
Ramesh M. Gulrojani 
Institute of Biomedical Engineering 

Universith de Montrhal 

lectrocardiography involves the inter- 
pretation of the potentials recorded at 

the body surface due to the electrical ac- 
tivity of the heart. The general objective 
of the so-called “forward” and “inverse” 
problems of electrocardiography is a 
better qualitative and quantitative under- 
standing of the heart’s electrical activity. 
To this end we use the concept of a 
pre-decided electrical representation of 
the heart’s activity, or, in other words, an 
“equivalent source,” in conjunction with 
a specified volume conductor that is usu- 
ally taken to be similar to the subject’s 
torso. The equivalent source could be, for 
instance, a single current dipole or even a 
distribution of current dipoles. The for- 
ward problem of electrocardiography 
then consists of calculating the potential 
distribution generated at the surface of 
the specified volume conductor due to the 
presence of the selected equivalent 
source inside the conductor. The inverse 
problem, on the other hand, starts with 
the measured body-surface-potential dis- 
tribution and attempts to adjust the pa- 
rameters of the equivalent source so as to 
result in potentials on the surface of the 
specified volume conductor that most 
closely match the measured distribution. 

In contrast to the forward problem, 
which can be solved uniquely to within a 
constant for the potential, the inverse 
problem does not possess a mathemati- 
cally unique solution. The primary car- 
diac sources cannot  be uniquely 
determined as long as the active cardiac 
region containing these sources is inac- 
cessible for potential measurements [l]. 
This is because the electric field that 
these sources generate outside any closed 
surface completely enclosing them may 
be duplicated by equivalent single-layer 

(monopole) or double-layer (dipole) cur- 
rent sources on the closed surface itself. 
Many equivalent sources, and hence in- 
verse solutions, are thus possible. How- 
ever, once an equivalent source (and 
associated volume conductor) is selected, 
its parameters can usually be determined 
uniquely from the body-surface potentials. 

This article summarizes the theoretical 
underpinnings of both the forward and in- 
verse problems of electrocardiography. 
Space limitations prohibit describing all 
of the research work done in these areas, 
and the author apologizes in advance for 
any omissions on this account or due to 
oversight. Additional details may be 
found in the author’s recent text from 
which most of this material is drawn [2]. 

The Forward Problem 
The forward problem of electrocardi- 

ography entails the calculation of the 
body-surface potentials, starting usually 
from either equivalent current dipoles that 
represent the heart’s electrical activity or 
from known potentials on the heart’s 
outer surface (the “epicardium”). One of 
two general approaches is used, namely 
surface methods or volume methods. In 
surface methods, the different torso re- 
gions are all assumed to be of isotropic 
conductivity, and only the interfaces be- 
tween the different regions are discretized 
and represented in the numerical torso 
model. If an anisotropic region such as the 
anisotropic-conductivity skeletal muscle 
layer overlying the ribs is included in the 
torso model, it is first converted to an ap- 
proximately equivalent isotropic region 
before performing the forward computa- 
tions. These computations entail the solu- 
tion of integral equations for the potential 
on the discretized surfaces of the torso 
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model. Surface methods are also termed 
boundary-element methods, since only 
the boundaries between torso regions en- 
ter into consideration. In volume meth- 
ods, on the other hand, the entire 
three-dimensional torso model is repre- 
sented numerically, usually by a combina- 
tion of tetrahedral and hexahedral 
(brick-shaped) elements. Volume meth- 
ods may be subdivided into fi- 
nite-difference, finite-element, and 
finite-volume methods. 

As may be expected, surface methods 
use simpler torso models with fewer ele- 
ments. However, since the underlying in- 
tegral equations couple the potential at 
every element to the potential at every 
other element, the coefficient matrix char- 
acterizing the set of equations to be solved 
is fully populated. Volume methods use 
more complex torso models, with more el- 
ements and consequently more potentials 
to be determined. However, the potential 
at each point is expressed only in terms of 
the potentials at its nearest neighbors. Con- 
sequently, the coefficient matrix, while 
large, is also sparse. Volume methods rep- 
resent the only way to incorporate individ- 
ual regions of varying conductivity. 

Surface Methods 
Solutions from Equivalent Dipoles 
As noted above, surface methods are 
based on integral equations for the poten- 
tial derived by applying Green’s second 
identity to the geometry of Fig. 1, which 
shows a torso containing multiple homo- 
geneous regions of different isotropic 
conductivities. Here, S,, represents the 

1. Torso with multiple regions of differ- 
ing isotropic conductivity. Note that the 
outer-torso surface, So, encloses all the 
other conductivity interfaces and that 
0,: = 0. 
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outer body surface, situated in air with 
conductivity zero, and S,, 1 = 1,2 ,... N s  
closed internal interfaces separating ho- 
mogeneous regions of isotropic conduc- 
tivities: 0: on the inside and 0: on the 
outside. An application of Green’s second 
identity then yields the following equa- 
tion for the potential Qk(r) on the surface 

1 
s, ~31: 

@‘k(r) = 
2Tc(o; +0;) 

where J, (A/m2) denotes the density of 
the dipole heart sources, r is the vector to 
the observation point, and r’ the variable 
position vector associated with the vol- 
ume and surface integrations. Also, dQr7, 
is the solid angle subtended at the obser- 
vation point, r, by the surface element, 
dS’, associated with r’. The term involv- 
ing the “self solid angle” (do , , ) ,  
representing the solid angle subtended at 
r by the surface element containing r, is 
excluded from the summation in Eq. (l), 
since the contribution of this self-solid 
angle, which equals 2.x: if the surface in 
the vicinity of r is smooth, is already in- 
corporated as such in deriving Eq. (1). 
Note that the first term on the right side in 
Eq.  ( 1 )  i s  proport ional  to the 
infinte-medium potential due to J,. 

If we assume that the torso interfaces 
are discretized into N ,  planar triangles 
and that the potential is constant over 
each triangle, then NT equations such as 
Eq. (1) can be written as r moves from 
triangle to triangle. These equations can 
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be represented by the following matrix 
equation: 

@ = G + A @  (2 )  
where is an N x 1 matrix of the desired 
triangle potentials, G is an N ,  x 1 matrix 
representation of the first terms on the 
right of the NT equations, and A is an 
N ,  x N ,  matrix (with diagonal terms 
zero) that depends only on the torso geom- 
etry and conductivities. Equation (2) can 
be rewritten (I-A)@ = G where I is an 
N ,  x N ,  identity matrix. The coefficient 
matrix (I-A) multiplying @ is singular on 
account of an eigenvalue h = 1 of A. The 
singularity is a consequence of the fact 
that @ can only be determined up to a con- 
stant unless a zero reference for the poten- 
tial is established. It is usually removed by 
“deflating” the matrix A; i.e., removing its 
offending eigenvalue and thereby con- 
verting A to a deflated matrix, A*, so that 
we end up solving: 

(I -A*)@* = G (3) 
It can be shown that the matrix @* in 

Eq. (3) contains the correct outer torso po- 
tentials; for internal surfaces, @* and @ 
differ by a constant. The deflation proce- 
dure in effect provides a potential refer- 
ence by adjusting the sum of the potentials 
on the triangles of the outer torso surface 
to be zero. The set of nonsingular Eqs. (3) 
may be solved for @* either by iterative 
methods or, if the number of triangles is 
not too excessive, by direct inversion of 
the coefficient matrix (I-A*) [4, 51. 

Solutions from Epicardial Potentials 
The calculation of the outer body-surface 
potentials from the epicardial-surface po- 
tentials was first described by Barr, et al. 
[6]. The torso model now comprises just 
these two surfaces, and the governing in- 
tegral equation is again obtained by an ap- 
plication of Green’s second identity to the 
assumed homogeneous region contained 
between these two surfaces. By allowing 
the observation point, r, to first approach 
the body surface, S,, and next the heart 
surface, S,, we get the following two 
equations: 

QB(r) = -- S L V ’ Q H - d S ‘  
4n S ,  ‘LH 
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For clarity, we have explicitly identi- 
fied epicardial and body potentials by the 
subscripts Hand B, respectively. The sca- 
lar distance lr - r’\ is now designated rLH, 
etc., with the first subscript denoting the 
location of r and the second the location of 
r’. The prime on r&, etc., serves as a re- 
minder that the variable of integration is 
r’. Two sets of matrix equations may be 
obtained from Eqs. (4) and (9, respec- 
tively; the first as the observation point 
sweeps all body-surface triangles and the 
second as the observation point sweeps all 
epicardial-surface triangles. We have: 

A B B @ B  + ABH@H + BBJH = 0 , ( 6 )  

AHB*B f AHH@H f BHHrH = 0 (7)  
In Eqs. (6) and (7), aB and aH are col- 

umn matrices of potentials, r H  is a column 
matrix of epicardial potential gradients, 
and the various A and B coefficient matri- 
ces are determined solely by integrations 
involving the geometry of the epicardial 
and body surfaces. The first subscript of A 
(or B) identifies the surface on which the 
observation points are selected, and the 
second whether the integration is over the 
heart or body surface. Equation (7) is 
solved for the matrix of epicardial poten- 
tial gradients, rH, which when substituted 
into Eq. (6) yields: 

@a = TBH@H (8) 

where TBH = [AB, - BBH @,HI-’ Aw,I-’[B,, 
(BHH)-’ A,, - A,,]. The elements of matrix 
T,, are the “transfer coefficients” relating 
the potent ia l  a t  a par t icular  
epicardial-surface point to that at a partic- 
ular body-surface point, and they depend 
solely on the geometry of the epicardial 
and body surfaces. 

