, select Dash with the Type drop-down list. And enter $\mathbf{2}$ in the Size edit box. Activate the Control tab. Select both the Horizontal Movement and the Vertical Movement check boxes. Then click the OK button.
9. Repeat steps 6-7 for Layer $\mathbf{2}$.
10. Click the Text button in the Tools toolbar. Then click in the middle of the graph and enter Cigarette Smoking by Persons $\mathbf{1 8}$ Years and Over in the United States to add a title for the graph. Double-click on the \mathbf{Y} axis title of Layer 1 and Layer 2, then enter Percent Who Smoke in them.

The graph should look like

Sample Data

Download the Vertical_ 2_Panel_Line.txt file from
http://www.originlab.com/ftp/graph_gallery/data/Vertical_2_Panel_Line.txt. Click the I mport Single

The following table contains part of the sample data.

| Year(X) | AlI
 Persons(Y) | AlI
 Males(Y) | All
 Females(Y) | Black
 Males(Y) | White
 Males(Y) | Black
 Females(Y) | White
 Females(Y) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1965 | 42.3 | 51.6 | 34 | 59.2 | 50.8 | 32.1 | 34.3 |
| 1974 | 37.2 | 42.9 | 32.5 | 54 | 41.7 | 35.9 | 32.3 |
| 1979 | 33.5 | 37.2 | 30.3 | 44.1 | 36.5 | 30.8 | 30.6 |
| 1983 | 32.2 | 34.7 | 29.9 | 41.3 | 34.1 | 31.8 | 30.1 |
| 1985 | 30 | 32.1 | 28.2 | 39.9 | 31.3 | 30.7 | 28.3 |
| 1987 | 28.7 | 31 | 26.7 | 39 | 30.4 | 27.2 | 27.2 |
| 1990 | 25.4 | 28 | 23.1 | 32.2 | 27.6 | 20.4 | 23.9 |
| 1991 | 25.4 | 27.5 | 23.6 | 34.7 | 27 | 23.1 | 24.2 |
| 1992 | 26.4 | 28.2 | 24.8 | 32 | 28 | 23.9 | 25.7 |
| 1993 | 25 | 27.5 | 22.7 | 33.2 | 27 | 19.8 | 23.7 |
| 1994 | 25.5 | 27.8 | 23.3 | 33.5 | 27.5 | 21.1 | 24.3 |

5.4.6 Multiple Axis Plot

Contents

- 1 Summary
- 2 Steps
- 3 Sample Data

Summary

This tutorial will show you how to create a $4-Y$ plot and add recession bars.

Minimum Origin Version Required: Origin 8.5.1

Steps

1. Create a new workbook and import the sample data into it.
2. Place the mouse cursor near the top left corner of the worksheet. When the cursor changes to a down-right arrow, click the left button to select the whole worksheet.

| \#\# multiaxisplot - multi_axis_plot.txt | | | | | | $\square \square$ | x |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 】 | $A(x)$ | B(\%) | C(1) | D(1) | E(Y) | | ヘ |
| Long Name | DATE | Personal Sawing | DATE | Unit Labor Cost | DATE | Output | |
| Units | | Billions of Dollars | | Index 1992=100 | | | |
| Comments | | | | | | | |
| Sparklines | | $\ldots \ldots$ | | | | | |
| 1 | 1/1/1947 | 10.3 | 1/111947 | 21.175 | 1/1/1947 | | |
| 2 | 4/1/1947 | 4.3 | 4/111947 | 21.547 | 4/111947 | | |
| 3 | 7/1/1947 | 8.4 | $7 / 111947$ | 21.874 | $7 / 111947$ | | |
| 4 | 1011/1947 | 6.5 | 1011/1947 | 22.444 | 1011/1947 | | |
| 5 | 1/111948 | 8.4 | 1/111948 | 22.278 | 1/1/1948 | | |
| 6 | 4/1/1948 | 12.8 | 4/1/1948 | 22.058 | 411/1948 | | |
| 7 | $7 / 111948$ | 16.6 | 7/1/1948 | 22.781 | $7 / 111948$ | | |
| 8 | 1011/1948 | 15.6 | 1011/1948 | 23.141 | 10111948 | | |
| 9 | 1/111949 | 11.3 | 1/111949 | 22.765 | 1/1/1949 | | |
| 10 | 41111949 | 9 | 411/1949 | 22.345 | 411/1949 | | \checkmark |
| 4 P multi | axis_plot/ | | | < | - | \rangle | . |

3. Right-click and select Set as: XY XY from the short-cut menu to set proper plotting designations for the worksheet columns.

| \%eit multiaxisplot - multi_axis_plot.txt | | | | | | \square |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\mathrm{A}(\times 1)$ | B(\%1) | $\mathrm{C}(\times 2)$ | D(V2) | E(X3) | \wedge |
| Long Name | DATE | Personal Saving | DATE | Unit Labor Cost | DATE | Output F |
| Units | | Billions of Dollars | | Index 1992=100 | | I |
| Comments | | | | | | |
| Sparklines | | $\ldots-N^{N+} r_{1}+_{1} \mid$ | | | | - |
| 1 | 1/1/1947 | 10.3 | 1/1/1947 | 21.175 | 1/1/1947 | |
| 2 | 4/1/1947 | 4.3 | 411/1947 | 21.547 | 4/1/1947 | |
| 3 | 7/1/1947 | 8.4 | 7/1/1947 | 21.874 | 7/1/1947 | |
| 4 | 1011/1947 | 6.5 | 1011/1947 | 22.444 | 1011/1947 | |
| 5 | 1/1/1948 | 8.4 | 1/1/1948 | 22.278 | 1/1/1948 | |
| 6 | 4/1/1948 | 12.8 | 4/1/1948 | 22.058 | 4/1/1948 | |
| 7 | 7/1/1948 | 16.6 | 7/1/1948 | 22.781 | 7/1/1948 | |
| 8 | 1011/1948 | 15.6 | 10/1/1948 | 23.141 | 1011/1948 | |
| 9 | 1/1/1949 | 11.3 | 1/1/1949 | 22.765 | 1/1/1949 | |
| 10 | 4/1/1949 | 9 | 4/1/1949 | 22.345 | 4/1/1949 | $\stackrel{\rightharpoonup}{V}$ |
| A multi | axis_plot/ | | | $1 \leqslant$ | III | $\geq 1 \mid$ |

4. Highlight all columns. From the main menu, select Plot: Multi-curve: 4Ys YY-YY to create a plot.

5. Double-click on the graph to open the Plot Details dialog. In the left panel, select the second plot in Layer 1 and set the plot type as line and click Apply button. Then go to the
Line tab in the right panel as the following screenshot and then click Apply.

6. Go to the Pattern tab. Set the dialog options as follows and then click OK.

7. Double-click on the bottom X axis to open the Axis Properties dialog. In the Scale tab, change the dialog options as follows and then click Apply.

8. Go to the Tick Labels tab, change the dialog options as follows and then click Apply.

9. Activate the Title \& Format tab. Select Top in the Selection list. Then change the dialog options as follows and then click Apply.

10. From the Origin menu, select Graph: New Legend to update the legend. Click on the legend to select it and then use the mouse to drag it to a better position.

The final graph should be like:

Sample Data

Download the sample data file from http://www.originlab.com/ftp/graph gallery/data/multi_axis_plot.txt. Create a new worksheet. Click
the Import Single ASCII button $\begin{aligned} & \text { and select the file to import it into Origin. }\end{aligned}$
The following table contains part of the sample data.

| DATE | Personal
 Saving | DATE | Unit
 Labor
 Cost | DATE | Output
 Per
 Hour of
 AlI
 Persons | DATE | Durable
 Consumer
 Goods
 Recession
 period | Recession
 Period | Recession
 Period |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $1 / 1 / 1947$ | 10.3 | $1 / 1 / 1947$ | 21.175 | $1 / 1 / 1947$ | 32.11 | $1 / 1 / 1947$ | 11.8583 | $11 / 1 / 1948$ | 1 |
| $4 / 1 / 1947$ | 4.3 | $4 / 1 / 1947$ | 21.547 | $4 / 1 / 1947$ | 32.304 | $2 / 1 / 1947$ | 12.222 | $10 / 1 / 1949$ | 1 |
| $7 / 1 / 1947$ | 8.4 | $7 / 1 / 1947$ | 21.874 | $7 / 1 / 1947$ | 32.069 | $3 / 1 / 1947$ | 12.4888 | -- | 1 |

5.4.7 Energy-Level Structure of the Er3+ Ion in A YAG Crystal

Summary

In this tutorial, a graph will be created to show the energy-level structure of the Er3+ ion in a YAG crystal.

Minimum Origin Version Required: Origin 8 SR0

What you will learn

- Create a graph by selecting a part of data from a column
- Set symbol properties
- Merge graphs
- Change the size and position of a layer

Steps

1. To start this tutorial, please download the data file from ftp.
2. Create an empty workbook, click the Single Import ASCII $\stackrel{\text { Int }}{\text { 雷 }}$ to import the data file downloaded in step 1.
3. Highlight column B and create a symbol plot by selecting menu Plot: Symbol: Scatter.
4. Double click on the scatter to open the Plot Details dialog. In the Symbol tab of the right panel, change the symbol and Symbol Color as following image shows.

5. In the Drop Lines tab, check the Horizontal check-box and set Width to 1 . Then click the OK button.

6. Double click on the X axis to open the axis setting dialog. Set X axis From 0 To 1 .

7. Select Vertical from the left Selection panel. Set Y axis From 0 To 24000, and Increment is 2000 .

8. Switch to the Title\&Format tab, make sure Left is selected in the left Selection panel. Change the Title to Energy Levels (cm\+(-1)), Major Ticks and Minor Ticks both are In. Then click the OK button.

9. Delete the legend, X axis, title of X axis and tick labels of X axis.

10. Highlight cell 1 to cell 8 , cell 9 to cell 15 , cell 16 to cell 21 , cell 22 to cell 26 , cell 27 to cell 31 , cell 32 to cell 43 , and cell 44 to 48 respectively, and then repeat step 3 through step 9 to make another 7 graphs. The Increment of Y axis (step 7) all are set to 100, and From and To are 0 to

600,6500 to 6900,10200 to 10500,12300 to 12800,15200 to 15600,18300 to 20800,22200 to 22700, respectively. Also, the Title of Y axis (step 8) are different, as $\backslash+(4) \ \backslash-(15 / 2), \backslash+(4) \ \backslash-$ (13/2), \+(4) I\-(11/2), \+(4)\-(9/2), \+(4)F\-(9/2), \+(4)F\-(7/2) \+(2)H2\-(11/2) \+(4)S \backslash (3/2), and $\backslash+(4) \mathrm{F} \backslash-(3 / 2) \backslash+(4) \mathrm{F}-(5 / 2)$, respectively.
11. Change the Y title's rotate angle of graphs created in step 10. Just select the Y title and choose Properties from the right-click menu and set Rotate(deg.) to 0 in the open Object Properties dialog.

12. Activate one of the graphs, select menu Graph: Merge Graph Window. Change the settings as following and click the OK button to merge 8 graphs created before.

13. Double click on the merged graph to open the Plot Details dialog. In the Size/ Speed tab of layer 1, change the Layer Area as following.

14. Change other layers' size as 15 by 15 (Width and Height in step 13), then move them to the proper position, adjust the size of Y axis label and add the corresponding arrows and circle, finally get the graph as the following image shows.

5.4.8 Create an 8 layer multi-panel plot template

Summary

All child windows in Origin, with the exception of the Notes window, are created from template files. These template files describe how to construct the window. For a graph window, the template file determines all page and layer characteristics, such as page size, number of layers, inclusion of text labels, data plot style information, etc.

The template library lists all built-in as well as user-created templates.
Minimum Origin Version Required: Origin 8.0 SR6
What you will learn

- How to create an 8 layer multi-panel plot
- How to save the formatting as a template
- How to reuse the template with similar data

Steps

Choosing the Data Source

1. Click the New Project button on the Standard toolbar, to begin with a new project.
2. Click the Import Wizard button on the Standard toolbar. The Import Wizard opens. (Note that if this is the first time that you have started the Import Wizard, you will experience a slight delay as Origin compiles the necessary files.)
3. Verify that the $\mathbf{A S C I I}$ radio button is selected in the Data Type group.
4. Click the browse button to the right of the File text box. Navigate to the Origin folder; browse to the Samples folder and then the Curve Fitting folder. Select Step01.dat from the list of files.
5. Click the Add File(s) button.
6. Click OK.
7. Leave the I mport Filters for current Data Type as Data Folder: step. (This filter has the settings to use when importing the file.)
8. Click the Finish button. The data file imports into the worksheet.

Plotting the Data

1. Highlight the entire worksheet of data. (Note that you can select an entire worksheet by placing your cursor in the blank area in the upper left corner of the worksheet. When the cursor becomes a downward pointing arrow, click once to select the entire worksheet.)
2. Select Plot:Multi-Curve:9 Panel. A new 9 layer graph is created.
3. Select layer 9 by clicking inside it.
4. Press the Delete key on the keyboard. This will delete layer 9 , leaving you with 8 layers.
5. Select Graph:Layer Management. The Layer Management dialog opens.
6. Select the Arrange tab.
7. Set Column to 2 and Row to 4.
8. Click the Apply button. The preview in the dialog redraws to show you a 2×4 arrangement.
9. Click OK

Editing the Graph

The goal is to save this 8 panel graph as a template; i.e. a new plot type, so that it can be used again with new similar data. Since the template will also save plot style information, let's customize the graph a bit further

1. Double-click on the X axis in layer 1. The \mathbf{X}-Axis dialog opens.
2. Select the Grid Lines tab.
3. Check the Major Grids and Minor Grids checkboxes
4. Set the Line Color for both Major and Minor grids to LT Gray.
5. Check the Apply To Grid Lines checkbox for This Layer.
6. Click OK
7. Select layer 1 by clicking inside it.
8. Right-click inside the layer and select Copy Format:All Style Formats. This will copy the style formats of layer 1
9. To apply formatting to all layers, right-click outside of any layer (make sure that no layer is selected...one easy way to do that is to right-click in the gray area of the window, outside the white printable part of page), and select Paste Format.

Saving as a new graph template

1. Select File:Save Template As. A dialog opens allowing you to choose the category that the template will be saved in as well as the name given to the new template.
2. Change the Category to UserDefined.
3. Change the Template Name from PAN9 to PAN8. (Note that the Template Name that appears when the dialog opens is the name of the original template that was used to create the graph.)
4. Click OK

Plotting into your new template

1. Click the New Folder button on the Standard toolbar.
2. Click the Import Wizard button on the Standard toolbar. The Import Wizard opens.
3. Click the browse button to the right of the File text box. Navigate to the Origin folder; browse to the Samples folder and then the Curve Fitting folder. Select Step02. dat from the list of files.
4. Click the Add File(s) button.
5. Click OK
6. Leave the I mport Filters for current Data Type as Data Folder: step. (This filter has the settings to use when importing the file.)
7. Click the Finish button. The data file imports into the worksheet.
8. Highlight the entire worksheet of data. (Note that you can select an entire worksheet by placing your cursor in the blank area in the upper left corner of the worksheet. When the cursor becomes a downward pointing arrow, click once to select the entire worksheet.)
9. Select Plot:Template Library or click the Template Library button on the 2D Graphs toolbar.
10. Scroll down to the UserDefined category under Graph Template.
11. Select PAN8. (Note that the Preview window is not a preview of the new data that you are plotting. It is an image of the graph when you saved your template.)
12. Click Plot.

5.5 Contour

Topics covered in this section:

1. XYZ Contour
2. Contour Plot with Major and Minor Levels Filled by Using Color Palette
3. Contour Plots and Color Mapping
4. Polar Contour
5. Ternary Contour
6. Combining Line and Contour Plots
7. Contour Graph with XY Data Points and Z Labels
8. Flattened Colormap Surfaces with Increasing Z Offset
9. Contour Plot with Vector Overlay

5.5.1 XYZ Contour

Summary

This tutorial will show you how to create a contour from XYZ data.
30-Year Mean Temperature for the Month of January

What will you learn

This tutorial will show you how to

- Create a Contour Plot from XYZ data
- Customize levels, lines, and color mapping
- Use a Custom Boundary
- Cutomize the Color Scale
- Customize the axes of the plot

Steps

This tutorial is associated with the 2D and Contour Graphs project:\Samples\2D and Contour Graphs.opj.

1. Open the 2D and Contour Graphs: Contour: XYZ Contour folder in the Project Explorer. Activate Book1 and highlight column D and then click Contour-Color Fill button from the 3D and Contour Graphs toolbar.

The graph should look like:

2. Double-click on the contour plot to bring up Plot Details dialog. Select the Contouring Info tab and set the options in the dialog as the screenshot below:

3. Select the Color Map/ Contours tab, click the Level heading and set the dialog as the following screenshot shows:

\square Plot Details - Plot Properties \quad ? \times

Workbook

O Click the Fill heading, select Load Palette and then select Rainbow from the Palette list.
o Click the Lines heading, select Show on Major Levels only. Enable Apply to All checkbox and choose LT Gray for the Color dropdown list.
4. Click OK to close the Plot Details dialog, then the graph should look like

5. Select Format: Axes: X Axes to open the Axis dialog. Then do the following things.

0 Select the Scale tab and then select Horizontal icon in the Selection list box, set \mathbf{X} From, To and Increment equal to -127, -65 and $\mathbf{1 0}$ individually.
0 Select the Vertical icon in the Selection list box, set \mathbf{Y} From=23, $\mathbf{T o}=\mathbf{5 0}$, and I ncrement=5.

0 Select the Title and Format tab and then select Left icon in the Selection list box, disable the Show Axis \& Ticks check box.
o Select the Bottom icon in the Selection list box, disable the Show Axis \& Ticks check box.
o Select the Tick Labels tab and then select Bottom icon in the Selection list box, disable the Show Major Labels check box.
o Select the Left icon in the Selection list box, disable the Show Major Labels check box.
6. Click OK to close the dialog. Double-click on the color scale legend to bring up its properties dialog. And set the dialog as the following screenshot shows:

7. Right-click above the contour plot and select Add Text to add a graph title. Use the Format toolbar and/or double-click on the completed text label to update the font, font size, etc. The graph should look like

30-Year Mean Temperature for the Month of January

5.5.2 Contour Plot with Major and Minor Levels Filled by Using Color Palette

The levels in a contour plot can be divided into many levels from the minimum to the maximum, including major levels and minor levels. Each level can then be assigned a specific color, or a color palette could be used to assign colors to the levels. Contour line for each level can be customized as well. In this tutorial, a contour plot is created from a matrix, and then Rainbow palette will be used to assign colors.

Minimum Origin Version Required: Origin 8.1 SR0

What you will learn

- Set dimensions for a matrix
- Set values for a matrix
- Turn on/off the Speed Mode
- Create a contour plot from a matrix
- Customize levels, contour lines and filled color for a contour plot
- Change the settings of the color scale

Steps

1. New a project, then click the New Matrix button to create a new matrix. Then move the mouse to the upper left corner of the matrix until the shape of the pointer has been changed as the following image shows and click it to select the entire matrix.

| 鳊 MBook1 : $1 / 1$ | | | | $\square \square$ | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \} | 1 | 2 | 3 | 4 | D |
| 1 | -- | -- | -- | | A |
| 2 | -- | -- | -- | | |
| 3 | -- | -- | -- | | - |
| 4 | -- | -- | -- | | |
| 5 | -- | -- | -- | | - |
| 6 | -- | -- | -- | | - |
| 7 | -- | -- | -- | | - |
| 8 | -- | -- | -- | | - |
| 9 | -- | -- | -- | | - |
| 10 | -- | -- | -- | | - V |
| 4 | et1 | | $11 \leqslant$ | \geqslant | \therefore |

2. Right-click and select Set Matrix Dimensions from the context menu.

3. Set the pop-up dialog as the following image shows. Then click the OK button to finish setting dimensions.

4. Highlight the matrix and right-click on it. Select Set Matrix Values to open the Set Values dialog.

5. In the open dialog, input $\mathbf{i}^{*} \boldsymbol{\operatorname { s i n }}(\mathbf{x})-\mathbf{j}^{*} \boldsymbol{\operatorname { c o s }}(\mathbf{y})$ in the Formula edit box.

6. Click the OK button to generate data and the matrix look like this:

| 曲 MBook1 : $1 / 1$ | | | | | | $\square \square$ | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 2 | 3 | 4 | 5 | 6 | D |
| 1 | -1 | -1.90017 | | | | -5.520¢ | |
| 2 | -0.995 | -1.79034 | | | | -5.0111 | |
| 3 | -0.98007 | -1.66063 | | | | -4.4421 | |
| 4 | -0.95534 | -1.51134 | -2.07133 | -2.63927 | -3.21901 | -3.814E | |
| 5 | -0.92106 | -1.34295 | -1.76984 | -2.20664 | -2.65821 | -3.1292 | |
| 6 | -0.87758 | -1.15616 | -1.44073 | -1.73721 | -2.0514 | -2.3889 | |
| 7 | \bigcirc | -0.95184 | -1.08532 | -1.2327 | -1.40075 | -1.596C | |
| 8 | - | Index | -0.70517 | -0.69521 | -0.70886 | -0.753E | |
| 9 | | | -0.3021 | -0.12714 | 0.02123 | $0.134 E$ | |
| 10 | -0.62161 | -0.24489 | 0.12186 | 0.46876 | 0.78613 | 1.064 | |
| 11 | -0.5403 | 0.01756 | 0.56446 | 1.08951 | 1.58209 | 2.0318 | |
| 12 | -0.4536 | 0.29081 | 1.02324 | 1.73186 | 2.40504 | $3.031 E$ | |
| | | 057312 | 149583 | 239233 | 3250 65 | $4 \mathrm{n5R}=\mathrm{V}$ | |
| | | | | | | \geqslant | |

7. Activate this matrix and select Plot: Contour: Color Fill from the Origin main menu to create a contour plot. The graph looks like this:

8. Double-click on the contour plot to open the Plot Details dialog. Select Layer1 in the left panel and then go to the Size/ Speed tab in the right panel, disable the Matrix data, maximum points per dimension to turn off the Speed Mode.

9. Select [MBook1]MSheet1!1(Z)[1:10201] to go to the matrix level. Click on the Level heading in the right panel to open the Set Levels dialog. Set values as the following image shows.

10. Click on the Fill heading to open the Fill dialog. Select Load Palette radio box and then click the Select Palette button to select the Rainbow palette. Click the OK button to close this dialog.

11. Click the OK button to close the Plot Details dialog.
12. Double click on the color scale to open the Color Scale Control dialog. Set Size to 18 and Color bar thickness to 200. Check the check-box before Reverse Order. Then click the

OK button to apply the settings to the color scale. Select the color scale and drag the handles around it to get a appropriate size.

13. Change the labels of axes, label of X axis is Width and label of Y axis is Length, both font size is 31. Add a text object, say Height Profile, to the top of layer, font size is 31 . Finally get a contour graph as follow:

5.5.3 Contour Plots and Color Mapping

Summary

Origin offers rectangular, polar, and ternary contour plots. For rectangular contour plots, the data can be either in a matrix or in a worksheet in XYZ format. Polar contour plots can be generated from three columns of data in a worksheet, organized either as $R \Theta Z$ or $\Theta R Z$. Ternary contour plots can be generated from worksheet data organized in X Y Z Z format where the 2nd Z-column contains the 4th parameter which is the height value at a given XYZ point in the ternary space.

Many options are available for customizing contour plots, such as setting different major and minor contour levels, displaying contour lines only at major levels, applying color palettes, and there is also a control for a custom boundary in the case of contour plots created directly from the worksheet.

This tutorial will show you how to:

- Set values in a Matrix and create a Contour Plot
- Customize levels, lines, and color mapping
- Extract data from contour lines
- Create a Contour Plot directly from XYZ data
- Use a Custom Boundary

Create Contour Plot from Matrix

1. Click the New Matrix button to create a new matrix.
2. Select Matrix: Set Matrix Dimensions/ Labels from the main menu and set the dialog as shown in the following image:

3. Then move the mouse to the upper left corner of the matrix until the shape of the pointer has been changed, as the following image shows, and click it to select the entire matrix.

| 雨 MBook1 :1/1 | | | | $\square \square$ | |
| :---: | :---: | :---: | :---: | :---: | :---: |
|) | 1 | 2 | 3 | 4 | 回 |
| 1 | -- | -- | -- | -- | - |
| 2 | -- | -- | -- | -- | |
| 3 | -- | -- | -- | -- | |
| 4 | -- | -- | -- | -- | |
| 5 | -- | -- | -- | -- | |
| 6 | -- | -- | -- | -- | |
| 7 | -- | -- | -- | -- | |
| 8 | -- | -- | -- | -- | |
| 9 | -- | -- | -- | - | |
| 10 | -- | -- | -- | -- | |
| 11 | -- | -- | -- | -- | |
| 12 | -- | -- | -- | -- | |
| 13 | -- | -- | -- | -- | \checkmark |
| 4 M | et1/ | | | | $1 / 1$ |

4. Input data into the matrix by using the Set Values dialog. Right-click on the matrix. Select Set Matrix Values to open the Set Values dialog. Input $\mathbf{i *} \boldsymbol{\operatorname { s i n }} \mathbf{(x)} \mathbf{- \mathbf { j }} \mathbf{~} \mathbf{\operatorname { c o s } (\mathbf { y })}$ in the Formula edit
box and click OK to generate data. The matrix should look like this:

| 曲 MBook1 :1/1 | | | The column index | | \square | X | |
|---|---|---|---|---|---|---|---|
| | 1 | 2 | 3 | 4 | 5 | D |
| 1 | -1 | -1.90017 | -2.80133 | -3.70448 | -4.61058 | \wedge |
| 2 | -0.995 | -1.79034 | -2.58767 | -3.38898 | -4.19618 | |
| 3 | -0.98007 | -1.66063 | -2.34419 | -3.03371 | -3.73208 | |
| 4 | -0.95534 | -1.51134 | -2.07133 | -2.63927 | -3.21901 | |
| 5 | -0.92106 | -1.34295 | -1.76984 | -2.20664 | -2.65821 | |
| 6 | -0.87758 | -1.15616 | -1.44073 | -1.73721 | -2.0514 | |
| 7 | -0.82534 | -0.95184 | -1.08532 | -1.2327 | -1.40075 | |
| 8 | -0.76484 | -0.73102 | -0.70517 | -0.69521 | -0.70886 | |
| 9 | -0.69671 | -0.49491 | -0.3021 | -0.12714 | 0.02123 | |
| 10 | -0.62161 | -0.24489 | 0.12186 | 0.46876 | 0.78613 | |
| 11 | -0.5403 | 0.01756 | 0.56446 | 1.08951 | 1.58209 | |
| 12 | -0.4536 | 0.29081 | 1.02324 | 1.73186 | 2.40504 | |
| 13 | 0.36236 | 0.57312 | 1.49563 | 2.39233 | 3.25065 | |
| 14 | \% 2675 | 0.86267 | 1.97887 | 3.06729 | 4.11436 | \checkmark |
| 1 M | The ro | ndex | | - \\| | - | 1 |

5. Each data point in the matrix corresponds to two different kinds of indices. One is the column and row indices. The other is the X and Y coordinates. You can select View: Show X / \mathbf{Y} to see the X, Y coordinates.

| 器 MBook1 :1/1 T | | | The X coordinates | | $\square \square$ | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 0 | 0.1 | 0.2 | 0.3 | 0.4 | D |
| 0 | -1 | -1.90017 | -2.80133 | -3.70448 | -4.61058 | |
| 0.1 | -0.995 | -1.79034 | -2.58767 | -3.38898 | -4.19618 | |
| 0.2 | -0.98007 | -1.66063 | -2.34419 | -3.03371 | -3.73208 | |
| 0.3 | -0.95534 | -1.51134 | -2.07133 | -2.63927 | -3.21901 | |
| 0.4 | -0.92106 | -1.34295 | -1.76984 | -2.20664 | -2.65821 | |
| 0.5 | -0.87758 | -1.15616 | -1.44073 | -1.73721 | -2.0514 | |
| 0.6 | -0.82534 | -0.95184 | -1.08532 | -1.2327 | -1.40075 | |
| 0.7 | -0.76484 | -0.73102 | -0.70517 | -0.69521 | -0.70886 | |
| 0.8 | -0.69671 | -0.49491 | -0.3021 | -0.12714 | 0.02123 | |
| 0.9 | -0.62161 | -0.24489 | 0.12186 | 0.46876 | 0.78613 | |
| 1 | -0.5403 | 0.01756 | 0.56446 | 1.08951 | 1.58209 | |
| 1.1 | -0.4536 | 0.29081 | 1.02324 | 1.73186 | 2.40504 | |
| 1.2 | (136236 | 0.57312 | 1.49563 | 2.39233 | 3.25065 | |
| 1.3 | -1. $\times 15$ | 0.86267 | 1.97887 | 3.06729 | 4.11436 | \checkmark |
| 1 | The Y | rdinates | | 4 | - | |

6. Select View: Show Image Thumbnails to turn on thumbnails.

7. Now, create a contour plot. Activate the matrix and select Plot: Contour: Contour - Color Fill to create a contour. The graph should look like this:

Customize Levels, Lines and Color Map

Origin makes it easy to customize a contour plot, including changing the color scale and adding labels. The following steps show you how.

1. Double-click on the contour plot to open the Plot Details dialog. Click on the word Layerl in the left panel (leave the check box checked, and click on the word itself), and then select the Size/ Speed tab in the right panel, and disable Matrix data, maximum points per dimension to turn off Speed Mode.
2. Then select [MBook1]MSheet1!1(Z)(1:10201) to go to the matrix level. Click on the Level heading in the right panel to open the Set Levels dialog. Click Find Min/ Max button and then set Major Levels to 8 and Minor Levels to 32, and then click OK to close it.

3. Now load a palette for the contour. Click on the Fill heading to open the Fill dialog, select the Load Palette radio box and then click the Select Palette button to select the Rainbow palette.

Click Ok to close the dialog.

4. Click the Line heading to open the Contour Lines dialog. Then select Show on Major Levels only and click OK to close the dialog. Then click OK to close the Plot Details dialog.
5. Set the properties for the color scale. Right-click on the color scale and select Properties to open the Color Scales Control dialog. Select the Show on Major Levels check box and click OK to
apply it to the color scale. Then the contour should look like

6. Click twice on a contour line (two single clicks, the first click selects the layer denoted by a red square at the plot center, the second click selects the contour line; if you mistakenly double-click, the Plot Details dialog will open) to select all lines at that level. Change the color to Green by using the Line/Border Color button in the Font toolbar. Also change the width to $\mathbf{3}$ by using the Line/ Border Width button $\begin{aligned} 3 \quad- & \text { in the same toolbar. }\end{aligned}$

Right-click on the selected contour line and select Add Contour Label to add a label.

7. Click three times on a contour line to select it, then right-click and select Extract Contour Lines. Origin will extract the data for that contour line to a worksheet. The following image shows part of the data in the worksheet.

| \#\#\#\#\# | | $\square \square \times$ | | |
|---|---|---|---|---|
| | A(\times) | B(\%) | - |
| Long Name | | | |
| Units | | | |
| Comments | | | |
| Z-Level | 39.500000 | 39.500000 | |
| | 0.36099 | 10 | |
| 2 | 0.36218 | 9.9 | |
| 3 | 0.36377 | 9.8 | |
| 4 | 0.36581 | 9.7 | |
| 5 | 0.36832 | 9.6 | |
| 6 | 0.37133 | 9.5 | |
| 7 | 0.37487 | 9.4 | |
| 8 | 0.37895 | 9.3 | |
| 9 | 0.38362 | 9.2 | |
| 10 | 0.38889 | 9.1 | |
| 11 | 0.39479 | 9 | - |
| (1) Sheet1 | | - \\| | |

Create a Contour Plot from XYZ Data

Origin can create contour plots directly from XYZ data in a worksheet without the need for an intermediate matrix. Delaunay Triangulation is used to compute and draw the contour lines.

1. Create a new worksheet and import the 3D XYZ.dat from the \backslash Samples \backslash Matrix Conversion and Gridding folder by using the I mport Single ASCII button $\stackrel{\text { 187 }}{\text { 雷 }}$
2. Highlight the third column and right-click on it to select Set As: Z. Then select Plot: Contour:

Color Fill to create a graph, as the following image shows.

Show the Triangulation Grid

1. Show the triangulation grid that is used to create a contour plot from the data. The individual data points are located at the nodes or vertices of the grid. First, create a new worksheet and import the XYZ Random Gaussian.dat file from the \Samples\Matrix Conversion and

2. Highlight the third column and right-click on it to select Set As: Z. Then select Plot: Contour: Color Fill to create a graph.

3. Double-click on the contour plot to open the Plot Details dialog. Go to the Color Map/ Contour tab, click on the Line heading to open the Contour Lines dialog, and select Hide All to hide all
the contour lines. Click OK to close this dialog.

4. Then select the Show Grid Lines and Show Data Points check boxes in the Color Map/ Contours tab. Click OK to close the Plot Details dialog.

The contour plot with its superimposed grid should look like this:

Apply Custom Boundary

A custom boundary can be applied to contour plots created directly from XYZ data, where the user provides the data points for the boundary in additional columns on the same worksheet. This feature is useful when you have specific boundary data that defines the outline of an object, such as, say, the profile of an engine, and the contour shows engine temperature.

1. We will continue to use the worksheet and the contour plot created with XYZ Random Gaussian.dat in the previous example.
2. Go to the XYZRandomGaus workbook and click the Add New Columns button \square twice to add two columns. Highlight the two columns and right-click to select Set As: XY XY. Enter four rows of data, like you see below:

| 12 | 10 |
| :--- | :--- |
| 18 | 12 |
| 16 | 18 |
| 14 | 16 |

3. Double-click on the contour plot to open the Plot Details dialog. Select the Contour Info tab in the right panel, and set the dialog like the following image shows, to customize the boundary of the contour plot. Remember to uncheck the Show Grid Lines and Show Data Points check boxes in the Color Map/ Contours tab. Click OK to close the Plot Details dialog.

The graph should look like:

5.5.4 Polar Contour

Summary

This tutorial will show you how to create a Polar Contour graph.

1
Temperature Contour Map

What will you learn

- Create a Polar Contour graph
- Customize the graph by using the Plot Details dialog

Steps

This tutorial is associated with the 2D and Contour Graphs project:\Samples\2D and Contour Graphs.opj.

1. Open the 2D and Contour Graphs: Contour: Polar Contour folder in the Project Explorer. Activate Book2B with the temperature and location data and select column C. Select Plot: Contour: Polar Contour Theta(X) r(Y) from the menu to create a polar contour graph.
The graph should look like:

2. Then we wil customize the contour graph by using the Plot Details dialog. Double-click on the contour plot to bring up Plot Details dialog, select the Color Map/ Contours tab and click the Fill heading, and then set the dialog as the follwing graph shows.

3. Click the Contouring Info Tab, select the Layer Boundary radio button.
4. Click OK button to close the Plot Details dialog.
5. Then we will customize the axes of the graph. Double-click on any tick label to open the Axis dialog. Then do the following things

0 Select the Scale tab, choose Horizontal in the Selection list, set I ncrement to 60.
0 Select Vertical in the Selection list, set From to $\mathbf{0}$, set To to $\mathbf{7}$ and set I ncrement to 2.

