课题13参考资料

为节约页面空间将资料移至此处

中期进度报告

1. 摩擦测频率

  • 实验目的:测量高脚玻璃杯在不同杯高、水高、壁厚、密度、内径最大值和肚口比的固有频率。
  • 实验方法:用手摩擦/敲击杯壁等多种方式,通过收集杯子发出的声音,在软件中进行分析,测出固有频率 f。
  • 测量:用尺测量厚度、内径、杯高;用天平测量杯子的质量,排开液体测量杯子的体积从而得出杯子的密度;麦克风采集声音;使用软件FFT分析频率。

2.激光音箱检测振动

  • 实验目的:探究摩擦频率和共振频率的关系
  • 实验方法:一个吸收声音的大部分密闭的容器,内放玻璃杯。激光从一侧斜照入另一侧射出,音箱放容器一角面对玻璃杯发声。

实验流程:准备容器、护目镜,耳塞,电脑,音箱,小透镜

  1. 检测现有激光检测的采样率是否满足所需,如没有需用学生电源和光电二极管自行组装
  2. FFT采样数据,观察是否能分析出音箱频率附近的峰强度
  3. 如果前两条满足所需,在摩擦的频率附近测量滤波后的幅度。并尝试编程扫描各个频率。

实验仪器:

  1. 发声软件(sinegen),音箱,足够高采样率(可测量500-2000Hz信号)激光检测装置。
  2. 吸音容器:可为纸箱,侧壁开四分之一,内垫吸音材料。
  3. 非必须实验用具:护目镜,(耳塞),有支架的小透镜聚焦激光

第二次实验

实验仪器:60w音响;装有信号源和频率分析软件的电脑;实验材料:装水玻璃高脚杯;