Barr, et al. (61, also pointed out that it 
was computationally advantageous to se- 
lect as the unknowns not the potential on 
each triangle but rather the potential at 
each triangle vertex. This is because for 
most surfaces the number of triangle ver- 
tices is approximately half the number of 
triangles, thus diminishing the size of the 
coefficient matrix. Also, in the experi- 
mental situation, where potentials are 

measured on the heart or torso surface 
with electrodes, it is the positions of these 
electrodes that is used to triangularize the 
surface in question The vertex approach 
then has the advantage that surface coor- 
dinates and potentials are known at the 
same set of locations. This vertex ap- 
proach is  a lso of ten used when 
body-surface potentials are to be com- 
puted from equivalent dipoles. If we de- 
note by S, a small environment of r 
around the observation vertex on surface, 
S,, then Eq (1) is modified to 

where Qrse is the self-solid angle sub- 
tended by S ,  at r (assuming r is just inside 
SJ. While the summation on the right side 
has no self-solid angle term, such a term is 
introduced via firs* into the left side, and 
hence into the diagonal terms of the resul- 
tant coefficient matrix. Since Qrse is diffi- 
cult to compute for r at a nonsmooth 
vertex, one approximation is to set each 
diagonal term to be equal to the negative 
sum of all other matrix terms in its row, 
thereby rendering the coefficient matrix 
singular, as required. Other approxima- 
tions are discussed by Meijs, et al. [7], and 
by Heller [ 81. 

Volume Methods 
Finite-Difference Method 
The finite-difference method represents 
the torso geometry by a three-dimensional 
grid of discrete points or nodes. Resistive 
elements selected to reflect the interven- 
ing torso resistance are placed between 
the nodes. Kirchhoff‘s current law is writ- 
ten for each node, resulting in a large set of 
equations relating the potential between 
adjacent nodes. In effect, this method rep- 
resents a discrete approximation to the 
governing equation 

v ’ ( o v a )  = -I3” (10) 
where I rl, = -V.  J ~ denotes the cardiac 
sources expressed in A/m3. The accuracy 
of the solution depends upon the fineness 
of the node spacing and the accuracy with 
which the intervening resistances can be 
estimated. The set of equations is usually 
solved by Gauss-Seidel iteration with suc- 
cessive over-relaxation. The main draw- 

backs of the finite-difference method are 
the large storage requirements and the 
slow convergence, although the latter can 
be mitigated somewhat by parallel proc- 
essing. On the other hand, this method can 
handle any kind of boundary condition as 
well as varying volume conductor ani- 
sotropies. A good illustration of the appli- 
cation of the finite-difference method to 
electrocardiographic problems is to be 
found in Walker and Kilpatrick [9]. 

Finite-Element Method 
Here, the torso geometry is approximated 
by a set of contiguous volume elements of 
simple geometrical shapes such as tetra- 
hedra or hexahedra. The finite-element 
method also solves Eq. (lo), which gov- 
erns the quasi-static determination of 
electrocardiographic potentials, in con- 
junction with mixed boundary conditions 
of the form: 

6, = on So, Ula) 

(oV6,).dS=JndSon So, ( l lb )  

In Eqs. (1 I), @a is a known applied volt- 
age, J ,  an injected normal current density, 
and the union of the disjoint surfaces So, 
and So, equals So the entire outer torso sur- 
face. A finite-element solution to Eqs. 
(10) and (1 1) may be obtained by the tech- 
nique of weighted residuals [lo]. 

Assume that the potential can be ap- 
proximated by 

where @, are the desired m unknown po- 
tentials in the volume conductor, and p,  
are appropriate interpolating polynomi- 
als. Each p,  is equal to unity at node I ,  and 
is zero at all other nodes. If we substitute 
Eq (12) into Eq (lo), we expfct that on 
account of the approximation 6, 

v ( 0 ~ 6 )  +zsv  = R (13) 

where R is a residual. The method of 
weighted residuals attempts to reduce R 
to zero, but in a “weak form” whereby the 
set of weighted integrals below is zero 

J [V ( o V 6 )  f z,,1y dV 
V 

= j R W L d V =  0,z =1,2, m 
V (14) 

In the well-known Galerkm formula- 
tion, the weights W, are Selected to be the 
same as the interpolation polynomials p L ,  
and we get: 
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[p,[V.(oV&)]dV+ (pzZsL,dV = 0 

i = 1,2, ... m 
V V" 

(15) 

Note that the second integral in Eq. (15) 
need only be evaluated over the heart re- 
gion, v,. The first integral is integrated by 
parts to obtain: 

jpt(ovG)'dS - j(ovG)'vpt dV 
S V 

=-SP,I,,dV i=1,2 ,... m 
" H  

Since the potential is known on So,, p, are 
zero there and we have, using Eq. (1 lb): 

~ ( o V G ) .  Vpt  dV = Jpi  I,sL, dV 

+ jp ,  4, dS, i = 1,2, ... m 

V ",I 

Sn2 (16) 

Equation (16) also holds for each indi- 
vidual volume element, with i now rang- 
ing only over the Y nodes belonging to that 
element. The interpolating polynomials, 
pi, are usually taken to be linear and se- 
lected so that the potential is continuous 
across element interfaces. For internal 
volume elements, the surface integrals in 
Eq. (1 6) will cancel for contiguous ele- 
ments owing to the continuity of the nor- 
mal component of the current. As a result, 
when all the single-element equations are 
assembled, they can be written in a global 
matrix form as: 

A @ = F  (17) 

where A is now a sparse m x m coefficient 
matrix, is an m x l  matrix of the un- 
known potentials, and F is anm x 1 matrix 
that includes source and noncancelling 
terms from the right side of Eq. (16). 
While the Neumann boundary condition 
of Eq. (1 lb) enters naturally into F (see 
Eq. (16)), a Dirichlet condition such as 
that of Eq. (1 la) has to be incorporated 
explicitly by adjusting Eq. (17). Thus, if 
the potential @ at node i is @ a ,  then all ma- 
trix elements, a,, in row i are set equal to 
zero, except a,,, which is set equal to unity; 
in additionA is set equal to Q 0 .  This also 
renders A nonsingular. Solutions to Eq. 
(17) may be obtained by iterative tech- 
niques, although many finite-element 
packages employ direct solvers based on 
sparse matrix techniques. 

Equation (16) is also applicable to the 
computation of body-surface potentials 
from epicardial potentials, in which case, 
since the heart region V, is excluded, the 
first integral on the right side drops out. 

Since no current leaves the torso under 
these circumstances, the surface integral 
over So, also disappears. The Dirichlet 
boundary condition at the epicardial sur- 
face is introduced as described above. 

Finite- Volume Method 
The finite-volume method was first ap- 
plied to the bioelectric problem by 
Abboud, et al. [l I]. Here, the governing 
equation is the integral form of Eq. (lo), 

takes advantage of any computational 
savings afforded by surface methods, 
while at the same time allows the handling 
of anisotropies. Such a combination of the 
transfer coefficient approach (Eq. (8)) and 
the finite-element method has been de- 
scribed by Stanley and Pilkington [13]. 
Starting from the epicardial potentials, the 
transfer coefficient approach is employed 
to compute the potentials at the innev sur- 
face of the anisotropic-conductivity skel- 
etal muscle layer present beneath the 
torso. The finite-element method is then 
used to convert the potentials at this inner 
skeletal muscle interface to the desired 
torso surface potentials. The methodol- 
ogy of a combination method employing 
higher-order interpolation capable of 
matching the potential gradients as well as 
the potential across elements has been de- 
scribed by Pullan [ 141. 

Applications of the 
Forward Problem 

The most evident application of the 
forward problem is in simulation of the 
electrocardiogram (ECG) with computer 
heart models. A second important appli- 
cation has been to study the effects of 
torso inhomogeneities on the ECG. Fi- 
nally, the forward-problem methodology 
has also been used for the reciprocal prob- 
lem of obtaining the currents traversing 
the heart due to current sources applied at 
the body surface. Examples of all three of 
these applications are given briefly here. 

which is approximated numerically for 
each volume element in the torso model. 
The gradient required in Eq. (1 8) is esti- 
mated from its integral definition: 

1 V@ = - $ a d s  
v s  (19) 

The mechanics of implementing the fi- 
nite-volume method are described in [ 121. 
The finite-volume approach is similar to 
the finite-element method, but with no a 
priori assumption for the variation of @ 
within an element, in the interests of accu- 
racy it is essential that a fine discretization 
be employed. The final result is a large set 
of equations for the potentials at the center 
of each volume element. However, the co- 
efficient matrix is sparse and the equa- 
tions can be solved iteratively by the 
successive over-relaxation method. 

Surface and volume methods can be 
combined such that the former are used 
where the torso is isotropic and the latter 
where it is anisotropic. This combination 

Computer Heart Models 
A two-step approach is employed to simu- 
late the ECG with computer heart models. 
In the first step, a suitable propagation al- 
gorithm is used to excite the heart model 
and calculate the activation times of all 
model points. These times determine the 
model's activation isochrones. Next, 
equivalent source representations (usu- 
ally current dipoles) are associated with 
these isochrones and are used to calculate 
the ECG by one of the methods described 
above. Some of the earlier heart models 
are of the nonpropagation type and as- 
sume a fixed set of activation isochrones 
based on data obtained in the isolated hu- 
man heart by Durrer, et al. [ 151. A particu- 
larly good example of this is the model 
developed by Miller and Geselowitz [161, 
which used a set of 23 regional current di- 
poles derived from the Durrer isochrones. 

Heart models with an intrinsic propa- 
gation algorithm are much more versatile 
than fixed-activation models, and no 
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present-day model can afford not to in- 
clude such an algorithm. In particular, 
the inclusion of propagation permits the 
simulation of cardiac pathologies occur- 
ring due to abnormalities of conduction. 
Propagation-type heart models origi- 
nated with Okajima, et al. [17], and two 
of the better-known early ones are that of 
Solomon and Selvester [18, 191, and one 
developed at Dalhousie University in 
Halifax, Canada [20-221. Since then, 
several groups around the world have de- 
veloped propagation-type computer 
models of the heart, and by way of exam- 
ple only, we describe our own experience 
with such models. 