0 Select Tick Labels tab and select Top in the Selection list. Then select Tick-I ndexed Dataset with the Type drop-down list. Choose [Book3B]Sheet1!B for Dataset. Change Point to 26.

0 Select Left in the Selection list. Then select Tick-I ndexed Dataset with the Type drop-down list. Choose [Book3B]Sheet1!A for Dataset. Change Point to 26.

0 Select Right in the Selection list. Then select Tick-I ndexed Dataset with the Type drop-down list. Choose [Book3B]Sheet1!A for Dataset. Change Point to 26.
o Go to the Grid Lines tab and make sure Horizontal has been selected in the Selection list. Then set the dialog as the following image shows. Click OK to close Axis dialog.

6. Double click on the Color Scale to open the Color Scale Control dialog and set the dialog as the following image shows.

7. The graph should look like

5.5.5 Ternary Contour

Summary

This tutorial will show you how to create a Ternary Contour graph and add scatters overlay.

What will you learn

- Create the Ternary Contour graph
- Add scatters overlay with the Plot Setup dialog.
- Customize the graph by using the Plot Details dialog

Steps

This tutorial is associated with the 2D and Contour Graphs project:\Samples\2D and Contour Graphs.opj.

1. Open the 2D and Contour Graphs: Contour: Ternary Contour folder in the Project Explorer. Activate Book1,highlight entire worksheet and select Plot: Contour: Ternary Contour to create a Ternary Contour graph. The graph should look like:

2. Now we will add overlay scatters to the plot. Right click on the layer icon and select Plot Setup in the context menu to open the Plot Setup dialog.
3. Set Worksheets in Folder as Available Data, select Book1, choose Scatter as Plot Type and column A, B, C as X, Y, Z respectively. Click Add to add the scatter plot to the ternary contour plot. The settings should be as following:

4. Now we will customize the contour graph and the scatter. Double-click on the contour plot to bring up the Plot Details dialog.

O select the Color Map/ Contours tab and click the Level heading, then set the dialog as the follwing graph shows.

O Click OK to close the Set Levels dialog then click the Fill heading to open the Fill dialog. Select Load Palette and then select Rainbow from the Palette list and click OK.
o In the left panel of Plot Details dialog, select the scatter plot and customize the symbol as following:

o Click OK to close the Plot Details dialog.
0 Drag and drop the color scale to resize and move it to a desired place

The graph should look like

5.5.6 Combining Line and Contour Plots

Summary

This tutorial will show you how to create a Word Map by combining Line Plot and Contour graph.

What will you learn

- Create a contour graph
- Combine a Line Plot and a Contour graph
- Customize the contour graph

Steps

This tutorial is associated with the 2D and Contour Graphs project:\Samples\2D and Contour Graphs.opj.

1. Open the 2D and Contour Graphs: Contour: Map Combining Line and Contour Plots folder in the Project Explorer. Activate Conductivity matrix and highlight entire matrix. Select Plot: Contour: Contour - Color Fill to create a contour graph.

2. At this step, we will add a Line plot to the contour graph. Select all columns of Book5 and then active the new created contour graph. Then select Graph: Add Plot to Layer: Line to create a new line plot in the same layer. Delete the legend for the added line plot.
3. In the following steps, we will customize the graph. Select Format: Layer Properties to open the Plot Details dialog. Select the Size/ Speed tab, disable two checkboxes that in the Speed Mode, Skip Points if needed group.
4. Expand the Layer1 branch and select contour plot in the left panel of the Plot Details dialog. Then do the following things:
o Go to the Color Map/ Contours tab, click the Level heading to open the Set Levels dialog. Set the dialog as the following image shows:

o Click the Fill head to open the Fill dialog, select I ntroduce Other Colors in Mixing radio box. Then set From to Orange and To to Navy.
o Click the cell the in the Fill column and $\mathbf{< 0 . 5}$ row to set fill color to Red.

0 Click the cell the in the Fill column and >7 row to set fill color to Black.
o Click the Lines heading to open the Contour Lines dialog, uncheck the Show on Major Levels only check box and then select the Hide All option.
o Click the Color box that in the Missing Value group, set fill color to White. Click OK button.

5. Go to Numeric Formats tab of Plot Details dialog, select Decimal Places radio box and keep the default value 1 .
6. Click Ok button to apply the settings to the graph. The graph should look like:

Double click on the Color Scale to open the Color Scale Control dialog and set the dialog as the following graph shows:

7. Resize and reposition of the color scale. Then modify the X, Y axis tick labels, titles and add the graph title as the example graph shows. The graph should look like

5.5.7 Contour Graph with XY Data Points and Z Labels

Summary

This tutorial will show you how to create a contour from XYZ data and add Z value as label for each XY data point.

What will you learn

This tutorial will show you how to

- Create a Contour Plot from XYZ data.
- Customize levels, lines, and color mapping.
- Plot a scatter plot on a contour graph.
- Show the labels for scatter points.

Steps

1. Start a new workbook and import the file Sample/Matrix_Conversion_and_Gridding/XYZ_Random_Gaussian.dat.
2. Highlight $\operatorname{col}(\mathrm{C})$ and set it as Z . Then highlight all columns and select Plot: Contour: Color Fill from the main menu to plot a contour graph.

3. Double-click the layer icon to open the Layer Contents dialog. In this dialog, select col(B) in the left panel, set the Plot Type as Scatter, then add it to the right panel.

4. Click OK button to close the dialog. The scatter plot will be added to the contour graph.

5. Double-click the graph to open the Plot Details dialog. In this dialog, go to the

Colormap/ Contours tab, the contour plot in the left panel is selected. Click the Level...
header to open the Set Levels dialog to set the Minor Levels as 4.

6. Click OK button to go back the Plot Details dialog. Go to the Label tab while the scatter plot is selected in the left panel, check the Enable check box to activate this tab. Set the Size as 10, Position as Below and Label Form as Col(C).

7. Click OK button to close this dialog. The Z values will be added as labels to the graph. Click the Rescale button $\stackrel{\stackrel{\pi}{\leftrightarrows}}{ }$ to rescale the graph.

5.5.8 Flattened Colormap Surfaces with I ncreasing Z Offset

Summary

This tutorial will show you how to plot a stacked flattened colormap surface with Z offset.

What will you learn

- How to import mulitple matrix into Origin as the matrix object.
- How to plot Multiple Colormap Surfaces in a graph layer.

Steps

1. Create a new a matrix and select File: I mport : I mage to import myocytel~myocyte8 under the \Sample\Image Processing and Analysis folder. In the Impl mage dialog, keep Mulit-File (except 1st) Import Mode as Start New Objects.

2. Click the OK button to import the files to matrix as matrix objects.

3. Select Plot: 3D Surface: Multiple Colormap Surfaces from the main menu to plot a surface graph.

4. Select Format: Plot properties from the main menu to open the Plot Details dialog.
5. Select the first plot, check Flat and Shift in \mathbf{Z} by percent of scale range, and set the shift value as 0 . And go to the Mesh tab, uncheck the Enable check box to not show the grid lines.

6. Select the 2 nd-8th plot in order, check Flat and Shift in \mathbf{Z} by percent of scale range, and set the shift value as $14,29,42,57,71,85$ and 100. And go to the Mesh tab, uncheck the Enable check box to not show the grid lines. Click the OK button to close the dialog.

7. Rotate the graph to get a flattened colormap surface as shown below:

5.5.9 Contour Plot with Vector Overlay

Summary

This tutorial will show you how to create a contour plot with vectors overlay.

What will you learn

This tutorial will show you how to:

- Create and customize a contour graph and its color scale
- Create the XYAM vector graph
- Merge the two graphs

Steps

This tutorial is associated with the 2D and Contour Graphs project:\Samples\2D and Contour Graphs.opj.

Create the Contour Graph

1. Open the 2D and Contour Graphs: Contour: Contour Plot with Vector Overlay folder in the Project Explorer.
2. Activate the W147 matrix and select Plot: Contour: Color Fill in the menu. The graph should look like:

3. Select Format: Plot Properties to bring up the Plot Details dialog. Go to the Color

Map/ Contours tab. Customize the Contour settings as shown below:
o Click the Level heading and set the dialog as shown in the following screenshot:

<< \qquad OK Cancel Apply

0 Click the Fill heading to open the Fill dialog. Click on Load Palette, select Temperature from the Palette list, and click OK.
o Click the Lines heading, enable Apply to All checkbox and choose Gray in the Color dropdown list. Click OK.
4. Go to Numeric Formats tab of the Plot Details dialog, select Decimal Places radio button and set value to 1. Click OK.

5. To prepare it for merging with the XYAM Vector Graph (you will create below), the axes must be hidden. To do that, select Format: Layer Properties. Then go to the Display tab and disable
the \mathbf{X} Axes and \mathbf{Y} Axes checkboxes. Click OK.

6. Right click on the Y Axis title and choose Delete. Do the same for the X Axis title.
7. To change the color scale, double-click on the color scale in the contour graph. Update its settings as given below:

0 Set the Font to Verdana
o Set the Size to $\mathbf{2 2}$
o Select Black Line from the Background drop-down list
0 Set Color bar thickness to $\mathbf{1 0 0}$
o Select the Reverse Order checkbox

Then click OK and position the color scale in the desired location (on the right side of the graph) by clicking and dragging it with your mouse.

The contour plot should now look like:

1

Create the XYAM Vector Graph

1. Activate the WOR81147 worksheet, highlight the last three columns and select Plot: Specialized: Vector XYAM in the menu.
2. Double-click on any vector to bring up the Plot Details dialog on the Vector tab. Use the settings the following screenshot shows

Then click OK.
3. To update the axis scales, select Format: Axes: X Axis... to open the dialog. Then do the following:
o In the Scale tab, select Horizontal icon in the Selection list box. Set X From = 1, To $=\mathbf{1 0}$ and \mathbf{I} ncrement $=\mathbf{2}$.

o Select the Vertical icon in the Selection list box, set the scale of Y as From = 5, To = $\mathbf{9 5}$, and Increment =10.

0 Go to the Title and Format tab, select the Top icon and Right icon respectively, and check the Show Axis \& Ticks checkbox. Click OK.
4. At this stage, you may notice that the vectors extend outside the axes (layer frame). To make sure they display within the layer frame only, select Format: Layer Properties. Go to the

Display tab and check the Clip Data to Frame checkbox. Click OK.

5. Right-click on the legend of the vectors graph, and select Properties... in the context menu to open the Object Properties. Then set the dialog following the screenshot below:

Merge the Two Graphs

The contour and vector graphs are generated by the steps above, and are ready to be merged into one.

1. Minimize or Hide all other graphs except for the contour and vector graphs created using the instructions above. With one of the two graphs active, select Graph: Merge Graph Window... in the menu.
2. In the Merge Graph dialog, specify the settings as the following:
o Expand the Arrange Settings node, and type $\mathbf{1}$ in the Number of Rows text box.
0 Expand the Spacing (in \% of Page Dimension) node, and enter a value of approximately " 25 " in the Right Margin text box to show the color scale legend from the contour plot. Then click OK.

3. Click the Text Tool button $\frac{\mathrm{T}}{\text { to create a text at the top color scale legend, and enter } \mathbf{w} \text { (ms- }}$ 1). Highlight -1 in the text and click on Superscript button \mathbf{x}^{2} in the Format toolbar. Then set the font size to 26.
4. To specify font type of all the objects to Verdana, you can:

o Set the objects individually, by clicking on the object and selecting Verdana in the Font button | Tr Default: Arial | \boldsymbol{r} |
| :--- | :--- |
| in the Format toolbar. | |

Or
o Use Theme Organizer to create and apply a font theme to the current graph.

The final graph should look something like this:

5.6 Statistical

Topics covered in this section:

1. Box Plot
2. Simple Dot Chart
3. Multi-Data Dot Chart
4. Add multiple fitted curves in a Histogram
5. Weibull Probability Plot
6. Q-Q Plot
7. Scatter Matrix

5.6.1 Box Plot

Summary

This tutorial shows how to create the following box plot in the Statistical and Specialized Graphs project (\Samples \Statistical and Specialized Graphs.opj).

What you will learn

- Create a data overlapped box plot
- Customize box plot settings
- Change layer background

Steps

This tutorial is associated with the Statistical and Specialized Graphs project:\Samples\Statistical and Specialized Graphs.opj.

1. Open the Statistical and Specialized Graphs project and browse to folder Statistical and Specialized Graphs: Statistical: Box Chart.
2. Activate worksheet Box Plot Data, and select columns January (Y), February (Y), and March (Y) and plot them to the Box Chart from Plot: Statistics: Box Chart.
3. Double-click on one of the box charts to bring up Plot Details dialog. Select None from Border Color drop-down list and click Apply button, so no data plot properties are set to automatically increment. Then, update the properties for the group as follows (if a property is not mentioned, leave it at its default):

Box Tab:

Type: Box[Right]+Data[Left]
4. Data Tab:
Distribution \quad Normal
Curve Type:
Automatic Disabled/Unchecked
Binning:
Bin Size: 100
Begin: 750
End: 3600
Bin Height 100
5. Line Tab:
Style: Solid
Width: 2
Color: Blue
6. Symbol Tab:
Size:
Symbol Color: Olive
Shape: Circle
I nterior: Solid
7. Pattern Tab:
Border Color: Blue
Border Style: Solid

Border Width: 2

Fill Color: Custom (R:156, G:190, B:254)

Pattern: None
8. Percentile Tab

Size:

Edge Color: Black

Fill Color: Black
9. In the Plot Details dialog, select the layer in the left panel to activate the tabs of layer level. Go to Background tab, set the color as a the color (R:177, G:237, B:254). Click OK to accept the setting and close the dialog.
10. Double-click on the Y Axis and select the Scale tab to set axis scale as follow:

From: 510

To: 2900

Increment: 250
\#Minor Ticks: 0
11. Activate the Grid Lines tab. Make sure the Horizontal icon is selected in the Selection list box so you can edit the grid lines for the Y axis. Enable the Major Grids check box and set the Line Color = LT Gray and Line Type = Dot.
12. Enable the Opposite Line check box on the Grid Lines tab for both the Vertical and Horizontal selections in the Selection List box.
13. Delete the legend and update the X and Y axis titles if desired.
14. Right-click the layer and select Add/ Modify Layer Title, and add title as you want.

5.6.2 Simple Dot Chart

Contents

- 1 Summary
- 2 What you will learn
- 3 Steps

Summary

Dot chart is a statistical chart which consist of data points plotted on a simple scale. It is often used as a substitute for the pie chart, as it allows for quantities to be compared easily. This tutorial will teach you how to create a simple dot chart plot.

Minimum Origin Version Required: Origin 8.0 SR6
What you will learn

This tutorial will show you how to:

- Create a scatter graph
- Change the X-Y Axis
- Use Plot Setup dialog to customize your graph

Steps

Let us start with the following data which represents various elements in a compound:

Element Content

| C | 36 |
| :--- | :--- |
| Cl | 2 |
| H | 28 |
| N | 10 |
| O | 12 |
| P | 7 |
| S | 5 |

1. Create a new workbook, and input the data.

| \#\#\#\# ${ }^{\text {\% }}$ | $\square \square$ | | | |
|---|---|---|---|---|
| | $A(x)$ | $\mathrm{B}(1)$ | ヘ |
| Long Name | Element | Content | |
| 1 | C | 36 | |
| 2 | Cl | 2 | |
| 3 | H | 28 | |
| 4 | N | 10 | |
| 5 | 0 | 12 | |
| 6 | P | 7 | |
| 7 | 5 | 5 | |
| 8 | | | |
| 9 | | | |
| 10 | | | |
| 11 | | | v |
| 4 Sheet1 | | \||< $\square^{\text {a }}$ | \geq |

2. Highlight $\operatorname{col}(A)$ and $\operatorname{col}(B)$, and then select the Plot: Symbol: Scatter menu item from the Origin menu to create a scatter plot.

3. Select Graph: Exchange X-Y Axis from the menu.

4. Double-click on the graph to bring up the Plot Details dialog, change the symbols and the symbol color as in the following image:

5. Click the $\mathbf{O K}$ button to close the dialog. Your graph should look like the image below:

6. Let us reset the X and Y Axes. Double-click the x axis to open the Axis Properties dialog. In the Scale tab, set From as $\mathbf{0}$ and To as 40. Set the Increment as $\mathbf{1 0}$.

7. In the Title and Format, make sure left is selected in the Selection list, and then set Major Ticks and Minor Ticks as None. Finally, click OK button.

Now the Dot chart is plotted successfully and should look like below:

5.6.3 Multi-Data Dot Chart

Summary

A Dot Chart is a statistical chart which consists of data points plotted on a simple scale. It is often used as a substitute for the pie chart because it can make the comparing of quantities easy. This tutorial will teach you how to create the Multi-Data Dot Chart.

Minimum Origin Version Required: Origin 8.0 SR6

What you will learn

This tutorial will show you how to:

- Create a scatter graph
- Change the X-Y Axis
- Use the Plot Setup dialog to customize your graph
- Use Layer Management
- Customize the axis
- Add objects on the graph

Steps

Let us learn how to create a multi-data dot chart. Here is some data about the element content of several areas in different time. We can use it to create a dot chart.

| Sulphate | 0.346 | 0.560 | 0.333 | 0.887 | 0.310 | 0.899 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Nitrate | 0.382 | 0.780 | 0.456 | 0.732 | 0.456 | 0.732 |

| Chloride | 0.441 | 0.880 | 0.120 | 0.656 | 0.221 | 0.673 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ammonium | 0.481 | 0.900 | 0.256 | 0.890 | 0.434 | 0.825 |

Now, let us begin.

1. Create a new workbook and input the data.

| | | | | | | $\square \square$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | A(X) | B (Y) | C(Y) | D(Y) | E(Y) | $F(Y)$ | G(Y) | ヘ |
| Long Name | | | | | | | | |
| Units | | | | | | | | |
| Comments | | | | | | | | |
| 1 | Sulphate | 0.346 | 0.56 | 0.333 | 0.887 | 0.31 | 0.899 | |
| 2 | Nitrate | 0.382 | 0.78 | 0.456 | 0.732 | 0.309 | 0.785 | |
| 3 | Chloride | 0.441 | 0.88 | 0.12 | 0.656 | 0.221 | 0.673 | |
| 4 | Ammonium | 0.481 | 0.9 | 0.256 | 0.89 | 0.434 | 0.825 | |
| 5 | | | | | | | | \checkmark |
| 1 Sheet 1 | | | | | $1<$ | | > | : |

2. Highlight col(B) and col(C), select Plot: Symbol: Scatter in the main menu to draw a graph, then select Graph: Exchange X-Y Axis.
3. Repeat step 2 to create one graph with $\operatorname{col}(\mathrm{D})$ and $\operatorname{col}(E)$, and another graph with $\operatorname{col}(\mathrm{F})$ and $\mathrm{col}(\mathrm{G})$.
4. Merge these three graphs. Select Graph: Merge Graph Windows: Open dialog. Expand Arrange Settings, set the Number of Rows as 3 and Number of Columns as 1. Click the OK button. Now you get a new graph which contains three layers.

5. You can delete the legend and the XY axis labels in the graphs to clean up the graph.

6. Select Graph: Layer Management from the main menu. Select Layer 2 on the left. Then on the right panel, make sure that the Link tab is active. In this tab, set Link to as $\mathbf{1}$ and \mathbf{Y}
Axis as Straight ($\mathbf{1}$ to 1). Click the Apply button.

7. Select Layer 3 on the left. Also in the Link tab, set Link to as $\mathbf{1}$ and \mathbf{Y} Axis as Straight ($\mathbf{1}$ to 1). Then click the OK button.
8. Reset X and Y Axes. Make sure Layer $\mathbf{1}$ is active, double-click the X axis of Layer 1 . Set the scale of X From $\mathbf{0}$ To $\mathbf{1}$, and the $\mathbf{I n c r e m e n t ~ a s ~} \mathbf{0 . 2}$.

9. In the Tick Labels tab, uncheck the Show Major Label box.

10. In the Title and Format tab, set Major Ticks and Minor Ticks as None.

11. Click Left in the Selection list, select the Show Axis \& Tick check box and set Major Ticks and Minor Ticks as None.

12. Click Right in the Selection list, select the Show Axis \& Tick check box and set Major Ticks and Minor Ticks as None.

13. Select Top in the Selection list, check the Show Axis \& Tick box. set Major as Out and Minor as None.

14. Select the Custom Tick Labels tab, highlight Top in the Selection, choose the Hide radio button both with At Axis Begin and At Axis End.

15. In the Tick Labels tab, uncheck the Show Major Label box.

16. In the Grid Lines tab, select Horizontal in the Selection list and then select the Major Grid checkbox. Also, choose the color and the style for the grid lines. Click the OK button.

17. Activate Layer 2, repeat the steps from 9 to 12 and step 16.

18. Activate Layer 3, also repeat steps from 9 to 12 and step 16 except step 10. In the Title and Format tab, set Major Ticks as out and Minor Ticks as None.

19. Select the Custom Tick Labels tab, highlight Bottom in the Selection, choose the Hide radio button both with At Axis Begin and At Axis End.

20. Click OK. Now you will see the graph below.

21. Double-click the graph to bring up the Plot Details dialog. Change the options as the following screenshot.

22. Repeat the steps of 21 for the Layer 2 and Layer 3. Click the $\mathbf{O K}$ button and you will see this graph.


```
1223
```


23. Select \square_{Δ} in the Tools toolbar to draw three rectangles on the graphs. For each rectangle:

1. Double-click on the rectangle to bring up the Object Properties dialog.
2. In the Fill Pattern tab, set the desired Fill Color.

3. In the Dimensions tab, adjust the size and position of the rectangle if so desired.

4. Select the Text Tool $\left.\quad \mathbf{T}\right|_{\text {in the Tools toolbar and click inside the rectangles to add the text that }}$ you want.
5. Select Graph: New Legend from the main menu. Move the legend to a suitable place, then right-click on it and select Properties. Change the settings as below:

6. Activate the top x axis of Layer 1 to move it to a suitable place.

Now the multi-data dot chart is finished. You can see the graph below.

5.6.4 Add multiple fitted curves in a Histogram

Summary

After you plot a Histogram, Origin allows you to overlay a distribution curve on the binned data by selecting Normal, Lognormal, Poisson, Exponential, Laplace, or Lorentz from the Type dropdown list in the Data tab of the Plot Details dialog. If you want to add multiple distribution curves to the Histogram, the procedure involves a few more steps.

What you will learn

- Plotting the Histogram
- Using Frequency Count to do statistics
- Using Peak Analyzer to find peaks and do fitting
- Adding new layers

Steps

Copy and paste the sample data into Origin and set the column as Y (Highlight the column and choose Column: Set As Y from the Origin menu). Plot this data as a Histogram by clicking Plot: Statistics: Histogram from the menu.

Frequency Count

1. Highlight the sample data, then open the Frequency Count dialog by selecting Statistics:

Descriptive Statistcs: Frequency Count.

2. Click $\mathbf{O K}$ to finish. A new result sheet will be generated

Fit peaks

1. Select Col(Counts) and then open the Peak Analyzer dialog from Analysis: Peak and Baseline: Peak Analyzer.
2. In the start page, select Fit Peaks as Goal, then click Next.
3. In the Baseline Mode page, set the baseline as $\mathbf{Y}=\mathbf{0}$ when the Custom radio box is checked.
4. Click the Next button twice to go to the Find Peaks page. Click the Find button under the Enable Auto Find check box to find two peaks.
5. Click the Next button again to open the Fit Peaks page. Click Fit Control at the bottom of this page to open the Peak Fit Parameters dialog.
6. In this dialog, the default fitting function is Gaussian, which is the right function for normalizing the data. Close the Peak Fit Parameters dialog and go back to the Peak Analyzer dialog. Click Finish to complete the fitting.

Add the fitted curves

1. Activate the Histogram graph and add a layer by selecting Graph: New Layer(Axes): Right-Y from the main menu.
2. Right-click the Layer2 icon and select Plot Setup from the short menu to open the Plot Setup dialog.
3. Select the sheet FitPeakCurvel from the top panel, then set $\operatorname{col}(\mathrm{A} 3)$ as X and $\operatorname{col}(\mathrm{A} 4)$ as Y , and add them into the Layer RightY in the bottom panel.
4. Do the same things for col(A5) and col(A6). After that, both fitted peaks have been added into the Layer RightY.
5. Click OK. Two fitted curves had been added to the Histogram.
6. Double-click the graph to open the Plot Details dialog. Select RightY from the left panel, then open the Link Axes Scales tab in the right panel and select Straight($\mathbf{1}$ to 1) for both \mathbf{X} Axis Link and \mathbf{Y} axis Link. Click OK to close the dialog.
7. The fitted curves are added into the Histogram with the proper scale. The following is the result graph, with the right Y -axis removed.

Sample Data

0.631
0.642

| 0.652 |
| :--- |
| 0.662 |
| 0.669 |
| 0.676 |
| 0.677 |
| 0.69 |
| 0.691 |
| 0.696 |
| 0.697 |
| 0.699 |
| 0.699 |
| 0.7 |
| 0.7 |
| 0.708 |
| 0.712 |
| 0.718 |
| 0.731 |
| 0.744 |
| 0.749 |
| 0.751 |
| 0.752 |
| 0.753 |
| 0.758 |
| 0.758 |
| 0.759 |
| 0.761 |
| 0.761 |
| 0.763 |
| 0.763 |
| 0.763 |
| 0.765 |
| 0.767 |
| 0.768 |
| 0.768 |
| 0.769 |
| 0.769 |
| 0.77 |
| 0.771 |
| 0.771 |
| 0.772 |
| 0.774 |
| 0.775 |
| 0.775 |
| |

| 0.776 |
| :--- |
| 0.776 |
| 0.776 |
| 0.777 |
| 0.778 |
| 0.779 |
| 0.78 |
| 0.78 |
| 0.781 |
| 0.784 |
| 0.784 |
| 0.785 |
| 0.785 |
| 0.789 |
| 0.789 |
| 0.791 |
| 0.794 |
| 0.795 |
| 0.796 |
| 0.798 |
| 0.798 |
| 0.803 |
| 0.82 |
| 0.831 |

5.6.5 Weibull Probability Plot

Summary

The probability plot shows a graph with observed cumulative percentage on X axis and expected cumulative percentage on Y axis. The Weibull probability plot is used to test whether or not a dataset follows Weibull distribution. And its X scale type and Y scale type are Log10 and Double Log Reciprocal respectively. If all the scatter points are close to the reference line, we can say that the dataset follows the Weibull distribution.

Minimum Origin Version Required: Origin 8.1 SRO
What you will learn

- How to create a Weibull probability plot
- How to change the shape of the symbol
- How to change the width of the line

Steps

This tutorial is associated with the Statistical and Specialized Graphs project:\Samples\Statistical and Specialized Graphs.opj. (If you don't have the OPJ, you can also download the data from here)

1. Open the project, browse to the folder Statistical and Specialized Graphs: Statistical: Probability, QQ Plot in the Project Explorer. Active the worksheet Probability Plot Data. Highlight column A
and right-click to select Set As: \mathbf{Y} from the context menu.

2. Keep this column highlighted, select Plot: Statistics: Probability Plot from the Origin main menu to open the plot_ prob dialog. In this dialog, change Distribution to Weibull and then click the OK button to create a Weibull probability plot with column A.

5.6.6 Q-Q Plot

Summary

Q-Q plot is a graphic method to test whether or not a dataset follows a given distribution. In a Q-Q plot, observed values on X axis and expected values on Y axis are shown. If all the scatter points are close to the reference line, we can conclude that the dataset follows the given distribution.

Minimum Origin Version Required: Origin 8.1 SRO
What you will learn

- How to create a normal Q-Q plot
- How to change the color and shape of the symbol
- How to change the color of the line

Steps

This tutorial is associated with the Statistical and Specialized Graphs project:\Samples\Statistical and Specialized Graphs.opj. (If you don't have the OPJ, you can also download the data from here)

1. Open the Statistical and Specialized Graphs project, open the folder Statistical and Specialized Graphs: Statistical: Probability, QQ Plot in the Project Explorer. Activate worksheet Q-Q Plot Data, highlight column A and right-click to select Set As: Y from the context menu.

2. Add a long name to this column, say Normal Random Values.

3. Highlight this column and select Plot: Statistics: Q-Q Plot from the Origin main menu to open the plot_prob dialog. In this dialog, change Score Method to Benard.

4. Click the OK button to create a normal Q-Q plot with column A.

5.6.7 Scatter Matrix

Summary

A scatter matrix is consists of several pair-wise scatter plots of variables presented in a matrix format. It can be used to determine whether the variables are correlated and whether the correlation is positive or negative. This tutorial will show you how to create a Scatter Matrix plot.

Minimum Origin Version Required: Origin 9.0 SRO
What you will learn

- How to create a Scatter Matrix plot with histogram
- How to customize Scatter Matrix plot
- How to set grouping range for showing color index

Steps

Creating Scatter Matrix plot

1. Start with an empty worksheet, select File: Import: Single ASCII... to open the Import Single ASCII dialog, browse to the \Samples\Statistics subfolder of the Origin program folder, and import the file Fisher's Iris Data.dat.
2. Highlight columns $(A) \sim(D)$, and then select Plot: Statistics: Scatter Matrix from the Origin menu.
3. In the dialog, select Histogram in the Show in Diagonal Cells drop-down list.

4. Click OK to close the dialog. The graph should look like the following:

And the PlotDatal sheet for the scatter matrix plot is generated in the same workbook.

Customizing Scatter Matrix plot

There are multiple layers in the Scatter Matrix graph. This section will show you how to customize the background color, the type and color of a data plot and the tick label of axis of the scatter matrix.

1. Double click on a layer except in the diagonal cells to open the Plot Details dialog. Specify the type and color of the symbol as shown in the following image, and click OK.

2. Click to select the layer to be updated, right-click on it and select Copy format: Symbol, Line and Fill.

Then click on the white space of the graph, right-click, and select Paste Format. You can use the same method to copy the symbol color to other layers.
3. Right-click on that layer again, and select Copy Format: Colors. Then click on the white space of the graph, right-click, and select Paste Format.
4. Select Format: Page Properties to open the Plot Details dialog. Go to the Display tab, click on the Define Custom Colors button for the Color option.
5. In the Color dialog, specify the color as Red=235, Green=235, Blue $=255$. Then add as custom color and click OK.

6. To specify background color of the layers with scatter plots, select the Graph: Layer

Management to open the dialog, and go to the Display tab. Highlight all the layers listed in Layer Selection except the diagonal cells, and then specify the Background Color as White.
Click on the Apply button to preview the change in the right panel of the dialog.

Then click OK in the dialog.
7. Double click on a tick label in the graph to open the Axis dialog. In the Tick Labels tab, specify Point to 36. Then select the Point checkbox in the Apply To section, and choose This Window
in the drop-down list.

8. Highlight the variables in the diagonal cells, and use the Size button | 22 | in the Format |
| :--- | :--- | :--- | toolbar to set the size to $\mathbf{3 6}$. Then the graph will look like the following:

Add Grouping Range

1. To add a Grouping Range, click on the green lock icon on the upper-left corner. And then select Change Parameters to bring back the Plotting: plot_ matrix dialog.
2. Click the triangle button next to the Grouping Range option. Click on the Select Columns to open the Column Browser dialog, and then choose column E (Species) as the group range.

Click OK

3. Click the OK button in the Plotting: plot_matrix dialog.

Your final graph should look like this:

5.7 Polar

Topics covered in this section:

1. Polar Contour
2. Polar Plot with Error Bar

5.7.1 Polar Contour

Summary

This tutorial will show you how to create a Polar Contour graph.

1
Temperature Contour Map

What will you learn

- Create a Polar Contour graph
- Customize the graph by using the Plot Details dialog

Steps

This tutorial is associated with the 2D and Contour Graphs project:\Samples\2D and Contour Graphs.opj.

1. Open the 2D and Contour Graphs: Contour: Polar Contour folder in the Project Explorer. Activate Book2B with the temperature and location data and select column C. Select Plot: Contour: Polar Contour Theta(X) r(Y) from the menu to create a polar contour graph.
The graph should look like:

2. Then we wil customize the contour graph by using the Plot Details dialog. Double-click on the contour plot to bring up Plot Details dialog, select the Color Map/ Contours tab and click the Fill heading, and then set the dialog as the follwing graph shows.

3. Click the Contouring Info Tab, select the Layer Boundary radio button.
4. Click OK button to close the Plot Details dialog.
5. Then we will customize the axes of the graph. Double-click on any tick label to open the Axis dialog. Then do the following things

0 Select the Scale tab, choose Horizontal in the Selection list, set I ncrement to 60.
0 Select Vertical in the Selection list, set From to $\mathbf{0}$, set To to $\mathbf{7}$ and set I ncrement to 2.

0 Select Tick Labels tab and select Top in the Selection list. Then select Tick-I ndexed Dataset with the Type drop-down list. Choose [Book3B]Sheet1!B for Dataset. Change Point to 26.

0 Select Left in the Selection list. Then select Tick-I ndexed Dataset with the Type drop-down list. Choose [Book3B]Sheet1!A for Dataset. Change Point to 26.
0 Select Right in the Selection list. Then select Tick-I ndexed Dataset with the Type drop-down list. Choose [Book3B]Sheet1!A for Dataset. Change Point to 26.
o Go to the Grid Lines tab and make sure Horizontal has been selected in the Selection list. Then set the dialog as the following image shows. Click OK to close Axis dialog.

6. Double click on the Color Scale to open the Color Scale Control dialog and set the dialog as the following image shows.

7. The graph should look like

5.7.2 Polar Plot with Error Bar

Summary

This tutorial will show you how to create a Polar graph with error bar.

What will you learn

- Create a Polar graph with error bar
- Customize the graph using the Plot Details and Axis dialogs

Steps

1. Import the sample data.
2. Highlight column C and set as Y error.
3. To plot a Polar graph with error bar: Highlight all columns. In the main menu, click Plot, point to Specialized, and then click Polar theta $(X) r(Y)$. Alternatively, you can simply click the Polar theta(X) $\mathrm{r}(\mathrm{Y})$ button on the 2D Graphs toolbar.

4. Double-click the plot to open the Plot Details dialog. In the left menu, select the Error plot. Change the color of the error bar to Magenta and clear the Minus check box (as below).

At which datapoints to draw Follow Symbol
[2]
Transparency

\square

Follow Symbol/Line Transparency
\square
\square Cancel Apply
5. In the left panel, select the line plot and change its plot type to Scatter. Then, on the Symbol tab, change the symbol style, color, and transparency as below. Click OK to close the dialog.

6. On the left side of the graph, double-click the vertical axis to open the Axis dialog. On the Grid Lines tab, clear the Minor Grids check box and change the Major Grids Line Type to Dot. Select Horizontal in the Selection box at left, and repeat these steps for the Horizontal axis.