第一次实验

实验仪器:超声波发生器;实验材料:烧杯;未装水300ml烧杯摩擦频谱;装水300ml烧杯

  1. Wine Glass Resonance Oscillations (youtube, Cool Science, Jun 6, 2015), https://youtu.be/ntSCRNhQ06Y
  2. Shattering Wineglass (youtube, Harvard Natural Sciences Lecture Demonstrations, Jun 9, 2010), https://youtu.be/cPALfz-6pnQ
  3. Breaking a glass with sound in slow motion - Dara O Briain's Science Club - BBC (youtube, BBCWorldwide, Feb 25, 2014), https://youtu.be/bJj4Wjjf0WI
  4. Wine glass resonance in slow motion (youtube, Marty33's channel, Mar 6, 2009), https://youtu.be/BE827gwnnk4
  5. Water Goblet Resonance (youtube, The Physics Classroom, Dec 16, 2010), https://youtu.be/X5Uy7MhFiWA
  6. resonance standing wave wine glass a science with bobert video short (youtube, science with bobert, Dec 17, 2015), https://youtu.be/AxWzVPdubjs
  1. K.-W. Chen, C.-K. Wang, C.-L. Lu, and Y.-Y. Chen. Variations on a theme by a singing wineglass. Europhys. Lett. 70, 3, 334–340 (2005)
  2. T. D. Rossing. Acoustics of the glass harmonica. J. Acoust. Soc. Am. 95, 1106 (1994), https://www-dev.wiki.ed.ac.uk/download/attachments/280937813/JAS001106.pdfversion=1&modificationDate=1440671481000&api=v2
  3. P. G. Bentley. Acoustically excited vibrations in a liquid-filled cylindrical tank. J. Sound and Vibration 19, 2, 179-191 (1971) Background reading
  4. C. R. Fuller and F. J. Fahy. Characteristics of wave propagation and energy distribution in cylindrical elastic shells filled with fluid. J. Sound and Vibration 81, 4, 501-508 (1982)
  5. K. Uchida and K. Kishi. Vibrational analysis of glass harp and its tone control. Acoust. Sci. and Techn. 28, 6, 424-430 (2007)
  6. M. Courtois, B. Guirao, and E. Fort. Tuning the pitch of a wine glass by playing with the liquid inside. Eur. J. Phys. 29, 303–312 (2008),https://www.researchgate.net/profile/Boris_Guirao/publication/231065870_Tuning_the_pitch_of_a_wine_glass_by_playing_with_the_liquid_inside/links/00b49538dc4076276d000000.pdf
  7. K. D. Skeldon, V. J. Nadeau, and C. Adams. The resonant excitation of a wineglass using positive feedback with optical sensing. Am. J. Phys. 66, 851 (1998)
  8. T. D. Rossing. Wine glasses, bell modes, and Lord Rayleigh. Phys. Teach. 28, 582 (1990)
  9. A. P. French. In Vino Veritas: A study of wineglass acoustics. Am. J. Phys. 51, 688 (1983)
  10. G. Jundt, A. Radu, E. Fort, J. Duda, H. Vacha, and N. Fletcher. Vibrational modes of partly filled wine glasses. J. Acoust. Soc. Am. 119, 3793-3798 (2006),http://newt.phys.unsw.edu.au/music/people/publications/Jundtetal2006.pdf
  11. Y. Chen. Why does water change the pitch of a singing wineglass the way it does? Am. J. Phys. 73, 1045 (2005)
  12. D. Terwagne and J. W. M. Bush. Tibetan Singing Bowls. Nonlinearity 24, R51–R66 (2011),arXiv:1106.6348v1 [physics.flu-dyn]
  13. O. Inácio, L. L.Henrique,and J. Antunes. The dynamics of Tibetan singing bowls. Acta Acustica un. with Acustica 92, 4, 637-653 (2006)
  14. G. Denninger. Das Ohr trinkt mir. Physik in unserer Zeit 44, 3, 142–146 (2013)
  15. R. E. Apfel. “Whispering” waves in a wineglass. Am. J. Phys. 53, 1070 (1985)
  16. S. V. Joubert, T. H. Fay, and E. L. Voges. A storm in a wineglass. Am. J. Phys. 75, 647 (2007)
  17. K. Oku, A. Yarai, and T. Nakanishi. A new tuning method for glass harp based on a vibration analysis that uses a finite element method. Acoust. Sci. and Techn. 21, 2, 97-104 (2000)
  18. G. Essl, S. Serafin, P. R. Cook, and J. O. Smith. Musical applications of banded waveguides. Computer Music J., 28, 1, 51-63 (2004)
  19. T. Arane, A. K. R. Musalem, and M. Fridman. Phase locking between two singing wineglasses (2009), arXiv:0901.0656v2 [physics.pop-ph]
  20. A. Scodary. Shattering a Wine Glass with Sound (stanford.edu, 2007), http://large.stanford.edu/courses/2007/ph210/scodary2/
  21. C. Riscoe, H. Titus, M. Bywater, and M. Taylor. Resonance in a Crystal Glass (2011), http://tuhsphysics.ttsd.k12.or.us/Research/IB11/RiscTituBywaTayl/index.htm
  22. Why does a wine glass with less water resonate at a higher frequency? (physics.stackexchange.com, 16 Jul 2010),http://physics.stackexchange.com/questions/126832/why-does-a-wine-glass-with-less-waterresonate-at-a-higher-frequency
  23. Shattering Wine Glass Through Sound and Resonance (salford.ac.uk), http://www.acoustics.salford.ac.uk/feschools/waves/wine1video.htm
  24. Breaking Glass with Sound (video.mit.edu), http://video.mit.edu/watch/breaking-glass-withsound-3947/
  25. E. L. Voges and S. V. Joubert. The singing wineglass: an exercise in mathematical modelling. Int. J. Math. Educ. in Sci. and Techn. 39, 6, 725-739 (2008)
  • course/interesting_problems/2017/topic13/课题13参考文献名录.txt
  • 最后更改: 2017/04/04 17:17
  • (外部编辑)