Our heart-model anatomy was recon- 
structed as a three-dimensional array of 
250,000 points, spaced 1 mm apart, based 
on data obtained from computed tomogra- 
phy scans of a human heart at autopsy 
[23]. The Purkinje conduction system in 
the heart was represented by a system of 
cables that fed onto a sheet of conduction 
tissue placed on the endocardium or inner 
surface of the heart. Approximately 1,120 
“Purkinje-myocardium” junctions, pres- 
ent at the terminations of the cables as 
well as sprinkled uniformly over the 
sheet, transmitted the excitation from the 
conduction system to the ventricles. A 
stylized representation of myocardial fi- 
ber rotation was incorporated into the 
ventricles. The local fiber direction at 
each model point was used to compute the 
local propagation velocity of the activa- 
tion front from the point in question to its 
nearest neighbors, assuming that the front 
could always be approximated as a plane 
wave. While myocardial anisotropy re- 
sulting from the fiber rotation was thus 
considered in the ventricular propagation 
process, it was. however, ignored in the 
computation of the equivalent dipole 
sources. These were computed by first as- 
sociating a transmembrane action poten- 
tial waveform with each model point, 
which was triggered upon activation of 
the point. The equivalent current dipole 
density, J,, at each model point was then 
taken to be proportional to the spatial gra- 
dient of the transmembrane potential dis- 
tribution. The elemental current dipoles at 
each point were summed vectorially 
within each of 88 heart-model regions. 
This 88-dipole heart model was posi- 
tioned and oriented within an inhomoge- 
neous torso model, and the body-surface 
potentials computed via Eq. (1). Initial 
work focused on simulating normal acti- 
vation [23] and the major conduction 

blocks [24]. The latter were simulated by 
blocking conduction at selected sites in 
the proximal cable portion of the special- 
ized conduction system. 

More recent work with our model in- 
volved simulating “ectopic” beats [25]. 
An ectopic beat is simply an abnormal 
cardiac beat, triggered at a site other than 
the sinoatrial node where excitation nor- 
mally starts. Such a beat is easily simu- 
lated by starting model excitation at this 
alternative ectopic site. SippensGroe- 
newegen, et al. [26], have suggested that 
the site of an endocardial ectopic beat can 
be determined from the surface potentials, 
and the model was used to verify their as- 
sertion. Our model was also used to simu- 
late the effects on the ECG of regional 

myocardial “ischemia” (i.e., reduced 
blood flow to a heart region) due to occlu- 
sion in either the left anterior descending 
(LAD), right coronary (RCA), or left cir- 
cumflex (LCX) artery [27]. Model re- 
gions that correspond to the areas 
perfused by these arteries were demar- 
cated and then further subdivided into 
three zones of mild, moderate, and severe 
ischemia, increasing progressively from 
the periphery of the ischemic region to the 
center (Fig. 2). The action-potential 
waveforms of each zone were modified to 
correspond to experimentally observed 
ischemic action potentials. These changes 
involve progressively seduced resting po- 
tent ia l  magni tudes,  s lower ac- 
tion-potential upstrokes, and diminished 

(a) LAD (b) RCA 

(c) LCX 

2. Transverse and epicardial views of our model heart depicting the inserted 
ischemic regions. (a) A transverse cross-section and an epicardial view are shown of 
the three assumed ischemic zones (mild, moderate, and severe) corresponding to oc- 
clusion of the left anterior descending artery (depicted schematically in red) at the 
site indicated by the black bar. The plane of the transverse cross-section is indicated 
by the dotted line in the epicardial view. (b), (c): Epicardial views are shown of the 
assumed ischemic zones, corresponding to occlusion at the black bar, of the right 
coronary and left circumflex arteries, respectively. Transverse cross-sectional views 
are not shown for these ischemic zones. The coordinate axes in (a), (b), and (c) depict 
the viewing angles used for each image (reproduced from [27], by permission of 
W.B. Saunders CO,  Orlando, FL). 
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action-potential durations in the mild, 
moderate, and severely ischemic zones. 
While myocardial conduction velocities 
in the mildly ischemic zone were unal- 
tered, those in the moderate and severely 
ischemic zones were reduced by 25% and 
50%, respectively. For each of LAD, 
RCA and LCX occlusions, the heart 
model was re-excited with the above 
changes, and the ischemic ECG calcu- 
lated. A comparison of the normal and of 
the ischemic ECG corresponding to LAD 
occlusion generated by the model is 
shown in Fig. 3.  

Efsects of Torso Inhomogeneities 
The effects of torso inhomogeneities on 
the ECG have long been of interest to re- 
searchers. Early studies used physical 
torso analogs with artificial cur- 
rent-dipole sources to study the changes 
in potentials due to the insertion of ma- 
terials of different conductivities, 
whose form mimicked the major torso 
inhomogenei t ies  such as  the 
intraventricular blood masses, lungs, 
and the skeletal muscle layer covering 
the rib cage. The more interesting early 
studies were, however, largely analyti- 
cal, using spherical or cylindrical mod- 
els of the heart and torso. Of these, the 
most significant was that of Brody 1281, 
who elucidated what has come to be 
known as the “Brody-effect,” whereby 
the high-conductivity blood in the ven- 
tricular cavities enhances body surface 
potentials due to dipoles oriented radial 
to these cavities and diminishes surface 
potentials due to dipoles oriented tan- 
gential to the cavities. This was demon- 
s t ra ted by assuming a spher ica l  
ventricular cavity filled with blood of 
infinite conductivity, which was placed 
in an infinite homogeneous medium rep- 
resenting ventricular myocardium in 
which the radial and/or tangential di- 
poles were situated. Another elegant se- 
ries of simulations was done by Rudy 
and coworkers [29,30] using an “eccen- 
tric-spheres” model in which the torso 
was represented by two systems of con- 
centric spheres. The inner system, 
which mimicked the blood-filled cavity 
and myocardium, was eccentric with re- 
spect to the outer system, which repre- 
sented the lungs, skeletal muscle, and 
subcutaneous fat. Besides verifying the 
Brody-effect for radial dipoles, Rudy 
and coworkers also described the effects 
of varying the conductivities of the lung, 
skeletal-muscle, and fat regions. 

I II I 111 I “ 1  111 

aVR aVL aVFl aVR aVL aVF. 

V I  v 2  v 3  

v 4  v5  V6 

(a) Normal (b) LAD 

3. (a) Simulated ECGs for the normal heart. (b) Simulated ECGs for the heart with 
the ischemic region shown in Fig. 2(a) corresponding to occlusion of the left anterior 
descending artery (reproduced from [27], by permission of W.B. Saunders CO, Or- 
lando, FL). 

Numerical forward-problem method- 
ologies have been particularly useful in 
invest igat ing some of these 
inhomogeneity effects with realis- 
tic-geometry torso models. One such 
study, by Gulrajani and Mailloux [31], 
used a numerical torso model containing 
the skeletal muscle layer (introduced as an 
isotropic-conductivity region of enlarged 
thickness), the low-conductivity lungs, 
and two blood-filled high-conductivity 
intraventricular cavities. Since the 
inhomogeneities were represented by sur- 
faces, Eq. (1) was used for potential com- 
putat ions.  By introducing these 
inhomogeneities in cumulative fashion 
into an otherwise homogeneous torso 
(i.e., first the muscle layer, next the lungs, 
and finally the blood masses) and comput- 
ing in each case the torso surface poten- 
tials due to the 23 individual current 
dipoles of the Miller-Geselowitz heart 
model, Gulrajani and Mailloux investi- 
gated the individual effects of these 
inhomogeneities on the dipole potentials. 
Furthermore, by using the specified nor- 
mal act ivat ion sequence of the 
Miller-Geselowitz heart model, they also 
invest igated the effects  of these 
inhomogeneities on the normal ECG and 
the body-surface-potential map (BSPM). 
This last is a two-dimensional display of 

the isopotential lines on an unrolled exter- 
nal torso surface. Most of Gulrajani and 
Mailloux’s findings were in accordance 
with earlier work with realistic torso mod- 
els [32-341. At the level of the individual 
dipoles, the Brody-effect is operative for 
both radial and tangential dipoles. With 
regard to the normal ECG and BSPM, the 
major qualitative effects noted by 
Gulrajani and Mailloux were a smoothing 
of notches in the ECG and of isopotentials 
in the BSPM due to the blood masses, 
muscle layer, and, to a lesser extent, the 
lungs. There were also large quantitative 
effects on the ECG and BSPM, most nota- 
bly magnitude increases due to the blood 
masses and magnitude decreases due to 
the muscle layer. The latter is due to the 
increased effective distance of the torso 
surface from the heart dipoles, and the for- 
mer due to the Brody-effect acting on the 
predominantly radial orientation of the 
heart dipoles during normal excitation. 

The advent of powerful computers has 
also seen an increased number of finite el- 
ement and finite-difference models of the 
inhomogeneous torso being constructed 
as opposed to boundary-element models. 
One example is the finite-element model 
described by Johnson, et al. [35], which is 
based on magnetic resonance images of 
the torso. This model was used in a recent 
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three-dimensional finite-element study 
by Klepfer, et al. [36] ,  of the effects of 
inhomogeneities and anisotropies on a 
known, fixed, epicardial potential distri- 
bution. Klepfer, et al., estimated 11 to 
15% changes in the body-surface-potential 
distribution due to either addition or re- 
moval  of one  of the fol lowing 
inhomogeneities: lungs, anisotropic skel- 
etal-muscle layer, or subcutaneous fat. 
They also found that inhomogeneities 
near the torso surface played a larger role 
than those near the heart. This finding, 
however, could be due to the fact that in 
their study, the starting epicardial poten- 
tial distribution, being assumed as the 
source, was kept fixed and not “loaded” 
by the changing inhomogeneities. The 
intraventricular blood masses within the 
epicardium was not a factor in Klepfer, et 
al.’s, study. Another recent study [37] 
used a finite-difference reconstruction of 
the US National Library of Medicine’s 
Visible Human Man data to study the ef- 
fect of a 10% increase in conductivity of 
various organs on surface potentials due 
to a current dipole source placed in the 
heart region. The aim was to quantify the 
importance of uncertainties in the precise 
values of these conductivities on the sur- 
face potential. It was found that changing 
the conductivities of heart muscle, 
intracardiac blood masses ,  and 
anisotropic skeletal muscle had the most 
effect, whereas altering lung and subcu- 
taneous fat conductivities had only a 
small influence. 