7. Click OK to close the Axis dialog. Your final graph should look like this:

5.8 3D

Topics covered in this section:

1. 3D Plotting
2. 3D Pie Chart
3. 3D Scatter Plot with Line Projections of Core Drilling Locations
4. 3D Surface Plot with Skipping Gridlines and Ignoring Missing Values
5. Creating Intersecting Surface Plots from Worksheets
6. Intersecting Color Surfaces
7. Surface with Symbols and Droplines
8. Colormap from Second Matrix
9. Color Map Surface Graph
10. Parametric Surface with Colormap from Data
11. Stacked 3D Surface Plots

5.8.1 Basic 3D Plotting

Summary

In Origin, most 3D plots -- including 3D surface, wire frame/wire surface, 3D bar plot and 2D contour -- are created from an Origin matrix. In most cases, the raw data is XYZ data and you should convert it to a matrix first, using one of Origin's built-in gridding routines.

Minimum Origin Version Required: Origin 8.0 SR6

What you will learn

This tutorial will show you how to:

- Create a 3D graph in Origin
- Convert Worksheet data to a Matrix
- Use the layer contents dialog to add/remove a dataset
- Use the Plot Details dialog to modify graph

Steps

1. Import the file \Samples\Matrix Conversion and Gridding\XYZ Random Gaussian.dat.
2. Highlight the 3rd column, right-click, and select Set As: \mathbf{Z} from the context fly-out menu.
3. To convert the worksheet XYZ data into a matrix, highlight the whole worksheet, select Worksheet: Convert to Matrix: XYZ Gridding to bring up the XYZ Gridding dialog. Confirm Replace Duplicates with item is set to Mean as shown below:

4. And you can see the right preview panel as below. Since the XY data are randomly distributed, a random gridding method should be used.

5. Use the following settings and click $\mathbf{O K}$ to convert the XYZ columns of data into a matrix of data. The Thin Plate Spline gridding method will generate a smooth surface.

6. Set the newly generated matrix as the active window and select Plot: 3D Surface: Wire Frame from the menu to plot a 3D mesh:

7. In order to plot the original data points on the graph, you can use the Layer Contents. Rightclick on the layer icon (the small grey box in the upper left corner of the graph window) and select Layer Contents.

In the Layer Contents dialog, select Worksheets in Folder from the available data box (in the upper left corner of the dialog). Click on the Plot Type button $\mathbf{A} \mid-$, and select 3D

Scatter/ Trajectory/ Vector in the list. Then select the worksheet Z column and click the -> button to add it to the right panel list.

After you click the Apply button, the source data will be added to the layer.

8. You can now use the Plot Details dialog to modify the appearance. Double-click on the graph to bring up the Plot Details dialog. On the left panel, select the 3D scatter data

and then go to the Symbol tab located on the right panel and adjust the size and color of the data.

Remove the drop lines on the Drop Lines panel:

9. When done, click $\mathbf{O K}$ to accept the modifications:

5.8.2 3D Pie Chart

Summary

Origin's 3D Pie Chart gives you complete control over the look of the plot. Set the thickness of the pie slice, displacement, view angle, and size and rotation of the chart. You can even choose to explode the view of one or more pie slices.

What you will learn

- Create 3D pie chart and change the view angle
- Explode the view of pie slices
- Customize pie slices individually

Steps

This tutorial is associated with the folder Statistical and Specialized Graphs: Pie Chart of the Statistical and Specialized Graphs project:\Samples\Statistical and Specialized Graphs.opj.

1. Import the data \Samples\Graphing\3D Pie Chart.dat into worksheet, and rename the column long name as Demographic and Percent.
2. Highlight the 2nd column and create a 3D Pie Chart from Plot: Column/ Bar/ Pie: 3D Color Pie Chart.
3. Double-click the pie chart to bring up the Plot Details dialog. In the Pattern tab, set the Fill color to Increment and red as starting color. Next, select the Pie Geometry tab and change the Rotation to 68 degrees. Then check the checkbox for American Indian and Other in the Explode Wedge group as shown below and click OK.

4. Then hold the Ctrl key and double click each pie slice to open the Plot Details dialog and change the Fill Color in the Pattern tab.

5.8.3 3D Scatter Plot with Line Projections of Core Drilling Locations

Summary

This tutorial will show you how to create a 3D scatter plot and how to show the projections of the plots.

Minimum Origin Version Required: Origin 8.5.1

Steps

1. Create two new workbooks. Import the data into the workbooks

| The First Curve of 3D Scatter | | | $\square \square$ | |
| :---: | :---: | :---: | :---: | :---: |
| | A(C) | B(1) | C(1) | \wedge |
| Long Name | | | | |
| Units | | | | |
| 1 | 1600 | 1610 | 6600 | |
| 2 | 1600 | 1605 | 6280 | |
| 3 | 1600 | 1600 | 5960 | |
| 4 | 1600 | 1595 | 5640 | |
| 5 | 1600 | 1590 | 5320 | |
| 6 | 1600 | 1585 | 5000 | |
| 7 | 1600 | 1580 | 4680 | |
| 8 | 1600 | 1575 | 4360 | |
| 9 | 1600 | 1570 | 4040 | |
| 10 | 1600 | 1565 | 3720 | |
| 11 | 1600 | 1560 | 3400 | |
| 12 | 1600 | 1555 | 3080 | |
| 13 | 1600 | 1550 | 2760 | |
| 14 | 1600 | 1545 | 2440 | v |
| | | | | |

| \#\# The Second Curve of 3D Scatter $\square \square \times$ | | | | |
| :---: | :---: | :---: | :---: | :---: |
| | A(k) | B(1) | C(1) | \wedge |
| Long Name | | | | |
| Units | | | | |
| 1 | 1700 | 1710 | 6600 | |
| 2 | 1705 | 1710 | 6280 | |
| 3 | 1710 | 1710 | 5960 | |
| 4 | 1715 | 1710 | 5640 | |
| 5 | 1720 | 1710 | 5320 | |
| 6 | 1725 | 1710 | 5000 | |
| 7 | 1730 | 1710 | 4680 | |
| 8 | 1735 | 1710 | 4360 | |
| 9 | 1740 | 1710 | 4040 | |
| 10 | 1745 | 1710 | 3720 | |
| 11 | 1750 | 1710 | 3400 | |
| 12 | 1755 | 1710 | 3080 | |
| 13 | 1760 | 1710 | 2760 | |
| 14 | 1765 | 1710 | 2440 | v |
| | | | | |

2. Next, select the The First Curve of 3D Scatter worksheet. Highlight column C. Right-click on it to open the context menu and select Set As: Z. Generate a plot by first selecting all data in the sheet followed by choosing Plot: 3D Symbol/ Bar: 3D Scatter from the main menu.
3. Activate The Second Curve of 3D Scatter worksheet. Highlight column C. Right-click on it and select Set As: \mathbf{Z} from the context menu. Then move the mouse cursor to the right edge
of the selection area until the shape of the cursor changes to
 Then hold down the left mouse button and drag the highlighted data into the newly created graph window.
The resulting graph should resemble

Eataph1

1

4. Double-click on either the X-, Y- or Z-coordinate axes to open the Axis Dialog. For each axis, set the Scale section options according to those shown below.

5. Select Format: Layer Properties from the main menu to open the Plot Details dialog Expand the Layer1 node. Choose the first plot and select All Together from Edit Dependencies.

Expand the first plot node and select the Original plot. Then set the dialog options to those shown in the screenshot below.

6. Select the Symbol tab and set the dialog options according to the screenshot below.

7. In a similar fashion, select the second plot and set the dialog options to match those in the screenshots below.

8. The final graph should resemble

Sample Data

Download the The_First_Curve_of_3D_Scatter.txt file and The_Second_Curve_of_3D_Scatter file from http://www.originlab.com/ftp/graph_gallery/data/The_First_Curve_of_3D_Scatter.txt and http://www.originlab.com/ftp/graph_gallery/data/The_Second_Curve_of_3D_Scatter.txt. Create a new worksheet. Click the I mport Single ASCII button $\stackrel{\text { 1月7. }}{\text { 盟 }}$
min Scatter.txt to import it into Origin. Then select File: New: Workbook from the main menu to create another empty workbook and import the The Second Curve of 3D Scatter.txt with the I mport Single ASCII button.

The following table contains part of the sample data.

| $\mathbf{A}(\mathbf{X})$ | $\mathbf{B}(\mathbf{Y})$ | $\mathbf{C}(\mathbf{Z})$ |
| :--- | :--- | :--- |
| 1600 | 1610 | 6600 |
| 1600 | 1605 | 6280 |
| 1600 | 1600 | 5960 |
| 1600 | 1595 | 5640 |
| 1600 | 1590 | 5320 |
| 1600 | 1585 | 5000 |
| 1600 | 1580 | 4680 |
| 1600 | 1575 | 4360 |
| 1600 | 1570 | 4040 |
| 1600 | 1565 | 3720 |

5.8.4 Surface with Missing Values

Summary

In this tutorial, a 3D color map surface graph will be created from a matrix with missing values. Also, gridlines can be skipped by customization.

Minimum Origin Version Required: Origin 8.5 SR1
What you will learn

- Create a 3D surface plot from a matrix by ignoring missing values
- Skip gridlines of a 3D surface plot
- Set contour lines
- Set contour levels and fill colors
- Re-scale axes ticks and labels

Steps

1. Start with a new matrix and import the file \Samples\Graphing\Surface With Missing

Values.dat. Activate the matrix and select Plot: 3D Surface: Color Map Surface from the Origin main menu to create a graph. From the plotting dialog set the Data Format to \mathbf{X}
across columns, \mathbf{X} Values in to None, and \mathbf{Y} Values in to 1 st column in selection. The graph should look like

2. Double click on the graph to open the Plot Details dialog. Expand the tree node on the left panel to make sure that the box under Layer1 is checked. Activate the Colormap /
Contours tab on the right panel. Click the Level heading to open the Set Levels dialog and set the dialog as the following sreenshots shows:

3. Click on the Fill heading to open the Fill dialog. In this dialog, choose the Load Palette radio button and then click the Select Palette button to choose the Reef palette. And make sure the Link to Palette check box has been enabled. Click the OK button to return to the
Plot Details dialog.

4. Click on the Line heading to open the Contour Lines dialog. Make sure Apply to All is checked, and set Color to LT Gray. Click the OK button to return to the Plot Details dialog.

5. Activate the Mesh tab on the right panel. Uncheck the box before Enable as the following screenshot shows. Click OK.

6. Double-click the X axis to open the Axes Dialog. In this dialog, select Tick Labels under the \mathbf{X} Axis branch, set the Divide by Factor equal to $\mathbf{0 . 1}$ on the right panel, then click the Apply button.

7. Go to the Scale option on the left panel, set From and To equal to $\mathbf{1 0}$ and $\mathbf{3 5 0}$, respectively. Under the Major Ticks option, set Type to By Increment and set Value to $\mathbf{5 0}$.

8. In a similar fashion set options for the \mathbf{Y} Axis. First, click on the \mathbf{Y} Axis node to expand the list of options. Select Tick Labels and set the Divide by Factor to 0.01 . Next, select the Scale option and set From and To equal to 100 and 3500, respectively. Then set Value to 500 under the Major Ticks option.
9. Finally, select the Z axis and choose the Scale option to set the From and To options equal to 15 and 3, respectively. Next, click the OK button. The final graph should resemble

5.8.5 Creating Intersecting Surface Plots from Worksheets

Summary

Many plot types, such as 3D Surface, 3D Bars, and Contour, can be created from data contained in a matrix object or from data arranged in a block of cells in a worksheet. The latter arrangement is referred to as a Virtual Matrix. Whereas a typical matrix object only supports a linear mapping of X and Y coordinates, a virtual matrix supports nonlinear mapping as well. In this tutorial, we show you how to create intersecting color map surface plots from virtual matrix data.

What you will learn

This tutorial will show you how to:

- Create a Color Map Surface plot using virtual matrix data from a worksheet
- Add one surface graph to another to create intersecting surface plots
- Set transparency

Create Surface Plots from Virtual Matrix Data

In this section, we will show you how to create surface plots from data in a worksheet.
 the dialog that opens, navigate to the \Samples\Graphing folder and select VSurface 1.dat and VSurface 2.dat. Select the Show Options Dialog check box.

Press the OK button.
2. In the impASC dialog, select Start New Sheets from the Import Mode drop-down list, to import data files to different worksheets of the same workbook. Expand the (Re)Naming Worksheet and Workbook branch of I mport Options. Check Rename Sheet with (Partial)
Filename and uncheck Rename Book with (Partial) Filename, to rename the worksheet with the file name.

Click OK to import these two data files.

| \#\# Book1 | | | | | $\square \square$ | \times |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $A(x)$ | B(0) | c1(0) | C 2 O | C3(0) | \wedge |
| Long Name | | | | | | |
| Units | | | | | | |
| Comments | | | | | | |
| Sparklines | | | | | | |
| 1 | | 11 | 12 | 13 | 15 | |
| 2 | 1 | 1.01 | 0.04 | -0.09 | -0.28 | |
| 3 | 1.29 | 1.52 | 1.29 | -0.11 | -1.55 | |
| 4 | 1.58 | -0.29 | -0.91 | 0.88 | 0.67 | |
| 5 | 1.87 | -0.97 | 1.52 | 1.12 | 0.17 | |
| 6 | 2.16 | -0.17 | -0.37 | 0.42 | 2.22 | |
| 7 | 2.45 | 0.66 | 1.01 | -0.37 | 1.01 | |
| 8 | 2.74 | -1.14 | -0.15 | 2.17 | 0.8 | |
| 9 | 3.03 | -0.07 | 0.09 | 0.28 | 0.7 | \checkmark |
| 4 V VSurface 2 入 VSurface $1 /$ | | | | $1 \mid<$ | \geqslant | : |

The data has X coordinate values in the top row and Y coordinate values in the first column. Note that the X coordinates have nonlinear spacing.
3. With the "VSurface 1" sheet active, click on top left corner of the workbook to select the entire sheet. Then select the menu item Plot: 3D Surface: Color Map Surface. This will open the plotvm dialog. This dialog opens any time a 3D or Contour plot menu item is invoked with a group of worksheet cells (a virtual matrix) selected. The dialog allows you to define where the X and the Y coordinate values are located. In the dialog, select \mathbf{X} across columns from the Data Format drop-down list. Set the \mathbf{X} Values in drop-down list to $\mathbf{1 s t}$ row in selection and the \mathbf{Y} Values in drop-down list to 1st column in selection:

Click OK to plot a Color Map Surface plot.

4. Repeat the last step to plot another Color Map Surface plot using data from the VSurface 2 worksheet. This time use VSurface 2 as Z title in the plotvm dialog.

Add another Surface Plot to Layer

In this section, we will show you how to add a surface plot to a graph layer already containing another surface plot.
5. Activate Graph1. Right-click on the Layer 1 icon on the top left corner of the graph and select Layer Contents from the context menu. In the Layer dialog that opens, select vsurface2 in the Available Data box and add it to the Layer Contents box.

Click OK to add the second surface.

Note that Origin displays the two surfaces with proper intersection.
6. Double-click on X axis to open the Axis Dialog. On the Scale section, select Log10 from the Type drop-down list.

Set Surface Transparency

We will now set the transparency of the second surface so that parts of the first surface are visible in this intersection plot.
7. Switch to the Surface tab and move the Transparency slider to 50%.

The final graph should look like the image below:

1

5.8.6 Surface with Symbols and Droplines

Summary

Origin supports transparency in most graph types. This feature permits the visibility of parts of a graph that would otherwise be obscured by overlapping plots. In this tutorial, we will add a fitted surface to a scatter plot, set transparency to make data points "behind" the surface visible, and add drop lines and error bars for data points.

Minimum Origin Version Required: Origin 8.5 SRO
What you will learn

- Create a 3D scatter plot from worksheet data and add a color fill surface to it.
- Draw drop lines or error bars for data points.
- Set surface transparency.

Steps

Create a surface graph with symbols and droplines

1. Open the 3D openGL Graphs folder by clicking File: Open Sample Projects: 3D OpenGL Graphs from the main menu.
2. Under this folder, go to 3D OpenGL Graphs: Graph with Transparency: Surface with symbols and droplines folder.
3. Active the worksheet XYZRandomGauA, highlight the XYZ to plot a 3D scatter by selecting

Plot: 3D Symbol/ Bar/ Vector: 3D Scatter from the main menu.

4. Now we will add a 3D Color Fill Surface plot to this 3D scatter graph. In the top left corner of the graph window, double-click the layer $\mathbf{1}$ icon to open the Layer Contents dialog.
5. In the Layer Contents dialog box, select Matrices in Folder from the dropdown menu in the upper left. In the left panel, select MBook 3, Click the triangle button next to A and select 3D ? Surface.

6. Click OK button to apply the change and close the Layer Contents dialog. Double-click the graph to open the Plot Details dialog box. In the left panel of this dialog, expand all items and select Original (or choose Plot Properties from the Format menu). In the right panel, select the Symbol tab. Set Shape as ball and set Size as 9 and Color as Olive.

7. In the left panel, select the surface plot, and then go to the Fill tab in the right panel, change the Fill piece by piece as Red. Set Transparency to 60. Go to the Mesh tab, set the Line Width as $\mathbf{1}$ and Set Total Number of Majors as $X=9$ and $Y=9$.

8. Now we will draw the drop lines. In the left panel, select the scatter plot (Original). In the right panel, select the Drop Lines tab. Select the Parallel to Z Axis check box. Select the Drop to Surface check box. Change the drop line Width to 2, and the color to Auto.

9. Click $\mathbf{O K}$ to close the dialog. Your final graph should look like this:

Create a surface with symbols and error bar

1. Follow steps 1 through 7 above to create a 3D surface graph with a scatter plot.
2. Add a new column in the worksheet "XYZRandomGauA". Select the column and right-click. In the Fill Column with context menu, click Uniform Random Numbers.
3. Open the Plot Details dialog. Select the plot (Original) in the left panel. On the Error Bar tab, select the enable check box, and select Col(D) from the Error Data dropdown menu.

4. Click OK to close the dialog. Your final graph should look like this:

5.8.7 I ntersecting Color Surfaces

Summary

Origin supports multiple intersecting surfaces.

Minimum Origin Version Required: Origin 8.5 SRO - however, this tutorial uses a project file only available starting with 8.5.1

What you will learn

This tutorial will show you:

- How to create intersecting color surfaces from different matrix objects.
- How to customize the colormap surface plot.
- How to construct additional color scale for multiple colormap surfaces.

Steps

1. Choose "File: Open" and browse to open the matrix book Intersecting_Color_Surfaces.ogm in the Samples \backslash Graphing folder. Note that the matrix displays two thumbnail images above the data, one for each matrix object in the matrix.

To plot intersecting surfaces, each matrix object must have identical dimensions and XY Mapping. This requirement is automatically fulfilled when the two objects are contained in the same matrix.

See Hierarchy of Origin Objects for additional information.
2. Select either thumbnail image. From the main menu, select Plot, then point to 3D Surface, and then click Multiple Colormap Surfaces. This will generate an intersecting surface plot of every matrix object in the matrix sheet.

3. Open the Layer Properties dialog by double-clicking on the graph layer, or by selecting Format:Layer Properties... from the main menu. Go to the Lighting tab, and change the Mode to Directional to turn on the lighting effect.

4. Expand the Layer 1 branch in the left panel, select [MBook36]MSheet1!_1(Z)[1*:400*] to open the Plot Properties dialog. In the right panel, go to the Colormap/ Contour tab, uncheck the Enable Contours check box to turn off contour lines
5. Click the Fill... column header to open the Fill dialog box. Click the default Rainbow palette to open the palette menu. On the palette menu, select Pastel. Click OK to close the Fill dialog box.

6. Select [MBook36]MSheet1!_2(Z)[1*:400*] in the left panel. Uncheck the Enable Contours check box. And click Apply to see the modifications so far.
7. Keep [MBook36]MSheet1!_2(Z)[1*:400*] selected, and go to the Mesh tab and clear the check box before Enable to turn off the mesh lines. Do the same for

[MBook36]MSheet1!_1(Z)[1*:400*].

Click OK to close the Plot Details dialog box and update the graph.
8. Now we will construct the an additional color scale for the second surface, change that plot to be active by click Data:2 [MBook36]MSheet1!_1(Z)[1*:400*], then click Graph:New Color
Scale to create color scale for this plot.
9. Double click on the newly added color scale object to open the Color Scale Control, change the settings according to the screenshot below, then drag and put the color scale object to a desired place on the layer:

10. You can use the 3D rotation button
to rotate the graph and gain an overhead perspective. This button is a part of the 3D annotation toolbar which can be brought out by clicking the graph layer once

Your final graph should look something like this:

5.8.8 Colormap from Second Matrix

Summary

Origin can represent four-dimensional data by color-mapping a surface plot using a second matrix.

Minimum Origin Version Required: Origin 8.5 SRO
What you will learn

- Create a Color Fill Surface from a matrix.
- Color map a surface plot using a second matrix.
- Customize color map levels and palette.
- Control lighting on the graph (From Origin 9 SRO)

Steps

1. Click File : Open to open Colormap_from_Second_Matrix.ogm under the folder

Sample\Graphing \. You should see two image thumbnails above the matrix data, just under the title bar. (If you do not see image thumbnails, right-click on the matrix title bar and select Show Image Thumbnails.) Select image thumbnail 1.
2. On the main menu, click Plot, point to 3D Surface, then click Color Fill Surface to generate a surface plot.

3. Double click on the plot to open the Plot Details dialog. In the left panel, select
(MBook1D) MSheet1. In the right panel, select the Fill tab. Choose Coutour Fill from Matrix. and select Mat(2) for front surface.

4. Go to Colormap/ Contours tab, click the Level... title to open the Set Levels dialog. In this dialog, click Find Min/ Max button and set the \#Major Levels and \#Minor Levels as 10 and 9. Click OK button to close the dialog.

5. Click the Fill... title to open the Fill dialog. select Load Palette and then click Select

Palette button to select Rainbow palette.Click OK button to close this dialog.

6. Check the Enable Contours check box. And then click Line... to open the Contour Lines dialog. In this dialog, check the Show on Major Levels Only check box and set the Line Properties as below. Click OK button to close the dialog.

7. Go to the Mesh tab, uncheck the Enable box to disable the mesh lines.
8. Select Layer1 in the left panel, go to Lighting tab in the right panel. Select Directional under Mode. Set Horizontal and Vertical as 124 and 40, and change the color of Diffuse as LT Gray and Specular as Gray. Then set the Shininess as 37.

9. Go to the Planes tab, set the color as Gray and select Front Corner for the Cube dropdown menu.

10. Go to Axis tab and do settings as below. Click OK button to close this dialog.

11. Keep the graph window active. Select Graph: New Color Scale to add a new color scale in the graph window.
12. Double-click anywhere on the color scale to open the Color Scale Control dialog box. Change text Size to 14, and Color bar thickness to 150. Select the Reverse Order check box.

Click OK to close the Color Scale Control dialog box.
13. Double-click the X, Y and Z axis title and enter " X distance", " Y distance" and "Height". Add a text object "Pressure(psi)" above the color scale.
14. Your final graph should look like this:

5.8.9 Color Map Surface Graph

Summary

This tutorial will show you how to create a 3D color map surface.

Full-body Warming System

Heat Transfer Profile

What will you learn

This tutorial will show you how to

- Create a 3D color map surface graph
- Customize the 3D surface graph

Steps

This tutorial is associated with this Graph Galley page.

1. Download the project by clicking the Download Project link at the top of this page.
2. Open the project in the zipped file. Highlight HFT data matrix and select Plot: 3D Surface: Colormap Surface with Projection to create a 3D graph.

3. Choose Format: Plot Properties to go to the plot level of the Plot Details dialog.
4. Select the surface plot, go to the Mesh tab, uncheck the Enable box to turn off the mesh lines. Go to Colormap/ Contours tab, click Line title to open the Contour Lines dialog. In this dialog, uncheck Show on Major Levels Only and select Hide All to hide all contour lines.

5. Select the projection plot in the left panel, go to Surface tab, Enter 0 as the following image shows to put the projection to the bottom of the graph.

6. Go to the Mesh tab, uncheck the Enable box to disable the mesh lines. Go to Colormap/ Contours tab, hide all contour lines like the step4 does.
7. Click Layer 1 in the left panel, and then in the right panel select the Lighting tab. Change the setting as following to enable lighting effect:

Then Click OK to close the dialog.
8. Finally, change axis titles and add a graph title as the following graph.

Full-body Warming System
Heat Transfer Profile

5.8.10 Parametric Surface with Colormap from Data

Summary

In this tutorial a 3D sphere is created using the data from three matrices. And the surface is filled to display the surface temperature contour using the data from another matrix.

Surface Temperature $\left({ }^{\circ} \mathrm{C}\right)$

Minimum Origin Version Required: Origin 9.0 SRO

What you will learn

This tutorial will show you how to:

- Create parametric surface from matrix data.
- Set contour fill from another matrix.
- Customize the 3D parametric surface plot.

Steps

1. Open the 3D OpenGL Graphs project(\Samples\3D OpenGL Graphs.opj), go to the 3D OpenGL Graphs: 3D Function Plot: Parametric Surface with Colormap from Data folder in Project Explorer.
2. Activate the matrix FUNCA: $1 / 4$, and click the \Rightarrow button on 3D and Contour Graph toolbar to create a colormap surface as below. You can also create this colormap surface by selecting Plot: 3D Surface: Color Map Surface.

3. Double click on the plot to open the Plot Details dialog. Click on the Surface tab. Check the box before Parametric Surface and set X Matrix, Y Matrix as Mat(2), Mat(3) respectively.

Plot Details - Plot Properties

| Function Surface Fill Colormap / Contours Mesh Error Bar | Side Walls | Nume |
| :--- | :--- | :--- | :--- | :--- |

- DisplayFlatShift in Z by percent of scale range, $0=$ bottom, $100=$ top

Iransparency

Click OK to close the dialog.
4. In order to show the complete colormap surface click the落 button on Graph toolbar and the colormap surface should look like the following image:

5. Double click on the plot to open Plot Details dialog. Go to the Fill tab. In Front Surface section uncheck the box before Self and set Contour fill from matrix as Mat (4). Click Apply.

6. Activate the Colormap / Contours tab. Click Level to open the Set Levels dialog. Click Find Min/ Max and set Major Levels, Minor Levels as 16, 8 respectively. Click OK.

7. Click Fill to open the Fill dialog. Set Load Palette as Temperature. Click OK.

8. Click on the Mesh tab. Set Line Width as $\mathbf{0 . 0 5}$ and Line Color in Font section as LT Gray. Click Apply.

9. Click on the Numeric Formats tab. Choose the Decimal Places radio button and set its value as $\mathbf{0}$.

Click OK to apply the settings and close the Plot Details dialog. The graph should look like the following image.

10. Double click on Z axis to open Axes Dialog. On the Scale node, set the value of From, To as $\mathbf{- 4 0 0}, \mathbf{4 0 0}$ respectively. Click OK.

11. Double click on the XY Plane to open Plot Details - Layer Properties. Click the Display tab, and uncheck the box before \mathbf{X} Axes, \mathbf{Y} Axes, \mathbf{Z} Axes in Show Elements section to hide the axes.

Plot Details - Layer Properties

Data Drawing Options

\square Clig Data to Frame

Data on Top of AxesGrid on Top of DataClipping is controlled by Miscellaneous tab for 3D
12. Click on the Planes tab, and uncheck the boxes before $\mathbf{Y Z}, \mathbf{Z X}$ to hide YZ and $\mathbf{Z X}$ planes. Set Color of XY as LT Gray. Click OK to close the dialog.

13. Go back to the graph, select Format:Axes Titles:X axis titles to open the Axes dialog with the Title node selected. Click the Select Others button. Uncheck the box after Show to hide axis title for all axes.

14. Double click on the color scale to open the Color Scale Control dialog. Set Text Font as Verdana. Check the box before Reverse Order. Click OK to apply the setting and close dialog. Move the color scale object to a proper place.

15. Right click on the white area of the graph layer to bring up a context menu and choose

Add/ Modify Layer Title. Select the text object added just now, right-click on it and select
Properties... on the shortcut menu to open the Object Properties dialog. Set text font as Verdana and type Surface Temperature ($\backslash \mathbf{+ (0) C})$ in the content table. Click OK.

16. Click on the graph layer within 3D frame (not the data plot), and click the Rotate button as shown in the following to activate rotation mode.

Rotate the plot to get a better view. The graph might look like the following.

Surface Temperature $\left({ }^{\circ} \mathrm{C}\right)$

5.8.11 Stacked 3D Surface Plots

Summary

This tutorial shows how to create stacked 3D colormap surfaces from different matrix objects. The surfaces in the plot display the topology before and after volcanic eruption. And a graph animation is generated from LabTalk script for the plot rotation.

Minimum Origin Version Required: Origin 9.0 SRO
What you will learn

This tutorial will show you how to:

- Create stacked 3D colormap surfaces.
- Customize axes display and layer properties.
- Resize and rotate a 3D plot.

Steps

Create Multiple Colormap Surfaces

1. Click File: Open Sample Projects: 3D OpenGL Graphs from the Menu bar to open 3D OpenGL Graphs project. Go to the 3D OpenGL Graphs: 3D Surface: Stacked 3D Surface Plots folder in Project Explorer.
2. Activate the matrix book Mbook1 which contains two matrix objects, then click Plot: 3D Surface: Multiple Colormap Surfaces to create two 3D surfaces from these two matrix objects.

3. Double click on the plot to open the Plot Details dialog, you can see that there are two surfaces under the Layer1 node on the left panel. To shift the "After eruption" surface in Z axis, activate the second plot under Layer1 on the left panel, and in the right panel, select the Surface tab. Then check the box before Shift in \mathbf{Z} by percent of scale range, and enter $\mathbf{7 0}$ in the text box.

| Surface Fill | Colormap / Contours | Mesh | Error Bar | Side Walls |
| :--- | :--- | :--- | :--- | :--- |
| Numeric Formats | | | | |
| Display | | | | |
| \square Flat | | | | |
| \square Shift in Z by percent of scale range, $0=$ bottom, $100=$ top 70

 Iransparency | | | | |

4. Go to the Fill tab. In the Front Surface section, uncheck the box before Self to fill contour by the same matrix object (Mat "Before") as the other surface used.

5. Select the Colormap / Contours tab. Click Level.. to bring up the Set Levels dialog. Set the parameters as shown in the following graph and click OK.

Click Line... to open the Contour Lines dialog. Uncheck the box before Show on Major Levels Only and select Hide All. Click OK.

6. Go to the Mesh tab, and uncheck the box before Enable to disable the mesh line.
7. Repeat steps 5 to 6 for the first plot under the Layer1 node.
8. In this project the two surfaces use the same matrix as contour fill, so they can share one color scale.

To set the numeric format of the color scale, activate the first plot on the left panel of the Plot Details dialog. Then select the Numeric Formats tab on the right panel. Select Scientific: 10^3 from the drop down list next to the Format, and set Significant Digits as 2. Click OK.

To customize the color scale, double click on the color scale to open the Color Scale Control dialog. Check the box before Reverse Order and set Color bar thickness as 100. Click OK.

Customize Axes Display

In the Axes dialog, you can change the axes scale and tick labels' format. To open this dialog, click Format: Axes: X Axis...

1. Settings on the Scale node.

O Set scale from 558000 to $\mathbf{5 6 6 5 0 0}$ for X Axis, from $\mathbf{5 1 0 8 2 0 0}$ to $\mathbf{5 1 2 1 8 0 0}$ for Y Axis, and from $\mathbf{0}$ to $\mathbf{1 0 0 0 0}$ for Z axis.

0 For X axis, set Type of Major Ticks as By Counts and set Count as 5. For Y and Z axis, set Type of Major Ticks as By Increment and set Value as 2000. To hide all minor ticks, set Count of Minor Ticks as $\mathbf{0}$ for all axes.

2. Customize the Tick labels and Title.

O First, ensure that the Use Only One Axis for For Each Direction is enabled in the top of the Axis dialog. Therefore, only one axis is listed under each direction in the tree panel. That combined with the Select Others button allows you to quickly customize all axes with the same settings.

0 Select the Tick Labels node under X Axis. Click the Select Others button to select the tick labels of other axes. Check the box before Custom Format and select $\mathbf{P} * \mathbf{3}$ from the drop down list to show the tick label as base-10 scientific notation with 3 significant digits. Click OK. For more information about the options in this drop down list, please refer to Custom Display Format.

Customize Layer Properties

1. Double click on the blank space outside the plots or click Format: Layer Properties... from the menu to open Plot Details - Layer Properties dialog.
2. Activate the Miscellaneous tab on the right panel. Check the box before Enable in the Clipping section, which will clip the image outside the axes area according to the settings in the Clipping section.

3. Go to the Planes tab. Set Color as LT Gray for all planes. And select Front Corner from the drop-down list in the Cube section to show the cube's border.

4. Select the Lighting tab. In the Mode section, choose Directional to enable lighting mode. Set Light Color as shown in the following graph. Click OK.

| Background | Size/Speed | Display | Miscella | aneous | Axis | Planes Lighting |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ModeNoneDirectional | | Direction
 Horizontal
 Vertical \square Dynamic Light Source | | | | |
| Light Color | | | | | | |
| Ambient
 Diffuse
 Specular | $\begin{aligned} & \text { A) } \square \\ & \& \text { LT Gr } \\ & \text { \& White } \end{aligned}$ | | ininess | 64 | | |

Resize and rotate the plot

1. Click on the cube (not the data plot) to activate the 3D toolbar. Click the Resize button
 3D Cartesian coordinate will show up. Place the cursor on Y axis, which will then be highlighted,
at this moment drag-and drop the Y axis to stretch the plot in Y axis direction. Do the same to X direction and Z direction.
2. Click the rotate button
 to activate rotation mode. A sphere will be displayed at the center of the plot. Rotate the plot to get a better view.

The 3D toolbar allows you to resize and rotate the plot freely. However, you can also achieve the same view as Graph1 in this sample project by setting the value in the Axis tab of Layer Properties dialog as shown in the following graph.

| Background | Size/Speed Display Miscellaneous Axis Planes Lighting |
| :--- | :--- | :--- | :--- | :--- |

| Length | | | Rotate LabelsNoneIn Plane of ScreenIn Axes Plane |
| :---: | :---: | :---: | :---: |
| $\times 70.2$ | Azimuth | 32.4 | |
| $Y \quad 125$ | Inclination | 39.5 | |
| ≥ 98.5 | Roll | 359.6 | |

Perspective Angle (0-30) 10.0

5.9 Vector

Topics covered in this section:

1. Vector Graph
2. 3D Vector

5.9.1 Vector Graph

Summary

A vector plot is a multidimensional graph used in industries such as meteorology, aviation, research, and construction that illustrate flow patterns (e.g. of wind, water, magnetic fields, etc.). Both direction and magnitude are represented in a vector graph. Origin includes two types of vector plots:

1. Vector XYAM - takes a starting XY location for the vector tail (by default), an angle and a magnitude.
2. Vector XYXY - takes two XY positions and connects them with a vector.

What you will learn

- Two data organizing mode to plot a vector graph.
- Use Plot Setup to assign plot data

Steps

This tutorial is associated with the Statistical and Specialized Graphs project:\Samples\Statistical and Specialized Graphs.opj.

To create a vector plot, you need four data columns, and organize your data into two modes:

Vector XYAM

XYAM means X, Y, Angle and Magnitude, respectively. Vectors will start from point (X, Y), and rotate an angle you specified. The following example uses XYAM data mode to create a vector graph.