Defibrillation 
Often in a compromised heart the normal 
patterned excitation can degenerate into 
“ventricular fibrillation.” In ventricular 
fibrillation, multiple chaotic wavelets are 
present in the ventricles, the pumping ac- 
tion of the heart is lost, and unless the 
heart is “defibrillated,” death occurs in 
minutes. Defibrillation consists of apply- 
ing a high-energy shock across the heart, 
with the idea being to simultaneously de- 
polarize all the ventricular cells, thereby 
halting all fibrillatory activity. Upon re- 
covery from the depolarizing shock, the 
sinoatrial node often recaptures control of 
the hear t .  Usual ly  external  or 
transthoracic defibrillation is used, 
whereby two large “paddle” electrodes 
are applied across the thorax and excited 
by a high-energy truncated exponential 
signal, obtained by discharging a capaci- 
tor across the electrodes and consequently 
through the thorax. For high-risk patients, 

internal implantable defibrillators are 
now common, in which epicardial patches 
or intraventricular catheters serve as the 
def ibr i l la t ing electrodes.  These  
implantable defibrillators have circuitry 
to detect the onset of fibrillation, thereby 
automatically initiating the appropriate 
defibrillation protocols. 

A certain minimum level of excitation 
is required at the heart for successful 
defibrillation, which translates to a mini- 
mum value of the applied current density 
everywhere in the heart. The number used 
in modeling studies is around 35 mA/cm3 
[38, 391. At the same time, it is necessary 
that the current density anywhere in the 
heart does not exceed approximately 500 
mA/cm2, since at these densities tissue 
damage is likely to occur. Therefore, it is 
important that the defibrillation elec- 
trodes used ensure a reasonably uniform 
current distribution throughout the heart. 

The finite-element method represents 
the most direct approach to simulating 
defibrillation currents. For transthoracic 
defibrillation, Eq. (1 6) again forms the ba- 
sis for deriving the finite-element matrix 
equation. In Eq. (16), the cardiac sources, 
I,, , are set to zero for defibrillation simnla- 
tions. Also, it is more correct to incorporate 
a Dirichlet boundary condition at the 
defibrillation electrodes, rather than sup- 
pose that these electrodes inject a uniform 
current density. Thus, there is no J,, in Eq. 
(16) either. Dirichlet boundary conditions 
at the epicardial patches or intraventricular 
catheter surfaces are also used when simu- 
lating internal defibrillation. Early studies 
just simulated the currents in an isolated 
heart [40], but in more recent work, the 

heart is placed inside a torso model with 
Dirichlet conditions at the internal andor 
external electrodes [41]. The torso models 
used in the above finite-element studies are 
necessarily complex, incorporating the dif- 
ferent conductivities of the various internal 
organs and even representing the 
anisotropic Conductivity of the skeletal 
muscle layer. Large sets of equations re- 
sult, and Ng, et al. [42], discuss the use of 
massively parallel computers in solving 
these equations. 

Transthoracic defibrillation simula- 
tions can also be run with the bound- 
ary-element formulation [43-461. While 
the set of numerical equations is smaller, 
the disadvantage here is that anisotropic 
conductivity variations cannot be taken 
into account. The governing integral 
equation for the potential @(r) anywhere 
in the volume conductor is again derived 
from an application of Green’s second 
identity to the torso geometry of Fig. 1, 
and is [44]: 

where o(r)  is the conductivity at the ob- 
servation point and Jn(r’) is the normal 
component of the outward current density 
at the thoracic defibrillation electrodes. 
Oostendorp and van Oosterom [44] dis- 
cuss the numerical solution of Eq. (20) for 
the unknown potentials and current densi- 
ties in terms of the known potentials at the 
defibrillating electrodes. 

Simulation studies on defibrillation 
have concentrated on determining the op- 
timal positioning and size of the defibril- 
lation electrodes in order to ensure an 
adequate and approximately uniform cur- 
rent density everywhere in the heart [39, 

ity of the current-density distribution in 
the heart to variations in skeletal-muscle 
anisotropy [38]. It was found that in 
transthoracic defibrillation, whether the 
skeletal muscle was modeled as isotropic 
or anisotropic made little difference to 
current flow patterns in the heart, but sim- 
ply affected current magnitudes. On the 
other hand, the same study showed that 
other inhomogeneities such as the lungs, 
ribs, and sternum affected both magni- 
tudes and current patterns. 

45-48]. One study focused on the sensitiv- 
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The Inverse Problem 
As already mentioned, the inverse 

problem does not possess a unique solu- 
tion. This difficulty is circumvented by 
using simplified models for the cardiac 
current sources. These models introduce 
what van Oosterom and Huiskamp [49] 
have called “implicit” constraints that en- 
able model parameters to be uniquely 
computed from the surface potentials. Ex- 
amples of such models are a multipole se- 
ries, one or two moving dipoles, multiple 
fixed-location dipoles, the epicardial po- 
tential distribution, and the activation iso- 
chrones on the heart surface. 

A second characteristic of the inverse 
problem, not so easily bypassed, is its ill- 
posed nature, whereby the desired solu- 
tion is unstable and can oscillate wildly 
with the slightest noise or perturbation in 
the electrical and/or geometrical input 
data. This ill-posed tendency increases 
with the number of parameters in the de- 
sired solution; i.e., with the complexity of 
the assumed heart model. The ill-posed 
nature needs to be stabilized, usually by 
the imposition of additional “explicit” 
spatial and temporal constraints on the pa- 
rameters of the heart model. 

The different solutions to the inverse 
problem may be presented according to 
the type of heart model whose parameters 
are being sought. Space limitations permit 
only an overview of solutions employing 
multipole coefficients, moving-dipole, or 
multiple-dipole models. Additional de- 
tails of these models may be found else- 
where [SO, 511. Inverse solutions 
involving epicardial potentials or heart- 
surface isochrones are described more 
fully since they are the focus of consider- 
able recent research [52]. 

Inverse Solutions in Terms of 
Multipole Coefficients 

In the multipole-series representation, 
the heart sources are characterized by an 
infinite series of multipolar current gen- 
erators (dipole, quadrupole, octupole, 
hexadecapole, etc.), all located at a fixed 
common origin, usually chosen at the cen- 
ter of the heart. The series may be calcu- 
lated by an approach suggested by Arthur, 
et al. [53].  Here, the subject’s torso shape 
is modeled and, in an initial step, the trans- 
fer matrix, T, relating unit multipole 
sources placed at an origin in the heart re- 
gion to the surfacepotentials, is calculated 
via Eq. (3). This enables us to write: 

@ = T X  (21) 
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where @ is an N x 1 matrix of surface po- 
tentials, X is an M x l matrix of multipole 
coefficients, and T is an N x M transfer 
matrix. The important fact to note is that 
Eq. (21) is a linear matrix equation, char- 
acterized by the constant coefficients of 
T. The constant coefficients arise specifi- 
cally because the multipole origin is fixed, 
as also are the different electrode-site lo- 
cations. Next, given a measured potential 
distribution characterized by the column 
matrix, @, the multipole coefficient ma- 
trix, X, is estimated from a standard linear 
least-squares minimization of the 
sum-squared residuals, given by: 

!Yl =[&-@]‘[&-@I 
= [&-TXIT[&-TX] 

= ll& - TXl12 
(22) 

where 11 / /  denotes the Euclidean norm of a 
vector and the superscript T denotes the 
transpose. The solution is given by the 
so-called “normal equation” [54]: 

x = ( T ~ T ) - ’ T ‘ &  (23) 

In practice, if only the first few multipole 
coefficients are desired (up to and includ- 
ing octupole terms), Eq. (23) may be 
solved without too much difficulty. This 
Lolution is repeated for different values of 
@ during the cardiac cycle. 

If a homogeneous torso model is as- 
sumed in determining T, the multipole 
coefficients computed using measured 
surface potent ia ls  f rom a rea l  
inhomogeneous torso implicitly include 
the e f fec ts  of the var ious 
inhomogeneities. If T is computed using 
a torso model that includes the lungs, 
then the effects of the lungs will be sepa- 
rated out in the solution for X. However, 
since residuals on the lung surfaces are 
not explicitly minimized, in order to 
guarantee convergence of the multipole 
series on these surfaces, they must fall 
outside a sphere circumscribed about the 
multipole origin that includes the cardiac 
sources. This condition precludes a simi- 
lar compensation for the blood masses. 
Multipole solutions are sometimes used 
as an intermediate step in obtaining in- 
verse solutions with more sophisticated 
inverse models (see below). 

Moving-Dipole Inverse Solutions 
In these inverse solutions, the activity 

of the heart is represented by one or two 
moving current dipoles. The basic under- 
lying principle is to select the amplitudes 
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and coordinates of these dipoles within an 
appropriate model of the torso such that 
the calculated torso-surface-potential dis- 
tribution closely matches the measured 
body-surface-potential distribution. This 
selection is repeated for each time instant 
considered. Inverse solutions utilizing 
one or two moving dipoles are only justi- 
fied when the real heart sources consist of 
one or two localized centers of activity, 
respectively. The hope then is that the co- 
ordinates of the calculated dipoles will in- 
dicate these sites of activity. 

This solution also minimizes the 
squared residual of Eq. (22). For solutions 
in terms of moving dipoles, the matrix re- 
lation @ = TX, first expressed in Eq. (21), 
between the theoretically calculated sur- 
face potentials, @, and the unknowns, X, 
of the problem, is unfortunately no longer 
linear. The unknowns of the problem are 
now the three components and the three 
coordinates of the single-moving-dipole 
(SMD) model, with a corresponding dou- 
bling for the two-moving-dipole (TMD) 
model. The relation between the theoreti- 
cal potential at an arbitrary site and the co- 
ordinates of the dipoles is profoundly 
nonlinear. Consequently, one can no lon- 
ger use the normal Eq. (23) to effect a so- 
lution. Rather, nonlinear iterative 
techniques for minimizing the squared re- 
sidual, such as the Levenberg-Marquardt 
algorithm [5S], need to be employed. 

If the forward transfer matrix, T, relat- 
ing dipoles to surface potentials may be 
obtained by direct matrix inversion of the 
coefficient matrix, (I - A*), in Eq. (3), the 
matrix of surface potentials can be rapidly 
computed at each iteration. Moreover, the 
Jacobian Cerivatives of the squared resid- 
ual % = [ @ - +]’ [ @ - @] with respect to 
the XI components of X, also required by 
the Levenberg-Marquardt algorithm, can 
be determined from est imates  of 
a@/ axl . With direct inversion, since 
@* = (I - A‘)-’G, we have [4]: 

given that (I - A‘)-’ depends only on the 
geometry and not on the X, . The deriva- 
tive aG / JX, can be analytically evalu- 
ated. Thus, for the outer torso, both 
CI, (= and aafax,  (= aw/x,, 
matrices are rapidly obtained at each iter- 
ation for the inverse dipole parameters, 
thereby permit t ing use of the 
Levenberg-Marquardt algorithm. 
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A description of the many studies done 
using SMD and TMD inverse models is to 
be found elsewhere [50, 511. A possible 
clinical application of the inverse SMD 
solution in electrocardiography is for 
noninvasive localization of the accessory 
pathway tract in the Wolff-Parkinson- 
White syndrome. In this syndrome, the 
accessory pathway bridges atria and ven- 
tricles, resulting in a pre-excitation of the 
ventricles. The locus of the SMD during 
early pre-excitation can possibly serve as 
an indicator of the site of the accessory 
pathway [%I. 

Multiple-Dipole Inverse Solutions 
This solution is based on the premise of 

an underlying multiple-dipole heart model, 
with the rationale being that the moment of 
each inversely-computed dipole will re- 
flect the electrical activity of the region it 
represents. There has not been much recent 
work done in inverse electrocardiography 
with this model, and earlier review papers 
remain relevant [50, 511. 

Inverse Solutions for 
Epicardial Potentials 

Here, the aim is to compute the 
epicardial potential distribution from the 
torso potentials using a torso model that 
represents  the  region be tween 
epicardium and outer torso. Besides its 
clinical importance, other benefits are 
the possibility of direct validation of the 
inverse solution, provided the epicardial 
distribution can be measured, and the 
fact that the effect of the most significant 
inhomogeneity, namely the intracardiac 
blood masses, is included implicitly. The 
effect of inhomogeneities external to the 
heart, such as the lungs, can also be in- 
cluded, but this has to be done explicitly 
by including these inhomogeneities in 
the torso model. 

If the theoretical relationship between 
the N body surface potentials, tDB, and the 
M epicardial potentials, tDH, (N > M )  is 
given by the linear matrix equation, 
aB = T,,@,, one looks again to mini- 
mize  the. sum-squared residual ,  
8- = il&B - TBH@Hll*. The transfer matrix, 

T,,, may be estimated from a solution to 
the forward problem, via either a fi- 
nite-element discretization of the region 
between epicardial and outer torso sur- 
face, or the boundary-element formula- 
tion of Eq. (8). The difficulty is that with 
the large number of epicardial potentials 
to be computed (usually around 60), the 

inverse problem becomes increasingly 
ill-posed. This is exemplified by an in- 
creased linear dependence among the col- 
umns of T,,,, and a singular or nearly 
singular TiHTB, matrix, so that a solution 
using the normal Eq. (23) is not possible. 
All the inverse solutions for epicardial po- 
tentials described below invoke explicit 
constraints on these potentials in order to 
circumvent this problem. 

Truncated Singular- Value 
Decomposition 
The relation aB = T,,@, being linear, the 
dimensionality of the solution space (i.e., 
the maximum number of independent 
components in a, that can bd determined) 
is equal to the rank of the datrix T8,. This 
rank is most easily determined from a sin- 
gular-value decomposition (SVD) of the 
N x M matrix T,,, given by T,, = USV', 
where U and V are N x N and M x M or- 
thogonal matrices, respectively, and S is 
an N x M diagonal matrix whose diago- 
nal elements are ordered such that 
s I I  2 sZ2 2 .... 2 s,, 2 .... sMM 2 0[57].These 
diagonal elements are termed the singular 
values of Tn,,. The rank of the matrix T,,is 
equal to that of S [57], so that if only the 
first r singular values are nonzero, r is also 
the rank of TBH. Accordingly, no more 
than r linearly independent solu- 
tion-components may be determined. 

The minimum residual solution of t_he 
set of equations aB = T,,@,, where QB 

denotes the measured body potentials, fol- 
lows by using the above decomposition to 
rewrite the set as: 

- 

= SVT@, (24) 

Now define 

where we have partitioned the @ and Y 
vectors as- indicated. The individual ele- 
ments ofQ are theprojectiozs of the mea- 
sured surface distribution, aB, along the 
individual columns of U, and similarly, 
the individual elements of Y are the pro- 
jections of the solution @, along the col- 
umns of V. Then, since we know that S is 
diagonal and of rank r, Eq. (24) yields: 

A general solution to Eq. (26) is of the 
form: 

Y =["3 (27) 

where Y, is arbitrary and S;' is easily com- 
puted. In scalar form, an individual solu- 
tion component among the Y I is simply: 

Since noise in the measured surface po- 
tentials is reflected in the Yt, those solu- 
tion components, y,, corresponding to the 
smallest singular values are going to be 
the most susceptible to this noise. The 
epicardial potentials, a,, are then, em- 
ploying Eqs. (27) and (25): 

It can be shown that this is a minimum re- 
sidual solution [51]. 

When the rank r of T,,, is less than the 
number of solution components, M, con- 
straints have to be imposed on these com- 
ponents in order to obtain a unique 
solution. One simple way to achieve this 
is by setting Y, in Eq. (29) to zero. Then, 
@, is obtained from: 

where U,, V, contain the first r columns 
of U and V, respectively. The accompa- 
nying constraints on the solution compo- 
nents of @, are obtained from the M - r 
relations of  
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corresponding to the zero values of Y. In 
practice, ?.. due to noise (i.e., measurement 
noise in a,, geometry error in determining 
the matrix T,,, as well as numerical 
discretization errors in the computations), 
fewer than r independent components of 
@H can be estimated reliably. Accordingly, 
to ensure solution stability in the presence 
of noise, the dimensionality of the solution 
space is further restricted to k < r and the 
smaller singular values from s ~ + ~  k+ l  onward 
are also assumed to be zero. The solution is 
then again given by Eq. (30), but with the 
matrices U, V and S ’ truncated after the 
first k rather than the first r columns. Trun- 
cated SVD essentially involves a judicious 
choice of the parameter k so as to result in a 
stable, low-residual, solution. By assum- 
ing a spherical torso, and performing an 
SVD of the transfer matrix, Okamoto, et al. 
[58],  concluded that only 15 independent 
parameters can be computed from surface 
potentials measured with accuracies as 
high as 99%. 

Regularization 
An alternative procedure, known as “reg- 
ularization” [59, 601, uses general infor- 
mation about the solution to constrain it, 
and thereby increase its stability. The 
more common regularization constraints 
employed are minimization either of the 
norm, of the surface gradient, or of the 
surface Laplacian of the epicardial poten- 
tial distribution, and have been termed 
zero-order, first-order, and second-order 
Tikhonov regularization, respectively. 
With regularization, instead of simply 
minimizing the surface-potential residu- 
als, the function 8 to be minimized is 
given by: 

where the constraint matrix, C, is either an 
M x M identity matrix I, a discrete ap- 
proximation to the spatial gradient; or a 
discrete approximation to the surface 
Laplacian in the case of zero-order, 
first-order, and second-order Tikhonov 
regularization, respectively. The con- 
stant, y, is termed the “regularization pa- 
rameter” and controls the weight 
attributed to the constraint condition. 
Since minimizing % in Eq. (32) is equiv- 
alent to the minimum-residual solution of 
the augmented set of equations: 

we may write the normal equation for the 
solution a,, namely: 

Little difficulty is encountered with 
Eq. (34), as a sufficiently large y will 
make (Tl,TBH + yCTC)  nonsingular and 
result in a unique, stable solution for @H. 

Since the sum-squared residual (the first 
term in Eq. (32)) also increases with y, 
regularization essentially involves select- 
ing the smallest y that stabilizes the solu- 
tion. As it is still by no means clear which 
of zero-, first-, or second-order Tikhonov 
regularization is most appropriate for the 
inverse epicardial potential solution, in 
the sequel we restrict ourselves to the sim- 
pler zero-order situation. It can be shown 
via the SVD of T,, that in zero-order reg- 
ularization, the solution components are 
given by: 

‘Ui 
Y ,  = 

s,, + ( Y / S , i )  (35)  

Upon comparing with Eq. (28), this ex- 
pression shows that as long as yis not too 
large, the smaller singular values of T,, 
are, in effect, scaled up in magnitude, con- 
tributing to the greater stability of the so- 
lution, while the larger ones remain 
practically unaffected. 