1. Browse the folder Statistical and Specialized Graphs: Specialized: 2D Vector in the Project

Explorer. Active the data worksheet Book8E. Without highlighting any columns, select Plot: Specialized: Vector XYAM to open the Plot Setup dialog. And assign column A, B, D, C to X, Y, A, M as below, then click OK to plot the graph.

2. Select Format:Plot Properties... to go to the plot level of the Plot Details dialog. Go to the Vector tab and change the Magnitude Multiplier in Vector Data group to 75. Click Ok button to close Plot Details dialog.
3. Double-click X or Y axis to open the Axis dialog. Active the Title \& Format tab, and check/enable the Show Axis \& Ticks option for the Right axis. And set the Major Ticks and Minor Ticks to Out. Show the Top axis either in this tab.
Go to Tick Labels tab, and check the Show Major Labels box for both Right and Top axis.
Go to the Scale tab, set I ncrement as 2 for Horizontal. Click OK.
4. Right click on the legend box to bring up the context menu. Select Properties... to open the Object Properties dialog. Type $\backslash \mathbf{I}(\mathbf{1})$ Field Strength in the text box and click OK.
5. Add layer title as Spot Write Effectiveness.

Vector XYXY

Another data organizing mode is XYXY , where the first X, Y is the vector starting point, while the last X, Y is the ending point.

To create such vector graph, active the Statistical and Specialized Graphs:Vector: 2D Vector folder in the OPJ, highlight all of the four data columns of Book9E, and select Plot: Specialized: Vector XYXY from menu. Delete the axis titles if necessary.

5.9.2 3D Vector

Summary

Origin can plot 3D Vectors from two different data structures: XYZ XYZ and XYZ dXdYdZ.
XYZ XYZ defines the tail and head data for the vector, while XYZ dXdYdZ provides the vector's tail data and the distance between tail and head projections on X, Y, and Z axes.

What you will learn

- Create a 3D Vector from XYZ XYZ worksheet data.
- Customize the 3D Vector

Steps

This tutorial is associated with the 3D Vector folder in the 3D OpenGL graphs project (\Samples \backslash 3D OpenGL graphs.opj).

1. In the Project Explorer (usually at the left of the screen), browse to \Statistical and Specialized Graphs\Vector\3D Vector. Select workbook Book51A.
2. Click in the upper left corner of the worksheet to select all data.
3. On the main menu, select Plot, then point to 3D Symbol/ Bar/ Vector, and then click 3D Vector XYZ XYZ. This will create a 3D Vector graph with our built-in template.

Note that speed mode is on.
4. Double-click on the vector plot to open the Plot Details dialog box. Ensure that the Original vector plot has been selected in the left panel of the dialog box. Select the 3D Vector tab.
o Click the Color button and select Define Custom Colors from the menu. Define a custom color in the Color dialog box. (We chose a custom shade of blue.)

o In the 3D Vector tab of Plot Details dialog box, set the parameters as shown in the following graph.
Line Symbol Drop Lines 3D Vector Label
\checkmark Enable 3D Vector

Click OK to apply these settings and close the dialog box.
5. Click the button in the 3D rotation toolbar several times.
6. On the main menu, select Graph, point to Speed Mode..., then click Open Dialog... to open the speedmode dialog box. Select Off from the Speed Mode dropdown menu. Click OK to turn off speed mode and close the dialog box.

The final graph should look something like this:

5.10 Ternary

Topics covered in this section:

1. Ternary Contour

5.10.1 Ternary Contour

Summary

This tutorial will show you how to create a Ternary Contour graph and add scatters overlay.

What will you learn

- Create the Ternary Contour graph
- Add scatters overlay with the Plot Setup dialog.
- Customize the graph by using the Plot Details dialog

Steps

This tutorial is associated with the 2D and Contour Graphs project:\Samples\2D and Contour Graphs.opj.

1. Open the 2D and Contour Graphs: Contour: Ternary Contour folder in the Project Explorer. Activate Book1,highlight entire worksheet and select Plot: Contour: Ternary Contour to create a Ternary Contour graph. The graph should look like:

2. Now we will add overlay scatters to the plot. Right click on the layer icon and select Plot Setup in the context menu to open the Plot Setup dialog.
3. Set Worksheets in Folder as Available Data, select Book1, choose Scatter as Plot Type and column A, B, C as X, Y, Z respectively. Click Add to add the scatter plot to the ternary contour plot. The settings should be as following:

4. Now we will customize the contour graph and the scatter. Double-click on the contour plot to bring up the Plot Details dialog.

0 select the Color Map/ Contours tab and click the Level heading, then set the dialog as the follwing graph shows.

o Click OK to close the Set Levels dialog then click the Fill heading to open the Fill dialog. Select Load Palette and then select Rainbow from the Palette list and click OK.
o In the left panel of Plot Details dialog, select the scatter plot and customize the symbol as following:

o Click OK to close the Plot Details dialog.
o Drag and drop the color scale to resize and move it to a desired place

The graph should look like

5.11 Waterfall

Topics covered in this section:

1. Waterfall
2. 3D Waterfall Graph

5.11.1 Waterfall with Y and Z Color Mapping

Summary

Origin's Waterfall plot can use a dataset stored in a parameter row to set the Z offset and color map with Y or Z values.

What you will learn

- Create a Waterfall color map with Y or Z values
- Customize colormap levels and palette

Steps

This tutorial is associated with the Waterfall folder in the 2D and Contour Graphs project(\Samples\2D and Contour Graphs.opj).

Create Waterfall with Y Colormap

1. In the Project Explorer (usually at the left of the screen), browse to $\backslash 2 \mathbf{D}$ and Coutour Graphs \Multi Axis and Multi Panel\ Waterfall. Select the Book4G window to activate. Click in the upper left corner of the worksheet to select all data.
2. Right-click and select Plot from the menu, then point to Multi-Curve, and then select Waterfall Y:Color Mapping to create a Waterfall with Y color mapping. (Alternatively, select the Waterfall Y:Color Mapping button from the 2D Graphs toolbar.)

Note that the values stored in the user-defined parameter row Frequency (Hz) have been automatically picked up as the Z Value Source. Confirm this by double-clicking the plot to open the Plot Details dialog box and selecting Layer1 in the left panel. Select the Waterfall tab and observe that the \mathbf{Z} Value Source is set to Frequency (Hz).

3. With the Plot Details dialog box still open, in the left panel, select the first line plot under Layer1. Select the Colormap tab in the right panel. Click on the Level? column header to open the Set Levels dialog box. Set levels as shown below:

Click OK to close the Set Levels dialog box.
4. Click on the Fill? column header to open the Fill dialog box. Select Load Palette, and choose the Rainbow palette from the palette list. Click OK button to close the Fill dialog box.

Click OK to apply these settings and close the Plot Details dialog box.
5. Double-click the plot's Z axis to open the Axis dialog box. Set the Increment to 50. Select Vertical in the Selection box and set the vertical Increment to $\mathbf{5 0}$.

Select the Grid Lines tab. Select Horizontal from the Selection box, and clear the Minor Grids check box. Select Vertical from the Selection box, and clear the Minor Grids check box.

Click OK to apply changes and close the dialog box. The final graph should look like this:

Create Waterfall with Z Colormap

1. In the Project Explorer (usually at the left of the screen), browse to \2D and Coutour

Graphs Waterfall. Select the Book4G window to activate. Click in the upper left corner of the worksheet to select all data.
2. On the main menu, click Plot, then point to Multi-Curve, and then select Waterfall

Z:Color Mapping to create a Waterfall with Z color mapping. (Alternatively, select the Waterfall Z:Color Mapping button from the 2D Graphs toolbar.)

3. Double-click the plot to open the Plot Details dialog box. In the left panel, select the first line plot under Layer1. Select the Colormap tab in the right panel. Click the Level? column header to open the Set Levels dialog box. Set Major Levels to $\mathbf{1 0}$.

Click OK to close the Set Levels dialog box.
4. Click the Fill? column header to open the Fill dialog box. Select Limited Mixing and set the From color to red and the To color to blue. Click OK to apply these settings and close the dialog box. Click OK to close the Plot Details dialog box.

5. Double-click the Y axis to open the Axis dialog box. Set the vertical Increment to $\mathbf{5 0}$.

Select the Grid Lines tab. Select Horizontal from the Selection box, and clear the Minor Grids check box. Select Vertical from the Selection box and clear the Minor Grids check box. Click OK to close the Axis dialog box.

Your final graph should look like this:

5.11.2 3D Waterfall Graph

Summary

The Origin 2D Waterfall graph plots one or more Y columns, or a range from one or more Y columns, as a series of line plots that "recede" into the page. Such graphs are effective for comparing datasets collected under conditions where some parameter is varied incrementally.

What you will learn

- Create waterfall plot
- Change symbol/color for grouped plots
- Merge graphs

Steps

This tutorial is associated with this graph in Graph Galley. Download the project file in this graph galley page.

There are two worksheets and one graph in this folder. This example illustrates how to create such a waterfall plot.

1. For each worksheet, highlight all columns and plot as Waterfall graph from Plot: Multi-Curve: Waterfall, and use Measured and Simulated as graph long name, respectively.
2. Double-click the X or Y axis of each plot and adjust axes scales (X Axis From $=0.5, \mathrm{To}=3.0$ and Y Axis From $=0$, $T o=40$).
3. Double-click any plot in the Measured plot to bring up Plot Details dialog at the data level, and change the Plot Type drop-down in the bottom left corner to Scatter and click Apply.

In the Group tab of the Plot Details dialog, change the Symbol Type to None and click Apply.

Click in Details next to Symbol Edge Color and click the Browse button that appears. Note how the color increment is Black, Red, Green, Blue, Cyan and Magenta.

[^2]

Click OK to close Plot Details dialog.
4. Double-click on any plot in the Simulated graph to bring up Plot Detail dialog at the data level for this plot. In Group tab, change the Line Color increment type to By One, and change the color Details for Line Color to Black, Red, Green, Blue, Cyan and Magenta.

Click OK to close Plot Details dialog.
5. Now, we will merge these two graphs. Select Graph: Merge Graph Windows. Choose

Specified from Merge drop-down list, and select the two graphs you just created in Graphs edit box. Arrange the graph by using the following settings:

Arrange Settings:

Number of Rows: 1

Number of
1
Columns:

Linked Layers: Check/Enable
6. Click the OK button to merge the graphs.
7. In the sample we have added labels and changed axis titles.

5.12 Specialized

Topics covered in this section:

1. Windrose Graph
2. Plot Functions with Parameters Defined in a Worksheet
3. Open-High-Low-Close-Volume Stock Chart

5.12.1 Windrose Graph

Summary

Windrose graphs are used to present wind speed data and wind direction data collected over some time at a particular location. This tutorial will show you how to create a windrose graph with Origin 9 (post-SR5 builds are required. To create windrose graph with Raw Data mode, Origin 8.1 is required).

Minimum Origin Version Required: Origin 8.5.1
What will you learn

This tutorial will show you how to:

- Create a Windrose graph from binned data.
- Customize the direction tick labels of the Windrose graph.
- Create a Windrose graph from raw data.

Steps

This tutorial is associated with the Statistical and Specialized Graphs project:\Samples\Statistical and Specialized Graphs.opj.

Part 1: Create a Windrose Graph from Binned Data

1. Go to the project folder Statistical and Specialized Graphs: Specialized: Wind Rose and activate the Windrose Binned Data workbook. (If you don't have the project file, please import the sample data from here).
2. Highlight all the columns and click the Wind Rose - Binned Data button from the 2D Graphs toolbar.

The Windrose graph should look like the following:

3. Now, change the wind direction to show only $\mathrm{N}, \mathrm{E}, \mathrm{S}, \mathrm{W}$. Right-click on the tick label \mathbf{N} and then select Tick Labels from the short-cut menu. This opens the \mathbf{X} Axis dialog.

Change the options as the following screenshot.

Activate the Scale tab. Enter $\mathbf{9 0}$ in the I ncrement edit box and then click the OK button. The graph should look like:

Part 2: Create a Windrose from Raw Data

1. Go to the project folder Statistical and Specialized Graphs: Specialized: Wind Rose and activate the Windrose Raw Data workbook. Go to the first sheet (the Raw Data worksheet). (If you don't have the project file, please import the sample data from here).
2. Highlight columns A \& B. Then click the Wind Rose - Raw Data button on the 2D Graphs toolbar.

3. Use the settings below to create the Wind Rose graph:

The final graph should look like:

Sample Data

Binned Data

To import Binned Data to worksheet, you can copy the Binned Data $\mathbf{1}$ (including the heading) and then select File: Import Wizard. Select the Clipboard checkbox in DataSource group and then click Finish button to import the data into Origin.

| Direction | $\mathbf{0 - 4}$ | $\mathbf{4 - 8}$ | $\mathbf{8 - 1 2}$ | $\mathbf{1 2 - 1 6}$ | $\mathbf{1 6 - 2 0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 22.5 | 3.125 | 3.125 | 3.125 | 6.25 | 0 |
| 45 | 0 | 3.125 | 3.125 | 0 | 0 |
| 67.5 | 0 | 6.25 | 0 | 0 | 0 |
| 90 | 0 | 0 | 0 | 0 | 3.125 |
| 112.5 | 0 | 0 | 0 | 0 | 0 |
| 135 | 3.125 | 0 | 0 | 0 | 3.125 |
| 157.5 | 0 | 0 | 9.375 | 3.125 | 0 |
| 180 | 3.125 | 3.125 | 0 | 3.125 | 3.125 |
| 202.5 | 0 | 0 | 0 | 0 | 0 |
| 225 | 0 | 0 | 3.125 | 0 | 0 |
| 247.5 | 0 | 3.125 | 0 | 3.125 | 3.125 |
| 270 | 0 | 0 | 0 | 0 | 3.125 |
| 292.5 | 0 | 6.25 | 3.125 | 0 | 0 |
| 315 | 0 | 0 | 3.125 | 3.125 | 0 |
| 337.5 | 0 | 0 | 0 | 0 | 0 |
| 360 | 0 | 6.25 | 0 | 0 | 0 |
| 382.5 | 0 | 0 | 0 | 0 | 0 |

Raw Data

To import Raw Data to worksheet, you can copy the Raw Data (including the heading) and then select File: I mport Wizard. Select the Clipboard checkbox in DataSource group and then click Finish button to import the data into Origin.

Import Wizard - Source

Data Type

- ASCIIBinary

User Defined

Data Source
File
(-) Clipboard

Direction Speed

| 311.5 | 12.75 |
| :---: | :---: |
| 142.7 | 11.18 |
| 161.6 | 5.9 |
| 277.3 | 8.24 |
| 155.3 | 13.46 |
| 40.8 | 8.57 |
| 43.4 | 4.38 |
| 1.3 | 10.91 |
| 78.8 | 18.72 |
| 237.8 | 16.22 |
| 114.6 | 0.88 |
| 2.1 | 12.05 |
| 290.5 | 4.6 |
| 174.1 | 3.29 |
| 267.6 | 16.64 |
| 8 | 5.6 |
| 213.9 | 8.04 |
| 134.8 | 17.26 |
| 137.6 | 11.87 |
| 46.1 | 5.48 |
| 4.5 | 13.47 |
| 311.2 | 10.17 |
| 154.4 | 11.17 |
| 176.2 | 18.91 |
| 348.1 | 4.11 |
| 225.2 | 6.65 |
| 236.4 | 12.87 |
| 11.7 | 1.07 |
| 278.9 | 4.36 |
| 356.5 | 5.01 |
| 58.9 | 7.3 |
| 161.8 | 15.6 |

5.12.2 Plot Functions with Parameters Defined in a Worksheet

Summary

Origin can plot functions. It also can plot functions with parameters defined in a worksheet. The function graph can be updated automatically as the parameters in the worksheet change.

Minimum Origin Version Required: Origin 8.0 SR6
What you will learn

This tutorial will show you how to:

- Define variables from a worksheet in the Set Values dialog box.
- Plot a function graph with parameters.
- Update a graph automatically when parameters are changed.

Steps

Let us use this function as an example: $y=p 0+p 1^{*} x+p 2^{*} x^{\wedge} 2$

1. Set up a worksheet with three parameters p0, p1, p2 stored in Column A, Column B, Column C as shown below.

2. Click on the Add New Columns button + 目 on the Standard toolbar to add a new column to the worksheet.

| \#\# Book1 | | | | | $\square \square$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $A(x)$ | B() | $\mathrm{C}(1)$ | | | A |
| Long Name | p0 | p1 | p2 | | | |
| Units | | | | | | |
| Comments | | | | | | |
| 1 | 1 | 2 | 1 | | | |
| $2 \sim \sim$ | | | | | | |
| 4 V | | | | | \geqslant | : |

2. Highlight Column D and then select Column: Set Column Values. Select Auto from the Recalculate drop-down. Type the script shown below to define the parameters in the Before Formula Scripts edit box. Click the OK button to close the dialog box.

Note that there is a green lock icon 迫on the top right corner of Column D which indicates that the Recalculate Mode is Auto.

| \#\# Book1 | | | | | $\square \square$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | A(C) | B(M) | c(1) | DM(${ }^{\text {a }}$ | | \wedge |
| Long Name | p0 | p1 | p2 | | | |
| Units | | | | | | |
| Comments | | | | | | |
| 1 | 1 | 2 | 1 | | | |
| 2 | | | | | | \checkmark |
| (4) ${ }^{\text {\| }}$ Sheet1 | | | | < | > | |

3. Click on the New Function button \mathbf{f}
4. In the Plot Details dialog, set the options as follows and click the OK button to close the dialog box.

5. The function graph can be updated automatically when the parameters in the first row of the worksheet change. Change the value in the first row of Column 2 from $\mathbf{2}$ to $\mathbf{3}$. Click outside this cell to finish editing.

The function graph updates to reflect this change.

Scripts

The script used in the Before Formula Scripts edit box of the Set Values dialog box is:

$$
\begin{array}{ll}
\mathrm{p} 0=\operatorname{col}(1)[1] ; & \text { //Specify Column A for p0. } \\
\mathrm{p} 1=\operatorname{col}(2)[1] ; & \text { //Specify Column B for p1. } \\
\mathrm{p} 2=\operatorname{col}(3)[1] ; & \text { //Specify Column C for p2. }
\end{array}
$$

The function in the $\mathbf{F 1}(\mathbf{x})$ edit box of the Plot Details dialog box is as follows:

$$
p 0+p 1^{*} x+p 2^{*} x^{\wedge} 2
$$

5.12.3 Open-High-Low-Close-Volume Stock Chart

Summary

This tutorial will show you how to create a stock chart to display open, high, low, and close prices, together with trading volume.

Minimum Origin Version Required: Origin 8.5 SRO
What you will learn

- Set a column format
- Create a stock chart with open, high, low, and close prices, and trading volume
- Set date format for display label of axis

Steps

1. Download the source data file from our ftp and import it into Origin. When import this file, keep the system default settings.
2. Double click on the header of column A to bring up the Column Properties dialog. Activate the Properties tab, under the Options branch, Select Date from the Format drop-down list, and then select Custom Display from the Display drop-down list. Type dd'- 'MMM'- 'yyyy in the Custom Display drop-down list. Click the OK button to finish setting column A as Date column.

3. Highlight all columns in the worksheet, and then choose menu item Plot: Stock: OHLC-Volume to create a graph.
4. Double click on the top axis of layer 1 in the graph to open the \mathbf{X} Axis setting dialog. Switch to the Tick Labels tab, and then choose Custom Display from the Display drop-down list. Type yyyy'- 'M'- 'dd in the Custom Display drop-down list. Click the OK button

5. Double click on the Y axis of layer 2 to open the \mathbf{Y} Axis setting dialog. Go to the Scale tab, and set From, To, Increment as 0, 100M, 20M respectively. .

6. Click the $\mathbf{O K}$ button to finish the axis setting and get the stock chart of open, high, low, and close prices, and trading volume.

6 Customizing Graphs

Topics covered in this section:

1. Themes (Tutorials)
2. Color (Tutorials)
3. Layers (Tutorials)
4. Tick Labels (Tutorials)
5. Customizing a Graph
6. Add remove or reorder data plots

6.1 Customizing a Graph

6.1.1 Summary

Editing your Origin graph is very easy. Any graph element can be selected and with its associated dialog, the properties can be modified. In fact, you can customize your graph right down to a single data point.

This tutorial will show you how to:

- Resize a Layer
- Add a Layer Title
- Customize and Save a Template
- Customize Axes
- Apply a Graph Theme
- Change Plotting Order in a Layer
- Customize a Point
- Customize a Grouped Plot
- Create a Color-mapped Waterfall Plot

6.1.2 Resize Layer

1. Open Customizing Graphs.OPJ from the \Samples \backslash Graphing folder and select the Resize Graph and Customize Symbol folder from the Project Explorer window.
2. Make Graph2 active and right-click inside the layer, above the data points to select Add/ Modify Layer Title from the context menu that opens. Add a title, as the following graph shows.

3. The layer can easily be resized graphically by dragging the sizing handles. To resize it, single click inside the layer, but not on a data point. You can left-click in the same space you right-clicked when adding the Layer Title. The layer will become selected as seen below, and then you can drag one of the 8 anchor points to resize the layer. Note: If you hold the Ctrl key down while
dragging, the aspect ratio will be maintained.

4. You can also use the Plot Details dialog to input the size of the layer, in order to resize it precisely. Double-click inside the layer (in the same spot you left-clicked above) to open the Plot Details dialog. Go to the Size/ Speed tab, and set the layer area to the values shown in the image below:

6.1.3 Customize Data Plot and Axes

In this section, we will show you how to change the color of a data plot, and how to change the properties of the axes.

1. Click on one of the data points of Graph2 to select the entire data plot, and then change the
color of the data points to red by using the Line/ Border Color button in the Style toolbar.
2. Next we will use the Axis dialog to customize the axes. Double-click on the X-axis to open the dialog and set the controls as follows:
o On the Scale tab, choose the \# Major Ticks radio button and input $\mathbf{5}$ into it. Then select Vertical from the Selection list box. The name of the dialog changes to \mathbf{Y} Axis
when you do this. Input 0,16 and $\mathbf{1 1}$ into the From,To and \# Major Ticks edit boxes, respectively
o On the Title\&Format tab, select Top from the Selection list and check the Show Axis\&Ticks check box to add the top X-axis. Then select Right from the Selection list and again check the Show Axis\&Ticks check box to add the right Y -axis. Now the graph should look like:

6.1.4 Save and Reuse a Template

In this section, we will show you how to save the graph above as a template and reuse it.

1. In the menu, select File: Save Template As (alternatively, right-click on the graph window title and choose Save Template As from the context menu) and rename the template as

MyGraphTemplate. Then click the OK button to save it.

2. Create a new workbook and import the data file \Samples \backslash Curve Fitting \backslash Sensor2.dat, by using File: Import: Single ASCII. Highlight column B and select Plot: Template Library. Then select MyGraphTemplate and click the Plot button to create a graph.
\pm Specialized
\pm 3D Surface
\rightarrow 3D Wires \& Bars
\pm Image
\square UserDefined

The graph should look like:

6.1.5 Changing graph using theme

Origin stores the properties of a graph in a theme file. In this section we will show you how to customize a graph by using a theme.

1. With Graph3 active, select Tools: Theme Organizer to open a dialog. Apply the themes Ticks All In and Times New Roman Font. Then click the Close button to close the dialog. The graph
should look like:

2. Then we will copy the formatting of the current graph and paste it to Graph2. Right-click to the right of the layer, anywhere on an empty white space, or even on the gray area, and select Copy Format: All Style Formats. Then activate Graph2, right-click in a similar spot and select Paste
Format. Then Graph2 should look like the image below:

6.1.6 Plotting Order

In this section, we will show you how to change the plotting order by using the Plot Setup dialog.

1. Go to the Plotting Order folder and activate Graph 1. Select Graph: Plot Setup from the main menu to open the Plot Setup dialog. (Alternatively, Right-click on the layer 1 and select Plot Setup, which also will open the Plot Setup dialog.)
2. In the Plot List panel, drag the line plot and drop it beneath Column/Bar Plot Type.

3. Click the OK button and you will see that the red curve is now drawn on top. Notice the legend reflects the new plotting order as well.

6.1.7 Customize points

In this section, we will show you how to customize a single data point.

1. Continue viewing the contents of the Plotting Order folder and make sure Graph $\mathbf{1}$ is active. Click to select one of the columns and all columns become selected. Click again on one of the columns to select just that one column. Then change the color to green by using the Fill Color button \square a)
2. You can also use the Plot Details dialog to customize a single column. Hold down the Ctrl key while double-clicking on one of the columns to open the Plot Details dialog. You'll be editing the properties of just that single data point. Notice the index number for that point in the Plot Details dialog. Set the Gradient Fill group as follows to change the column color from yellow to red, gradually.

Then the graph should look like:

3. You can customize a slice of a pie graph in the same way. Go to the Edit Single Data Point folder and activate the pie graph. Hold down the Ctrl key and double-click on one of the slices to open the Plot Details dialog. Under the Pattern tab, set the Fill Pattern to Dense, from the drop-down list, and set the Pattern Color to Red. (Alternatively, you could have clicked once and then clicked again on a slice to select just that one point, and then used the Style toolbar to
customize that point.) The graph should look like:

4. You can customize a single data point and add an annotation to it. Go back to the Resize Graph and Customize Symbol folder. Hold down the Ctrl key and double-click on one of the scatter points to open the Plot Details dialog. Under the Symbol tab, click the triangular Preview button to open the symbol gallery, and then select Sphere for the symbol. Increase the Size to 18, and click the Ok button to close the dialog.
5. Now you can use the annotation tool to add the X and Y values that correspond to your customized data point. Select the Annotation button from the Tools toolbar.

Then move the annotation cursor to your customized data point and double-click on it. Origin will automatically add a text object. Hit the ESC key or click on the Pointer button to stop annotating. You can customize the text label by double-clicking on it to enter Edit mode. You can also change its position by clicking and dragging - a line will automatically be drawn connecting the point and
the label．

＜compat＞⿴囗大＜compat＞ᄋ Graph 2

1
\square Sensor Output

6．1．8 Group plots

In this section，we will show you how to customize a grouped data plot．

1．Select the Grouped Data folder．Book will be active．Highlight the entire worksheet and click the line button \square n the 2D Graphs toolbar to create a line graph．
2．Double－click on the X－axis to open the Axis dialog．Input $\mathbf{0 . 5}$ into the From edit box and $\mathbf{3 . 0}$ into the To edit box．Select Manual from the Rescale drop－down list（you will need to scroll up in the list）．This prevents the From and To values from changing while rescaling．Click OK to apply these settings．

3．Double－click somewhere inside the layer，on a blank place above the line plots，to open the Plot Details dialog．On the Stack tab，select Auto in the Offset group．Click OK to close the dialog．
4．Select Graph：Rescale to Show AII．The Y scale of the graph automatically rescales，while the X scale doesn＇t change because the option was set to manual．Resize the layer and move the
legend as you see fit.

5. Click on one of the data plots to select the entire group, and then use the Line/ Border Color button on the Style toolbar to change the colors. In Incr. List, you can select the second-to-last increment list $\boldsymbol{\|}$. The graph should look like:

6. Though these data plots have been grouped, you can also customize each of them individually by clicking on the data plot twice. For example, you can click the yellow data plot twice (click once, pause and click again) and then click the Line/ Border Color button on the Style toolbar to change the color to another color, such as Olive.
7. You can also customize the graph by double-clicking on one of the data plots to open the Plot

Details dialog. Under the Group tab, you can click the browser button

| | Increment | Details | |
| :--- | :--- | :--- | :--- |
| Line Color | By One | | |
| Line Style | None | | |

to open the Increment Editor dialog. In this dialog, customize the graph as shown in the following image. Please note that you can also drag the index of a row and move it to change the order of the color list.

The graph should look like:

8. Right-click on the inner position of this dialog and select Save Increment List to save it as MyPalette for future use. Then you can right-click to get the context menu and select the Load I ncrement List option. You will find that MyPalette appears as the first entry in the fly-out menu, as the following image shows.

| MyPallete.oth |
| :--- |
| Color List Basic.OTH |
| Color List Black and RGB.OTH |
| Color List Blue-Greens.OTH |
| Color List Default.OTH |
| Color List Gray Scale.OTH |
| Color List Rainbow.OTH |
| Color List RGB.OTH |
| Color List WindRose.oth |
| Dark Colors Light Grids.oth |

In the following section, we will show you how to use Palettes to set colors for a group of data plots.

1. Activate Book3 and highlight all the columns. Select Plot: Multi-Curve: Waterfall to create a graph. Double-click on the X-axis to open the Axis dialog, and set From as $\mathbf{0 . 5}$ and $\mathbf{T o}$ as $\mathbf{3}$. Select Vertical from the Selection list, and set the From, To, and Increment edit boxes to -

10, $\mathbf{1 0 0}$ and $\mathbf{2 0}$, respectively.

2. Click on one of the data plots and then use the Line/ Border Color button on the Style toolbar to change the colors. You can select the Rainbow palette \square under Palettes. The graph should look like:

3. You can double-click on one of the plots to get the color list, as the following image shows:

You can find that the Increment has been set to Binned, so colors are picked from the 256 available in the Rainbow palette.
4. We will change the palette to Reef by clicking on the Browser button to open the Increment Editor dialog. Then right-click on the inner position of this dialog and select Load: Reef.PAL.
The color list in the Plot Details dialog should be:

| | Increment | Details | | | | | | |
|---|---|---|---|---|---|---|---|---|
| Line Color | Binned | |
| Fill Area Color | None | \||||||| |
| Line Style | None | |

And the graph should look like:

6.1.9 Plot a Color-mapped Waterfall

In this section, we will show you how to create a color-mapped waterfall and use the desired column label row as the Z-axis.

1. Click the New Workbook button 㖆 on the Standard toolbar to create a new workbook.
 dialog. Click the browser button to the right of File and select Waterfall3.dat from the /Samples/Graphing folder. Make sure Waterfall3. oif is picked up automatically for I mport Filters for current Data Type.

Click Finish to import the Waterfall3.dat file.

| \#Waterfall3 - Waterfall3.dat | | | | $\square \square$ | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $\mathrm{A}(\times)$ | BM) | c10 | C 2 M | 人 |
| Long Name | Time | Ampltiude | | | |
| Units | sec | (a.u.) | | | |
| Comments | | | | | |
| Frequency (Hz) | -- | 3.91 | 11.72 | 19.53 | |
| 1 | 0 | 0.766 | 0.697 | 0.406 | |
| 2 | 0.012 | 0.413 | 0.097 | 0.03 | |
| 3 | 0.025 | 0.14 | -0.34 | -0.26 | |
| 4 | 0.037 | -0.059 | -0.628 | -0.465 | |
| 5 | 0.05 | -0.191 | -0.784 | -0.588 | |
| 6 | 0.062 | -0.264 | -0.823 | -0.632 | |
| 7 | 0.075 | -0.284 | -0.76 | -0.6 | |
| 8 | 0.087 | -0.257 | -0.61 | -0.493 | |
| 9 | 0.099 | -0.191 | -0.39 | -0.315 | v |
| (1) Waterfall3 | | | $1 \mid<$ | | |

3. To plot a waterfall color-mapped using each line's Y value, highlight the whole worksheet and select Waterfall Y: Color Mapping from the 2D Graphs toolbar (Alternatively, Select Plot: Multi-Curve: Waterfall Y:Color Mapping from the main menu).

The graph should look like the picture below:

4. Double-click on the waterfall plot to open the Plot Details dialog. Go to the Color Map tab. On this tab, you can:
o Click on the Level column header to change the color levels

o Click on the Fill column header to load a color palette or change the filled color list:

Please note that you can also click inside one single cell to change that level individually.
5. To plot a waterfall color-mapped with Z values, highlight the waterfall worksheet in Book $\mathbf{2}$ and select Waterfall Z: Color Mapping from the 2D Graphs toolbar (Alternatively, Select Plot:
Multi-Curve: Waterfall Z:Color Mapping from the main menu).

The graph should look like the picture below:

1

6. Note that the user-defined parameter "Frequency (Hz) " is used as the Z axis automatically. To use another column label as the Z axis, Short Name for example, double-click inside the layer and away from the waterfall lines to open the Plot Details dialog at the Layer level. Go to the

Waterfall tab, and select Auto from the Z Value Source drop-down list.

7. To switch between Y and Z color mapping, select the first plot on the left panel of the Plot Details dialog and activate the Line tab. Select \mathbf{Y}-value: Color Mapping from the Color dropdown list, to switch to Y color mapping. You can also select Z-Value: I ndexing or Z-Value: Direct RGB from this drop-down list.

6.2 Themes

- Copy and Apply a Plot Format to Another Plot

6.2.1 Copy and Apply a Plot Format to Another Plot

Summary

It is possible to copy and paste formatting from one plot to another, so there is no need to spend time recreating identical customizations such as size and color of symbols and lines.

Minimum Origin Version Required: Origin 8.0 SR6
What you will learn

This tutorial will show you how to:

- Copy a plot format (color, size, etc. of the symbol or the line), and apply it to other plot.

Steps

1. Click the New Project button on the Standard toolbar to begin with a new project.
2. Select File: Import: Single ASCII menu, and import exponential decay.dat in the \backslash Samples \backslash Curve Fitting subfolder in your Origin program directory.
3. Highlight column B, C and D, and select Plot: Line+Symbol: Line+Symbol" menu to plot these three datasets.
4. Double-click on the plot to show the Plot Details dialog box.
5. Choose Group tab in the dialog, and select Independent for the Edit Mode -- this makes it easier to customize individual plots.
6. Make sure that the top data plot (Time(X) Decay $1(Y)$) is selected in the left panel of the Plot Details dialog. If not, select this plot branch in the left panel.
7. Select the Symbol tab, and change the Size to "5". (You can also change the shape or the color to others of your choice.)
8. Select the Line tab, and change the width to "0.2". (You can also change the style or the color to others of your choice.) Click OK. You will see that the Decay 1 plot has been customized.
9. Click on Decay 1 plots to select. Right-click on it and select Copy format: ALL. This will copy the plot format of Decay 1 to the clipboard.
10. On the graph, click on the Decay 2 data plot to select it, right-click and select Paste Format. You will see the plot format of Decay 1 copied to Decay 2.

6.3 Color

6.3.1 Plotting Overlapping Data and Setting Transparency

Summary

In this tutorial, we will show you how to create overlapping column plots, and then set transparency to make the overlapping parts visible.

This tutorial will show you how to:

- Customize the grouped column plots
- Set Transparency

Plot Overlapping Data and Set Transparency

1. Start with a an empty worksheet and from the menu, select File: Import: Single ASCII or click the I mport Single ASCII button $\stackrel{\text { 127 }}{\text { 雷 }}{ }^{\text {to }}$ open the file browser.
2. Choose the file <Origin Installation Directory>\Samples\Graphing\Counts.dat, check the Show Options Dialog check box, and click the Open button to bring up the impASC dialog.
3. Click the triangle button in the upper right corner, and then select System Default from the context menu to apply the default settings to this dialog.

4. Click the OK button to import the data to the worksheet.
5. Right-click on the row header of Units, and then select Set As Comment from the pop-up menu to set the contents to be comments instead of units.

| 吿 Counts - Counts. dat | | | | $\square \square \times$ | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $A(x)$ | B(\%) | CO | $\mathrm{D}(1)$ | \wedge |
| Long Name | Bin Center | Counts | Counts | Counts | |
| U ${ }^{-}$ | | | Group 2 | Group 3 | |
| comme | Insert | | | | |
| Sparkli | Delete | | \triangle | | |
| | Clear | | - | - | |
| | | | 0 | 0 | |
| | Rename... | | 0 | 0 | |
| | Edit... | | 0 | 0 | |
| | | | 0 | 1 | |
| | Set As Long N | | 0 | 1 | |
| | Set As Units | | 0 | 1 | |
| | | | 0 | 2 | |
| | Set As Commen | N | 0 | 3 | |
| | Append To Co | ment | 0 | 4 | |
| | Append To Lo | Name | 0 | 5 | \checkmark |
| 1 | Set As Parame | | $1 \leqslant$ | IIII $>$ | \% |

6. Highlight all columns in the worksheet, and then from the menu, select Plot: Column/ Bar/ Pie:

Column to create a column graph.

7. Double-click on the plot to open the Plot Details dialog. In the dialog, choose the Group tab.

Click on the color bar under Details and click in the Fill Color row. Then click on the button that appears to open the I ncrement Editor dialog. In this dialog, you can set the first three colors to
be some specific colors such as Royal Blue, Orange, and Dark Cyan. Click OK to close the dialog.

8. Select the Pattern tab in Plot Details, and set the Transparency control to 50%.

9. Select the Spacing tab, and set Gas Between Bars to zero and Overlap to 100.

10. Click the OK button to close the Plot Details dialog. The resulting graph should look like the image below:

6.4 Add remove or reorder data plots

6.4.1 Summary

There are multiple ways to add/remove a data plot in your Origin graph. You can simply drag a set of worksheet data and drop it into a graph window to add it to the active layer. And you can also add data plots by using the Layer Content dialog or the Plot Setup dialog. The Layer Content dialog provides you with further options to reorder data plots and group/ungroup data plots.

This tutorial will show you how to:

- Add data plot to an existing graph by drag-and-drop.
- Add data plot by using the Layer Content dialog.
- Group and ungroup data plots.
- Reorder data plots.

6.4.2 Add data plot to an active graph by drag-and-drop

1. Start with a new project and click the Import Multiple ASCII button toolbar.
2. Select the files S15-125-03.dat, S21-235-07.dat and S32-014-04.dat from \Samples\Import and Export\ and add them to the lower panel of the dialog. Make sure the Show Options Dialog box is checked and click OK. This will open a dialog for import settings.

3. Change Import Mode to Start New Sheets. Expand the (Re) Naming Worksheet and Workbook node. Check the Rename Sheet with (Partial) Filename check box and uncheck the Rename Book with (Partial) Filename so that only the sheet gets renamed.

Keep the rest of the settings unchanged and click OK button to import these three files.

| \#\# Book1 | | | | $\square \times$ | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $A(x)$ | $\mathrm{B}(9)$ | CO | D(0) | \wedge |
| Long Name | Time | Delta Temperature | Magnetic Field | Position | |
| Units | (sec) | (K) | (Oe) | (mm) | |
| Comments | | | | | |
| Sparklines | | | | | |
| 1 | 0.01 | 40.3 | 110.6 | 100.3 | |
| 2 | 0.02 | 40.1 | 111.3 | 100.7 | |
| 3 | 0.03 | 40.8 | 111.9 | 100.1 | |
| 4 | 0.04 | 39.6 | 112.5 | 100.6 | |
| 5 | 0.05 | 40.5 | 113.1 | 101.7 | |
| 6 | 0.06 | 39.7 | 113.7 | 101.3 | |
| 7 | 0.07 | 39.5 | 114.3 | 100.4 | |
| 8 | 0.08 | 39.1 | 114.8 | 101.1 | |
| 9 | 0.09 | 39.3 | 115.4 | 101 | |
| 10 | 0.1 | 39.9 | 115.9 | 101.6 | \checkmark |
|
 4 \checkmark S15-1 | -03 ${ }^{\text {(} 521}$ | -235-07 λ 人 $32-014-$ | 4 $\left.\right\|^{115 \mathrm{~L}}$ | 1095 | . |

4. Activate Sheet S15-125-03. Highlight Column D. Select Plot: Line: Line to create a line plot.

5. Go to Book1. Activate Sheet S21-235-07. Select Column D. Move the mouse to the edge of

Column D carefully until the mouse turns to
 Hold down the left mouse button to drag Column D to Graph1 window.

6. A Reminder Message dialog box will appear asking you whether or not to rescale the axes. Select Yes, and do the same in the future, no need to ask again and click OK. The second line plot is added to the graph.

7. Click the New Legend button $\stackrel{-\pi}{\square-\mathrm{Ca}}$ on the Graph toolbar to rebuild the graph legend.

The following steps will show you how to specify the plot type when adding a plot to an existing graph by this drag-and-drop method.
8. Select Tools: Options dialog to open the Options dialog.
9. Go to the Graph tab. In the middle of this dialog, you will see the Drag and drop plot option. This option allows you to specify the plot type, while adding a dataset to an existing graph by drag-drop. The default setting is Current, which means the plot type depends on the current plot's type in the existing graph. Change Drag and drop plot to Scatter.

Click OK to close the dialog.
10. Go back to Book1. Activate sheet S32-014-04. Highlight Column D. Drag and drop it to Graph1 window. This time the dataset is added as a Scatter plot.

6.4.3 Add data plot to an active graph by drag-and-drop

Continue using data in section 1.

1. Click the New Graph button on the Standard toolbar. This will create a new graph window without data.
2. Double-click on the Layer 1 icon on the top left corner of the graph window. This will open the Layer Content dialog.
3. On the left panel of the Layer Content dialog, all the available datasets are listed. You can customize to show the information of datasets. Because all of our data comes from Bookl, we do not need to show the Book name. Right-click on the Book column header, uncheck Book Short Name from the context menu. This will hide the book name.

4. To add Column B, Delta Temperature, in three sheets, press Ctrl key on the keyboard and select Column B in worksheet S32-014-04, S21-235-07, and S15-125-03, respectively. Click the \square button to add them to the right panel.

The $\mathbf{A}_{\text {b }}$ button shows the plot type of these three datasets. A means auto, which is Line by default. If you want to change the plot type, please press the triangle button next to \mathbf{A} and select a desired plot type before you click the
 button to add them to the right panel.
5. The first column on the right panel shows that the added curves are grouped by default. They are marked as group1 (g1). The color of curves in the group will change increasingly. If you want to ungroup them, click the Ungroup button.
6. Check the Rescale on Apply check box. Click OK button to add curves to Graph 2.

Because all three curves come from three different sheets, we can use the sheet name to distinguish them.
7. Select Graph: Update Legend from menu. This will open the legendupdate dialog.
8. Make sure Update has been selected for Update Mode. Select Custom for Auto Legend Translation Mode. Type "@WS" in the Legend Custom Format edit box. This means worksheet name will be used for legend.

| Graph Manipulation: legendupdate |
| :--- |
| Dialog Theme <Last used
 Description Update or reconstruct legend on the graph page/layer
 Update Mode Update
 Auto Legend Translation Mode Custom
 Legend Custom Format[@D.@LU etc] @W/S
 Apply OK |

Click OK button to apply.

6.4.4 Reorder data plots

1. Open Customizing Graphs.OPJ from the \Samples\Graphing folder and select the Plotting Order folder from the Project Explorer window.
2. Activate Graph 1 window. Double-click on the Layer 1 icon on the top left corner of the graph to open the Layer Content dialog.

3. Click the >> button to fold the left panel. On the right panel, select the Gauss Fit line plot. Click the down button to move it down.

| \square Layer Contents - Layer1 X | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Group | | Ungrou | \uparrow Rescale on Apply | | | | |
| Short Name | | | Long Name | | Legend Plot Type | | |
| | BY | | Gauss Fit Count | | Gauss Fi Line | | |
| Counts(Y) Count | | | | | Frequenc Column / Bar | | |
| < | Laye | er Propert | | Plot Setup... | Apply | OK | Cancel |

4. Click the Apply button. The Gauss Fit line plot is now on top of the column plot. Click Close button to close the dialog.

6.5 Layers

- Adding and Arranging Layers
- Merging and Arranging Graphs

6.5.1 Adding and Arranging Layers

Summary

A typical graph page generally includes three elements：a set of X, Y（and Z ）coordinate axes，one or more data plots，and associated text and graphic labels．Origin combines these three elements into a movable，resizeable unit called a layer．While a page can contain as many as 121 layers，only one layer can be active at any one time．

What you will learn

－How to tell how many layers a graph has？
－How to tell what data is in what layer？
－How to swap layers

Steps

Importing data

1．Click the Import Single ASCII button，$\stackrel{\substack{197 \\ \hline ⿻ 二 ⿰ 丿 丨 ⿻ 二 ⿰ 丿 丨 乚 ㇒}}{ }$ ，on the Standard toolbar．The ASCII dialog opens．
2．In the Origin folder，browse to the Samples folder and then the Graphing folder．Select Wind．dat from the list of files．

3．Click Open．The data file imports into the worksheet．

Plotting the data

1．Highlight the Speed and Power columns．
2．Click the Line button，on the 2D Graphs toolbar．A line plot is created．It appears that this data would be better plotted on a double－ Y graph，a graph with two controlling Y axes．

3．Click the X to Close this window．You will be asked if you want to hide or delete the window．
Click the Hide button．（If you Delete，you will not be able to Undo，and you will need to re－create the graph．Hiding closes the window from view，but you can later make it visible using the Project Explorer window．）

4．The Speed and Power columns should still be highlighted．Click the Double－Y Axis button， \qquad on the 2D Graphs toolbar．This new graph contains 2 layers．

How to tell what data is plotted in a layer？

One way is with the legend：

1．Double－click on Graph1 from the Project Explorer window．The graph opens and becomes the active child window．

2．Select Format：Page and go to the Legends／Titles tab．
3．Set the Auto Legend Translation Mode to Data Range．
4．Click OK．

A second way is with the status bar：

1. Double-click on Graph2 from the Project Explorer window. Graph2 is now in front and becomes the active child window.
2. Click the Layer 1 icon, $\mathbf{1}$ to make layer 1 active.
3. Look in the lower right of Origin's status bar and you'll see [WIND]WIND!Col(Speed)[1:12].
4. Repeat for Layer 2 and you'll see [WIND]WIND!Col(Power)[1:12].

A third way is from the menu:

1. Make Graph2 active.
2. Right-click on the Layer 1 icon. At the bottom of the context menu, you see the data plot list. The one checked is the active data plot.
3. Right-click on Layer 2 to view the list of data that is plotted in it.
4. Note that you can also select the Data menu to view the data plot list.

A fourth way is with the Plot Setup dialog.

1. With Graph2 still active, Right-click on the layer 1 icon to select Plot Setup.
2. In the opened Plot Setup dialog, expand the Plot List to see also the data in Layer 2. You can see the advantage here is that you can see data in all layers at once.
3. Uncheck the Show check box for the Speed data plot
4. Click OK. This data plot is only hidden which is why the legend still indicates its presence in the layer.

The last way is from the Plot Details dialog.

1. Double-click on any of the line+symbol plots in Graph2.
2. Expand the tree so you see contents of both Layer1 and Layer2.
3. Uncheck the Speed and Power data plots.
4. Click OK.

6.5.2 Merging and Arranging Graphs

Summary

The Merge Graph Windows dialog allows you to select which graphs you wish to combine, choosing from any graph in the project. It also has controls to specify how you want the individual graphs arranged on the new page.

The Object Edit toolbar allows you to quickly align and size multiple layers.
The Layer Management dialog lets you add, arrange and link layers on a single graph page.
This tutorial will show you how to:

- Merge multiple graphs into one graph
- Resize and align layers quickly
- Add a second axis using a nonlinear relationship with the primary axis
- Use Layer Management for more complex layer positioning and linking

Creating a Merged Graph from Multiple Graphs

1. Import the two files sensor01.dat and sensor02.dat from \Samples\Curve Fitting , as separate sheets in separate books, using the file names as the sheet names. (Please read the Importing Data tutorial for how to import files.)
2. Select the Y column of one sheet and create a line plot. Repeat with the Y column of the other sheet and create a second line plot. You will have two separate graph windows at this point.

3. Now, to merge the two graphs into one page, bring up the merge graphs dialog from Graph: Merge Graph Windows. In this dialog, the default setting for merging graphs is All in Active

Folder (Open), so the two graph windows are already listed in the Graphs box.

4. Specify the following settings to merge the two graphs: 1), Uncheck Keep Source Graphs. This will remove source graphs after merging. 2) Arrange the layers as one column and two rows. 3) Check Show Axes Frame. In this example, the two layers share the same X axis range, so we can hide the overlapped X axis. 4) Set the Vertical Gap to 0 for the two layers. 5) Change page
orientation to Portrait. Then the source plots will be added as layers in the new graph page.

Keep Source Graphs
 Rearrange Layout

\square Arrange Settings
Number of Rows
Number of Columns

Add Extra Layer[s] for Grid
Γ
Keep Layer Aspect Ratio
Link Lavers
Show Axes Frame
Γ

Overlapping axes/ticks are hidden
\square Spacing (in \% of Page Dimension)
Horizontal Gap
Vertical Gap
Left Margin
Right Margin
Top Margin
Bottom Margin

| $\sqrt{5}$ |
| :---: |
| $\sqrt{15}$ |
| 10
 10
 15 |Page Setup

Orientation

5. Click OK to close the dialog, and a new merged graph page is created:

6. Double-click the top X-axis and add tick labels as below:

7. The two graph legends are the same in the output page. For the graph legend, Origin uses the worksheet column's Comments label row, or if that's empty it will use the Long Name if there is one, and if not, the Column name. To modify the legends, select Graph: Update Legend from the menu to open the legend update dialog. You will change the legends for the Whole Page, and Reconstruct them. Select Custom from Auto Legend Translation Mode and enter @ws in the Legend Custom Format edit box. Here, @ws means Origin will use the worksheet name as the graph legend.

Aligning Layers using the Object Edit Toolbar

1. Select File:Open and open the OPJ \Samples\Graphing\Layer Management.opj and go to the subfolder Arranging Layers. (If you don't see the subfolders, click View: Project Explorer to open the Origin Project Explorer window.)
2. Now we want to use the Object Edit tools to rearrange the graph. Make sure you already opened this toolbar, or you can open it from the View: Toolbars dialog.

3. On the graph, hold the Shift key down and click on all four layers to select them as a group.
 toolbar to make them the same height and width.
4. Click and select the bottom two layers and click the Bottom button in the Object Edit toolbar to align them. Do the same thing for the top two layers, then click the Top button to align them.
5. Now click and select the top and bottom on the left column, and do Left align $\stackrel{\square}{\square}$, then repeat for the other two in the right side column by Right align 명 $\left.\right|_{\text {button. }}$

The object edit toolbar provides a quick way to align and set the size of layers. The first layer you select is the reference layer and all others will adjust according to that one. The Layer Management tool provides many more options, such as reordering and linking layers, in addition to setting size and alignment.
6. Do not save changes to your project, as the same project is used later to demonstrate Layer Management.

Displaying Opposite Axes with a Nonlinear Formula

An Origin 2D graph layer is a set of X, Y axes, and opposite axes can be turned on for both X and Y. In addition, the opposite axes can also display labels using any user-specified nonlinear formula with respect to the primary axis.

1. Using the Project Explorer window, switch to the subfolder named Nonlinear Axis.
2. With the graph active, bring up the Layer Management tool by selecting Graph: Layer Management.
3. Switch to the Axes tab and expand the Top branch and check the Axis, Title, and Tick Label check boxes.
4. We want to display the labels on the top axis in units of Energy and the relationship between wavelength and energy is:

Energy (eV) = 1240/Wavelength (nm)

So in the Formula box, enter: 1240/x and click Apply, then click OK to close the dialog.

5. Double-click and edit the top X -axis title and change it to: Energy (eV)
6. Double-click the top axis labels or axis, to open the X-Axis dialog. Switch to the Custom Tick Labels tab, and then click Hide radio for At Axis Begin, to hide the missing value label for energy
that corresponds to zero wavelength.

If you are setting up a nonlinear relationship for the right Y -axis, in the Formula you still need to use \mathbf{x} instead of \mathbf{y}.

Using Layer Management to Link and Position Layers

The Layer Management tool can be used to position, resize, swap, and link layers in order to establish the desired relationship between layers, as demonstrated in the following steps:

1. Reopen the project \Samples \backslash Graphing Layer Management.opj and then switch to the subfolder named Arranging Layers. You can reopen the project by selecting File: Recent Projects: Layer Management.opj. Do not save changes to the project.
2. Bring up the Layer Management tool from Graph: Layer Management. Then go to left panel and rename the layers so that they are, top to bottom: Peak 3, Peak 2, Peak 4, Peak 1. The layer names now correspond to the legend for each layer. Note: to rename a layer, double-click on the
name, as the hint text in the dialog says.

| Layer Management | | | |
| :---: | :---: | :---: | :---: |
| Layer Selection | | Add | Arrange |
| | Name | \square Arrange | |
| 1 | Peak 3 | | |
| 2 | Peak 2 | | range Se |
| 3 | Peak 4 | | Link Layers |
| 4 | Peak 1 | | Hide Overl |

3. Now drag and arrange the list on the left so that they are ordered Peak 1, Peak 2, Peak 3, Peak 4. The layer number and names now match.

| - Layer Management | | |
| :---: | :---: | :---: |
| Layer Selection | Add | Arrange |
| Name | \square Arrange | |
| 1 Peak 1 | | |
| 2 Peak 3 | | Arrange Se |
| 3 Peak 4 | | Link Layers |
| , Peak 2 | | Hide Overla |
| | | Column |
| and drag | | Row |

4. Now switch to the Arrange tab and do the following steps: 1) Uncheck the Link Layers check box. 2) Check Show Axes Frame. 3) Leave the Number of Columns and Number of Rows edit boxes as 2 by 2. 4) Set Horizontal Gap and Vertical Gap to 0.

Click Apply. This resizes and repositions the layers so they are aligned, and hides ticks and labels where layers overlap.
5. Now go to the Axes tab, hold down the Ctrl key and select Peak 1 and 3 on left list, then expand the Left branch and set tick direction to In, and click Apply.

6. Now select Peaks 3 and 4, set the Bottom tick direction to In and click Apply. Then select Peaks 1 and 2, set the Top ticks to In and click Apply.
7. Now go to the Link tab and select Peaks 2, 3, and 4 in the left list and link them to layer 1, making sure you have the X-Axes linked Straight(1 to 1), and click Apply.

Then click OK to close the dialog.
8. Click and select the top left layer, layer 1, then drag and resize the layer and move the layer. Note that the other layers resize and move too, since they are linked by dimension to layer 1.

9. Go to the top left layer (layer 1), and double-click the top X-axis. In the X-Axis dialog, change the X-Axis scale From 10 To 35, and click OK. You'll see that all the other layers now show the same new x range, as they are all linked in X.

When arranging linked layers, they are treated as one unit, so you should first unlink them if you need to rearrange and then you can link them again after arranging.

6.6 Tick Labels

Topics covered in this section:

1. User-Defined Arbitrary Tick Positions
2. Plot and Customize Date Time Data on Graph

6.6.1 User-Defined Arbitrary Tick Positions

Summary

This graph will show you how to specify tick locations using a dataset and show customized tick labels at those locations.

Minimum Origin Version Required: Origin 8.5.1 SRO

What you will learn

- How to specify the tick location using dataset
- How to show the customized tick labels

Steps

Copy the sample data, and paste it into Origin. Set the first row as Long Name and the second row as Units.

1. Highlight columns A and B. In the main menu, click Plot, then point to Line + Symbol, and then click Line + Symbol. Alternatively, you can simply click the Line + Symbol button on the 2D Graphs toolbar.
2. Double-click the graph to open the Plot Details dialog. On the Symbol tab, change the symbol to a solid circle, and the color to Olive. On the Line tab, change the line color to Olive and click OK to close the dialog and apply the changes.

3. Double-click the X axis to open the Axis dialog. On the Scale tab, enter these settings for the X and Y axes:

4. On the Title \& Format tab, set Major Ticks and Minor Ticks to In for both Bottom and Left axes. Check Show Axis \& Ticks for both Top and Right axis, and set Major Ticks and Minor Ticks to In.

5. On the Tick Labels tab, select Top in the Selection box. Select Tick-indexed dataset from the Type menu and column D from the Dataset menu.

6. On the Custom Tick Labels tab, set Rotation(degree) to 90 for both Bottom and Top axes.

7. On the Grid Lines tab, activate Major Grids for both Vertical and Horizontal.

8. Click OK to close the dialog. Remove the legend from the graph. Your final graph should look like this:

Sample Data

| Temperature
 ${ }^{\circ} \mathbf{K}$ | volts | | Custom Label |
| :--- | :--- | :--- | :--- |
| 2.5 | 1.5 | 4.2 | He Boiling Point |
| 2.5 | 1.5 | 4.2 | He Boiling Point |
| 7.3 | 1.42048 | 77.36 | N Boiling Point |
| 13 | 1.28681 | 233.15 | $-40^{\circ} \mathrm{C} /-40^{\circ} \mathrm{F}$ |
| 24 | 1.06011 | 273.15 | $0^{\circ} \mathrm{C}$ |
| 41 | 0.90549 | 373.15 | $\mathrm{H}_{2} \mathrm{O}$ Boiling Point |
| 70 | 0.85831 | | |
| 125 | 0.7679 | | |
| 181 | 0.63948 | | |
| 246 | 0.53202 | | |
| 288 | 0.40753 | | |
| 348 | 0.24898 | | |
| 399 | 0.13759 | | |
| 436 | 0.09435 | | |

6.6.2 Plot and Customize Date Time Data on Graph

Summary

This tutorial will show you how to manipulate the date and time data, and customize the date and time data on the graph.

Minimum Origin Version Required: Origin 8.0 SR6

What you will learn

- How to plot the date and time data on the graph.
- How to customize the date and time tick labels.

Steps

1. Start with a new project and import the data file Sample\Import and Export\Custom Date and Time.dat under Origin's program folder.
2. Double-click on $A(X)$ to open the Column Properties dialog; set Format as Date, Display as Custom Display, and input dd'.'MM'.'yyyy hh': 'mm':'ss'.'\#\# in the Custom Display box as shown below.

3. Click OK button to go back to the worksheet. Highlight col(B) and select Plot: Line: Line from the main menu to plot it as a line graph. You will see that the tick labels of X axis are all the same.

4. Double-click on the X axis (or select Format: Axes: X Axis from the main menu) to open the Axis dialog. In the Scale tab, change Increment to 30 min and Minor Ticks to 2. Click the Apply button, you will see that the tick labels are still all the same and make no sense.

5. Go to the Tick Labels tab in the Axis dialog, change Type to Time and select Display to hh:mm as shown below.

6. Click OK button, you will see that tick labels now show as the corresponding time.

7 I mporting Data

Topics covered in this section:
 1. ASCII (Tutorials)
 2. Importing Data

7.1 ASCII

- Single ASCII
- Import Wizard
- Import Time Data
- Post Processing with Import Filter

7.1.1 Single ASCII

Summary

The File: Import: Single ASCII menu allows you to automatically import a single ASCII file where the data columns are delimited orderly and it consists of few header lines (maybe just a short description for the file and then names and units for the columns).

Minimum Origin Version Required: Origin 8.0 SR6
What you will learn

This tutorial will show you how to Import ASCII files.

Steps

Using Windows Explorer, browse to the \Samples\Import and Export subfolder of the Origin program folder (by default installed in the Program Files folder). Open the file S15-125-03.dat in Windows Notepad. You can see that this file includes header lines and data lines. For Single ASCII files, Origin can auto detect file header/subheader and extract this information to the worksheet headers, such as Long Name, Units, etc.

Note: Header lines are lines of text that are not part of the data and do not share the same delimiter formatting as the data. Subheader lines also are not part of the data, but share the same delimiter formatting and therefore correspond to particular columns of data.

To Import this file

1. Select File: Import: Single ASCII from the menu to open the File Import dialog. Browse to the \Samples\Import and Export subfolder of the Origin program folder. Highlight the file S15-12503.dat.
2. If you double-click this file or click the Open button, Origin will import the file automatically. To view the settings for how Origin will import the file, check the Show Options Dialog checkbox at the bottom of the dialog and then click Open. This will bring up the impASC X-Function dialog.

3. Expand the I mport Options: Header Lines tree node.

By default, Origin auto detects the subheader, and data will be imported from subheader. In this example, Origin automatically set the first line,

Time Delta Temperature Magnetic Field Position as the worksheet column Long Name and the second line,
(sec) (K) (Oe) (mm)
as Units.
4. Click OK to accept these settings and import data into worksheet.

| \#\#\#1512503-S15-125-03.dat | | | | $\square \square$ | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $\mathrm{A}(\mathrm{C})$ | $\mathrm{B}(1)$ | C(Y) | D(0) | \wedge |
| Long Name | Time | Delta Temperature | Magnetic Field | Position | |
| Units | (sec) | (K) | (0e) | (mm) | |
| Comments | | | | | |
| Sparklines | | | | | |
| 1 | | 40 | 60.6 | 101.7 | |
| 2 | | 40.5 | 61.3 | 100.9 | |
| 3 | | 40.2 | 61.9 | 100.3 | |
| 4 | | 40.1 | 62.5 | 100.8 | |
| 5 | | 40.2 | 63.1 | 100.8 | \checkmark |
| 4 S15-1 | -037 | . | - ®n) | III ${ }^{101}>$ | . |

7.1.2 I mport Wizard

Summary

The Import Wizard allows you to preview your ASCII file. This is especially helpful when you are importing a file with many lines of header, and want to extract variables from both the file name and file headers for use in annotating a graph.

Minimum Origin Version Required: Origin 8.0 SR6

What you will learn

This tutorial will show you how to use the I mport Wizard.

Steps

The Import Wizard allows you to import complicated ASCII files, extract variables from the import file name and header (for reuse in Origin), specify custom delimiters and date formats, or handle post-processing of your imported data using a custom LabTalk script. Another chief advantage of using the Wizard to import your data files is that you can save your custom settings to a filter that can be used repeatedly to import the same or similarly-structured files.

1. Create a new workbook. Click File, point to Import, and then click Import Wizard to open the Import Wizard dialog. Click the browser button \cdots to the right of the File box. Browse to the \Samples\Import and Export folder and open the file F1.dat. Click Next to navigate to File Name Options page.
2. Make sure the worksheet with file name box is checked to rename worksheet by imported file name. Click Next to navigate to Header Lines page.
3. This page enables you to easily customize the worksheet headers. For example, to specify the worksheet long name, place your cursor on the relevant line in the lower panel, and then click the button next to Long Names

Similarly, specify the Unit line and select <None> for Comments.
4. Click Next twice to go to the Data Columns page. Select XYYErrXYYErr from the Column Designations drop-down menu and click Apply.

5. Click Next twice to go to the Save Filters page. To use these settings again, you can save this import procedure as a filter. Select the Save filter check box and type a filter name in the Filter file name text box (MyFilter in this example).

Import Wizard - Save Filters

[? \times

Import Wizard settings can be saved to a filter file for re-use. Filter files can be selected on the first page of this wizard.
Once saved, import filters can also be used to automatically determine import settings when dragging and dropping data files into Origin and when opening data files with the File:Open menu item.
\checkmark Save filter

In the data file folder
C:CNV $\mathbf{c} 32 \backslash$ Samples \backslash Curve Fitting
© In the User Files folder

In the WindowShow Filter in File:Open List
Filter Description
An example to create filter

Filter file name (.OIF extension will be appended)
Specify data file names to which this filter will be associated. You can use wild cards, and can specify multiple names separated by ';'

$$
\text { Ex: ".txt or } \times . \text {.txt; ".dat; mydata????.. }
$$Specify advanced filter options

Cancel

<< Back
Next \gg

Click Finish to import the data.

7.1.3 I mport Time Data

Summary

Origin interprets Dates based upon the Gregorian Calendar, while Time is interpreted in hours: minutes: seconds. When working with Date and Time data, Origin displays these data in different formats, but internally uses underlying numeric values for calculations and certainly plotting operations. This tutorial shows you how to import custom date/time data.

Minimum Origin Version Required: Origin 8.0 SR3

What you will learn

This tutorial covers:

- How to import data using multiple delimiters.
- How to define a custom date/time format
- How to change the display settings for the custom date/time format

Steps

1. We will import \Samples\Import and Export\Custom Date and Time.dat in this tutorial. Before importing the file, let's look at the data structure first.

| \square Custom Date and Time.dat - Notepad $\square \times \times$ | | |
| :---: | :---: | :---: |
| File Edit Format Yiew H | | |
| 25.01.2004 09:38:59.50 | 85.55 | ヘ |
| 25.01.2004 09:39:04.50 | 85.55 | |
| 25.01.2004 09:39:09.50 | 85.55 | |
| 25.01.2004 09:39:14.50 | 85.60 | |
| 25.01.2004 09:39:19.50 | 85.50 | |
| 25.01.2004 09:39:24.50 | 85.55 | |
| 25.01.2004 09:39:29.50 | 85.40 | |
| 25.01.2004 09:39:34.50 | 85.45 | |

We can see that there is a space between Date and Time, and it uses Tab to separate Time from the rest of the data. So we will use multiple delimiters to import this data file.
2. Open the file in I mport Wizard. Accept the default settings on all pages until you get to the Data Columns page. Origin will, by default, use Tab to separate the data into two columns. To divide Date and Time, check the Tab and Space checkbox in the Column Separator group.

Note in the preview box that the column title is $\mathbf{A (Y) (T \& N) , ~ w h e r e ~ (T \& N) ~ m e a n s ~ t h e ~ d a t a ~}$ format is Text \& Numeric. Because the date uses "." to separate day, month and year, Origin by default treats the first column as Text. For the second Time column, Origin shows the underlying numeric values. To import data correctly, we should change the column properties.
3. In the Custom Date Format edit box, enter:
dd' ' 'MM'. 'yyyy
where dd, MM and yyyy mean the days, months, and year respectively. Since the "."is used as a separator, we need to put single quotation marks around it in the format specification. After entering the custom format, press the Apply button next to the edit box. Then rightclick on the header of the first column in the preview and select Date from the context menu:

Then the column title will turn into $\mathbf{A}(\mathbf{Y})(\mathbf{D})$ which means this is now a Date data column.
4. Similarly, right-click on the header of the second column and select Time to set that column as a time column:

You can see the time data display in long format. We can change the display setting after imported.
5. Click Finish button to import data. Then double-click the second column title to open the Column Properties dialog, and set the Time display as:

HH:mm:ss.\#\#

The final worksheet data after imported will looks like:

| \#\#\# Book1 - Custom Date and Time.dat | | | $\square \square$ | | X |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $\mathrm{A}(1)$ | B(0) | CO | | \wedge |
| Long Name | | | | | |
| Units | | | | | |
| Comments | | | | | |
| Sparklines | | | WHANM | | |
| 1 | 25.01.2004 | 09:38:59.50 | 85.55 | | |
| 2 | 25.01.2004 | 09:39:04.50 | 85.55 | | |
| 3 | 25.01.2004 | 09:39:09.50 | 85.55 | | |
| 4 | 25.01.2004 | 09:39:14.50 | 85.6 | | |
| 5 | 25.01.2004 | 09:39:19.50 | 85.5 | | |
| 6 | 25.01.2004 | 09:39:24.50 | 85.55 | | |
| 7 | 25.01.2004 | 09:39:29.50 | 85.4 | | |
| 8 | 25.01.2004 | 09:39:34.50 | 85.45 | | \checkmark |
| 4 ∇ | m Date and | | $1<$ | \geq | : |

Note: In the case of this particular data file, the first column simply has the exact same date in every row. So at this point you may want to set this first column as Disregard by right-clicking on the column header and selecting Disregard from the context menu. Then you can set the 2 nd column as type X, and plot the data in the third column against the time data in the 2 nd column.

7.1.4 Post Processing with I mport Filter

Summary

The Import Wizard allows defining a custom filter to import ASCII and simple binary files. The filter can then be reused with similar data files once created. The filter mechanism also allows including LabTalk script lines that will then be run at the end of the import. This capability allows user to add post-processing script code to the filter.

Minimum Origin Version Required: Origin 8.0 SR6
What you will learn

- How to add post processing script to existing import wizard filter

Steps

1. Start a new workbook by clicking the New Workbook button on the Standard toolbar.

2. In the Data Source group, click the $\square_{\text {button to the right of File and navigate to and add the }}$ file Samples \backslash I mport and Export \backslash S15-125-03.dat.
3. A suitable filter for importing this file already exists in the data folder. Click the Next button to proceed thru all the pages of the wizard till you get to the Save Filters page.
4. On this page, check the Save Filter check box and also the Specify advanced filter options check box and then click Next. This will bring you to the Advanced Options page.
5. On this page, copy and paste the following lines in the edit box:
nlbegin iy:=(1,4) func:=gauss;
nlfit;
nlend output: $=1$ autoupdate: $=$ au_auto;
6. Press Finish. This will save the filter along with these added lines of script, and the file will be imported and the script will run. The workbook will then have three sheets, which will include the custom report sheet and the fitted curve sheet, which are results of gaussian function fit to column 4 of the imported data.
7. Start a new project and open import wizard again and add all three files S15_125_03.dat, S21-235-07, S32-014-04 in the file open dialog.
8. Check to see that the Import mode drop-down is set to Start New Books and click Finish. Your modified filter will be used and after each file is imported, the 4th column will be fit with the gaussian function.

7.2 I mporting Data

7.2.1 Summary

Origin provides flexible ways of importing data, including simply dragging and dropping data files, using the ASCII import dialog to customize settings, and using the Import Wizard for advanced customization, extracting variables from header lines, and supporting custom file formats for many third-party files. This tutorial will highlight some of these features.

This tutorial will show you how to:

- Import files by drag-and-drop
- Import multiple ASCII files by customizing settings
- Save settings for future use
- Use the Import Wizard and import filters

7.2.2 Drag-and-Drop Importing of ASCI I Files

1. Start with an empty worksheet. Open Windows Explorer to the \backslash Samples \backslash Curve Fitting subfolder of your Origin system folder. Drag and drop the file sensor01.dat from the Windows

Explorer window into the empty Origin worksheet.

2. Data appears in the sheet. Now select two files: sensor02.dat and sensor03.dat and drag-anddrop them into the same worksheet. You will see that the first file replaces the data already in the worksheet, and the other creates a new workbook, as the default setting is to create new books, starting with the second file.

The default setting when dragging and dropping is to replace existing data. If you have some other data already in the sheet, you can drop the file onto the gray area outside of any window, or into a graph window, and Origin will create a new book and import the data into it.

7.2.3 Customizing ASCII Import Dialog Settings and Saving a Theme

ASCII import and custom-file-format import both provide an options dialog, wherein a user can customize import settings and then save settings to use later on similar files.