An important question with Tikhonov 
regularization is the optimum choice of 
the regularization parameter. As y tends 
to zero, the solution given by Eq. (34) 
tends to approach the minimupresidual 
solution, a, = [T;,T,,,]-I T,&@,, with its 
accompanying instability and oscillation 
of epicardial potential magnitudes. For 
very small values of y, this oscillation 
tends to affect the smaller values of 
epicardial potential particularly, resulting 
in erratic shifts of the zero isopotential 
line [61]. Such a solution is termed “un- 
der-regularized.” On the other hand, large 
values of y tend to make the solution 
overly smooth, since the constraint condi- 
tion, exemplified by the second term in 
8 ,, dominates (see Eq. (32)). Consider- 
able smoothing of epicardial potential 
gradients takes place with such an 
“over-regularized’ solution. The opti- 
mum value, y,,!Jr, lies between these two 
extremes, providing a balance between in- 
stability and excessive smoothing. If the 
epicardial potentials are known apriori, as 

with simulation or experimental studies, 
we can define y,!,, as the parameter that 
minimizes the relative error, RE, given 
by : 

RE = J w ( 3 6 )  

where the 6,, are the known values of the 
individual epicardial potentials. Hew- 
ever, in clinical tests in humans, the QHL 
are not known, and some other criterion 
needs to be used to select a value for y as 
close to optimum as possible. 

Several methods for selecting y have 
been proposed in the literature. If_ the 
standard deviation of the noise in aB is 
known, y can be found by means of a 
so-called “discrepancy technique” [62, 
631. This approach has been investi- 
gated by Johnson [64, 651. Other meth- 
ods that do not depend on an a-priori 
knowledge of noise levels in a, are 
“generalized cross-validation’’ and the 
“maximum likelihood estimator” [66, 
671. Colli Franzone, et al. [68, 691, pro- 
posed an empirical approach for deter- 
mining y known as “composite residual 
and smoothing operator” (CRESO), 
which also did not require a prior 
knowledge of noise levels and which 
led to y values that performed better 
than those selected via either the gener- 
a l ized  c ross -va l ida t ion  or  maxi  
mum-likelihood estimator criteria. The 
CRESO approach has gained a certain 
degree of acceptance for the inverse 
epicardial-potential problem. It esti- 
mates ycKc as the smallest value of 
y(> 0) that results in a relative maxi- 
mum of the function: 
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where QH is the solution for a particular 
value of yandis given by Eq. (34) (with C 
equal to the identity matrix). 

Recently, Hansen [70,71] has been an 
advocate of a less empirical “L-curve” ap- 
proach to determining y, first described by 
Miller [72] and by Lawson and Hanson 
[73]. The L-curve approach involves a 
plot using a log-log scale of the norm of 
the solution ~ ~ Q , H ~ ~  on the ordinate, against 
the norm of the residual 6, - T Q, on 

the abscissa, with y as a parameter along 
the resulting curve. As long as the 
uncorrelated Gaussian noise present in @E 

dominates the correlated geometric noise 
in T,,, this curve is in the form of an “L,” 
and the value, yL, at the corner of the “L” 
is selected. At the corner, both II@,lI and 
116, - ~ ~ ~ * ~ l l  simultaneously attain low 

values, intuitively suggesting a reason- 
able solution. A numerical algorithm to 
compute the site of the corner as the point 
of maximum curvature has been de- 
scribed by Hansen and O’Leary [74]. 
However, this algorithm is difficult to im- 
plement, and Johnston and Gulrajani [75] 
have proposed a simpler empirical 
“zero-crossing’’ choice, y,, for y. In simu- 
lations, y, as well as yCRB were both veri- 
fied to fall in the corner region. However, 
these same simulations showed that under 
low measurement-noise conditions, y,, 
did not fall in the corner region, in which 
event neither y L ,  yCRE, or y, result in an 
optimum solution. 

II B H H I I  

Variants of Tikhonov Regularization 
Several variants of Tikhonov regulariza- 
tion have been proposed. If some a priori 
estimate, aP, of the desired epicardial po- 
tential distribution is known, an approach 
proposed by Twomey [76] minimizes: 

(38) 
with a solution given by: 

@H = [TlHT,, f yIl-’[T&6B + F p l  

(39) 
Note that the success of this method de- 
pends on the correctness of the initial 
estimate, aP, since the solution is bi- 
ased toward this estimate. The best 
choice of the regularization parameter 
with Twomey regularization is still an 
open question. 

Another variant of Tilchonov regulari- 
zation imposes inequality constraints on 
the individual epicardial potentials Q H l .  

Thus, for example, we have as the objec- 
t ive funct ion to  b e  minimized,  

= 116, - TBH@,II2 + ylI@,lf, subject to 

the addi t ional  constraint  that  
a,  5 QHL 5 b,. 

Selection of the limiting constraint 
values a, and b, can pose a problem with 
this method, since clearly little improve- 
ment is to be expected unless these are tai- 
lored to the epicardial distribution at hand. 
Iakovidis and Gulrajani [77] have de- 
scribed one scheme that exploits experi- 
mental observations by Soucy [61] that 
the under-regular ized zero-order  
Tikhonov solution better preserves re- 
gions of high epicardial-potential gradi- 
ents at the expense of an erratic zero 
isopotential contour, whereas the 
over-regularized solution better preserves 
the position of the zero isocontour at the 
expense of smoothing the high gradients. 
In an effort to combine the better features 
of both under- and over-regularized solu 
tions, they proposed a two-pass approach, 
first selecting an over-regularized solu- 
tion, and next a final under-regularized 
solution subject to constraints that fixed 
its zero isopotential to that observed in the 
earlier over-regularized solution. 

Oster and Rudy [78] have suggested 
that a particular epicardial map can be 
separated into component maps with dif- 
ferent spatial characteristics, with each 
component recovered using different de- 
grees of regularization. In concept, this is 
similar to Iakovidis and Gulrajani’s two- 
pass scheme,  in  which the f i rs t  
over-regularized pass fixes the zero iso- 
potential region and the subsequent un- 
der-regularized pass the rest. However, 
Oster and Rudy formalized this notion by 
proposing that the potential distributions 

be split using SVD. Emplojing the-SVD, 
T,, = USV’, and writing = U T a B  and 
Y = V’aH,  we see from Eq. (28) that each 
solution component, y , ,  is <etermined 
uniquely by its corresponding Y,. Thus, if 
the measured body-surface distribution is 
decomposed into its Yt components, each 
component can be separately regularized 
using its own optimal regularization pa- 
rameter, y,, to obtain the individual y ,  dis- 
tributions. The final epicardial solution is 
obtained from aH = VY. Since the 
higher-order (i.e., the smaller magnitude) 
SVD components of V exhibit higher spa- 
tial frequencies, this approach represents 
a regularization based on epicardial spa- 
tial frequencies. 

Epicardial Solutions via Multipoles 
Inverse epicardial solutions can also be 
obtained by first determining an inverse 
solution in terms of multipoles [79]. The 
multipole series, X, is then used in a for- 
ward solution (employing Eq. (3)) to com- 
pute epicardial potentials, usually on a 
spherical surface surrounding the 
epicardium, in order to avoid questions of 
convergence and precise determinations 
of epicardial geometry. In effect, we ob- 
tain the relationship aH = T,X, where 
T, denotes the transfer matrix between 
multipoles and epicardial potentials. The 
multipole series can often be determined 
directly from the normal Eq. (23), al- 
though if hexadecapole terms are desired, 
some form of regularization is needed. 
Beetner [80] has suggested using a con- 
straint matrix based on the expected sig- 
nal power of each multipole component, 
or even one that minimizes the norm of the 
epicardial potentials ~ ~ T H x X ~ ~ .  In the latter 
situation, the objective function to be min- 
imized is 8 = ll&B - TXl’ + y~~T,X~~’. 

In simulation studies with the eccen- 
tric-spheres model, he obtained more ac- 
curate estimates of epicardial potentials 
with this two-step route than with a con- 
ventional one-step zero-order Tikhonov 
regularization solution for Q,,. 

Other Approaches 
Other  approaches to the inverse 
epicardial-potential problem that deserve 
mention are listed here. The first is a sta- 
tistical approach based on Wiener filter- 
ing that makes use of the covariance 
matrices characterizing surface-potential 
noise and epicardial potentials [81]. 
While this was the first epicardial solution 
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proposed, the covariance matrices were 
assumed proportional to the identity ma- 
trix, in effect reducing it to zero-order 
Tikhonov regularization. A more recent 
epicardial potential solution proposed by 
Throne and Olson [82, 831 employs a fi- 
nite-element representation of the for- 
ward problem and obtains the epicardial 
distribution as a linear combination of 
epicardial eigenvectors. Still another em- 
ploys a forward solution for the surface 
Laplacian as the transfer matrix [84-861. 
A final approach [87] solves for both 
epicardial potentials and gradients by 
writing Equations (6) and (7) in matrix 
form as follows: 

Horjcek and Clements [88] have success- 
fully tested this approach via simulation 
and list three advantages for it. First, 
knowing epicardial potential gradients 
normal to the surface (and hence the nor- 
mal current density) enables a better ap- 
preciation of the underlying injury current 
sources that arise in the ischemic heart. 
Second, although the coefficient matrix 
on the left-hand-side in Eq. (40) is larger, 
it is less ill-conditioned than the more con- 
ventional T,, matrix of Eq. (8). Finally, 
the input vector to the inverse calculations 

Anterior Posterior 

/' Sites 3 & 4 
12 msec 

Measured 
Torso 

Min = 360 pV Contour: Int/Posl/Negl = 142/107/-35 pV 

Right Anterior 

Min/Min = 1387/-4493 pV 

Epicardium 

Left Posterior 

Contour: Int/Posl /Negl = 600/300/-300 pV 

Min/Min = 1076/-895 pV Contour: Int/Posl/Negl = 600/300/-300 pV 

4. Inverse solutions obtained employing an isolated dog-heart inside a torso-shaped 
tank. The top row shows anterior and posterior views of the torso surface potentials 
obtained 12 msec after pacing at epicardial sites 3 and 4 (approximately 17 mm 
apart). The middle row shows four views of the measured epicardial potential distri. 
bution, and the bottom row the corresponding inversely calculated epicardial distri- 
bution. The asterisks indicate the actual pacing sites in the measured maps and the 
inferred ones (in the centers of the regions of negativity) in the computed maps. 
Zero-order Tikhonov regularization with regularization parameter ycRB was used. 
(Reproduced from [96], with permission from Williams and Wilkins.) 

in Eq. (40) is no longer the directly mea- 
sured, and therefore noisy, body-surface 
potentials aB, but is afiltered version of 
these potentials because &B is multiplied 
by the coefficient matrix on the right side. 

Imposing Temporal Constraints 
None of the inverse epicardial solutions 
described above exploit the temporal 
correlation that must exist between 
epicardial potentials at adjacent time in- 
stants. Instead, the epicardial distribu- 
tion at each time instant is obtained in 
i n d e p e n d e n t  f a s h i o n  f r o m  t h e  
body-surface distribution at that time in- 
stant alone. Increasingly, the need to im- 
pose some form of temporal constraint 
on the epicardial potentials is being rec- 
ognized. An initial effort was made by 
Oster and Rudy [89] using Twomey reg- 
ularization, with aP taken as apredicted 
value for the desired epicardial distribu- 
tion, a:), at the time instant, j ,  under 
consideration. This predicted value can 
be obtained from a forward interpola- 
tion using the epicardial distributions at 
the two prior sampling instants,j - 1 and 
j - 2, according to  the equat ion 
ap = 2@,(,-') - @,-'). This scheme was 
successfully tested with an isolated 
dog-heart preparation placed in a plexi- 
glass human torso, in which both torso 
and epicardial surface potentials were 
known. Its extension to the clinical situ- 
ation where epicardial potentials are un- 
known is somewhat problematic. 

A second approach was described by 
Brooks, et al. [90-911, who, in addition to 
spatial constraints on the epicardial poten- 
tial distribution, proposed a temporal con- 
straint matrix akin to minimizing the time 
derivative of the epicardial potentials. An 
additional regularization constraint (with 
a second regularization parameter) that 
incorporates this temporal derivative con- 
straint can be introducedinEq. (32). Now, 
however, a global solution is sought over 
space as well as over time; e.g., during the 
activation (or QRS) interval. This is a 
much more difficult problem since the 
matrix dimensions are larger and there are 
two regularization parameters to be deter- 
mined. Brooks, et al., have reported some 
initial work with this combined time and 

the two regularization parameters can be 
determined using an L-surface. 

Most recently, Greensite [92] has pro- 
posed a combined time-space regulariza- 
tion of the temporal sequence of N,  

space regularization, showing also how 
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body-surface potential distributions re- 
corded during an activation cycle. The 
forward relation is again a, = TBHaH, but 
where SP, and SPH are now matrices of di- 
mensions N x N ,  and M x N, ,  respec- 
tively. The standard approach then 
involves-solving each column of the re- 
corded matrix for the corresponding 
column of aH. Greensite suggests that a 
better approach is to first perform an SVD 
of the a, matrix,  so that  we get  
&, = UESEV~, where U,, SE,,  and v, are 
now N x N ,  N x N , ,  and N ,  x N,-matri- 
ces, respectively. The columns of U, then 
constitute a spatial basis for &E. This set of 
basis functions (each multiplied by their 
- corresponding singular values taken from 
SE) when solved individually results in 
corresponding epicardial distributions 
that may be arranged in an M x N, matrix, 
&H (assuming N ,  > N). The final solution 
for the entire M x N ,  epicardial matrix, 
&H, is obtained as aH = aHV;, where 
only the first N rows of are taken. The 
big advantage of $is procedure is that 
those columns of U, (corresponding to 
the smaller singular values of g,) that 
largely represent noise in the &E distribu- 
tion may be discarded, and Greensite 
shows how to identify the cut-off Koint. In 
effect, only the first n columns of U, need 
be considered, where n is much less than 
N (and hence N J .  Besides reducing the 
number of inverse solutions needed, 
Greensite's approach simultaneously 
performs a noise filtering of the data. 
Furthermore, each selected column of 
U, is solved with its own customized 
SVD truncation index or regularization 
parameter, depending on the stabilizing 
method chosen. 

A completely different approach that 
combines time-space regularization [93- 
941 assumes that the temporal evolution 
of the epicardial potentials from one in- 
stant to the next is governed by a linear 
prediction equation. Kalman filtering 
techniques are then used to reconstruct the 
epicardial potentials. 

Finally, time-space regularization of 
the inverse epicardial potential problem 
can also be achieved via convex optimi- 
zation Here any number of constraints, 
spatial as well as temporal, are used to re- 
strict the solution to a closed convex set 
in epicardial space. The solution found is 
only required to be admissible among the 

- - -  

96 

many possible solutions that meet all the 
constraints. There is no regularization 
needed and no criterion of optimality. 
The correctness of the solution is guided 

by the appropriateness and the efficacy 
of the constraints used. Ahmad, et al. 
[95], describe an initial simulation study 
with this approach. 

(a) Inner Sphere 

Max: 42.72 Min: -59.94 

(c) Optimal Tikhonov Solution 

RE: 0.41 Max: 31.50 
Min: -49.66 cc: 0.91 

(e) Over-regularized Solution 

(b) Outer Sphere 

Max: 2.10 Min: -5.49 

(d) CRESO Solution 

RE: 0.43 Max: 34.91 
cc: 0.90 Min: -50.80 

(f) LCO Solution 

RE: 0.52 Max: 18.73 
CC: 0.86 Min: -41.52 

RE: 0.37 Max: 39.75 
CC: 0.93 Min: -59.85 

5. (a) Analytically calculated inner sphere distribution due to three radial dipoles, 
one oriented outward and two inward, located within the inner of two concentric 
spheres of radius 4 and 10 cm, respectively. (b) Outer-sphere distribution for the 
same setup. (c) Zero-order Tikhonov solution obtained from the outer-sphere distri- 
bution in (b), employing regularization parameter yODt. (d) Zero-order Tikhonov so- 
lution employing ycRE. (e) First-pass ovei regularized solution that was used to fix the 
zero isocontour in a two-pass approach to improving Tikhonov regularization. (f) 
Final under-regularized pass. Each circle represents the projection of one hemi- 
sphere. Potential values are in arbitrary units. The isocontours are spaced at 10 unit 
intervals for (a), (c)-(f), and at 1 unit intervals for (b), with the zero isocontour iden- 
tified by the bold trace. The positions of all extrema (principal and secondary) are 
marked, with the values of the principal extrema indicated below each distribution. 
In addition, the values of the relative error (RE) and the correlation coefficient (CC) 
between the inner-sphere distribution of (a) and each of the solutions (c)-(f) are 
given below the respective solutions. All solutions were computed using a transfer 
matrix that corresponds to the geometry of the inner sphere displaced by 0.5 cm so 
as to introduce geometric noise. Figure modified from [77], with permission from 
Elsevier Science. 
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Examples of Inverse 
Epicardial Potential Solutions 
The first example illustrates results ob- 
tained with an isolated dog-heart prepara- 
tion placed inside an electrolyte-filled 
torso-shaped tank, thereby permitting re- 
cording of both torso and epicardial po- 
tentials [96]. The latter were measured in 
the electrolyte at known positions near the 
epicardial surface. Figure 4 depicts the 
torso, measured epicardial, and inversely 
computed epicardial distributions follow- 
ing simultaneous pacing from two sites 17 
mm apart on the left epicardium. The re- 
sults show that, in this setup, with geome- 
try errors in T,, absent, pacing sites could 
be identified to within 10 mm or better us- 
ing zero-order Tikhonov regularization. 

The second example (Fig. 5), drawn 
from our own work, depicts the ability of 
two-pass regularization to improve upon 
optimal Tikhonov regularization. Three 
dipoles inside a sphere surrounded by a 
second concentric sphere gave rise to the 
“epicardial” and “body” surface distribu- 
tions (Figs. 5(a) and 5(b), respectively). 
Zero-order Tikhonov solutions with regu- 
larization parameters y,, and yCRE are 
shown in Figs. 5(c) and 5(d), respectively. 
By fixing a narrow interval about the 
zero isocontour  in the f i rs t -pass  
over-regularized solution of Fig. 5(e), we 
were able to obtain a f inal  un- 
der-regularized solution (Fig. 5(f)) that 
picked up the secondary minimum in the 
original distribution (Fig. 5(a)). Later re- 
search [97] has identified a problem with 
this approach if epicardial potential distri- 
butions with high-gradient regions clus- 
tered on either side of the zero isopotential 
are to be recovered. Constraints around 
the zero isopotential based on an 
overregularized solution can then com- 
promise the final solution. It would be in- 
teresting to see if Oster and Rudy’s 
approach [78] of individually regularizing 
the different spatial components of such a 
high-gradient epicardial distribution 
would circumvent this problem. 

The final example focuses on the ability 
of temporal regularization to achieve tem- 
poral smoothing of the inversely computed 
epicardial potential. Figure 6 (top) shows a 
measured epicardial potential waveform, 
together with epicardial potential wave- 
forms computed using j u t  spatial regular- 
ization at individual time instants. In 
Figure 6 (bottom), much smoother 
epicardial waveforms obtained with the 
two-regularization-parameter time-space 
approach of Brooks, et al., [90-911 are 

t 

shown. A similar degree of smoothing has 
also been demonstrated by Greensite and 
Huiskamp [98] using Greensite’s [92] 
time-space regularization approach. 