1. Start with a new book and click the Import Multiple ASCII button $\begin{aligned} & \text { 䁖 }\end{aligned}$ on the standard toolbar.
2. Select the files sensor01.dat, and sensor02.dat from \Samples\Curve Fitting and add them to the lower panel of the file dialog. Click the file name column header in the lower panel to sort the files by name. Keep the Show Options Dialog box checked and click OK. This will open a
dialog for import settings.

3. Change import mode to Start New Sheets. Expand the (Re) Naming Worksheet and Workbook node and change the settings so that only the sheet gets renamed.

4. Click on the right arrow button at the top of the dialog and select Save As, then give it a name like My Multifile I mport and click OK. This saves your settings to a theme file on the disk.

5. Click OK and the first file gets imported into the current sheet, and a new sheet is created for the second file. File names are used as sheet names.

| \#\# ${ }^{\text {\% }}$ Book1 | | | | X |
| :---: | :---: | :---: | :---: | :---: |
| | $\mathrm{A}(\times)$ | $\mathrm{B}(1)$ | | \triangle |
| Long Name | Displacement | Sensor Output | | |
| Units | mm | mv | | |
| Comments | | | | |
| Sparklines | | | | |
| 1 | 1 | 1.17 | | |
| 2 | 1.5 | 2.9 | | |
| 3 | 2 | File names | | |
| 4 | 2.5 | as shee | | |
| | - 2 | 7 | | |
| | 01 A Sensor0 | 2 | | |

6. Now start a new book and invoke the menu File: Recent Imports: impASC: My Multifile Import. In the file dialog pick the three files: step01.dat, step02.dat, and step03.dat from \Samples\Curve Fitting. Click the file name column header in the lower panel to sort the files by name. Click OK. The settings from the theme you saved and selected here are used to perform the importing.

7.2.4 Saving ASCII Import Settings to Worksheet

Custom ASCII import settings can be saved either to the disk as a theme file, or into the worksheet itself.

1. Start with a new book and invoke File: Import: Single ASCII from the menu, then select the file sensor01.dat from the \Samples\Curve Fitting subfolder. Keep Show Options Dialog checked and click OK.
2. In the Import Options dialog, select No from the Add Sparklines drop-down list. Expand the (Re) Naming Worksheet and Workbook node and change the settings so that only the sheet gets renamed by file name, and not the book.
3. Click on the Top Arrow icon, select Save to <Sheet> and click OK. Then your custom settings get saved to the sheet and data are imported.
4. Select File: Save Template As from the main menu. Enter Sensorl mport as the template name, and click OK to save the workbook template. This template contains both the import settings and the worksheet property settings.
5. Now we create a new workbook from this template. Click the Open Template button on the Standard toolbar. Select Sensorlmport. otw under your User Files Folder and then click Open. A workbook is created from the template.
6. With this book active, drag-and-drop the file sensor02.dat. The data gets imported and only the sheet name changes to the new file name. The sparklines were not turned on.

When saving custom settings to a worksheet, it is useful to then save the sheet, along with other desired analysis operations, as an Analysis Template for repeat analysis of similar data from multiple files. See the Batch Processing tutorial for details.

7.2.5 I mport Wizard and I mport Filters

The Import Wizard allows you to step through your data file, customize settings, including how to parse header lines to create variables, and then save all of your custom settings as an import filter (.OIF) file for repeat use. The filter file can reside in the data folder, in the \Filters subfolder of your User Files Folder, or can even be saved to the worksheet itself for use with Analysis Templates. The Wizard is typically useful when the file has header lines that need to be parsed, or the file needs custom settings such as fixed width, or for executing LabTalk script at the end of the import for post processing.

1. Start with a new book. Click on the Import Wizard button ${ }^{\frac{7}{7}}$ in the standard toolbar to launch the wizard.
2. Select the file \Samples \backslash Import and Export \backslash S15-125-03.dat.
3. Note that the I mport Filter for Current Data Type drop-down changes to show Data Folder: VarsFromFileNameAndHeader. This is a filter already created for this file and shipped with Origin, and it is automatically picked up from the same folder as the data file you chose. Next
change I mport Mode to Replace Existing Data.

Import Wizard - Source

Data Type

- ASCII \subset Binary \subset User Defined

Data Source

- File C:TProgram Files\OriginLab\Origin81 Samples\Import and Export\$S21-235-07.dat
\bigcirc Clipboard
- Import Filter
\checkmark List filters applicable to both Data Type and file name
Import Filters for current Data Type Data Folder: VarsFromFileNameAndHeader
Description Extract variables from file name and from file header lines
Target Window
C Worksheet C Matrix C None (User Defined filter needs to create window)
Template

Template for new sheet or book
\square
Import Mode Replace Exisiting Data

| Cancel | NeBack | Next \gg | Finish |
| :---: | :---: | :---: | :---: | :---: |

4. Click Next and walk through the pages. Notice controls on the Header Lines pages that allow flexible definitions of where the header lines end, where sub header lines are located, and what gets assigned to long name, units, etc.
5. For this file the Variables Extraction and Variables Extraction by Delimiter pages define how to parse the header lines to extract values from them.
6. Click Next until you get to the Save Filters page. Check the Save filter box and change the radio button to In the Window. This will save the filter in the active worksheet.

Import Wizard - Save Filters

Import Wizard settings can be saved to a filter file for re-use. Filter files can be selected on the first page of this wizard.

Once saved, import filters can also be used to automatically determine import settings when dragging and dropping data files into Origin and when opening data files with the File:Open menu item.

Save filter

C In the data file folder
C: SProgram Files \backslash OriginLab\Origin81\Samples\/mport and Ex|
\bigcirc In the User Files folder
C: \Documents and Settings $\backslash A d m$ ministrator $\$ \mathrm{My}$ Documents $\backslash \mathrm{Or}$
In the Window
Г Show Filter in File:Open List
Filter Description
Extract variables from file name and from file header lines
Filter file name (.OIF extension will be appended)
VarsFromFileNameAndHeader
Specify data file names to which this filter will be associated. You can use wild cards, and can specify multiple names separated by ';'
5^{*}.......dat
Ex: ".txt or ${ }^{\text {..txt: }}$. dat; mydata????."

Specify advanced filter options

Cancel

<<Back
\square
Next >> Finish
7. Now check Specify advanced filter options. This brings you to the last page where script (to run at the end of the import) can be specified. In the edit box enter:

```
col(DegC)=col(2)-273.15;
col(DegC)[u]$=(\+(0)C);
col(DegC)[l]$=Delta Temperature;
```

Import Wizard - Advanced Options

Drag and Drop files in Graph
Do not plot data in graph; Open files in worksheet/matrix
Drag and Drop files in Workspace
Open files in Worksheet/Matrix

The following LabTalk code will be executed after a successtul import:

8.
9. Click Finish. The file gets imported and the import filter is now saved in your worksheet. The fifth column is a column added by the script. It is the Delta Temperature data in degrees Celsius.
10. With the worksheet active, click the Import Wizard button again and pick the file \S21-235-
07.dat. Note that the I mport Filter for Current Data Type drop-down shows <use filter in
active window >, so Origin picks up the filter settings that were saved in the worksheet.

11. Click Finish, and the file gets imported and the script gets executed (the values in column 5 are updated).

You can save the import settings to the worksheet, perform analysis on the imported data, and save the workbook as an Analysis Template for repeated processing of similar data files. See the tutorial on batch processing for more information.

8 Exporting and Presentation

Topics covered in this section:

1. Exporting (Tutorials)
2. Presentation (Tutorials)

8.1 Exporting

8.1.1 Exporting Graphs

Summary

When you have completed your graph for publication, exporting your final results is very easy with Origin. The graph export is highly customizable. You can specify the size of the image, the file format, and other advanced settings such as color format.

What you will learn

- How to export a graph and specify the settings.
- How to export specified graphs in the project.

Export a graph as an eps image

This tutorial is associated with the Sample project (\Samples\2D and Contour Graphs.opj) which can be opened by selecting File: Open Sample Projects: 2D and Contour Graphs from the main menu.

1. In the Project Explorer, browse to $\backslash 2 \mathrm{D}$ and Contour Graphs \backslash Contour $\backslash \mathrm{XYZ}$ Contour, and make the graph window active.

2. With the graph window active, select File: Export Graphs from the Origin menu to open the expGraph dialog.
3. Click the Auto Preview check box. Then the graph will auto preview the temporary copy in the right panel of the dialog.

4. Specify the following settings to export the graph:
o Customize the File Name to My Graph.
o Expanding the Export Settings node, select Border from the Margin Control dropdown list and type $\mathbf{3}$ in the Clip Border Width box.
o Expanding the I mage Size node, uncheck Auto check box for Fit Width and set width to 5.

| Image Type | Encapsulated Postscript (*.eps) \downarrow |
| :---: | :---: |
| Export | Active Page v |
| File Name[s] | My Graph \vee |
| Path | C: \Documents and Settings \vee... |
| Overwrite Existing | Ask V |
| Graph Theme | <Original> \downarrow |
| \square Export Settings | |
| Use Current Speed Mode Display for Export | Apply Page Setting v |
| Margin Control | Border v |
| Clip Border Width | $3 \quad \vee$ |
| A Advanced | |
| \square Image Size | |
| Original Page Size | Width 10.65 inch \times Height 8.15 inc |
| Clipped Page Size | Width 11.95 inch \times Heinht 7.97 inc |
| Specify Size in: | inch v |
| Rescaling | Width v |
| Fit Width | $5 \square \square$ Auto |
| Fit Height | $3.34 \sim$ Auto |
| \square Image Settings | |
| 円 EPS Options | |

5. Click the triangle button to the right of the Dialog Theme. Select Save As from the shortcut menu. The Theme Save as dialog opens.

6. In the Theme Save as dialog, enter My EPS Export as Theme Name. And click OK.

7. Click the OK button in the expGraph dialog, then My Graph.eps is created in the User File Folder. And the graph path will display in the Message Log.
```
Messages Log * + 人
```

[1/6/2012 17:52:18 expGraph]
Graph1B is exported to C: \Documents and
Settings \backslash Administrator $\backslash \mathrm{My}$
Documents ${ }^{0}$ OriginLab\86\User
Files ${ }^{\text {My Graph.eps }}$
8. Repeat export a graph using the setting from above, select the theme My EPS Export in the flyout menu of the export graph tool directly.

Or
Click the right-sided triangle button to the right of the Dialog Theme in the expGraph dialog. From the shortcut menu, pick My EPS Export. The settings from that theme will then be loaded in the dialog.

Export the specified graphs

1. Redo steps 1 and 2 from above.
2. In the expGraph dialog, select Portable Network Graphics(*.png) for I mage Type.
3. Select Specified from the Select Graph(s) drop-down list. Click the \ldots button to the right of the Graph Page edit box to open the Graph Browse dialog.

4. In the Graph Browse dialog, all the graphs in this project will list in the left panel of the dialog. Select Graph3G in the left panel, then the preview panel will show a preview of the graph.
5. Click the \gg button to add the selected graph to the right panel, or double-click selected graph in left panel to add to the right panel.

6. Then click OK button, the specified graphs will show in the Graph Page box.

7. Expanding the Image Size node, select pixel from the Specify Size in drop-down list. And uncheck the Auto check box for Fit Width and set width to 600.

8. Click OK button in the expGraph dialog, then two images are created. And the graph path will display in the Message Log

8.2 Presentation

8.2.1 Pasting or Embedding Graphs in Other Applications

Summary

It is possible to insert Origin graphs to other applications(e.g.Microsoft ${ }^{\circledR}$
PowerPoint/Excel/Word), either by object linking or embedding. Both linked and embedded graphs can be later edited with Origin.

The difference is that embedded graph is contained in the destination file while the linked graph is not. A linked graph can be dynamically updated if the source graph is changed.

What you will learn

This tutorial will show you:

- How to insert an Origin graph to other applications as linked/embedded graphs.
- How to edit linked/embedded graphs after inserting to other applications.

Steps

1. Launch Origin, open the OffsetY.opj project from <Origin program folder>\Samples\Graphing\. This project contains a graph (Graph 1).

2. With the graph window active, select Edit: Copy Page.
3. Switch to Microsoft® PowerPoint 2007, create two new slides.
4. Go to the first slide, click the Paste button, in the fly-out menu choose Paste Special.
5. In the Paste Special dialog, select the Paste Link radio button and then choose Origin Graph Object in the As list. Click OK to close the dialog. In the first slide the graph is pasted as a linked object.

Paste Special

Source: Origin Graph
D:\{Program Files\}OriginLab\}Ori...
OK

Result

Inserts a picture of the clipboard contents into your presentation. Paste Link creates a shortcut to the source file so that changes to the source file will be reflected in your presentation.
6. Go to the second slide, open the Paste Special dialog again similarly as the previous step.
7. This time, select the Paste radio button then choose Origin Graph Object in the As list. Click OK to close the dialog. In the second slide the graph is pasted as an embedded object.

8. Go back to the OffsetY.opj file in Origin, double click on the olive dot plot in Graph 1, bring up the Plot Details dialog, change the symbol color to Violet and click OK to close the dialog.
9. Now switch to PowerPoint, in the first slide, right click on the linked graph, and choose Update Link from the fly-out menu. The color of the dot plot in this graph will be changed to violet.

| \％ | Cut |
| :---: | :---: |
| 風 | Copy |
| ［ | Paste |
| | Linked Graph Object＊ |
| | $\underline{\text { Update Link }}$ |
| 包 | Group © |
| 焗 | Bring to Front |
| 鸣 | Send to Back |
| 8 | Hyperlink．．． |
| | Save as Picture．．． |
| \％ | Eormat Object．．． |

10．Go to the second slide，right click on the embedded graph，and choose Graph Object：Edit to reopen the graph in Origin．Note that the graph name is Graph in Presentation 1， indicating that the graph is contained in the destination file．

11. In the Graph in Presentation 1, change the color of olive dot plot to blue similar as previously, and close Origin. Note that the linked graph in slide 1 and the embedded graph in slide 2 looks different now.

9 Collaboration and Connectivity

Topics covered in this section:

1. Connectivity (Tutorials)

9.1 Connectivity

9.1.1 Excel

- Working with Excel

Working with Excel

Summary

Origin provides flexible ways to interact with Excel. You can either import Excel data into an Origin workbook, or open an Excel book inside Origin. If you require full access to all of Origin's graphing and analysis features, you will probably want to import your Excel data files into Origin. If it is important to maintain a separate Excel workbook file-perhaps so that other colleagues who do not work with Origin have access to that file-you will probably want to open your Excel data files directly. We give a brief introduction to working with Excel in this tutorial.

This tutorial will show you how to:

1. Copy and paste data from Excel with full precision
2. Import an Excel file into an Origin workbook
3. Open an Excel file in Origin
4. Save an Excel file with path relative to the Origin Project file

Copying and Pasting Data from Excel

It may be desirable at times to simply copy and paste data from Excel to Origin instead of importing or opening Excel. These steps show that such a copy/paste operation can bring in data with full precision.

1. Launch Excel and Origin separately.
2. Open the file <Origin Installation Folder>\Samples\Graphing\ExcelData.XLS in Excel.
3. Select columns B through L, then right-click and bring up the Format Cells dialog, and set the number of decimal places to 2 . So now Excel shows fewer decimal places.

4. Click on the top left cell in the Excel sheet to select the entire sheet and right-click and select Copy, or use the keyboard shortcut Ctrl+C to copy.

5. Go to a new book in Origin, place the cursor in row 1 of column 1 and do $\mathbf{C t r I}+\mathbf{V}$ or right-click and Paste.

| \#\# Book1 | | | |
| :---: | :---: | :---: | :---: |
| | A(X) | B() | |
| Long Name | | | |
| 1 | \% Cut | | |
| 2 | | | |
| 3 | 輯臽 Copy | | |
| 4 | Copy (full precision) | | |
| 5 | | Paste | |
| 6 | | A | $\mathrm{Ctrl}+\mathrm{v}$ |
| 7 | Paste Transpose | | |
| 8 | Paste Link | | + Alt + V |

6. Note that the numbers come into Origin with full precision, not the number of displayed digits (2) in Excel.

7. In Origin, right-click on the row 1 header and select Set as Comment to make this row an Origin column comment.

| \#\#\# Bok1 | | | | | | $\square \square$ | x | | |
|---|---|---|---|---|---|---|---|---|---|
| | $A(x)$ | B () | C1(0) | C 2 O | C 30 | $\mathrm{C4}(1)$ | 슨 |
| Long Name | | | | | | | |
| Units | | | | | | | |
| Comments | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| \square 風 | Copy | | $\mathrm{Ctrl}+\mathrm{C}$ | 2.78 | 6.03 | 0 | |
| | | Copy (full precision) | | 2.42 | 5.89 | 0 | |
| | | | | | $\mathrm{Ctrl}+\mathrm{Alt}+\mathrm{C}$ | 1.75 | 5.85 | 0 | |
| 4 | Paste | | Ctrl +V | 1.81 | 7.09 | 0 | |
| | Paste Link | | Ctrl+Alt+V | 2 | 8.57 | 0.05 | |
| | | | 1.8 | 8 | 0.16 | |
| | Insert | | | Delete | 1.7 | 7.99 | 0.24 | |
| | Delete | | 1.39 | | 6.37 | 0.29 | |
| | | | 1.23 | | 5.4 | 0.23 | |
| | Clear | | 1.05 | | 4.3 | 0.24 | |
| | Remove Links | | 1.15 | | 4.31 | 0.16 | |
| | | | 1.47 | | 4.72 | 0.18 | |
| | Set as Begin | | | 1.29 | 4.29 | 0.2 | |
| | Set as End | | | 1.41 | 5.44 | 0.15 | \checkmark |
| 1 Ph | | | | | < $]^{-}$ | \cdots | . $: 1$ |

8. Right-click on row 1 again and select Set as Long Name. Then rows 1 and 2 in Excel become the worksheet header in Origin:

9. You can now double-click column 1 and set it as Date and then plot the data.

Importing Excel Files

Origin supports importing Excel files directly into Origin workbooks. Multiple sheets are supported and controls are available for setting specific rows in the Excel sheet to be brought into an Origin worksheet as header information, including Long Name and Comments. If you want to perform analysis or data manipulation operations on your Excel data, we recommend importing your data into Origin.

1. With a new book active in Origin, use the menu to select File: Import: Excel (XLS, XLSX).
2. Select the file \samples \backslash graphing \backslash Excel Data.xls, and make sure Show Options Dialog is checked.

3. In the dialog that comes up, leave the Use Excel COM Component to I mport check box checked.
4. Set the I ndex of Rows for Comments to 1 .
5. Set the I ndex of Rows for Long Name drop-down to 2 and click $\mathbf{O K}$ to Import.

- File Info And Data Selection

1st File Import Mode
Multi-File (except 1st) Import Mode
Use Excel COM Component to Import
 Import Cell Formats
Maximum Number of Empty Columns [-1 for all]

\square Column Headers
Number of Main Header Lines Index of Rows for Short Name Index of Rows for Long Name Index of Rows for Unit Index of Rows for Comment From Index of Rows for Comment To

Column Designations
Apply Header and Designation to All Sheets I Import Options
Output

<none>

OK
Cancel
6. Click and select the Comments cell under column 1, hold down the Ctrl key and drag the bottom right point of the selected cell to stretch across all columns with data, copying the same comments to all columns.

| | A(X) | B() | C1(9) |
| :---: | :---: | :---: | :---: |
| Units | | Hold Ctrl key | |
| Long Name | Year | | |
| Comments | (All | and drag | |
| | quantities | | |
| 1 | 1/1/1973 | 9.27 | 3.4 |
| 2 | 1/1/1974 | 8.77 | 3.47 |
| 3 | 1/1/1975 | 8.37 | 4.1 |
| 4 | 1/1/1976 | 8.13 | 5.28 |

7. Press F4 to bring up the format dialog, switch to the Format tab, change the Apply To dropdown to Comments and set Dynamic Merge to Horizontal, then click OK.

This sets the comments cells to be merged and to show in the center of all data columns.

(All quantities in millions of barrels/day)

| 6.03 | 0 | 0.23 | 17.31 |
| ---: | ---: | ---: | ---: |
| 5.89 | 0 | 0.22 | 16.65 |
| 5.85 | 0 | 0.2 | 16.32 |
| 7.09 | 0 | 0.22 | 17.46 |
| 8.57 | 0.05 | 0.19 | 18.43 |

Open Excel File in Origin

At times it may be desirable to keep the data in an external XLS file and simply open the file inside Origin as an Excel window, and then work with the data. When you open Excel (.XLS or .XLSX) files as Excel workbooks in Origin, an OLE instance of Microsoft Excel is launched. You can plot directly using Excel workbook data, but many analysis features, as well as 3D plotting, will be inaccessible.

1. Select File: Open Excel and select the file \Samples\Graphing\Excel Data.xIs.
2. A new Excel window opens inside the Origin workspace. When this window is active, the Origin main menu has different entries, some of which are specific to Excel, and the Excel toolbars are
available.

| | iginPro | 1 - C:Voc | uments | Setting | UN | | | - \square | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Eile plot | indow | | | | | | | |
| | | $(\mathrm{m})=$ | | | | | | | |
| | | Origin Menu changed | st For | $\begin{array}{l\|l} \text { mulas } & \text { Data } \\ \hline f_{2} & \end{array}$ | Review | | Add-Ins | Acrobat | (6) |
| | A | B | C | D | E | | F | G | |
| 1 | (All quan | ies in millio | ns of ba | /day) | | | | | |
| 2 | | Domestic crude oil productio | Crude oil imports | Petroleu m
 products | Total imports | | ude oil ports | Petroleu m | |
| 3 | 1973 | 9.21 | 3.24 | 2.78 | 6.03 | | 0.00 | 0.23 | |
| 4 | 1974 | 8.77 | 3.47 | 2.42 | 5.89 | | 0.00 | 0.22 | |
| | + M | heet1 She | et2 She | 3 \% | $4]$ | | | | |
| For | elp, press F | | | | | | | U: ON | |

3. Highlight the Excel data range A3:A26 and right-click, then select Format Cells to make sure that the data is in Date format.

4. Now select the Plot menu in Origin and select the Multi-Curve: Double-Y plot type.

5. Select A3:A26 in the Excel sheet and click \mathbf{X} in the Select Data for Plotting dialog to assign the X data.

| , | A | B | C | D | E |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 1973 | 3 9.21 | 3.24 | 2.78 | 6.03 |
| 4 | 19 Select Data for Plotting Book2:energy1 | | | | |
| 5 | | | | | |
| 6 | 19 | \underline{Y} | $\underline{\underline{E r}}$ | Label Iitle Row | Plot |
| 7 | 191 ¢ \times A3:A26 | | | | Use Defaults |
| 8 | | Z: | | | Save Settings |
| 9 | 19 | Err: | | | Clear |
| 10 | | | | | Clear |
| 11 | | | | | Close |
| 12 | | Plot Into: Single Layer \quad | | | |
| 13 | | | | | |
| 14 | 19 | Close dialog after plot
 Select a range of data, then click one of the above buttons | | | |
| 15 | 19 | | | | |

6. Select B3:C26 in the Excel sheet and click \mathbf{Y} in the Select Data for Plotting dialog to assign the Y data, and then change the Plot Into drop-down to be Multiple Layers.

| , | A | B | C | | D | E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 1973 | $3 \longdiv { 9 . 2 1 }$ | 3.24 | | . 78 | 6.03 |
| 4 | 19 Select Data for Plotting Book2:energy1 | | | | | |
| 5 | | | | | | |
| 6 | 19 | $\underline{\square}$ | $\underline{\underline{E r r}}$ | Label | İtle Row | Plot |
| 7 | 19 | $\begin{aligned} & X: A 3: A 26 \\ & \times: B: C 26 \end{aligned}$Use Defaults | | | | |
| 8 | 19 | | | | | |
| 9 | 19 | $Z_{i r}$
 EIr: Save Settings | | | | |
| 10 | 19 | Label:
 Title: 2 | | | | Clear |
| 11 | 19 | <1 | | | | Close |
| 12 | 19 | Plot Into: Multiple Layers
 T Close dialog after plot | | | | |
| 13 | 19 | | | | | |
| 14 | 19 | | | | | |
| 15 | 19 | Select a range of data, then click one of the above buttons to designate the appropriate data type for that range. | | | | |
| | | | | | | |

7. Click Plot and a double-y plot is created.

8. By default, Origin displays the tick labels for time on the X-axis in MM/DD/YYYY format. Doubleclick the X -axis to open an X-Axis Properties dialog box. On the Scale tab, change the scale from 1/ 1/ 1970 to 1/ 1/ 2000.

On the Tick Labels tab, change the Display to year only.

Then we get:

After opening Excel in Origin, if you switch to another Origin window, a toolbar spacer is visible where the Excel menu used to be. Right-click and you can select Hide Toolbar Spacer or Hide Toolbar Spacer Always.

Setting External Excel File Path Relative to OPJ Path

The Origin Project can contain an Excel window which is linked to an external Excel file. It may then be beneficial to save the Excel file in the same folder as the Origin project, or in a subfolder under the Origin project folder, which will then make the two files more portable, as seen in the following steps:

1. Close Excel if it is running.
2. Perform the steps under the Open Excel File in Origin section above, and (optionally) create a plot.
3. First save the OPJ to some folder location such as "C:\My Files\My Project.opj".
4. Now right-click on the Excel window and select Save Workbook As and save it in a (new) subfolder under the OPJ save location, such as "C:\My Files\Data\My Data.xls".

5. Right-click again on the Excel window title and select Properties, and then check the box that says Relative to current project (opj) path. Note that the Excel file path in the box below changes to the relative path "Data\My Data.xIs".

6. Save the OPJ again. Now you can copy the entire subfolder structure, starting from where the OPJ is saved, and put it on an external memory device (i.e., a memory stick or similar), or zip the entire folder structure. When taken to another computer and opened, Origin will look relative to the OPJ path to find the Excel file.

If your Excel file is in a different location and you want to save it to the same path as the OPJ, you can open the Excel file in Origin, then right-click the title, select Properties and click the Switch to OPJ path upon Saving button. On saving the OPJ, the Excel file will be copied from its current location to the same path where the OPJ is saved.

10 Programming

Topics covered in this section:

1. LabTalk (Tutorials)
2. Origin C (Tutorials)
3. X-Functions (Tutorials)

10.1 LabTalk

Topics covered in this section:

1. Advanced Scripting using LabTalk

10.1.1 Advanced Scripting using LabTalk

Summary

This tutorial demonstrates how to use some advanced LabTalk scripting commands and methods to organize your script files. To learn more about all the commands and methods supported in LabTalk, please refer to Help: Programming: LabTalk.

Minimum Origin Version Required: Origin 8.1 SR1
What you will learn

This tutorial will show you how to:

- Modify Plot Attributes via Script
- Define a LabTalk Script Macro Command
- Define a Macro
- See Origin?s Predefined System Macros
- Load and Compile your Origin C Function using LabTalk script
- Use .OGS Files to Store Script.

Modifying Plot Attributes via Script

This section demonstrates how to use script commands to change the attributes of a data plot.

1. Start a new project, enter the numbers 1 through 5 in column A of the Datal worksheet and numbers 6 through 10 in column B. If you have not already done so, open the Script Window by selecting Window: Script Window from the Origin program menu.
2. Using the worksheet data from the previous exercise, create a scatter plot. Note that the scatter plot symbol is a black filled square (symbol size is increased for clarity).

3. To change the symbol shape, type the following:
```
set %C -k 2
```

4. Press ENTER

The data plot symbol changes from a filled square to a filled circle (the numbers correspond to Origin's symbol list; 1 = square, 2 = circle, etc.).
5. To change the symbol color, type the following:
set \%C - c 2
6. Press ENTER.

The data plot symbol color changes from black to red.

To modify the axis scale values
7. Type the following:
$X 1=0 ; X 2=20 ; Y 1=0 ; Y 2=10$
8. Press ENTER

Your X -axis scale now reads from $0-20$, and the Y -axis reads from $0-10$.

Notes: As this example illustrates, you can type multiple lines of script in a single line by separating commands with a semi-colon.

You can also use the set command to specify the data display range.
9. Type the following:

Set \%C -b 2
10. Press ENTER

The graph?s display range now begins with the second data point in the data set.
11. Type the following:

Set \%C -e 4
12. Press ENTER.

The graph?s display range now ends with the fourth data point in the data set.

You can also hide or show a data plot using the set command?s -s switch.
13. Type the following:

Set \%C -s 0
14. Press ENTER.

The active data set is now hidden.
15. To show the hidden data set, type:

Set \%C -s 1

16. Press ENTER.

Defining a LabTalk Script Macro Command

A macro is a convenient method of aliasing a LabTalk script. When you define a macro you are associating an entire script with a specific name. This name becomes a command that invokes the associated script.

When developing scripts, macros can provide several advantages.

- Modular code can streamline a script by replacing repetitive or similar blocks of code with multiple calls of the same macro.
- Modifications to your code become easier to implement because you only have to redefine your macro as opposed to modifying repeated blocks of code that are scattered throughout your application.
- There is a limit to the number of tokens that can be included between a set of curly braces that enclose script. Macros provide a means to shorten the code between braces by calling on a predefined macro.
- You can modify the behavior of a LabTalk command by creating a macro of the same name. The functionality of the LabTalk command is restored when the macro is deleted.

Defining a Macro

A macro is defined using the define command. The general syntax is:

```
define macroName {
    script
}
```

 where macroName and script are the name of the macro and the body of the macro, respectively.
 To define a macro using LabTalk?s define command:
 1. From the Origin menu, select Window: Script Window
2. Type the following:
```
def hello {
            type -b "Hello World!!!";
}
```

This script defines a macro named hello that will type "Hello World!!!".

Notes: The define command can be abbreviated as def
We will now use the Script Window to call our hello macro.
3. Type the following into the Script window:
hello
4. Highlight all codes in the Script Window and press ENTER.

An attention dialog opens to say "Hello World!!!".

Origin's Predefined System Macros

Let's look at Origin's predefined system macros, some of which take in arguments. Macros can take up to five arguments. Use the $\% 1, \% 2, ? \% 5$ notation within the script definition to indicate that the macro expects one or more arguments (\% 1 = 1st argument, $\% 2=2$ nd argument, $? \% 5=5$ th argument).

1. In the Script Window, type the following:

list m

2. Press ENTER.

Origin responds by typing the names of predefined macros into the Script Window.

To see the definition of any system macro:
3. To see how a system macro is defined, type def macroname. For example, type the following in the Script Window:
def checkvar
4. Press ENTER.

Origin responds to the Script Window as:

The \%1 notation in the macro definition indicates that this macro takes one argument.

To define a new macro as a system macro:
5. Type the following in the Script Window:

```
def graph {
    set %1 -s 1;layer -i %1
}
```

6. Press ENTER.

Notes: We used the set data set ?s 1 command to show a data plot. The layer -i data set command
adds (plots) the named data set onto the active layer.

To call a macro:
7. Click the New Worksheet button嘈
8. Create a worksheet named Book1 and type in the following data:

| \# Book1 - Data1 | | | $\square \square$ | | X |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | A(x) | $\mathrm{B}(1)$ | | | \wedge |
| Long Name | | | | | |
| Units | | | | | |
| Comments | | | | | |
| 1 | 1 | 1 | | | |
| 2 | 2 | 2 | | | |
| 3 | 3 | 3 | | | |
| 4 | 4 | 4 | | | |
| 5 | 5 | 5 | | | |
| 6 | 6 | 6 | | | |
| 7
 1 Sheet | 7 | $7<$ | IIII | > | v |

9. Click the New Graph button
10. In the Script Window, type the following:
graph book1_b
11. Press ENTER.

A line plot of the data set book1_b is included in the graph window.

We will modify the macro definition so that it creates a scatter plot using a red, ?up triangle? as the symbol.

You could hard code the appropriate values for scatter plot, red, and up triangle in the macro definition, but it is more efficient to pass the value of a variable as an argument. This way, the macro may be used in other instances when you want to set the color and symbol shape to something other than red and upward-pointing triangle.

Notes: LabTalk often uses integer values to specify plot details. If you look at the color palette, for instance (from the menu, Format: Color Palette), you will see (assuming that you have not modified the default color palette) that black $=1$, red $=2$, green $=3$, blue $=4$, etc. For more information, see documentation on the Set command in the LabTalk Language Reference section of the Programming Help file.
12. Type the following in the Script Window to redefine the graph macro:

```
def graph {
    set %1 -s 1;
    layer -i %1;
    set %1 -c %2;
    set %1 -k %3;
}
```

13. Type the following:

graph book1_b 23

14. Press ENTER.

This plots the data set book1_b as red, upward-pointing triangles.

To better understand what we actually did, let?s examine our macro line by line.
First, we used the def command to tell Origin that we are defining a macro.

```
def graph
```

Secondly, we used the LabTalk set command with the ? s option.
The set ?s command syntax is:
set dataset -s value
where dataset is the name of a data set, and value is either 1 (show plot) or 0 (hide plot),
set \%1 ?s 1;
The layer ?i\# command syntax is:
layer ?igraphType dataset;
Note that the data set name has been assigned to \% 1 .
The set ?c command syntax is:
set ?c color\#
This is used to specify the plot symbol color. Note that color will be assigned to \% 2 .
The set ?k command syntax is:
set ?k shape\#
This is used to specify symbol shape. Note that symbol shape is assigned to \%3.
When we execute our macro by typing
graph book1_b 23
we are passing three arguments to the macro:

- book1_b, which is substituted for \%1.
- 2 , which is substituted for $\% 2$.
- 3 , which is substituted for $\% 3$.

Note that it is merely coincidence that we chose to substitute a value of 2 for $\% 2$, and a value of 3 for \%3. We could have chosen any allowed value for symbol color or shape.

Remember that any macro that you define is only available for the duration of your Origin session. If you restart Origin, you cannot execute your macro until you define it again. If you want your macro to be defined automatically when you start Origin, you can save your macro definition to Origin's MACROS.CNF file. Each time Origin starts, it reads MACROS.CNF, and your macro is defined.

Notes: MACROS.CNF is located in the Origin software folder. Because of a turf battle over the .CNF file extension, it will probably only be listed as MACROS and will display a terminal icon. In reality, this file is a text file and can be opened in any text editor, such as Notepad and Origin Code Builder.

For more information on macros, see Help: Programming: Labtalk in the Help menu.
Loading and Compiling your Origin C Function using LabTalk script

Before an Origin C function can be used, it must be compiled and linked in the current Origin session. Origin provides the following method to programmatically compile and link a source file, or to programmatically build a workspace, from LabTalk.
err = run.LoadOC("myFile", [option]);
Notes: For more on the LabTalk run object in Help: Programming:Labtalk Help.
The following example demonstrates how to programmatically load and compile an Origin C source file.

To begin this tutorial:

1. On the Standard Toolbar, click the Code Builder button
2. Return to the Origin workspace and open a New Project (File: New? Project).
3. Open the Script Window (Window: Script Window) and type the following:
string fld\$="Samples\Origin C Examples\Programming Guide\Calling Functions\";
string fname\$=System.path.program\$ + fld\$ + "CallingOCFromLabTalkEx.c"; run.LoadOC(\%(fname\$), 1);

The CallingOCFromLabTalkEx.c function is compiled now and can be found under the User folder in Code Builder's Workspace view. The Output Window reports as follows in the Code Builder workspace:

| Output | $\boxed{\chi}$ |
| :--- | ---: |
| Compiling... | |
| | |
| | |
| | |

The Origin C functions in CallingOCFromLabTalkEx.c are now accessible. You can call the following section from the C file. Note the comments (the green text with leading //).

To execute the PassString function:
4. Return to the Origin workspace, open the Script Window (Window: Script Window) and type in the following:

PassString abc
5. Press ENTER. Origin returns:

```
The string is "abc"
Using.OGS Files to Store Script
```

As an alternative to associating your LabTalk script or Origin C function with a button, you could save your script to .OGS files. The advantage is that these .OGS files are self-contained and can be called from many buttons.

These . OGS files are organized by sections. Sections are identified by a name surrounded by square brackets, as in this example:
[Main]
To execute the code in a portion of a .OGS file, you need only identify the .OGS file and refer to the section containing the code by name, as in this example:

run.section(test.ogs, Main)

Most of Origin's menu and toolbar commands run LabTalk script in a .OGS file. These files can be opened and edited in Code Builder.

In this tutorial, we will create a new .OGS file, and associate the .OGS file with a new toolbar button.

Notes: This tutorial assumes that you have already created and saved an Origin C file called test.c, as prescribed under Tutorial: Organizing and Accessing Origin C Functions.

To create a new .OGS file:

1. From the Code Builder menu, select File: New.
2. In the New File dialog box, select LabTalk Script File.
3. In the File Name text box, type:

Test
4. Click OK.

You now have an empty document called test.ogs.

We will use the run.LoadOC script command to programmatically compile and link the test.C Origin C source file. The advantage of this method is that it allows you to program your buttons or other usercreated visual objects to make behind-the-scenes calls to your Origin C functions.

To make a call to an ?uncompiled? Origin C function from Origin:
5. In the blank test.ogs window, type the following:
[CreateGraph]
run. LoadOC("test.c");
Plot_Data("scatter","book1_b");
6. From the Code Builder menu, select File: Save As and save the file to your main Origin software folder.
7. Return to the Origin workspace.
8. From the Origin menu, select View: Toolbars. This opens the Customize Toolbar dialog.
9. On the Toolbars tab, click the New button to open the New Toolbar dialog.
10. Type in the following name for your new toolbar:

My Toolbar
11. Click OK

My Toolbar is added to the Toolbars list. A new toolbar is added to the Origin workspace.
$-\cos \times$

Notes: The toolbar may be a bit hard to spot because it does not contain any buttons.
12. Return to the Customize Toolbars dialog and select the Button Groups tab.
13. Scroll to the bottom of the Groups list and select User Defined.
14. Select the second button in this group.

```
Buttons
```


15. Click the Settings button. This opens the Button Settings dialog box
16. In the File Name text box, type test.ogs.
17. In the Section Name text box, type CreateGraph. We are not passing arguments to the section, so we can skip the Argument List text box.
18. In the Tool Tip Text box, type CreateGraph. A Tool Tip is the message that displays when you mouse over a toolbar button.
19. In the Status Bar text box, type Example, plotting data from Origin C as Status Bar Text. When you mouse over a toolbar button, the Status Bar message displays in the lower left corner of your Origin workspace.
20. In the Context group, verify that the Windows radio button is selected and clear the Graph, Matrix, Layout, and Excel check boxes. Leave only Worksheet selected. This limits toolbar availability to active worksheets.
21. Click OK
22. Point to the toolbar button, hold down the left mouse button and drag the button to the floating toolbar.

23. Click Close to close the Customize Toolbar dialog.

To test this method, close and restart Origin. Remember that the second argument to our function is book1_b, so the Origin workspace will need to have a worksheet named book1, a B(Y) column and some data in both the X and Y columns. Note, too, that our toolbar button is grayed out when a graph is the active window.

This concludes the tutorial on Advanced Scripting Using LabTalk.

10.2 Origin C

Topics covered in this section:

1. Introduction to Origin C and Code Builder
2. The Code Builder Workspace
3. Adding New Origin C Functions to Origin
4. Organizing and Accessing Origin C Functions
[^3]
10.2.1 Introduction to Origin C and Code Builder

Summary

Origin C supports a nearly-complete ANSI C language syntax as well as a subset of C++ features including internal and DLL-extended classes. In addition, Origin C is "Origin aware". This means that Origin objects such as worksheets and graphs are mapped to classes in Origin C, allowing direct manipulation of these objects and their properties from Origin C.

Origin C's integrated development environment (IDE) is called Code Builder. Code Builder provides standard tools for writing, compiling, and debugging your Origin C programs. Once an Origin C function is compiled, the function can be called in various ways from the Origin or Code Builder workspaces.

Minimum Origin Version Required: Origin 8.0 SRO
What you will learn

This tutorial introduces you to Origin C and Code Builder by showing you how to write, compile and call a function that types the message "Hello World!!!".

Steps

1. On the Origin Standard toolbar, click the Code Builder button ${ }^{6 \rightarrow 9}$
2. On the Code Builder toolbar, click the New button

In the New File dialog, select C File.
In the File Name text box, type Tutorial.
In the Location text box, specify where to save your source file, the default path is Origin C subfolder under User File Folder(Note: The Browse button looks like this: \ldots), Click OK. A file named Tutorial.c opens in the Code Builder workspace.

3. Type the following beneath the line that reads // start your functions here:

```
void test ()
{
    printf("Hello World!!!\n");
}
```

4. On the Code Builder workspace Standard toolbar, click the Build button This compiles the test function.
5. To call this function, click in the upper pane of the LabTalk Console. This is located in the lower right corner of the Code Builder workspace (This is the default location. If the LabTalk console isn't visible, select View: LabTalk Console from the Code Builder menu and make sure that the menu item is checked).
6. Type the following LabTalk function call in the LabTalk Console:

test

7. Press ENTER.

To test this function in the Origin Script Window:
8. Return to the Origin workspace, and select Window: Script Window.
9. In the Script window, type the following:
test
10. Press ENTER.

| Classic Script Window |
| :--- |
| File(Text) Edit Hide Tools |
| test; World? ? ? |
| Hello |
| |
| |

"Hello World!!!" displays in the Script Window.
This concludes the Introduction to Origin C and Code Builder tutorial.

10.2.2 The Code Builder Workspace

Summary

In this exercise, we will create a workspace, add a source file with a new function, then build, test and save the workspace file.

Minimum Origin Version Required: Origin 8.0 SRO
What you will learn

This tutorial will show you how to:

- Build a Workspace File
- Build Workspace Folders
- Build on Startup

The Workspace File

A workspace is a collection of files that can be opened by a single menu option (File: Open Workspace?) in Origin's Code Builder. Any text file can be a part of the collection. They do not necessarily have to be source code files; they could be notes, for example.

All files opened in the Multiple Document Window by a workspace can be edited and saved individually. In addition to files being opened in the Multiple Document Window, source code files can be added to the Workspace Window with the File: Add to Workspace menu option.

By including source code files in the Workspace Window, you can build individual or multiple files with the appropriate menu option or toolbar button. Header files can be referenced within source files and do not need to be loaded in the Workspace Window or even open in the Multiple Document Window.

Since you can save a workspace with a new name, you can have multiple workspace files. However, only one workspace file can be open at a time.

To create a workspace:

1. On the Standard toolbar, click the Code Builder button 6
2. From the Code Builder menu, select File: New Workspace. This creates a new workspace with the default name of "Untitled.ocw".
3. From the Code Builder menu, select File: New. This opens the New File dialog.
4. Choose C File, and type foo in the File Name text box. The Add to Workspace and Fill with Default Contents check boxes should be selected. You may accept the default Location. Click OK.
5. In FOO.C, starting below the line that says ?
start your functions here", type the following:
```
void bar()
{
```

```
    printf("Hello World!\n");
```

\}
6. Click the Build button . Origin automatically saves the source file and compiles and links the function.
7. From the Origin menu choose Window: Script Window.
8. To test our new function, type:
bar

9. Press ENTER

Origin responds by typing Hello World!

10. From the Code Builder menu, choose File: Save Workspace As?.

The figure shows the foo.ocw workspace file containing a single source file, foo.c, in the Multiple Document Window. The file has been added to the Workspace Window. The Output Window shows that the file has been compiled. The source file contains a single function ? bar() ? which is listed in the tree structure of the workspace.

Workspace Folders

The Code Builder workspace has four subfolders named Project, System, Temporary, and User. Files added by user, such as foo.c that you just added, are placed in the User subfolder. Origin, itself, uses Origin C for many analysis routines. When these routines are accessed, the Origin C source files are loaded into the Workspace into either the System subfolder or the Temporary subfolder. The Project subfolder is reserved for files that are saved and loaded with the Origin project. This aspect of attaching a file to the project is described in a separate tutorial.

Build on Startup

If you right click on "Origin C Workspace", the shortcut menu has a Build on Startup option. When this option is checked, the last workspace you saved will be loaded when you restart Origin. All source files in the Workspace will be built and all functions in the source files will be available for immediate use.

For information on building individual source files on startup by including information in the ORIGIN.INI file, please view Build on Startup

This concludes the tutorial on the Code Builder Workspace.

10.2.3 Adding New Origin C Functions to Origin

Summary

Functions written in Origin C are accessible from various locations within the Origin interface, such as the Script Window, provided they meet the following criteria: the function should return either void (as in the previous tutorial), double, string, or vectors of type double or string. Variables passed to the function from Origin should be of type double or string, or vectors of these types. Functions that do not meet these criteria are not callable from the Origin interface, but can be called within other Origin C functions. Note that although an Origin C function that accepts and returns type int can be called from the Origin interface, the data may be truncated since the interface only supports type double.

In this tutorial, you will be introduced to writing a math function that returns computed values. We will first create a function that returns type double to Origin, and then we will create a function that returns vectors of type double.

Minimum Origin Version Required: Origin 8.0 SRO

What you will learn

How to add a new function and how to run this function in the Script Window.

Steps

1. Start a new Origin C file in Code Builder.
2. Enter the following code:
```
double myfunc1(double x, double a)
{
    return sin( a * x );
}
```

3. Click the Build button ${ }^{\text {Gim}}$ to compile the function.

This function can now be called from the Origin interface, in places such as the Script Window.
4. Go to the Script Window, and type in the following lines, pressing ENTER at the end of each line:
$y=m y f u n c 1(2,3)$
y =
You can also use worksheet cells instead of absolute numbers:
5. Make a worksheet active, enter a number in the first row of column A. Then type the following into the Script Window and press ENTER:
$\operatorname{col}(B)[1]=\operatorname{myfunc}(\operatorname{col}(A)[1], 3)$
Note that a function such as myfunc1, that accepts and returns type double, can also be used to perform vector operations.
6. Fill rows 1 through 10 of Column A with numbers, and type the following into the Script Window:
$\operatorname{col}(B)=m y f u n c 1(\operatorname{col}(A), 3)$
In the above example, Origin calls the myfunc1 function for each row of column A. For performing vector operations as above, it is more efficient to write functions that accept and return vectors.
7. Go back to Code Builder and add the following function to the same file, and compile the file by clicking the Build button
vector<double> myfunc2(vector<double> vecIn, double a)
vector<double> vecOut;
vecOut = sin(a * vecIn);
return vecOut;
\}
8. Go back to the Origin interface, fill Column A with some new numbers, and type the following into the Script Window:
$\operatorname{col}(B)=\operatorname{myfunc} 2(\operatorname{col}(A), 3)$
The function myfunc2 is called only once for computing the entire column.
Note that you can use such functions in other places such as the "Set Column Values" dialog. The Auto Update feature of "Set Column Values" can be enabled by checking the appropriate check box in this dialog. As long as the Origin C function is compiled and ready to be called from Origin, any changes to the source column will result in an update of the destination column.

10.2.4 Organizing and Accessing Origin C Functions

Summary

Techniques for using your Origin C functions.

Minimum Origin Version Required: Origin 8.0 SRO

What you will learn

This tutorial will show you how to:

- Save your Origin C Function with your Project
- Associate your Programs with Visual Objects
- Load and Compile your Origin C Function from script

Saving your Origin C Function with your Project

One way to load and compile your Origin C function is to save the Origin C file as an attachment to your Origin Project (*.OPJ) file. When a project file is opened, all files attached to it are separated out and stored in a temporary folder. In addition, any Origin C file that was attached is also automatically loaded into the Code Builder workspace, and compiled. The function is then ready to be called upon opening the Origin Project file.

1. Start a new Origin project file by clicking on the New Project button \square on the Standard Toolbar.
2. On the Standard Toolbar, click the Code Builder button \square
3. From the Code Builder menu, select File: New. This opens the New File dialog box.
4. In the top list-box, select C File.
5. In the File Name text box, type: Test. Keep the Add to Workspace check box selected. Click OK. The file Test.c is added to the workspace.
6. Select and copy the following function, and paste it into the Test.c file. Be sure to paste the text below the line that reads "//start your functions here."
```
void Plot_Data(string strTemplate, string strData)
{
    // Create a graph window from a Template
    GraphPage gp;
    BOOL bOK = gp.Create(strTemplate, CREATE_VISIBLE);
    if( !bOK )
            return;
    // Attach the first layer (0) to a GraphLayer object
    GraphLayer gl = gp.Layers(0);
    //Attach a dataset to a Curve object
    Curve crv(strData);
    // Add the Curve to the graph layer
    int nPlot = gl.AddPlot(crv);
    if(nPlot >= 0)
    {
            // Set plot color to Green(2)
            gl.DataPlots(nPlot).SetColor(2, TRUE);
            // Rescale this graph layer
```

```
gl.Rescale();
}
```

\}

The Plot_Data function takes two arguments: (1) the template name and (2) the name of a Y dataset to include (plot) in the layer.
7. Click the Build button to compile and link the file.
8. Drag-and-drop the file Test.c from the User subfolder branch of the Workspace tree, to the Project subfolder. (Hint: You may need to first expand the User subfolder branch to display the Test.c entry prior to dragging the file).
9. Go back to the Origin interface and save the project by clicking the Save button on the Standard Toolbar. Give the project the name Test.OPJ, and save it in a location of your choosing.
10. The Origin C file, Test.c, is now saved with the Project. To verify this, close the project, and go back to Code Builder. You will see that there are no entries under the Project subfolder of the Workspace tree. Now go back to Origin interface and reopen the project. Go to Code builder and verify that Test.c is now listed under the Project subfolder (Hint: you may need to expand the Project subfolder branch to see the Test.c entry).

Associating your Programs with Visual Objects

You will now learn how to create a button on a worksheet and program the button to call the Origin C function in the Test.c file that you saved with the project.

1. Open the Test.OPJ project that you saved under step 9 (previous section).
2. Highlight the $A(X)$ and $B(Y)$ columns, right-click and select Fill Columns With: Row Numbers.
3. From the menu, select Format: Worksheet to open the Worksheet Properties dialog box.
4. In the Size tab, Worksheet Measurement branch, set the Gap from Top to $\mathbf{4 0}$ and click OK to close the dialog.

The worksheet now has sufficient space above the column headings to add a text label. Right-click in the area directly above the two columns and choose Add Text.
5. At the cursor, type: Plot Data.
6. Click once outside the text label to deselect it.
7. Right-click on the text label and choose Programming Control to open the Programming Control dialog box. (Hint: Please choose Label Control in Origin 7.5)
8. From the Script, Run After drop-down list, choose Button Up.
9. Type the following script in the text box at the bottom of the dialog box:

Plot_Data("scatter","book1_b");
10. Click OK.

Your text label will now look like a button.

11. Click the Plot Data button on your worksheet.
12. The Plot_Data function in your Test.c file is called, and a scatter plot is created.

Notes: The script behind the button assumes that you have data in column $B(Y)$ of the Data1 worksheet and that there is an associated X data set.

Loading and Compiling your Origin C Function from Script

In this tutorial we learned how to save an Origin C function along with the project file and then access the function from the Origin interface. Saving an Origin C file with a project limits access to functions within that file to only that project. When a new project is opened, the functions are not available any more.

To access functions in an Origin C file that is saved on disk, the file can be programmatically loaded and compiled using LabTalk script. The script command for performing the programmatic load and compile is run.LoadOC. Refer to the LabTalk Help files (Help: Programming: Labtalk) for more information on using this command.

This concludes the Origin C Functions tutorial.

10.2.5 Calling NAG Functions From Origin C

Summary

Calling a NAG function from an Origin C function is very much like calling any other Origin C function. You must familiarize yourself with the desired NAG function to gain an understanding of what parameters the function requires to be passed as arguments and what parameters the function returns. Once familiar with the function, you must develop code that follows the function's requirements.

The NAG header file containing the function's prototype must be included, required parameters must be correctly declared, sized, and initialized, and the function call must follow the function's prototype
as described in header file. The objective of this tutorial is to demonstrate how to call a NAG function from an Origin C function.

Minimum Origin Version Required: Origin 8.1 SR1
What you will learn

This tutorial will show you how to:

- Understand NAG functions
- Get Ready to Debug Sample Code
- Include the NAG Header
- How to See the Declaration of NAG Function
- How to Get NAG Error Code
- How to Use Function Pointer

Understand NAG Functions

The primary resource for understanding NAG functions is NAG library. The library also can be found in Origin C Reference. For example, d01ajc NAG function:

1. From the Origin menu select Help: Programming: OriginC. In the Origin C Reference book, expand the Global Functions book, expand the NAG Functions book, and choose Accessing NAG Functions Category and Help.
2. Select Quadrature (d01) category and then select nag_1d_quad_gen (d01ajc) function.
3. The selected page is one PDF file. Study the nag_1d_quad_gen function as needed to understand the description of the function, the function's prototype, and the description of all arguments. Sample data and an example program calling the function are also often included.

Secondary resource for understanding the Origin C NAG functions is Examples book. From the Origin menu select Help: Programming: OriginC, expand Examples book, expand Analysis book, choose Accessing NAG Functions, there are some examples to show how to call NAG functions in Origin C.

Get Ready to Debug Sample Code

The best way to understand how to write an Origin C function that calls a NAG function is to step through an example function in Debug mode. Follow the steps below to set up Origin and Code Builder to execute such a sample Origin C function in Debug mode.

1. From the Code Builder menu, select File: New. This opens the New File dialog box.
2. In the File Name text box, type: TestNAG, Keep Add to Workspace checkbox is checked. Click OK. The file TestNAG.c is added to the workspace.
3. Select and copy the following function, and paste it into the TestNAG.c file. Be sure to paste the text below the line that reads "// Include your own header files here."
```
// Include your own header files here.
#include <0C_nag8.h>
```

//
// Start your functions here.

```
//NAG_CALL denotes proper calling convention. You may treat it
//like a function pointer and define your own integrand
double NAG_CALL f(double x)
{
    return (x*sin(x*30.0)/sqrt(1.0-x*x/(PI*PI*4.0)));
}
void nag_d01ajc_ex()
{
    double a = 0.0;
    double b = PI * 2.0; // integration interval
    double epsabs, abserr, epsrel, result;
    // you may use epsabs and epsrel and this quantity to enhance
    // your desired precision when not enough precision encountered
    epsabs = 0.0;
    epsrel = 0.0001;
    // The max number of sub-intervals needed to evaluate the
    // function in the integral. The more diffcult the integrand
    // the larger max_num_subint should be.
    // For most problems 200 to 500 is adequate and recommmended
    int max_num_subint = 200;
    Nag_QuadProgress qp;
        static NagError fail;
        d01ajc(f, a, b, epsabs, epsrel, max_num_subint,
                            &result, &abserr, &qp, &fail);
        // For the error other than the following three errors.
        // which are due to bad input parameters or allocation failure
        // NE_INT_ARG_LT NE_BAD_PARAM NE_ALLOC_FAIL.
        // You will need to free the memory allocation before calling
        // the integration routine again to avoid memory leakage.
        if (fail.code != NE_INT_ARG_LT &&
            fail.code != NE_BAD_PARAM &&
            fail.code != NE_ALLOC_FAIL)
        {
        NAG_FREE(qp.sub_int_beg_pts);
        NAG_FREE(qp.sub_int_end_pts);
        NAG_FREE(qp.sub_int_result);
        NAG_FREE(qp.sub_int_error);
        }
    printf("%10.6f", result);
}
Include the NAG Header
#include <OC_nag8.h>
This header file containing all the header files of NAG functions, and all type define and error code define. So just include this one function should be enough.
How to See the Declaration of NAG Function
```

See the declaration of NAG functions from the header file:

1. Acivate TestNAG.c file that created in above section, move scoll bar to find out \#include <OC_nag.h> line.
2. Right-click anywhere in the line and select Open "OC_nag.h". This opens the header file containing all nag headers.
 press ENTER button to find out this line. Function d01ajc belongs to d01 category, so the header file name should be nagd01.h.
3. Right-click anywhere of this line to choose Open "NAG\nagd01.h". This opens the header file including the prototype of the functions.
4. In the Search combo box, type d01ajc and press ENTER button to go to the declaration of this function.

To see the declaration of functions from NAG PDF:

- NAG PDF Online
- NAG PDF Files

How to Get NAG Error Code

1. Reactivate the TestNAG.c window in Code Builder. In this file, define a NagError variable fail and pass it as last argument to function dOlajc.
2. NAG function returns error code into NagError variable code item. In this example, can access NAG error code by fail.code.

How to know what error codes will be got:
3. Open Origin C Help from Origin menu Help: Programming: OriginC, expand Origin C Reference book, Global Functions book, NAG Functions book and choose Accessing NAG Functions Category and Help.
4. In Chapters of NAG C Library table, choose d01 to enter Quadrature page, select d01ajc in the table of this category to open the PDF help of this NAG function.
5. Drag scall bar to page down to $\mathbf{5}$ Error Indicators and Warnings part, there list all error codes for this function and the related description. Can directly use these error codes in Origin C if included correct header file (include <OC_nag8.h>, this header containing all NAG headers, or directly include <NAG8\nag_errlist.h>), for example NE_INT_ARG_LT, NE_BAD_PARAM, NE_ALLOC_FAIL used in TestNAG.c file.

How to Use Function Pointer

1. Open nagd01.h file from Origin program path \OriginC\system\NAG folder.
2. In this file, find out the declaration of d01ajc function. The first argument type of this function is NAG_D01AJ C_FUN.
3. Double-click NAG_D01AJ C_FUN to high-light it. From menu choose Edit: Find in Files to open Find in Files dialog. Set settings same as the following picture, click Find button.

4. Searching result display in Output window. Double click nag_types.h line to go to this file, typedef NAG_D01_FUN NAG_D01AJ C_FUN line, you can find the define of NAG_D01_FUN nearby.
5. The define of NAG_D01_FUN is
```
typedef double (NAG_CALL * NAG_D01_FUN)(double);
```

6. User defined function should keep the same return type and argument list as this define. And NAG_CALL denotes proper calling convention and it should be used in your own function.
7. Activate TestNAG.c file. There is a function named \mathbf{f} and it used as function pointer in d01ajc as the first argument.
```
double NAG_CALL f(double x)
{
    return (x*sin(x*30.0)/sqrt(1.0-x*x/(PI*PI*4.0)));
}
```


10.2.6 Accessing Internal Origin Objects by Origin C

Summary

Internal Origin objects (such as Project Explorer folders, Origin windows (pages), layers, plots, graphic objects, data sets, etc.) are accessed using Origin C classes. To access or programmatically control an internal Origin object, you must attach it to an Origin C object.

To attach something to an internal Origin object you must first "find" it using the properties, methods, and collections of a container class. Common container classes include the Project, Folder, Page, GraphPage, Layer, GraphLayer, Worksheet, MatrixLayer, and Collection classes. Once found, an internal Origin object can easily be attached to an Origin C object of the appropriate type.

The internal Origin object is then programmatically controlled by manipulating the class methods and properties of the attached Origin C object. The objective of this tutorial is to demonstrate how to find particular internal Origin objects, attach things to those objects, and access the objects by manipulating the methods and properties of the attached Origin C objects.

Minimum Origin Version Required: Origin 8.1 SR1

What you will learn

This tutorial will show you how to:

- Access Worksheet Related Objects
- Access Graph Related Objects

Accessing Worksheet Related Objects

Familiarity with the Origin C Project class (Project.h), the Collection class (Collection.h), and the Folder class (Folder.h), is valuable when attempting to understand how to find particular internal Origin Objects. Users may find it helpful to preview these classes in the Origin C Reference: Classes book of Origin C Help or in the above header files located in the ..\Origin\OriginC\system subfolder.

To begin this tutorial:

1. On the Standard toolbar, click the New Project button
2. On the Standard toolbar, click the Code Builder button
3. On the Code Builder menu, select File: New Workspace.
4. On the Code Builder menu, click the Open button
5. Browse to the \Samples\Origin C Examples\Programming Guide\Introduction to Accessing Origin Objects folder in the Origin software directory, select AccessWorksheetObjectsTutorial.c, check the Add to Workspace check box and click Open.
6. On the Code Builder toolbar, click the Rebuild All button 曾. This compiles and links the file.
7. On the Code Builder View menu, verify that the LabTalk Console (Command \& Results) and the Local Variables windows are visible (the corresponding menu items should be checked).
8. From the Code Builder menu, select Tools: Customize. Select the Toolbars tab and make sure that the Debug toolbar check box is selected.
9. In Code Builder, activate AccessWorksheetObjectsTutorial.c.
10. Near the top of the file, locate and click on the line:

PageBase pb;
You can position the cursor anywhere on the line.
11. From the Code Builder menu, select Debug: Toggle Breakpoints. Alternately, press F9 or click the Toggle Breakpoint button 秝 on the Debug toolbar.

A brown circle is displayed in the gray margin to the left of the above line indicating that a Debug breakpoint has been set for that line.
12. In the Code Builder workspace, activate the LabTalk Console (Command \& Results window) and type in the following:

AccessWorksheetObjectsTutorial
13. Press ENTER to execute the function.

1) AccessWorksheetobjectsTutorial
14. On the Debug toolbar, press the Step I nto button
15. Press the Step Into button ${ }^{\text {Ft }\}}$ repeatedly, stopping to read the comments for each statement. Periodically stop and resize and/or reposition the Local Variables window to view the current runtime value of each variable.

Accessing Graph Related Objects

1. Return to the Origin workspace and, on the Standard toolbar, click the Open button

2．Browse to the \Samples\Origin C Examples\Programming Guide\Introduction to Accessing Origin Objects subfolder，select AccessGraphObjectsTutorial．OPJ，and click Open．You may be prompted to save changes to an untitled project．Click No and a worksheet and graph should open．

3．From the Code Builder menu，select File：New Workspace．Click No when prompted to save workspace changes．

4．In Code Builder，click the Open button
5．Browse to the \Samples\Origin C Examples\Programming Guide\Introduction to Accessing Origin Objects subfolder，select AccessGraphObjectsTutorial．c，select the Add to Workspace check box，and click Open．
6．Click the Rebuild All button 菷 to compile and link the file．
7．On the Code Builder View menu，verify that the LabTalk Console（Command \＆Results）and the Local Variables windows are visible（the corresponding menu items should be checked）．
8．From the Code Builder menu，select Tools：Customize．Select the Toolbars tab and make sure that the Debug toolbar check box is selected．

9．In the Code Builder workspace，activate AccessGraphObjectsTutorial．c．
10．Near the top of the file locate and click on the line：

GraphPage gp；
You can position the cursor anywhere on the line．

11．From the Code Builder menu，select Debug：Toggle Breakpoints．Alternately，press F9 or click the Toggle Breakpoint button 利｜on the Debug toolbar．

A brown circle is displayed in the gray margin to the left of the above line indicating that a Debug breakpoint has been set for that line．

12．Activate the LabTalk Console（Command \＆Results window）in Code Builder and type the following：

AccessGraphObjectsTutorial

13．Press ENTER to execute the function．

14．On the Debug toolbar，press the Step I nto button ${ }^{〔+\}}$

15．Press the Step Into button ${ }^{〔+\}}$ repeatedly，stopping to read the comments for each statement． Periodically stop and resize and／or reposition the Local Variables window to view the current run－ time value of each variable．

This concludes the Internal Origin Objects tutorial．

10．3 X－Functions

Topics covered in this section:

1. Command Window
2. Introduction to X-Functions
3. How to Create a Wizard

10.3.1 Command Window and X-Functions

Summary

Many of Origin's analysis tools and other data processing tools have been implemented using XFunctions. The Command Window provides a convenient way to run these functions.

Another important use for the Command Window is to send LabTalk script commands to Origin. Script commands can range from simple math and data operations, to user-created X-Functions or Origin C functions.

Minimum Origin Version Required: Origin 8.0 SR6

What you will learn

This tutorial will introduce you to the Command Window and show you how to:

- Perform simple calculation
- Access worksheet cells/columns
- Access X-Functions

Command Window

The Command Window consists of two panels: the Command Panel and History Panel:

The Command Window is normally located at the bottom right corner of the screen, but if it is not visible, you can access it by pressing Alt+3 or by selecting View: Command Window.

When typing in the Command Panel, the Auto Complete support allows you to choose among XFunction script commands and OGS files in the current working folder. The command and OGS file name will be respectively preceded by Xf and LT. You can move up and down the list using the arrow
keys; pressing Enter selects the item. After your selection, press the space bar and the Auto Complete now shows you the available options for the command.

Examples

Perform Calculations

The Command Window can be used as a calculator or to access any of Origin's mathematical functions. See the examples below.

Single Line

One of the more basic uses for the Command Window is as an interface to perform simple calculations. For example, type the following:
$2+2=$
Press ENTER. Origin returns
$2+2=4$

| - $-\sqrt{4}$ Command Window | | - \times |
| :---: | :---: | :---: |
| //--9/16/2007 | $\left\lvert\, \begin{aligned} & \gg 2+2= \\ & 2+2=4 \\ & \gg \end{aligned}\right.$ | |
| $2+2=$; | | |
| < III $>$ | | |

Multiple Lines

If you are typing multiple lines of scripts, first edit it in Code Builder (View:Code Builder) or any text editor, such as Windows Notepad, ending each line with a semi-colon, and then Copy + Paste the script in the Command Window, and press ENTER to execute. For example, paste the following script in the Command Window and ENTER:

```
sum = 0;
loop(ii, 1, 10)
{
    sum += ii;
}
sum = ;
```

 Origin returns:
 SUM=55

Functions

Any mathematical function, built-in as well as user-created, can be executed from the Command Window. For example, type:
$\ln (10)=$
Origin returns natural logarithm value of 10 .

Access Worksheet Values

You can also use the Script Window to read and write worksheet values, or to perform math operations on datasets.

1. Enter the following data into a fresh worksheet:

| \# ${ }_{\text {\# }}$ Book1 | | $\square \square$ | X |
| :---: | :---: | :---: | :---: |
| | $A(x)$ | 日() | \wedge |
| Long Name | | | |
| Units | | | |
| Comments | | | |
| 1 | 1 | 6 | |
| 2 | 2 | 7 | |
| 3 | 3 | 8 | |
| 4 | 4 | 9 | |
| 5 | 5 | 10 | \checkmark |
| 1 Sheet 1 | | < ${ }^{\text {a }}$ | .: |

2. To return the value in the first cell of the second column, type the following:
$\operatorname{cell}(1,2)=$
3. Press ENTER. Origin returns:
$\operatorname{CELL}(1,2)=6$
You can also use the column name and row number to reference cell values.
4. Type the following:
$\operatorname{col}(B)[1]=$
5. Press ENTER. Origin returns:
$\operatorname{COL}(B)[1]=6$
Notes: In addition to using the column name, you can also use the dataset name. In LabTalk, the syntax for naming datasets is worksheetName_columnName. So, For example, Book1_A[1]= would return the first element of column A in worksheet Datal. Also, if the worksheet that you are referencing is the active window, you can use the LabTalk string variable \% H , in place of the worksheet name. For example, \%H_A[1].

To subtract the value in row 1 of column A, from all the values in column B ?
6. Type the following:
$\operatorname{col}(B)=\operatorname{col}(B)-\operatorname{col}(A)[1]$
7. Press ENTER. Your worksheet now reads:

| \# Book1 | $\square \square$ | | \times |
| :---: | :---: | :---: | :---: |
| | $\mathrm{A}(\mathrm{C})$ | $\mathrm{B}(1)$ | \wedge |
| Long Name | | | |
| Units | | | |
| Comments | | | |
| 1 | 1 | 5 | |
| 2 | 2 | 6 | |
| 3 | 3 | 7 | |
| 4 | 4 | 8 | |
| 5 | 5 | 9 | |
| | | $1<0\rangle$ | \because |

Let's use what we have learned about executing multiple lines of script in the Script window. We will multiply every value in a column of data by some constant b .
8. Type the following:
$b=3$;
Press CTRL+ENTER. Recall that this gives us a carriage return without executing the command.
9. Now type:
$\operatorname{col}(A)=\operatorname{col}(A) * b ;$
Again, Press CTRL+ENTER.
10. Choose Edit from the Script window's menu bar. Script Execution should have a check mark next to it; if not, single-click on the menu item to place a check mark there.
11. Now, select the two lines of script that you just entered into the Script window and press ENTER.

[^4]| \#1800k1 | | - | x |
| :---: | :---: | :---: | :---: |
| | A(c) | B(0) | \wedge |
| Long Name | | | |
| Units | | | |
| Comments | | | |
| 1 | 3 | 5 | |
| 2 | 6 | 6 | |
| 3 | 9 | 7 | |
| 4 | 12 | 8 | |
| 5 | 15 | 9 | \checkmark |
| Q\|- Sheet 1 | | | |

Notes: The following C notation is also supported:

$$
\begin{aligned}
& b=3 ; \\
& \operatorname{col}(A)^{*}=b ;
\end{aligned}
$$

You can also use linear interpolation or extrapolation on a specified X dataset to find the corresponding interpolated or extrapolated value in a Y dataset. This requires using a new notation with parentheses () instead of brackets [].

In this example, book1_b is a Y dataset and (4) is a value in an X dataset (book1_a) for which you want to find a corresponding, interpolated Y value.
12. Type the following:
book1_b(4) =
13. Press ENTER. Origin returns:

B00K1_B(4)=5.333333

This is a line plot of our simple worksheet data. You can see that our interpolated Y value ? the one corresponding to $X=4$? is 5.333333 .
14. If the columns you work with are in different worksheet/workbook, you should use the range variables to represent the worksheet columns. For example, this script calculates the sine value on Book1 column A, and puts the result in Book2 column A (You must have Book2 before hitting Enter):

```
range a = [Book1]Sheet1!Col(A);
range b = [Book2]Sheet1!Col(A);
b = sin(a);
```


Access X-Functions

Origin 8 provides a large collection of X-Functions for performing a wide variety of data processing tasks. Of this collection, many of the X-Functions are accessible from LabTalk script. The functions accessible from script provide a powerful environment for users to create custom script code for their routine tasks.

X-Functions that are accessible from script can be listed in the Command Window, and you can also obtain help on the command syntax as well as make use of auto completion of commands for such functions.

X-Functions accept data range string or range variable for specifying source and destination data for the operation. For example, the smooth X-Function under signal processing can be accessed from the Command Window as follows:

1. Import the file \Samples\Single Processing\Signal with Shot Noise.dat.
2. In the Command Window, type the following:
smooth iy:=Col(2) method:=1 npts:=200
3. When you press ENTER, the result will append to the source worksheet.