2000 

Inverse Determination of 
Heart-Surface Isochrones 

Rather than characterize the electrical 
activity of the heart by dipoles or epicar- 
dial potentials, this inverse solution sets 
out to determine the activation isochrones 
at the heart’s surface. It is based on the as- 
sumption that the activation isochrones 
can be represented by a uniform layer of 
dipoles normal to the isochrone surface 
and pointing toward as yet undepolarized 

.- I 

tissue. This representation is equivalent to 
one characterizing the depolarized swr- 
face of both the epicardium and the endo- 
cardium by a layer of dipoles of the same 
uniform strength and normal to these sur- 
faces, but pointing towards depolarized 
tissue, since the difference between these 
two representations is a closed uniform- 
dipole layer that generates no external po- 
tential. Inverse determination of surface 
isochrones essentially involves the deter- 
mination of the extent of these epicardial 
and endocardial dipole layers at succes- 
sive instants during depolarization, from 
the torso potentials and the torso as well as 
heart geometry. Put another way, the acti- 

2000 

0 

-2000 

1 
10 20 30 40 50 60 

0 

-2000 

L J 
10 20 30 40 50 60 

6. Comparison of spatial (top) and combined temporal-spatial (bottom) regulariza- 
tion. In each panel, the solid trace represents a measured epicardial waveform for 
60 msec during QRS, the other traces are inversely computed waveforms with vari- 
ous regularization parameters. The measured epicardial waveforms, which were ob- 
tained from an isolated dog heart, were used to simulate torso ECGs, from which, 
after the addition of measurement noise, the inverse epicardial waveforms were 
computed. The temporal smoothing achieved by time-space regularization is evi- 
dent. (Reproduced, with permission, from [52]. Copyright 1998 IEEE.) 
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vation times of the epicardial and endo- 
cardial surfaces are obtained. The 
problem was first studied by Cuppen and 
van Oosterom [99, 1001. 

If T(y,x) represents the forward trans- 
fer coefficient relating the potential QB at 
a body-surface point, y, to the uniform di- 
pole element at x, then Cuppen and van 
Oosterom show that: 

whereA,(yj is the time-integual during the 
QRS interval of the torso potential Q B  at 
site y, T ( X )  is the desired activation time at 
site x, and S ,  represents both the 
endocardial and epicardial surfaces. 
Cuppen and van Oosterom [ 1001 applied 
Eq. (41) in simulation studies with numer- 
ical models of the heart and torso. They 
first transposed the isolated-heart activa- 
tion data of Durrer, et al. [15], to their 
heart model (Fig. 7(a)). Next, T(y, x) was 
estimated using the integral equation for 
the potential (Eq. (1)) and used in con- 
junction with the activation data to calcu- 
late the torso potentials. These were then 
contaminated with random noise prior to 
being integrated over the QRS duration to 
obtain A,(y). Finally, the Durrer data (i.e., 
~ ( x ) )  was inversely computed from A,b) 
using a discrete form of Eq. (41) and em- 
ploying a variant of truncated SVD. 
Figure 7(b) plots the recovered epicardial 
isochrones, when the added random noise 
was 1% of the maximum surface poten- 
tial. Cuppen and van Oosterom found that 
while normal signal noise was not critical, 
errors in geometry and conductivity be- 
tween forward and inverse torso models 
were much more so. Finally, epicardial 
isochrones were recovered with greater 
accuracy than endocardial ones. 

Cuppen and van Oosterom point out 
that the spreading of the surface activation 
isochrones is an inherently smooth pro- 
cess. Therefore, the use of regularization 
constraints is more apt than it would be, 

epicardial potentials, where sharp gradi- 
ents are present. On the other hand, the 
method relies on the uniform-dipole-layer 
concept and is, therefore, not applicable 
where this does not hold, as is the case for 
anisotropic myocardium, where a nonuni- 
form dipole layer oblique to the wavefront 
is more appropriate [ lol l .  Similarly, in 
cases of old myocardial infarction, appli- 
cation of the method requires a knowl- 
edge of the infarct geometry, which, in 
effect, forms a boundary surface for the 

say ,  for the inverse calculation of 
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heart. This inverse solution for activation 
isochrones is, accordingly, best suited for 
the study of ectopic beats and other 
rhythm disturbances. Interesting exten- 
sions of the method that employ sec- 
ond-order Tikhonov regularization have 
been described by Huiskamp and van 
Oosterom [102-1041 and used by them to 
investigate the effects of torso geometry 
and heart position on the inverse solution. 

A completely different approach to ob- 
taining the surface activation isochrones, 
valid in principle even with anisotropic 
myocardium and the oblique-dipole 
model, has been proposed by Greensite 
[105, 1061. The basic objective here is to 
locate the “critical points” of the activation 
map on the heart surface. These critical 
points, x<, are the extrema sites (i.e., min- 
ima, maxima or saddle points) on the map 
of heart-surface activation times. Thus, the 
epicardial breakthrough of the transmural 
wavefront arriving from the endocardium 
is identified by a minimum in the 
epicardial activation map, sites where the 
epicardial wavefront dies out would be a 
maximum, and a collision of two 
epicardial wavefronts would constitute a 
saddle point. Greensite argues that the 
“hole” developed in the propagating 
transmural wavefront when it intersects the 

epicardial surface will result in a changed 
slope in the temporal ECG, leading to a 
step discontinuity or “jump” in the first de- 
rivative of the ECG. The times of these dis- 
continuities identifies the “critical times” 
associated with the critical points. 
Greensite [ 1061 has shown that the magni- 
tude of the jump, J(y), in the derivative of 
the potential at a body site, y, is given by: 

where p(xJ is the current dipole density 
(uniform or oblique) associated with the 
wavefront at the breakthrough site, x,; v is 
the wavefront velocity; C is a measure of 
the curvature difference between wave- 
front surface and epicardial surface at x,; 
and r(x,,y) the distance between x, and y. 
Note that Eq. (42) describes a dipole field, 
and Greensite [lo61 argues that an SMD 
solution from a “jump map,” namely the 
distribution on the body surface of the 
jump magnitudes in the potential deriva- 
tives at a given critical time, would locate 
the corresponding critical point, x,, on the 
epicardium. In a subsequent step, these 
critical points could serve as a priori data 
to constrain appropriately a full activa- 
tion-isochrone solution. 

7. Inverse recovery of heart-surface isochrones. (a) Anterior (top) and posterior 
(bottom) views of the starting epicardial-surface activation isochrones plotted on an 
upright model heart. (b) Corresponding views of the inversely computed isochrones. 
(Reproduced, with permission, from [loo]. Copyright 1984 IEEE.) 
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A more recent theorem by Greensite 
[lo71 has obviated the need to measure 
jumps in the first derivative of the ECG po- 
tentials. This theorem states that x, is a criti- 
cal point, with a critical time in the interval 
[0, t] ,  if and only if the transfer function 
T(y,xJ associated with this point is con- 
tained in the spatial signal space of the 
body-surface potentials during the interval 
[0, t] .  Note that in the discrete situation, 
T(y,x,) defines a vector since y spans all 
body-surface points. The spatial signal 
space_of the measured body-surface poten- 
tials, @,, during QRS is obtained from the 
matrix e, of the SVD of the N x N, matrix, 

- - -  
&B, namely GB = U,S,Vi. Huiskamp and 
Greensite [ 1081 suggest criteriafor identify- 
ing the effective rank k of aB such that col- 
umns I ,..., k, of U, are associated largely 
with signal space and the rest largely with 
noise. The vector representing the transfer 
function T(y,x,) of each epicardial point is 
tested via the multiple signal classification 
(MUSIC) method of antenna theory [ 1091 
for its distance from this signal space. 
Epicardial sites where the reciprocal of this 
distance is large indicate critical points. The 
critical times associated with each critical 
point is found by repeating this test of the 
transfer function T b , x , )  of each critical 

?.. 

point, with the time interval, t, gradually in- 
creased from zero. In other words, the test,is 
performed repeatedly using successive U, 
matrices determined from only the first two 
columns of &,+ the first three columns of 
&, and so on. The critical time is found 
when the reciprocal distance first jumps to a 
large value and remains there for the rest of 
QRS. (In practice, a slightly more sophisti- 
cated test function than just the reciprocal 
distance is used to identify critical times at 
each epicardial site.) Once these critical 
times and sites are identified, they can be 
used as before to constrain a full activa- 
tion-isochrone solution. Simulation tests 

8. Inverse recovery of critical points. (a) Anterior (top) and posterior (bottom) views of the starting epicardial-surface activation 
isochrones plotted at steps of 2 msec on a model heart oriented as in the torso. Note that, unlike in Fig. 7, the posterior view is 
that of the posterior wall, but seen from an anterior perspective. Labels I-IV indicate breakthrough sites, V-VI1 sinks, +- a colli- 
sion site, and 0 a noncritical point. These epicardial isochrones together with endocardial ones (not shown here) were used to 
generate surface potentials, from which, after the addition of measurement noise, the critical points were inversely obtained. (b) 
Inversely computed critical points. Note that the positions of the labels are the same as those in (a) and serYe to indicate the cor- 
rect solution. Only the location and critical times of the breakthrough sites, sinks, and collision sites are of significance in (b), as 
the depicted isochrones constitute just a first approximation to the starting isochrones. Of the breakthrough sites, I is correctly 
located but with a later critical time, I1 is incorrectly located but accurate with respect to time, I11 is accurate with respect to 
both location and time, and IV is completely missed. Of the sinks, V and VI are accurate, and VI1 fairly accurate, with respect to 
both location and time. There is a small positional error in the collision site, +-, but not in the collision time. Critical sites on the 
endocardium could not be identified. (Reproduced, with permission, from [108]. Copyright 1997 IEEE.) 
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have shown that the method works quite 
well in locating critical sites and times on 
the epicardium (Fig. 8), but not so on the 
endocardium. 

Future Trends 
The availability of more powerful 

computer workstations will lead to more 
detailed finite-difference, finite-element, 
and finite-volume models of the torso and 
its inhomogeneities, and consequently 
more accurate solutions to the forward 
problem of electrocardiography. This, in 
turn, will also improve inverse solutions. 
Of particular promise are inverse solu- 
tions that employ temporal constraints, ei- 
ther in implicit fashion, such as in the 
inverse determination of heart-surface 
isochrones, or in explicit fashion during 
the inverse determination of epicardial 
potentials. It remains to be seen whether 
this promise will be fulfilled in the very 
near future. 
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