4. For help in using this smooth X-Function, you can type
help smooth
5. to open the corresponding Help.

10.3.2 Introduction to X-Functions

Summary

X-Functions provide a structured programming environment that offers a framework for building Origin tools. Different from the simple GetN box, creating tools by using X-Functions allows the user to focus on the actual data processing code and not have to worry about codes for the user interface.

Most of the dialogs/functions in Origin 8 are X-Functions, and many of them can be run from both menu and command line mode. The flexibility of running X-Functions makes them an attractive approach to customizing Origin

Minimum Origin Version Required: Origin 8.0 SRO
What you will learn

- How to create an X-Function
- How to make the X-Function script accessible
- How to use the X-Funciton in dialog mode

Create an X-Function

1. Select Tools: X-Function Builder or press F10 to open the X-Function Builder dialog
2. Set Name, Label and Data of the 1st variable as ix, Source and <active>
3. Right click in the list panel and select Add Variables from the context menu.
4. Set Name, Label, Input/ Output and Data of the 2nd variable as ox, Destination, Output and <new>
5. Select File:Save to save the x-function as vcopy

| \square X-Function Builder - Miscellaneous: vcopy (User) $\square \square \times$ | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| File Tools | | | | | | |
| | | | | | | |
| X-Function vcopy | | | | | | |
| Variables: (right-click to add/del) | | | | | | |
| | Name | Label | Input/Output | Data Type | Data | Contre |
| | ix | Source | Input \quad | vector | - <active> | |
| | ox | Destination | Output | vector | - snew> | |
| \leqslant | | | IIII | | - | \geq |

6. Click $\stackrel{\text { 雨 }}{ }$ to open Code Builder
7. Add the following codes in the vcopy function in code builder
```
void vcopy(const vector& ix, vector& ox)
{
    if (!ix || !ox)
        XF_THROW(CER_NO_DATA);
    ox = ix;
}
Making the X-Function Script Accessible
```

1. Click the Return to Dialog button in Code Builder
2. In the X-Function Builder, save your changes
3. Open the X-Function in Tree View by clicking 튼
4. Open the Usage Context branch. Make sure the Labtalk check box is selected

5. Save the x-function and close the X-Function Dialog
6. Fill column (A) with row numbersw in the active worksheet (Highlight column(A), right-click and select Fill Column with: Row Numbers)
7. Type the following script in the command window, Column(A) will be copied to Column(B)
vcopy col(a) col(b)
Using the X-Function in Dialog Mode
8. Open the X-Function Dialog and open VCOPY.OXF in Tree View
9. Open the Usage Context branch
10. Open the Menus branch, make sure Simple GetNBox is selected from the Auto GetN Dialog list box

11. Save the x-function and close the \mathbf{X}-Function Dialog
12. Type following script in the command window, Dialog of VCOPY.OXF will be opened vcopy -d

| Miscellaneous: vcopy (User) | |
| :--- | ---: |
| Dialog Theme | |
| | |

Description

OK
Cancel

10.3.3 How to Create a Wizard

Summary

A wizard is a graphical user interface that includes a series of dialogs to direct a user to complete a mission step by step. A wizard makes a complex task easier to perform. Origin provides several classes in Origin C for users to develop a wizard. The dialog for each step in the wizard can be created using an X-Function.

In this example, the wizard will perform a normality test and then a one-sample t-test for data in a column. The normality test's result can be shared in one-sample t-test.

Note: This tutorial requires the Develop Kit.
Minimum Origin Version Required: Origin 8.1SRO
What you will learn

- How to create an X-Function.
- How to share a variable or a DataRange in different steps.
- How to call an X-Function in OriginC.
- How to create a wizard.

Create four X-Functions

1. Select Tools: X-Function Builder or press F10 to open X-Function Builder dialog
2. Add the variables as follows and save the X-Function as "StatTest" in the User Files folder, User Files\X-Functions\Statistics\Hypothesis Testing.

File Tools

X-Function StatTest
Variables: (right-click to add/del)

| Name | Label | Input/Output | | Data Type | | Data | Control | Option String |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| wks | Source Page | Input | \checkmark | Worksheet | | 〈active> | | |
| tn | Theme Name | Input | \checkmark | string | - | | | |
| t | Theme Tree | Input | \checkmark | TreeNode | \checkmark | | | |
| tio | Input Output Tree | Input | \checkmark | TreeNode | \checkmark | | | |
| script | Script Mode | Input | \checkmark | int | \checkmark | 0 | | |

3. Click the New X-Function Wizard button. Add the variables as follows and save the X-Function as "StatTestWizGoal" in the User Files folder, User Files\X-Functions\Statistics\Hypothesis Testing.

| \square X-Function Builder - Statistics Vhypothesis Testing: StatTes... $\square \square \times$ | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| File Tools | | | | | | | | | |
| | | | | | | | | | |
| X-Function StatTestWizGoal | | | | | | | | | |
| Variables: (right-click to add/del) | | | | | | | | | |
| | Name | Label | Input/ | | Data Type | Data | Control | Option Strin | |
| | goal | Goal | Input | \checkmark | int * | 0 | BothlOnly t-test | P:0 | |
| | input | Input | Input | \checkmark | Range * | <active〉 | | P:0 | |
| | $\mathrm{n} \times \mathrm{FCorePointer}$ | | Input | \checkmark | int $*$ | | | V:0;T:1 | |
| \leqslant | | | | | III | | | | \geqslant |

4. Click the New X-Function Wizard button. Add the variables as follows and save the X-Function as "NormalityTest" in the User Files folder, User Files\X-Functions\Statistics\Hypothesis Testing.

| \square X-Function Builder - Statistics Hypothesis Testing: Normalit... $\square \times$ | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|
| File Tools | | | | | | | | | |
| | | | | | | | | | |
| X-Function NormalityTest | | | | | | | | | |
| Variables: (right-click to add/del) Shapiro-Wilk\|Kolmogorov-Smirnov|Lilliefors | | | | | | | | | |
| Name Label Input/Output Data Type Data Control Option String | | | | | | | | | |
| type Type Input $*$ int Shapiro-Wilk hogorov | | | | | | | | | |
| | | | | | | | | | |
| stat Statistics Output * double * G:-Output:U:n | | | | | | | | | |
| df zes of Fre Output double * U:n | | | | | | | | | |
| prob P-value Output \rightarrow double * G:JU:n | | | | | | | | | |
| Degrees of Freedom | | | | | | | | | |

5．Click the New X－Function Wizard button．Add the variables as follows and save the X－Function as＂OnetTest＂in the User Files folder，User Files\X－Functions\Statistics\Hypothesis Testing．

| W－Function Builder－StatisticsVHypothesis Testing：OnetTest（User） | | | | | $\square \square$ | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| File Tools | | | | | | |
| \therefore 园回 禹 医 | | | | | | |
| X－Function OnetTest | | | | | | |
| Variables：（right－click to add／del）\quad Radio：Mean＜0｜Mean＞0｜Mean | | | | | | |
| | Name | Label | Input／OL Data Type | Data Control | Option String | |
| | prob | Prob of Normality Test | Outpu＊double＊ | ＂unassigned | U： n | |
| | mean | Test Mean | Input＊double－ | 0 | | |
| | null | Null Hypothesis | Input - string $*$ | Mean＝0 | | |
| | tail | Alternate Hypothesis | Input－int＊ | 0 －0｜Mea | | |
| | siglevel | Significance Level | Input - double $*$ | 0.05 | | |
| | nXFCorePointer | | Input＊int | （unassigned＞ | $\mathrm{V}: 0 ; \mathrm{T}: 1$ | |
| | stat | Statistic | Outpu＊double＊ | | G：－Output：U： | |
| | df | Degrees of Freedom | Outpu＊double＊ | | U： n | |
| | tprob | P －value | Outpu－double＊ | | U： n | |
| | $\mathrm{lc\mid}$ | Lower Confidence Limit | Outpu－double＊ | ＜unassigned | U： n | |
| | ucl | Upper Confidence Limit | Outpu－double＊ | ：unassigned | G：U：n | |
| \leq | | | IIII | | $\square \geqslant$ | \geqslant |

Note that the X－Functions NormalityTest and OnetTest have the same variable＂prob＂，which is a shared variable and will be declared in the source file．

Update X－Function＇s Property in Tree View

1. Open the X-Function StatTest. Click the TreeView button ${ }^{\underline{E} \text { to open the Tree View. Make the }}$ following settings in the Tree View.

2. Click the Save OXF file button to save the X-Function.
3. Open the X-Function StatTestWizGoal, NormalityTest and OnetTest respectively in XFunction Builder. Click the TreeView button ${ }^{\text {F }}$ and type "Select Wizard Goal", "Normality Test" and "One-Sample t-test" in the Description edit box of each X-Function's Tree View, which will be shown in the dialogs.

Create Files for the Wizard

- Click the Code Builder button on the Standard toolbar. In Code Builder, click the New button. In the New File dialog, select H File, click the Browse button, and select the User Files folder, User Files\OriginC as the new header file's Location. Then type StatTestWiz in the File Name edit box. Click OK to close the dialog.

Add the following script to StatTestWiz.h file.

```
#ifndef
```

\qquad

```
        STAT_TEST_WIZ_H__
#define
```

\qquad

``` STAT_TEST_WIZ_H_
```

```
#include <..\OriginLab\XFWiz.h>
```

\#include <..\OriginLab\XFWiz.h>
\#include <..\OriginLab\XFCore.h>

```
#include <..\OriginLab\XFCore.h>
```

```
#include <..\OriginLab\XFWizard_utils.h>
class StatTestWizCore : public XFCore
{
public:
    StatTestWizCore();
public:
    void ChangeGoal(int nGoal);
    DataRange GetRange();
    int nStep;
protected:
};
int stat_test_run_wiz_nodlg(LPCSTR lpcszThemeName = NULL, const
XFWizTheme *pXFWizTheme
= NULL, const XFWizInputOutputRange *pXFWizIO = NULL, DWORD dwOPUID =
0);
int stat_test_open_wiz_dlg(LPCSTR lpcszThemeName = NULL, const
XFWizTheme *pXFWizTheme
= NULL, const XFWizInputOutputRange *pXFWizIO = NULL, DWORD dwOPUID =
0);
#endif //___STAT_TEST_WIZ_H__
```

Click the Save button to save StatTestWiz.h file.

- Repeat the same operation to create a new C File, StatTestWiz.c .

Add the following script to StatTestWiz.c file.

```
////////////////////////////////////////////////////////////////////
////////////
#include <..\OriginLab\XFWizManager.h>
#include <..\OriginLab\WizOperation.h>
#include <..\OriginLab\XFWizNavigation.h>
#include <..\OriginLab\XFWizScript.h>
#include <..\OriginLab\XFWizDlg.h>
///////////////////////////////////////////////////////////////////////
////////////
// Include your own header files here.
#include "StatTestWiz.h"
enum
{
        GOAL_ALL = 0,
        GOAL_SIMPLE,
};
//Names of three X-Functions
#define STR_STEP_GOAL "StatTestWizGoal"
```

```
#define STR_STEP_Normal "NormalityTest"
#define STR_STEP_TTest "OnetTest"
//Names of steps shown in the wizard.
#define STR_LABEL_STEP_GOAL "Goal"
#define STR_LABEL_STEP_Normal "Normality Test"
#define STR_LABEL_STEP_TTest "One-Sample t-test"
///////////////////////////////////////////////////////////////////////
////////////
//Class StatTestWizTheme
class StatTestWizTheme : public XFWizTheme
{
public:
    StatTestWizTheme();
};
//Name of the variable prob shared by X-Functions NormalityTest and
OnetTest
#define STR_GETN_VAR_SHARED_NProb "prob"
StatTestWizTheme::StatTestWizTheme()
:XFWizTheme()
{
    m_saSharedList.Add(STR_GETN_VAR_SHARED_NProb); //Add the shared
variable
}
//////////////////////////////////////////////////////////////////////
////////////
class StatTestWizInputOutputRange : public XFWizInputOutputRange
{
};
///////////////////////////////////////////////////////////////////////
////////////
//Class StatTestWizManager
#define STR_CLASS_NAME_TEST "StatTestWiz"
#define TEST_VERSION_NUMBER 1.0
class StatTestWizManager : public XFWizManager
{
public:
    StatTestWizManager(LPCSTR lpcszThemeName = NULL, const XFWizTheme
*pXFWizTheme
= NULL, const XFWizInputOutputRange *pXFWizIO = NULL, DWORD dwUIDOp =
0);
protected:
    virtual double GetVersion() { return TEST_VERSION_NUMBER; }
    virtual XFCore* CreateXFCore() { return new StatTestWizCore; }
    virtual XFWizTheme* CreateXFWizTheme() { return new StatTestWizTheme;
}
    virtual XFWizInputOutputRange* CreateXFWizInputOutputRange()
                            { return new StatTestWizInputOutputRange; }
    virtual string GetClassName() { return STR_CLASS_NAME_TEST; }
```

```
};
StatTestWizManager::StatTestWizManager(LPCSTR lpcszThemeName, const
XFWizTheme
*pXFWizTheme, const XFWizInputOutputRange *pXFWizIO, DWORD dwUIDOp)
: XFWizManager(lpcszThemeName, pXFWizTheme, pXFWizIO, dwUIDOp)
{
    StringArray saMapXFNames = {STR_STEP_GOAL, STR_STEP_Normal,
STR_STEP_TTest};
    StringArray saMapXFLabels = {STR_LABEL_STEP_GOAL,
STR_LABEL_STEP_Normal,
    STR_LABEL_STEP_TTest};
    m_saMapXFNames = saMapXFNames;
    m_saMapXFLabels = saMapXFLabels;
    ASSERT( m_saMapXFNames.GetSize() == m_saMapXFLabels.GetSize() );
    StringArray saDefaultXFNames = {STR_STEP_GOAL, STR_STEP_Normal,
STR_STEP_TTest};
    m_saDefaultXFNames = saDefaultXFNames;
    m_strRunDlgName = _L("Stat Test");
}
///////////////////////////////////////////////////////////////////
////////////
//Class StatTestWizCore
StatTestWizCore::StatTestWizCore()
:XFCore()
{
    StringArray vsXFsRecalculateShown = {STR_STEP_GOAL};
    m_vsXFsRecalculateShown = vsXFsRecalculateShown;
    nStep = GOAL_ALL;
}
//Select steps in the Goal Step
void StatTestWizCore::ChangeGoal(int nGoal)
{
    XFWizNavigation *pXFWizNavg = (XFWizNavigation
*)GetXFWizNavigation();
    ASSERT(pXFWizNavg);
    nStep = nGoal;
    if ( pXFWizNavg )
    {
        StringArray saXFNames;
        saXFNames.Add(STR_STEP_GOAL);
        switch (nGoal)
        {
        case GOAL_ALL:
            saXFNames.Add(STR_STEP_Normal);
            saXFNames.Add(STR_STEP_TTest);
            break;
        case GOAL_SIMPLE:
            saXFNames.Add(STR_STEP_TTest);
            break;
```

```
        }
        pXFWizNavg->SetSteps(saXFNames);
    }
}
//Get input DataRange in the Goal Step.
DataRange StatTestWizCore::GetRange()
{
    XFWizNavigation *pXFWizNavg =
(XFWizNavigation*)GetXFWizNavigation();
    XFWizInputOutputRange* pIORange = pXFWizNavg-
>GetXFWizInputOutputRange();
    DataRange drInput;
    if(!pIORange)
    {
        error_report("Fail to get io ranges!");
        return drInput;
    }
    Array<DataRange&> drs;
    //Get input DataRange.
    if(!pIORange->Get(&drs, STR_STEP_GOAL, true))
    {
        error_report("Fail to get range from WizCore!");
        return drInput;
    }
    drInput = drs.GetAt(0);
    return drInput;
}
///////////////////////////////////////////////////////////////////////
////////////
int stat_test_run_wiz_nodlg(LPCSTR lpcszThemeName, const XFWizTheme
*pXFWizTheme, const
XFWizInputOutputRange *pXFWizIO, DWORD dwOPUID)
{
    TEMPLATE_run_wiz_nodlg(StatTestWizManager, lpcszThemeName,
pXFWizTheme, pXFWizIO, dwOPUID)
}
int stat_test_open_wiz_dlg(LPCSTR lpcszThemeName, const XFWizTheme
*pXFWizTheme, const
XFWizInputOutputRange *pXFWizIO, DWORD dwOPUID)
{
    TEMPLATE_open_wiz_dlg(StatTestWizManager, lpcszThemeName,
pXFWizTheme, pXFWizIO, dwOPUID)
}
int stat_test_run_wiz(UINT msg, const XFWizTheme *pXFWizTheme, const
XFWizInputOutputRange *pXFWizIO, DWORD dwOPUID, int nExeMode)
{
```

TEMPLATE_run_wiz(StatTestWizManager, msg, pXFWizTheme, pXFWizIO, dwOPUID, nExeMode)
\}
Click the Save button to save StatTestWiz.c file.
Note that StatTestWiz.c should be compiled after the X-Function StatTest is compiled, since the included files in StatTestWiz.c are not yet in the workspace until the X-Function StatTest is compiled. In fact StatTestWiz.h is included in X-Function StatTest, so StatTestWiz.c will be compiled automatically when X-Function StatTest is compiled.

Add Script for X-Functions

Script for X-Function StatTest

In the X-Function Builder, click the Open button and open the X-Function StatTest. Click the Edit X-Function in Code Builder and add the following script.

- Include header files

```
#include <..\OriginLab\XFWiz.h>
#include <..\OriginLab\WizOperation.h>
#include <..\OriginLab\XFCore.h>
#include <..\OriginLab\XFWizNavigation.h>
#include <..\OriginLab\XFWizManager.h>
#include <..\OriginLab\XFWizScript.h>
#include <..\OriginLab\XFWizDlg.h>
#include <..\OriginLab\XFWizard_utils.h>
#include <..\OriginLab\WksOperation.h>
#include <event_utils.h>
#include "StatTestWiz.h"
```

- StatTest()

Add the function body, which specifies the dialog mode.

```
if( script )
    stat_test_run_wiz_nodlg(tn);
else
    stat_test_open_wiz_dlg(tn);
```

 - StatTest_before_execute()
 Add the function body, which determines not to show this dialog before the wizard is opened.

```
nRet = XFEVT_PROCEED_NO_DLG;
```

Click Compile button to compile the file. Then click Return to Dialog button to return to XFunction Builder. In the X-Function Builder, click Save OXF file button to save the X-Function.

Script for X-Function StatTestWizGoal

Open the X-Function StatTestWizGoal. Click Edit X-Function in Code Builder button, add the following script.

- Include header files
\#include "StatTestWiz.h"
- Add a static function _check_input()

This function is used to check whether the input DataRange is a single column.

```
static bool _check_input(const TreeNode trGetN, string& strErr)
{
    TreeNode trRange = trGetN.input;
    DataRange drInput;
    drInput.Create(trRange.strVal);
    if( drInput.GetNumRanges() == 0 )
    {
        strErr = "Input can't be empty, and it should be a valid
column.";
            return false;
    }
    else
    {
            if( drInput.GetNumRanges() == 1)
            {
                Worksheet wksInput;
            int nC1, nC2;
            drInput.GetRange(wksInput, nC1, nC2);
            if( nC1 == nC2 )
                return true;
            }
                strErr = "Please select one column.";
                return false;
    }
}
```

- StatTestWizGoal_event1()

Add the function body, which updates the dialog.

```
    StatTestWizCore* pstatwc =
(StatTestWizCore*)get_xf_core_handler(trGetN);
    ASSERT(pstatwc);
    //Update the Wizard page.
    if ( 0 == lstrcmp(lpcszNodeName, "goal") )
        pstatwc->ChangeGoal(trGetN.goal.nVal);
    //Error message is shown at the bottom of the dialog,
    //and OK button is disenabled for incorrect choice of DataRange.
```

```
bOKEnable = _check_input(trGetN, strErrMsg);
return false;
```

Click Compile button to compile the file. Then click Return to Dialog button to return to X-
Function Builder, and click Save OXF file button to save the X-Function.

Script for X-Function NormalityTest

Open the X-Function NormalityTest. Click the Edit X-Function in Code Builder button and add the following script.

- Include header files

```
#include "StatTestWiz.h"
#include <XFbase.h>
```

- Add a static function _update_GUI()

This function is used to update the dialog's edit boxes for normality test result.

```
static void _update_GUI(TreeNode& trGetN)
{
    vector vRes;
    vRes = _norm_test(trGetN.nXFCorePointer.nVal, trGetN.type.nVal);
    trGetN.stat.dVal = vRes[0];
    trGetN.df.dVal = vRes[1];
    trGetN.prob.dVal = vRes[2];
}
```

- Add a static function _update_strErr()

This function is used to update the string shown at the bottom of the dialog.

```
static void _update_strErr(const TreeNode tr, string& strErr)
{
    if(tr.prob.dVal >= 0.05 && tr.prob.dVal <= 1)
            strErr = "At the 0.05 level, the data was significantly drawn
from a
            normally distributed population.";
    else if(tr.prob.dVal < 0.05 && tr.prob.dVal >= 0)
            strErr = "At the 0.05 level, the data was not significantly drawn
from a
            normally distributed population.";
        else
            strErr = "There is not enough information to draw a conclusion.";
}
```

Note that the string is divided into two lines shown in the page. It should be a command of one line in the script.

- Add a static function _norm_test()

This function is used to perform Normality Test using related X-Functions.

```
static vector _norm_test(const int nXFCorePointer, const int nType)
{
    StatTestWizCore* pstatwc =
(StatTestWizCore*)get_xf_core_handler(nXFCorePointer);
    ASSERT(pstatwc);
    vector vRes(3);
    vRes[2] = -1;
    DataRange drInput;
    drInput = pstatwc->GetRange();
    if( !drInput )
        return vRes;
    vector<string> vsXFName = {"swtest","kstest","lillietest"};
    XFBase xfNorm(vsXFName[nType]);
    if( !xfNorm.SetArg("irng", drInput) )
    {
        error_report("Failed to set argument image type");
        return vRes;
    }
    if( !xfNorm.SetArg("stat", vRes[0]) )
    {
        error_report("Failed to set argument image type");
        return vRes;
    }
    if( !xfNorm.SetArg("df", vRes[1]) )
    {
        error_report("Failed to set argument image type");
        return vRes;
    }
    if( !xfNorm.SetArg("prob", vRes[2]) )
    {
        error_report("Failed to set argument image type");
        return vRes;
    }
    if( !xfNorm.Evaluate() )
    {
        error_report("Failed to evaluate the stats X-Function.");
        return vRes;
    }
    return vRes;
}
```

- NormalityTest()

Update the function body, which exports the result into a worksheet when the Next button is pressed.

DataRange drInput;
StatTestWizCore* pstatwc =
(StatTestWizCore*)get_xf_core_handler(nXFCorePointer);
ASSERT(pstatwc);
drInput = pstatwc->GetRange();

```
    if( !drInput )
        return;
    string strBook, strSheet;
    if(!drInput.GetBookSheet(strBook, strSheet))
    {
        error_report("Workbook and worksheet names can't be obtained.");
        return;
    }
    WorksheetPage wpData(strBook);
    int nLayer = wpData.AddLayer("Normality Test");
    if(nLayer >= 0)
    {
    Worksheet wksRes = wpData.Layers(nLayer);
        vector<string> vsTypeName = {"Shapiro-Wilk","Kolmogorov-
Smirnov","Lilliefors"};
        vector<string> vsNProb = {"Prob<W", "Prob>D", "Prob>D"};
        vector<string> vsParaName = {"Statistic", "DF", ""};
        vsParaName[2] = vsNProb[type];
        vector vRes;
        vRes = _norm_test(nXFCorePointer, type);
        wksRes.Columns(1).SetLongName(vsTypeName[type]);
        for(int ii=0; ii<3; ii++)
        {
            wksRes.SetCell(ii, 0, vsParaName[ii], false);
            wksRes.SetCell(ii, 1, vRes[ii]);
        }
}
else
{
    error_report("New worksheet can't be created.");
}
```

- NormalityTest_event1()

Update the function body, which will update the results in the dialog as the method of normality test changes. Strings shown at the bottom of the dialog will also be updated.

```
_update_GUI(trGetN);
_update_strErr(trGetN, strErrMsg);
return true;
```

- NormalityTest_before_execute()

Update the function body, which will make the edit boxes for results grayed out, and show the result in the dialog.
trGetN.stat.Enable = false;
trGetN.df.Enable = false;
trGetN.prob.Enable = false;
Click the Compile button to compile the file. Then click the Return to Dialog button to return to \mathbf{X} Function Builder, and click the Save OXF file button to save the X-Function.

Script for X-Function OnetTest

Open the X-Function OnetTest. Click the Edit X-Function in Code Builder button and add the following script.

- Include header files

```
#include "StatTestWiz.h"
#include <XFbase.h>
```

- Define strings

```
const vector<string> vsNull = {"Mean = ","Mean <= ","Mean >= "};
const vector<string> vsAlter = {"Mean <> ","Mean > ","Mean < "};
const vector<string> vsAcceptNull = {"Not significantly different
from","Not
significantly greater than","Not significantly less than"};
const vector<string> vsRejectNull = {"significantly different
from","significantly
greater than","significantly less than"};
const vector<string> vsProb = {"Prob>|t|", "Prob>t", "Prob<t"};
```

- Add a static function _update_null()

This function is used to update the Null edit box.

```
static void _update_null(TreeNode& trGetN, bool bMean = false)
{
    string strNull;
    strNull = vsNull[trGetN.tail.nVal] + ftoa(trGetN.mean.dVal);
    trGetN.null.strVal = strNull;
    if(bMean)
    {
        string strAlter = vsAlter[0] + ftoa(trGetN.mean.dVal) + "|";
        strAlter = strAlter + vsAlter[1] + ftoa(trGetN.mean.dVal) + "|";
        strAlter = strAlter + vsAlter[1] + ftoa(trGetN.mean.dVal);
        trGetN.tail.SetAttribute(STR_COMBO_ATTRIB, strAlter);
    }
}
```

- Add a static function _check_sig_level()

This function is used to check the Significance Level edit box value.

```
static bool _check_sig_level(TreeNode& trGetN, string& strErr)
{
    if( trGetN.siglevel.dVal > 0 && trGetN.siglevel.dVal < 1 )
    {
        return true;
    }
```

```
    else
    {
        strErr = "Significance Level should be between 0 and 1.";
        return false;
    }
}
```

- Add a static function _update_strErr()

This function is used to define the string for the conclusion of t -test at the bottom based on P -value.

```
static void _update_strErr(const TreeNode tr, string& strErr)
{
    if(tr.tprob.dVal >= tr.siglevel.dVal && tr.tprob.dVal <= 1)
    strErr.Format("Null Hypothesis is %s%s.\r\nAlternative Hypothesis
is %s%s.
            At the %s level, the population mean is %s the test
mean(%s).",
            vsNull[tr.tail.nVal], ftoa(tr.mean.dVal),
vsAlter[tr.tail.nVal], ftoa(tr.mean.dVal),
            ftoa(tr.siglevel.dVal), vsAcceptNull[tr.tail.nVal],
ftoa(tr.mean.dVal) );
    else if(tr.tprob.dVal < tr.siglevel.dVal && tr.tprob.dVal >= 0)
            strErr.Format("Null Hypothesis is %s%s.\r\nAlternative Hypothesis
is %s%s.
            At the %s level, the population mean is %s the test
mean(%s).",
            vsNull[tr.tail.nVal], ftoa(tr.mean.dVal),
vsAlter[tr.tail.nVal], ftoa(tr.mean.dVal),
            ftoa(tr.siglevel.dVal), vsRejectNull[tr.tail.nVal],
ftoa(tr.mean.dVal) );
    else
        strErr = "There is not enough information to draw a conclusion.";
}
Note that the command is divided into several lines shown in the page. It should be a command of one line in the script.
```

- Add a static function _update_GUI()

This function is used to update edit boxes for results in the dialog.

```
static void _update_GUI(TreeNode& trGetN)
{
    vector vRes;
    vRes = _one_sample_t_test(trGetN.nXFCorePointer.nVal,
trGetN.mean.dVal, trGetN.tail.dVal, trGetN.siglevel.dVal);
    trGetN.stat.dVal = vRes[0];
    trGetN.df.dVal = vRes[1];
    trGetN.tprob.dVal = vRes[2];
    trGetN.lcl.dVal = vRes[4];
    trGetN.ucl.dVal = vRes[5];
}
```

- Add a static function _one_sample_t_test()

This function is used to perform One-Sample t-Test using an X-Function.

```
static vector _one_sample_t_test(const int nXFCorePointer, const double
dMean, const int nTail, const double dSiglevel)
{
    DataRange drInput;
    StatTestWizCore* pstatwc =
(StatTestWizCore*)get_xf_core_handler(nXFCorePointer);
    ASSERT(pstatwc);
    vector vRes(6);
    vRes[2] = -1;
    drInput = pstatwc->GetRange();
    if( !drInput )
        return vRes;
    vRes[3] = 100 - 100*dSiglevel;
    XFBase xfTTest("ttest1");
    if( !xfTTest.SetArg("irng", drInput) )
    {
        error_report("Failed to set argument irng");
        return vRes;
    }
    if( !xfTTest.SetArg("mean", dMean) )
    {
        error_report("Failed to set argument mean");
        return vRes;
    }
    if( !xfTTest.SetArg("tail", nTail) )
    {
        error_report("Failed to set argument tail");
        return vRes;
    }
    if( !xfTTest.SetArg("alpha", dSiglevel) )
    {
        error_report("Failed to set argument alpha");
        return vRes;
    }
    if( !xfTTest.SetArg("stat", vRes[0]) )
    {
        error_report("Failed to set argument stat");
        return vRes;
    }
    if( !xfTTest.SetArg("df", vRes[1]) )
    {
        error_report("Failed to set argument df");
        return vRes;
    }
    if( !xfTTest.SetArg("prob", vRes[2]) )
    {
        error_report("Failed to set argument prob");
        return vRes;
    }
    if( !xfTTest.SetArg("lcl", vRes[4]) )
```

```
    {
        error_report("Failed to set argument lcl");
        return vRes;
    }
    if( !xfTTest.SetArg("ucl", vRes[5]) )
    {
        error_report("Failed to set argument ucl");
        return vRes;
    }
    if( !xfTTest.Evaluate() )
    {
        error_report("Failed to evaluate the ttest1 X-Function.");
        return vRes;
    }
    return vRes;
}
```

- OnetTest()

Update the function body, which exports the result into a worksheet when the Finish button is pressed.

DataRange drInput;
StatTestWizCore* pstatwc =
(StatTestWizCore*)get_xf_core_handler(nXFCorePointer);
ASSERT(pstatwc);
drInput = pstatwc->GetRange();
if(!drInput)
return ;
string strBook, strSheet;
if(!drInput.GetBookSheet(strBook, strSheet))
\{
error_report("Workbook and worksheet names can't be obtained."); return;
\}
WorksheetPage wpData(strBook);
int nLayer = wpData.AddLayer("One-Sample t-test");
if(nLayer >= 0)
\{
Worksheet wksRes = wpData.Layers(nLayer);
vector<string> vsParaName = \{"t Statistic", "DF","", "Conf.
Levels in \%", "Lower Limits", "Lower Limits"\};
vsParaName[2] = vsProb[tail];
vector vRes;
vRes = _one_sample_t_test(nXFCorePointer, mean, tail, siglevel);
wksRes.SetSize(-1, 4);
wksRes.Columns(0).SetLongName("Test Statistics");

```
        string strNull = "Null Hypothesis is " + vsNull[tail] +
ftoa(mean);
    wksRes.Columns(1).SetLongName(strNull);
    wksRes.Columns(3).SetLongName("Confidence Intervals for Mean");
    for(int ii=0; ii<3; ii++)
    {
        wksRes.SetCell(ii, 0, vsParaName[ii], false);
        wksRes.SetCell(ii, 1, vRes[ii]);
        wksRes.SetCell(ii, 2, vsParaName[ii + 3], false);
        wksRes.SetCell(ii, 3, vRes[ii + 3]);
    }
}
else
{
    error_report("New worksheet can't be created.");
    }
- OnetTest_event1()
```

Update the function body, which will update results and show a conclusion at the bottom of the dialog according to the result. As settings change in the dialog, the Null edit box will be updated as the mean and hypothesis change, and the Significance Level edit box's value is checked.

```
if( 0 == lstrcmp(lpcszNodeName, "mean") )
    _update_null(trGetN, true);
if( 0 == lstrcmp(lpcszNodeName, "tail") )
        _update_null(trGetN);
if( 0 == lstrcmp(lpcszNodeName, "siglevel") )
    bOKEnable = _check_sig_level(trGetN, strErrMsg);
_update_GUI(trGetN);
_update_strErr(trGetN, strErrMsg);
return false;
```

- OnetTest_before_execute()

Update the function body, to show/hide or disable the controls in the dialog.

```
    StatTestWizCore* pstatwc =
(StatTestWizCore*)get_xf_core_handler(trGetN.nXFCorePointer.nVal);
    ASSERT(pstatwc);
    trGetN.prob.Show = 1 - pstatwc->nStep;
    trGetN.prob.Enable = false;
    trGetN.null.Enable = false;
    trGetN.stat.Enable = false;
    trGetN.df.Enable = false;
    trGetN.tprob.Enable = false;
    trGetN.lcl.Enable = false;
    trGetN.ucl.Enable = false;
```

Click the Compile button to compile the file. Then click the Return to Dialog button to return to the X-Function Builder. Click the Save OXF file button to save the X-Function.

Close Origin. Then start Origin and you will notice that a new item Stat Test is added to Origin's menu Statistics: Hypothesis Testing.

How to Use the Wizard

The following example shows how to use the wizard.

1. Select a column in the worksheet.
2. Select Statistics: Hypothesis Testing: Stat Test from the Origin menu or type the command "StatTest -d" in the command window. The Stat Test wizard dialog will open.

3. Click the Next button. The Normality Test dialog is opened. The result is shown in the Output branch. A conclusion is drawn at the bottom of the dialog.

At the 0.05 level, the data was significantly/drawn from a normally distributed population.
4. Click the Next button. The One-Sample t-test dialog is opened. The result is shown in the Output branch. A conclusion is drawn at the bottom of the dialog. Previous step's result of normality test is shown at the top. You can also change the setting in the dialog, and notice the result changes.

Null Hypothesis is Mean = 0.
Alternative Hypothesis is Mean <> 0.
At the 0.05 level, the population mean is Not significantly different from the test mean $[0]$.
5. Click the Finish button to end the wizard. Two worksheets for results are created.

\# Book1			$\square \square$		\times
	$\mathrm{A}(\times)$	B()	\wedge		
Long Name		Shapiro-Wil			
Units					
Comments					
1	Statistic	0.97794			
2	DF	32			
3	ProbsiN	0.73775			v
	ANorma	Test $/ 1$ <	IIII)	\geqslant	:

[^0]: Define Fitting Function and Initialize Parameters

[^1]: One-Sample t-Test

[^2]: Switch to the Symbol tab. Set symbol Size to 5, and use Open and Circle symbol.

[^3]: 5. Calling NAG Functions From Origin C
 6. Accessing Internal Origin Objects by Origin C
[^4]: Your worksheet now reads:

